
On the Complexity of Learning for a Spiking Neuron(Extended Abstract)
Wolfgang Maass� and Michael Schmitt�AbstractSpiking neurons are models for the computa-tional units in biological neural systems whereinformation is considered to be encoded mainlyin the temporal patterns of their activity. Theyprovide a way of analyzing neural computationthat is not captured by the traditional neuronmodels such as sigmoidal and threshold gates(or \Perceptrons").We introduce a simple model of a spiking neu-ron that, in addition to the weights that modelthe plasticity of synaptic strength, also hasvariable transmission delays between neuronsas programmable parameters. For coding ofinput and output values two modes are takeninto account: binary coding for the Booleanand analog coding for the real-valued domain.We investigate the complexity of learning fora single spiking neuron within the frameworkof PAC-learnability. With regard to samplecomplexity, we prove that the VC-dimensionis �(n logn) and, hence, strictly larger thanthat of a threshold gate. In particular, thelower bound holds for binary coding and evenif all weights are kept �xed. The upper boundis valid for the case of analog coding if weightsand delays are programmable.With regard to computational complexity, weshow that there is no polynomial-time PAC-learning algorithm, unless RP =NP, for a quite�Address: Institute for Theoretical Computer Science,Technische Universit�at Graz, Klosterwiesgasse 32/2, A{8010Graz, Austria. E-mail: fmaass,mschmittg@igi.tu-graz.ac.at,http://www.cis.tu-graz.ac.at/igi/

restricted spiking neuron that is only slightlymore powerful than a Boolean threshold gate:The consistency problem for a spiking neuronusing binary coding and programmable delaysfrom f0; 1g is NP-complete. This holds even ifall weights are kept �xed.The results demonstrate that temporal codinghas a surprisingly large impact on the com-plexity of learning for single neurons.1 INTRODUCTION ANDDEFINITIONSDuring the last few years the paradigms for computa-tion in biological neural systems have undergone drasticchanges. With the help of re�ned experimental tech-niques one has learnt that information is not only en-coded in the �ring rates of biological neurons, but of-ten also in the temporal pattern of their �ring (\tempo-ral coding"). Whereas threshold circuits and sigmoidalneural nets provide a suitable model for neural compu-tation in terms of �ring rates, they cannot be used formodelling neural computation in terms of temporal pat-terns of neuronal activity. In order to model temporalpatterns of activity, one has to consider networks con-sisting of a di�erent type of computational unit: spikingneurons (or leaky integrate-and-�re neurons, as they arecommonly called in biophysics and theoretical neurobi-ology).We will focus in this article on a simple version of thespiking neuron model (\spiking neurons of type A" inthe terminology of [14]). This model allows us to studysome fundamental new learning problems that arise inthe context of computation with temporal coding. Sincethis model is su�ciently simple, the basic aspects of thisnew mode of computation are not obscured by the myr-iad of additional subtleties and complications that occurin a more detailed neuron model. In addition, this sim-ple model for a spiking neuron has the advantage thatit provides a link to silicon implementations of spikingneurons in analog VLSI.



