On the Complexity of Learning for a Spiking Neuron

(Extended Abstract)

Wolfgang Maass*

Abstract

Spiking neurons are models for the computa-
tional units in biological neural systems where
information is considered to be encoded mainly
in the temporal patterns of their activity. They
provide a way of analyzing neural computation
that is not captured by the traditional neuron
models such as sigmoidal and threshold gates
(or “Perceptrons”).

We introduce a simple model of a spiking neu-
ron that, in addition to the weights that model
the plasticity of synaptic strength, also has
variable transmission delays between neurons
as programmable parameters. For coding of
input and output values two modes are taken
into account: binary coding for the Boolean
and analog coding for the real-valued domain.

We investigate the complexity of learning for
a single spiking neuron within the framework
of PAC-learnability. With regard to sample
complexity, we prove that the VC-dimension
is ©(nlogn) and, hence, strictly larger than
that of a threshold gate. In particular, the
lower bound holds for binary coding and even
if all weights are kept fixed. The upper bound
is valid for the case of analog coding if weights
and delays are programmable.

With regard to computational complexity, we
show that there is no polynomial-time PAC-
learning algorithm, unless RP = NP, for a quite

*Address: Institute for Theoretical Computer Science,
Technische Universitit Graz, Klosterwiesgasse 32/2, A 8010
Graz, Austria. E-mail: {maass,mschmitt}Qigi.tu-graz.ac.at,
http://www.cis.tu-graz.ac.at/igi/

and Michael Schmitt*

restricted spiking neuron that is only slightly
more powerful than a Boolean threshold gate:
The consistency problem for a spiking neuron
using binary coding and programmable delays
from {0,1} is NP-complete. This holds even if
all weights are kept fixed.

The results demonstrate that temporal coding
has a surprisingly large impact on the com-
plexity of learning for single neurons.

1 INTRODUCTION AND
DEFINITIONS

During the last few years the paradigms for computa-
tion in biological neural systems have undergone drastic
changes. With the help of refined experimental tech-
niques one has learnt that information is not only en-
coded in the firing rates of biological neurons, but of-
ten also in the temporal pattern of their firing (“tempo-
ral coding”). Whereas threshold circuits and sigmoidal
neural nets provide a suitable model for neural compu-
tation in terms of firing rates, they cannot be used for
modelling neural computation in terms of temporal pat-
terns of neuronal activity. In order to model temporal
patterns of activity, one has to consider networks con-
sisting of a different type of computational unit: spiking
neurons (or leaky integrate-and-fire neurons, as they are
commonly called in biophysics and theoretical neurobi-

ology).

We will focus in this article on a simple version of the
spiking neuron model (“spiking neurons of type A” in
the terminology of [14]). This model allows us to study
some fundamental new learning problems that arise in
the context of computation with temporal coding. Since
this model is sufficiently simple, the basic aspects of this
new mode of computation are not obscured by the myr-
iad of additional subtleties and complications that occur
in a more detailed neuron model. In addition, this sim-
ple model for a spiking neuron has the advantage that
it provides a link to silicon implementations of spiking
neurons in analog VLSI.

1.1 THE MODEL FOR A SPIKING
NEURON

We consider a spiking neuron » that receives input pul-
ses from n input neurons ai,...,a,. We assume that
there exists for ¢ = 1,...,n a connection from a; to v
with weight w; € R and delay d; € R (where Rt =
{z € R : ¢z > 0}). We treat time as a continuous
variable. For simplicity we assume that if the input
neuron a; “fires” at time ¢;, this causes a pulse in v of
the form h;(t — t;) with

0
hz(:l?) = { w:

We assume that the neuron “fires” as soon as the sum
Py(t) = 31, hi(t —t;) of these pulses reaches a certain
threshold 6,. In a biological context these pulses are
called postsynaptic potentials. The function h; models
the effect of a firing of neuron a; on the membrane poten-
tial P,(t) at the trigger zone of v. The firing threshold
0 of a biological neuron depends on the time which has
passed since its last firing. For simplicity we assume
here that the neuron has not fired for a while (say at
least 20 ms), so that its firing threshold has returned
to its “resting value” 6,. There is some disagreement
among neurobiologists whether the sign of a synaptic
efficacy w; can change in the course of a learning pro-
cess. This issue will not be relevant for the results of
this article.

forz <d; or £>d;+1,
ford; <z <d;+1.