1.1 THE MODEL FOR A SPIKINGNEURONWe consider a spiking neuron v that receives input pul-ses from n input neurons a1; : : : ; an. We assume thatthere exists for i = 1; : : : ; n a connection from ai to vwith weight wi 2 IR and delay di 2 IR+ (where IR+ =fx 2 IR : x � 0g). We treat time as a continuousvariable. For simplicity we assume that if the inputneuron ai \�res" at time ti, this causes a pulse in v ofthe form hi(t� ti) withhi(x) = ( 0 for x < di or x � di + 1 ;wi for di � x < di + 1 :We assume that the neuron \�res" as soon as the sumPv(t) =Pni=1 hi(t� ti) of these pulses reaches a certainthreshold �v . In a biological context these pulses arecalled postsynaptic potentials. The function hi modelsthe e�ect of a �ring of neuron ai on themembrane poten-tial Pv(t) at the trigger zone of v. The �ring threshold� of a biological neuron depends on the time which haspassed since its last �ring. For simplicity we assumehere that the neuron has not �red for a while (say atleast 20 ms), so that its �ring threshold has returnedto its \resting value" �v. There is some disagreementamong neurobiologists whether the sign of a synaptice�cacy wi can change in the course of a learning pro-cess. This issue will not be relevant for the results ofthis article.The model is a simple version of a leaky integrate-and-�re neuron. In contrast to more complex models (seee.g., [19, 7, 13]) it models a pulse as a step function,rather than a continuous function of a similar shape.Pulses of this shape are actually very common in siliconimplementations of networks of spiking neurons [17].A spiking neuron of this type was called a \spiking neu-ron of type A" in [14]. In this article we will refer to itsimply as a spiking neuron.1.2 TEMPORAL CODINGA spiking neuron may be viewed as a digital or analogcomputational element, depending on the type of tem-poral coding that is used. For binary coding we assumethat input neuron ai �res at time 0 if it encodes a \1",and that it does not �re at all if it encodes a \0". Corre-spondingly, we assume that v outputs a \1" if it �res asa result of this input from a1; : : : ; an, and that v outputsa \0" if it does not �re.For analog coding we assume that ai encodes a real num-ber ti 2 [0; 1] by �ring at time ti. The output value ofv is the time tv when it �res (or tv � T for a suitableconstant T if one wants to scale the real-valued outputof v into a speci�c range such as [0; 1]). In case that v

does not �re, we assume that this encodes some �xedanalog output t0 (e.g. t0 = 0).We will consider both types of coding in this article.Moreover, the type of coding for the inputs may dif-fer from that for the output, e.g., analog coding for theinputs and binary coding for the output may occur, sim-ilarly as for a threshold gate. We prove each result forthat type of coding for which it is more di�cult. Lowerbounds for sample or learning complexity tend to bemore di�cult for binary coding, upper bounds tend tobe more di�cult for analog coding.Our results about the VC-dimension of a spiking neuronare complementary to those achieved in [21]. In thatarticle the integration time constant and the thresholdwere viewed as the only variable parameters of a spikingneuron, whereas the e�ect of variable delays has notbeen addressed.1.3 OVERVIEWIn this article we investigate the complexity of learningfor a spiking neuron within the PAC-learning frame-work. (For detailed de�nitions we refer the reader to[2, 4, 20].) In Section 2 we estimate the computationalpower and the sample complexity of the spiking neuronmodel de�ned above. For binary coding we give upperand lower bounds for the computational power in termsof several classes of Boolean functions. As the mainresult of this section we show that for binary and ana-log coding the VC-dimension of the corresponding func-tion class is �(n logn). It is well known that the VC-dimension of a function class gives fairly tight boundson the sample complexity (i.e. the number of trainingexamples needed) for PAC-learning this class. Accord-ing to [9], these estimates of the sample complexity interms of the VC-dimension hold even in the case whenthe training examples are generated by some arbitraryprobability distribution (\agnostic PAC-learning"). Inparticular, these bounds remain valid when the trainingexamples are not generated by a spiking neuron.In Section 3 we investigate the computational complex-ity of PAC-learning using a particular spiking neuronas hypothesis class. We show that for a bounded setof at least two delay values the consistency problemfor the corresponding hypothesis class is NP-complete.This implies that there is no e�cient PAC-learning algo-rithm for these hypothesis classes unless RP = NP. Theintractability results presented in this section have alsoconsequences for the case of agnostic PAC-learning. Ac-cording to known results [12, 10], polynomial-time ag-nostic PAC-learning with some hypothesis class H canbe done only if the minimizing disagreement problemfor H is in RP. Now, for each hypothesis class H theconsistency problem can easily be reduced to the min-imizing disagreement problem. Therefore, polynomial-