The model is a simple version of a leaky integrate-and-
fire neuron. In contrast to more complex models (see
e.g., [19, 7, 13]) it models a pulse as a step function,
rather than a continuous function of a similar shape.
Pulses of this shape are actually very common in silicon
implementations of networks of spiking neurons [17].

A spiking neuron of this type was called a “spiking neu-
ron of type A” in [14]. In this article we will refer to it
simply as a spiking neuron.

1.2 TEMPORAL CODING

A spiking neuron may be viewed as a digital or analog
computational element, depending on the type of tem-
poral coding that is used. For binary coding we assume
that input neuron a; fires at time 0 if it encodes a “1”,
and that it does not fire at all if it encodes a “0”. Corre-
spondingly, we assume that v outputs a “1” if it fires as
a result of this input from a4, ..., a,, and that v outputs
a “0” if it does not fire.

For analog coding we assume that a; encodes a real num-
ber t; € [0,1] by firing at time ¢;. The output value of
v is the time ¢, when it fires (or ¢, — T for a suitable
constant T if one wants to scale the real-valued output
of v into a specific range such as [0, 1]). In case that v

does not fire, we assume that this encodes some fixed
analog output tg (e.g. to = 0).

We will consider both types of coding in this article.
Moreover, the type of coding for the inputs may dif-
fer from that for the output, e.g., analog coding for the
inputs and binary coding for the output may occur, sim-
ilarly as for a threshold gate. We prove each result for
that type of coding for which it is more difficult. Lower
bounds for sample or learning complexity tend to be
more difficult for binary coding, upper bounds tend to
be more difficult for analog coding.

Our results about the VC-dimension of a spiking neuron
are complementary to those achieved in [21]. In that
article the integration time constant and the threshold
were viewed as the only variable parameters of a spiking
neuron, whereas the effect of variable delays has not
been addressed.

1.3 OVERVIEW

In this article we investigate the complexity of learning
for a spiking neuron within the PAC-learning frame-
work. (For detailed definitions we refer the reader to
[2, 4, 20].) In Section 2 we estimate the computational
power and the sample complexity of the spiking neuron
model defined above. For binary coding we give upper
and lower bounds for the computational power in terms
of several classes of Boolean functions. As the main
result of this section we show that for binary and ana-
log coding the VC-dimension of the corresponding func-
tion class is O(nlogn). It is well known that the VC-
dimension of a function class gives fairly tight bounds
on the sample complexity (i.e. the number of training
examples needed) for PAC-learning this class. Accord-
ing to [9], these estimates of the sample complexity in
terms of the VC-dimension hold even in the case when
the training examples are generated by some arbitrary
probability distribution (“agnostic PAC-learning”). In
particular, these bounds remain valid when the training
examples are not generated by a spiking neuron.

In Section 3 we investigate the computational complex-
ity of PAC-learning using a particular spiking neuron
as hypothesis class. We show that for a bounded set
of at least two delay values the consistency problem
for the corresponding hypothesis class is NP-complete.
This implies that there is no efficient PAC-learning algo-
rithm for these hypothesis classes unless RP = NP. The
intractability results presented in this section have also
consequences for the case of agnostic PAC-learning. Ac-
cording to known results [12, 10], polynomial-time ag-
nostic PAC-learning with some hypothesis class H can
be done only if the minimizing disagreement problem
for H is in RP. Now, for each hypothesis class H the
consistency problem can easily be reduced to the min-
imizing disagreement problem. Therefore, polynomial-

time agnostic PAC-learning is not possible for the hy-
pothesis classes considered in this section, provided that
RP # NP. Finally, Section 4 contains some concluding
remarks and discussion.

2 COMPUTATIONAL POWER AND
VC-DIMENSION OF A SPIKING
NEURON

We introduce the following notation: The class of Boole-
an functions that can be computed by a spiking neuron
with n binary coded inputs and binary coded output is
denoted by SPP (where “bb” stands for “binary input
and binary output”). Correspondingly, S22 is the class
of functions from R™ to IR that can be computed by
a spiking neuron with analog coding of the inputs and
output. The subclass of S2* that has its output in {0, 1}
is denoted by S2P.

A similar notation is used for the threshold and for the
sigmoidal gate: The class of Boolean functions com-
putable by a threshold gate is denoted by 7,’®, and 7,2"
is the class of halfspaces over IR". The sigmoidal gate is
a neuron model that computes functions from R" to R
by applying the sigmoidal function 1/(1 + e~ ¥) to the
sum of the weighted inputs. We denote the correspond-
ing function class by 7,2

Finally, u—DNF,, is the class of Boolean functions de-
finable by a DNF formula over n variables where each
variable occurs at most once.

2.1 COMPUTATIONAL POWER

It is obvious that for binary coding a spiking neuron has
at least the computational power of a threshold gate (or
“Perceptron”): just assume that all delays d; are equal.
However, it is easy to see that its computational power
is strictly larger. In order to characterize its power
more precisely we compare it with the classes 7,°P and
pu—DNF,, both of which are contained in SE®. The fol-
lowing theorem clarifies the relationships between these
classes and gives also an upper bound in terms of dis-
junctions of threshold gates.

Theorem 2.1

a) Forn >3, TP* ¢ u—DNF,,.

b) For n >4, u—DNF,, ¢ T,Pb.

c¢) TPP C 8PP, but for n > 4, T,PP # ShP.

d) u—DNF,, C 8P, but for n > 3, u—DNF,, # ShP.

e) Each function in SP® can be computed by an OR of
2n — 1 threshold gates. For n > 2, there exist functions
computable by an OR of two threshold gates that are not
in SPP.

Proof. All proofs are straightforward. We therefore
restrict the proof to the inequality claims by just giving
for each of them a function that separates the two func-
tion classes involved.

a) The function (z1 A x2) V (21 A z3) V (22 A x3) can be
computed by a threshold gate but not be written as a
u—DNF3 formula.

b,c) The function (x; A 22) V (23 A 24) is in u—DNFy
but cannot be computed by a threshold gate.

d) The function (21 Aza)V (72 Ax3) is in SPP but cannot
be written as a u—DNF3 formula.

e) The exclusive-OR of two bits can be computed by an
OR of two threshold gates but is not in SP. O

2.2 LOWER BOUND FOR THE
VC-DIMENSION

The VC-dimension of the classes 7,°® and 7,2 is known
to be n + 1 (see e.g. [4]). Furthermore, using known
results about the pseudo-dimension (see [9]) it is easy
to derive that the class 7,* has pseudo-dimension 1+ 1.
We show now that the VC-dimension of the classes SPP,
82P and the pseudo-dimension of the class S is strictly
larger by a factor of Q(logn). We view in the following
results the delays d; as “programmable parameters” of
a neuron, in addition to the weights w; of its synapses.
This is reasonable since in biology many mechanisms
are known that change the effective delay between two
neurons. One well-known mechanism is the selection
of a few synapses out of an initially very large set of
synapses between two neurons. Some other biological
mechanisms for changing the effective delay between two
neurons are discussed in [1, §].

Theorem 2.2 The VC-dimension of a spiking neuron
with n variable delays as programmable parameters is
Q(nlogn). This holds even if the inputs are restricted
to binary values and all weights are kept fized.

The statement follows from the following more general
result choosing k = (log(n/2))/2 and m = n/2, and
observing that k- 2% + m < n and k- m = Q(nlogn).
We give a proof for binary coding of the inputs and
indicate afterwards how to derive the result for the case
of analog coding of the inputs (i.e. the class S2P).

Theorem 2.3 For each m,k > 1 there exists a set S C
{0, 1}’”““'2’c of size | S| = m - k that can be shattered by
a spiking neuron with fized weights.

Proof. We first describe the construction of S, then we
fix the weights and a part of the delays, and finally we
show that for each subset S’ C S there exists a delay
vector such that the neuron fires on elements of S’ but
does not fire on elements of S\S'.

The set S consists of m - k elements 27 for 1 < i < m,
1 < j < k where the first m bits of 2’/ are formed
by the unit vector e; € {0,1}™. The remaining k - 2k
bits of the elements are defined as follows: Assume a
fixed enumeration of all 2% subsets of the set {1,...,k}.
Reserve for each A C {1,...,k} a block bs of k bits.
The block by of element z*7 is then defined as

if j € A,

otherwise.

the unit vector e; € {0,1}*,
the zero vector 0 € {0, 1},

The weights are defined as w; = 1 for 1 < i < n, and
the threshold is 3/2. The delays for the last k-2* inputs
are fixed in such a way that inputs from the same block
ba have identical delays, but the pulses for inputs from
different blocks ba,ba, A # A’ do not overlap. (For
instance, integer values {0,...,2% — 1} would do this.)