time agnostic PAC-learning is not possible for the hy-pothesis classes considered in this section, provided thatRP 6= NP. Finally, Section 4 contains some concludingremarks and discussion.2 COMPUTATIONAL POWER ANDVC-DIMENSION OF A SPIKINGNEURONWe introduce the following notation: The class of Boole-an functions that can be computed by a spiking neuronwith n binary coded inputs and binary coded output isdenoted by Sbbn (where \bb" stands for \binary inputand binary output"). Correspondingly, Saan is the classof functions from IRn to IR that can be computed bya spiking neuron with analog coding of the inputs andoutput. The subclass of Saan that has its output in f0; 1gis denoted by Sabn .A similar notation is used for the threshold and for thesigmoidal gate: The class of Boolean functions com-putable by a threshold gate is denoted by T bbn , and T abnis the class of halfspaces over IRn. The sigmoidal gate isa neuron model that computes functions from IRn to IRby applying the sigmoidal function 1=(1 + e�y) to thesum of the weighted inputs. We denote the correspond-ing function class by T aan .Finally, ��DNFn is the class of Boolean functions de-�nable by a DNF formula over n variables where eachvariable occurs at most once.2.1 COMPUTATIONAL POWERIt is obvious that for binary coding a spiking neuron hasat least the computational power of a threshold gate (or\Perceptron"): just assume that all delays di are equal.However, it is easy to see that its computational poweris strictly larger. In order to characterize its powermore precisely we compare it with the classes T bbn and��DNFn both of which are contained in Sbbn . The fol-lowing theorem clari�es the relationships between theseclasses and gives also an upper bound in terms of dis-junctions of threshold gates.Theorem 2.1a) For n � 3, T bbn 6� ��DNFn.b) For n � 4, ��DNFn 6� T bbn .c) T bbn � Sbbn , but for n � 4, T bbn 6= Sbbn .d) ��DNFn � Sbbn , but for n � 3, ��DNFn 6= Sbbn .e) Each function in Sbbn can be computed by an OR of2n� 1 threshold gates. For n � 2, there exist functionscomputable by an OR of two threshold gates that are notin Sbbn .

Proof. All proofs are straightforward. We thereforerestrict the proof to the inequality claims by just givingfor each of them a function that separates the two func-tion classes involved.a) The function (x1 ^ x2) _ (x1 ^ x3) _ (x2 ^ x3) can becomputed by a threshold gate but not be written as a��DNF3 formula.b,c) The function (x1 ^ x2) _ (x3 ^ x4) is in ��DNF4but cannot be computed by a threshold gate.d) The function (x1^x2)_(x2^x3) is in Sbb3 but cannotbe written as a ��DNF3 formula.e) The exclusive-OR of two bits can be computed by anOR of two threshold gates but is not in Sbb2 .2.2 LOWER BOUND FOR THEVC-DIMENSIONThe VC-dimension of the classes T bbn and T abn is knownto be n + 1 (see e.g. [4]). Furthermore, using knownresults about the pseudo-dimension (see [9]) it is easyto derive that the class T aan has pseudo-dimension n+1.We show now that the VC-dimension of the classes Sbbn ,Sabn and the pseudo-dimension of the class Saan is strictlylarger by a factor of 
(logn). We view in the followingresults the delays di as \programmable parameters" ofa neuron, in addition to the weights wi of its synapses.This is reasonable since in biology many mechanismsare known that change the e�ective delay between twoneurons. One well-known mechanism is the selectionof a few synapses out of an initially very large set ofsynapses between two neurons. Some other biologicalmechanisms for changing the e�ective delay between twoneurons are discussed in [1, 8].Theorem 2.2 The VC-dimension of a spiking neuronwith n variable delays as programmable parameters is
(n logn). This holds even if the inputs are restrictedto binary values and all weights are kept �xed.The statement follows from the following more generalresult choosing k = (log(n=2))=2 and m = n=2, andobserving that k � 2k +m � n and k �m = 
(n logn).We give a proof for binary coding of the inputs andindicate afterwards how to derive the result for the caseof analog coding of the inputs (i.e. the class Sabn ).Theorem 2.3 For each m; k � 1 there exists a set S �f0; 1gm+k�2k of size jSj = m � k that can be shattered bya spiking neuron with �xed weights.Proof. We �rst describe the construction of S, then we�x the weights and a part of the delays, and �nally weshow that for each subset S0 � S there exists a delayvector such that the neuron �res on elements of S0 butdoes not �re on elements of SnS0.



The set S consists of m � k elements xi;j for 1 � i � m,1 � j � k where the �rst m bits of xi;j are formedby the unit vector ei 2 f0; 1gm. The remaining k � 2kbits of the elements are de�ned as follows: Assume a�xed enumeration of all 2k subsets of the set f1; : : : ; kg.Reserve for each A � f1; : : : ; kg a block bA of k bits.The block bA of element xi;j is then de�ned asthe unit vector ej 2 f0; 1gk; if j 2 A;the zero vector 0 2 f0; 1gk; otherwise:The weights are de�ned as wi = 1 for 1 � i � n, andthe threshold is 3=2. The delays for the last k �2k inputsare �xed in such a way that inputs from the same blockbA have identical delays, but the pulses for inputs fromdi�erent blocks bA; bA0 ; A 6= A0 do not overlap. (Forinstance, integer values f0; : : : ; 2k � 1g would do this.)It remains to show that S can be shattered. Let S0 � S.The delays for the �rstm inputs are speci�ed as follows:For each i 2 f1; : : : ;mg de�ne the setA0i = fj 2 f1; : : : ; kg : xi;j 2 S0gand choose the delay for the i-th input equal to the delayof the inputs of block bA0i . Obviously then the neuron�res only for elements of S0.Theorem 2.3 can be shown to hold also for analog cod-ing of the input values at the cost of adding an extrainput with value \0". Its weight is chosen such that allpulses from inputs that encode \0" are cancelled. Thisweight can also be kept �xed because all elements of Sconstructed in the proof have the same number of \0s".The proof of Theorem 2.3 gives also rise to a lowerbound when the number of di�erent values for the delaysis bounded. One obtains the bound 
(n log l) where lis the number of di�erent delay values used.2.3 UPPER BOUND FOR THEVC-DIMENSIONThe lower bound of Theorem 2.2 holds for a very re-stricted spiking neuron with �xed weights and integerdelays. The following suprising result shows that thisbound is almost optimal (disregarding constant factors)even if the delays and weights range over arbitrary realnumbers.Theorem 2.4 The VC-dimension of a spiking neuronwith n analog coded inputs and binary coded output isO(n logn).The following statement is an immediate consequence ofTheorems 2.2 and 2.4. (The argument for the pseudo-dimension is similar.) It summarizes the results of this

section in terms of the function classes computed by aspiking neuron.Corollary 2.5 The classes Sbbn and Sabn have VC-di-mension �(n logn). The class Saan has pseudo-dimen-sion �(n logn).In the proof of Theorem 2.4 we will use the followingresult which is a consequence of Theorem 2 in [5]1 andProposition A2.1 of [4].Lemma 2.6 Let m hyperplanes in IRn passing throughthe origin be given, where m � n. They partition IRninto at most 2(em=(n� 1))(n�1) di�erent regions.Proof. By Theorem 2 of [5],m hyperplanes through theorigin partition IRn into at most 2Pn�1k=0 �m�1k � di�erentregions. By Proposition A2.1(iii) of [4], 2Pn�1k=0 �m�1k � �2(e(m� 1)=(n� 1))(n�1) for m � n.Proof of Theorem 2.4. The proof is structured asfollows: We �rst estimate the number of dichotomiesof an arbitrary �nite set S � IRn of size m that canbe computed by a spiking neuron. This results in theupper bound 2(4emn)n � 2(2em)n: (1)Then the assumption that S is shattered by a spikingneuron, i.e. that all 2m dichotomies can be computed,will lead to the bound m = O(n logn) and hence to theclaimed result.The computation of a spiking neuron can be consideredin the following way: Given an input vector and a delayvector, the time that is relevant to determine if the neu-ron �res is divided into at most 2n� 1 intervals whichare speci�ed by the starting and ending points of the npulses. With each interval there is associated a subset ofthe weights corresponding to the set of pulses that areactive during this interval. The neuron �res if withinsome interval the sum of the weights in the associatedsubset reaches the threshold.In order to prove (1), we �rst estimate the number ofdi�erent delay vectors that are relevant. For each �xeds 2 S, the space IRn of delay vectors d is partitionedinto regions by hyperplanes of the formsi + di + y = sj + dj + zwhere y; z 2 f0; 1g, depending whether the term corre-sponds to a starting or ending point of a pulse. Thereare (2n)2 such hyperplanes for each �xed s. They parti-tion IRn into regions of delay vectors that are equivalent1Cover attributes the �rst proof of this theorem to Schl�a
i[18].



with regard to the computation of the neuron on inputvector s. If one partitions IRn by the at most m � (2n)2hyperplanes that arise for all s 2 S, the resulting re-gions consist of delay vectors d that are equivalent withregard to all input vectors s 2 S. Estimating the num-ber of di�erent regions, one has to take into accountthat the hyperplanes not necessarily pass through theorigin. But the number of di�erent regions of IRn gen-erated by m � (2n)2 arbitrary hyperplanes is at most aslarge as the number of di�erent regions of IRn+1 gener-ated by m � (2n)2 hyperplanes that all pass through theorigin. By Lemma 2.6 this partition consists of at most2(4emn)n di�erent regions. Hence, for inputs from S itsu�ces to consider these many delay vectors.Now we show that for each �xed delay vector at most2(2em)n many weight vectors are relevant. The up-per bound (1) follows then from this number and thenumber of di�erent delay vectors. For each �xed inputvector s 2 S and each delay vector d there are at most2n � 1 hyperplanes that have to be considered corre-sponding to the intervals during which there are pulsesactive. Each hyperplane is characterized by a subset offw1; : : : ; wng and by the threshold �v. If for the given sand d two weight vectors of the spiking neuron result indi�erent outputs, then these outputs must be di�erentfor one of the intervals and hence, for the hyperplanecorresponding to this interval. Consequently, the num-ber of regions of the space IRn+1 of weights w1; : : : ; wnand threshold �v is not larger than the number of regionsthat arise from the at most 2n� 1 hyperplanes. Takinginto account all s 2 S, the space IRn+1 is partitioned byat most m � (2n� 1) hyperplanes that all pass throughthe origin. By Lemma 2.6 the number of di�erent re-gions that arise from these hyperplanes is bounded by2(2em)n. Hence (1) follows.Finally, the following claim implies the bound O(n logn)for the VC-dimension and hence the statement of thetheorem.Claim. For n � 8e2; VC-dim(Sabn ) � 8n log(2n):Assume that S has size m and is shattered by Sabn .Hence, all 2m dichotomies of S can be computed bya spiking neuron. Then (1) implies2m � 2(4emn)n � 2(2em)n= 4(8e2m2n)n� 4(mn)2n;where we have used the assumption n � 8e2 for the lastinequality. Taking logarithms on both sides yieldsm � 2n log(mn) + 2;which implies m � 2n(log(mn) + 1): (2)For any m � logn there is a real number r � 1 suchthat m = r log(rn). (This can easily be seen from the

fact that for arbitrary n the function qn : [1;1) ![logn;1) de�ned by qn(z) = z log(zn) is 1{1 and onto.)Substituting m = r log(rn) on both sides of (2) yieldsr log(rn) � 2n(log(rn log(rn)) + 1)= 2n(log(rn) + log(log(rn)) + 1)� 2n(log(rn) + log(rn=2) + 1);where the last inequality follows from log(rn) � rn=2.(This requires rn � 4 which is guaranteed by the as-sumption n � 8e2.) Hence we haver log(rn) � 4n log(rn):Dividing both sides by log(rn), which is positive due torn � 8e2, we get r � 4n;which implies r log(rn) � 4n log(4n2):Resubstituting m = r log(rn) for the left hand side andrearranging the right hand side yieldsm � 8n log(2n)as claimed. This completes the proof of Theorem 2.4.The bound (1) can also be used to estimate the numberof Boolean functions that can be computed by a spikingneuron. Substituting m = 2n yields the bound 2O(n2).Combining this with the lower bound 2
(n2) of [16] forT bbn and our Theorem 2.1(c), we get the upper and lowerbound almost matching.Corollary 2.7 There are 2�(n2) many Boolean func-tions computable by a spiking neuron with binary codingof the inputs.For the case of binary coding the analysis can even bemade easier, because the factor 2(4emn)n in (1) thatis due to the number of relevant delay vectors can bereplaced by a simpler bound: One observes that for a setS � f0; 1gn of input vectors at most n2 many di�erentvalues have to be considered for each delay. Hence, thenumber of relevant delay vectors is at most 22n logn.Thus one derives the upper bound 2n2+O(n logn) for thenumber of Boolean functions. This result is particularlyinteresting in the light of the fact that there are at most2n2 many di�erent functions in T bbn [15].3 COMPUTATIONAL COMPLEXITYOF PAC-LEARNING FOR ASPIKING NEURONIn order to investigate the computational complexity oflearning within the PAC framework one has to specify



which class of hypotheses the learner may use. If Sbbnwere PAC-learnable with some arbitrary polynomial-time computable hypothesis class, then this would im-ply the same result for DNF (which is one of the majoropen problems in computational learning theory). Thisfollows from our Theorem 2.1(d) in combination withthe corresponding result in [11].In this section we consider the complexity of PAC-learn-ing when only hypotheses from Sbbn may be used bythe learner (\proper PAC-learning"). This appears tobe the more adequate assumption for the analysis oflearning for a single spiking neuron.We investigate the computational complexity of the con-sistency problem for a spiking neuron which is de�ned asfollows: Given a set of labelled examples from f0; 1gn�f0; 1g, does there exist a function in Sbbn that is consis-tent (i.e., does agree with) all examples?In the following we show that this problem is NP-com-plete for a spiking neuron that may choose its delayvalues only from the set f0; 1g. A spiking neuron withtwo delay values and binary coding is only slightly morepowerful than a Boolean threshold gate, which can bethought of as a spiking neuron with only one delay value.Therefore, this intractability result appears to be opti-mal in a certain sense. Moreover, the proof shows thatthe result also holds when the weights and the thresholdare kept �xed.Theorem 3.1 The consistency problem for a spikingneuron where each delay is 0 or 1 is NP-complete.The proof is by a reduction from 3SET-SPLITTING [6],a problem which was also used in [3] for intractabilityresults concerning certain two-layer networks of thresh-old gates. In fact, the problem considered here seemsto be closely related to the consistency problem for theAND of two threshold gates analyzed in [3]. However,their reduction cannot be used here in a straightforwardmanner (e.g., by 
ipping the labels to change the ANDinto an OR), because due to our Theorem 2.1(e) theOR of two threshold gates is not equivalent to a spikingneuron with delays from f0; 1g.Proof of Theorem 3.1. The problem is in NP be-cause the delay values are binary and the weights canbe bounded polynomially in size. The latter is shownsimilarly as in the case of threshold gates.To prove NP-hardness we de�ne a polynomial-time re-duction from 3SET-SPLITTING, which is the problemto decide for an instance (U;C), where U is a �nite setand C is a collection of subsets of U such that jcj = 3for all c 2 C, if there exists a partition U0; U1 of U such

that all c 2 C satisfy c 6� U0 and c 6� U1.2Let (U;C) be given and n = jU j. The set of examplesis de�ned as S = S+ [ S� � f0; 1g2n � f0; 1g, wherethe elements of S+ and S� are labelled by \1" and \0",respectively. For a set I � f1; : : : ; 2ng we denote by 1Ithe binary vector of length 2n that has \1s" exactly atthe positions in I .� Let 1; 2 S�.� For each ui 2 U let 1f2i�1;2ig 2 S+:� For each c 2 C where c = fui; uj ; ukg let1f2i�1;2i;2j�1;2j;2k�1;2kg 2 S�:Obviously, there is a function computable in polynomialtime that maps each (U;C) to the corresponding S. Weshow now that (U;C) has a set splitting i� there existsa function in Sbb2n with binary delays that is consistentwith S.()) Assume that (U;C) has a set splitting � : U !f0; 1g (i.e., ui 2 Uj i� �(ui) = j). De�ne the weightsw1; : : : ; w2n and threshold �v as follows:w2i�1 = 1w2i = �2 � for i = 1; : : : ; n and �v = 1=2:De�ne the delays d1; : : : ; d2n as:d2i�1 = �(ui)d2i = 1� �(ui) � for i = 1; : : : ; n:This spiking neuron is consistent with S: For input 1;it does not �re because �v > 0. For each 1f2i�1;2igone of the two active inputs generates an EPSP of 1,hence the output is 1. For each 1f2i�1;2i;2j�1;2j;2k�1;2kgcorresponding to a c 2 C there is associated with eachdelay value at least one of w2i; w2j ; w2k . Hence, for bothdelay values the corresponding PSP cannot be largerthan 0.(() Assume that the spiking neuron is consistent withS. Let g be the threshold function which has threshold�v, the weights assigned to delay value 0, and wherethe weights of delay value 1 are replaced by 0. De�ne� : U ! f0; 1g as�(ui) = g(1f2i�1;2ig):We claim that � is a set splitting of (U;C). Assume thecontrary. Then there exists c 2 C; c = fui; uj ; ukg andb 2 f0; 1g such that�(ui) = �(uj) = �(uk) = b:2Strictly speaking, the restriction of SET-SPLITTING asde�ned in [6] allows that jcj � 3. However, it is straightfor-ward to de�ne a reduction that avoids subsets of size 2.



(i) If b = 1 then g(1f2l�1;2lg) = 1 for each l 2 fi; j; kg.Because 1; is a negative example and g is a thresh-old function this implies g(1f2i�1;2i;2j�1;2j;2k�1;2kg) = 1:Hence, the neuron �res on the input vector correspond-ing to c, in contradiction to the de�nition of S.(ii) If b = 0 then consider the threshold function g0consisting of the weights assigned to delay value 1. Ac-cordingly, g0 must output 1 on input 1f2l�1;2lg for eachl 2 fi; j; kg (because the label is 1 and g outputs 0).The label of 1; then implies that g0 outputs 1 on input1f2i�1;2i;2j�1;2j;2k�1;2kg. It follows that the neuron �reson this input in contradiction to the de�nition of S.Finally, (i) and (ii) imply that � is a set splitting of(U;C).The fact that the weights need not be modi�able in theprevious proof leads to the following stronger result.Corollary 3.2 The consistency problem for a spikingneuron with binary delays and certain �xed weights isNP-complete.In a similar way, NP-completeness can be shown forthe case that the delays are allowed to take on valuesfrom a bounded set f0; : : : ; k � 1g where k � 3. Thereduction is from GRAPH-k-COLORABILITY and isbasically a modi�cation of the reduction used in [2] forthe AND of k threshold gates. Again, the weights andthe threshold can also be kept �xed. Combining thiswith Theorem 3.1 we get the following result.Corollary 3.3 For each k � 2, the consistency problemfor a spiking neuron with delays from f0; : : : ; k � 1g isNP-complete. This holds also for a spiking neuron withcertain �xed weights.4 CONCLUSIONSWe have investigated a new type of computational mod-el where a set of parameters becomes quite relevant thatplays little or no role in other models: transmission de-lays. We have shown that these new parameters have aneven larger impact on the richness of the class of Booleanfunctions that can be computed by a spiking neuronthan those parameters that are traditionally consideredto be the main \programmable parameters" of a neuron:the \weights" of its synapses. We have shown that theVC-dimension of a spiking neuron is superlinear in thenumber of delays that can be varied, and we have givenasymptotically tight bounds for this VC-dimension.In Section 3 we have shown that the learning complex-ity of a single spiking neuron is surprisingly large, inparticular much larger than the learning complexity ofa single threshold gate. Similarly as the corresponding
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