It remains to show that S can be shattered. Let S’ C S.
The delays for the first m inputs are specified as follows:
For eachi € {1,..., m} define the set

Al={je{l,...k}:2% € §'}

and choose the delay for the i-th input equal to the delay
of the inputs of block b4,. Obviously then the neuron
fires only for elements of S’. 1

Theorem 2.3 can be shown to hold also for analog cod-
ing of the input values at the cost of adding an extra
input with value “0”. Its weight is chosen such that all
pulses from inputs that encode “0” are cancelled. This
weight can also be kept fixed because all elements of S
constructed in the proof have the same number of “0s”.

The proof of Theorem 2.3 gives also rise to a lower
bound when the number of different values for the delays
is bounded. One obtains the bound Q(nlogl) where [
is the number of different delay values used.

2.3 UPPER BOUND FOR THE
VC-DIMENSION

The lower bound of Theorem 2.2 holds for a very re-
stricted spiking neuron with fixed weights and integer
delays. The following suprising result shows that this
bound is almost optimal (disregarding constant factors)
even if the delays and weights range over arbitrary real
numbers.

Theorem 2.4 The VC-dimension of a spiking neuron
with n analog coded inputs and binary coded output is
O(nlogn).

The following statement is an immediate consequence of
Theorems 2.2 and 2.4. (The argument for the pseudo-
dimension is similar.) It summarizes the results of this

section in terms of the function classes computed by a
spiking neuron.

Corollary 2.5 The classes S® and S have VC-di-
mension ©(nlogn). The class S3* has pseudo-dimen-
sion ©(nlogn).

In the proof of Theorem 2.4 we will use the following
result which is a consequence of Theorem 2 in [5]' and
Proposition A2.1 of [4].

Lemma 2.6 Let m hyperplanes in R"™ passing through
the origin be given, where m > n. They partition R"
into at most 2(em/(n — 1))~V different regions.

Proof. By Theorem 2 of [5], m hyperplanes through the
origin partition R" into at most 2 37—, (™. ") different
regions. By Proposition A2.1(iii) of [4], 2 ZZ;& (m,:1) <
2(e(m —1)/(n —1))("=Y for m > n. O

Proof of Theorem 2.4. The proof is structured as
follows: We first estimate the number of dichotomies
of an arbitrary finite set S C IR" of size m that can
be computed by a spiking neuron. This results in the
upper bound

2(4demn)™ - 2(2em)". (1)

Then the assumption that S is shattered by a spiking
neuron, i.e. that all 2 dichotomies can be computed,
will lead to the bound m = O(nlogn) and hence to the
claimed result.

The computation of a spiking neuron can be considered
in the following way: Given an input vector and a delay
vector, the time that is relevant to determine if the neu-
ron fires is divided into at most 2n — 1 intervals which
are specified by the starting and ending points of the n
pulses. With each interval there is associated a subset of
the weights corresponding to the set of pulses that are
active during this interval. The neuron fires if within
some interval the sum of the weights in the associated
subset reaches the threshold.

In order to prove (1), we first estimate the number of
different delay vectors that are relevant. For each fixed
s € S, the space R" of delay vectors d is partitioned
into regions by hyperplanes of the form

Si-f-dz'-l-y:Sj-l-dj-f-Z

where y, z € {0, 1}, depending whether the term corre-
sponds to a starting or ending point of a pulse. There
are (2n)? such hyperplanes for each fixed s. They parti-
tion R™ into regions of delay vectors that are equivalent

'Cover attributes the first proof of this theorem to Schlafli
[18].

with regard to the computation of the neuron on input
vector s. If one partitions R" by the at most m - (2n)?
hyperplanes that arise for all s € S, the resulting re-
gions consist of delay vectors d that are equivalent with
regard to all input vectors s € S. Estimating the num-
ber of different regions, one has to take into account
that the hyperplanes not necessarily pass through the
origin. But the number of different regions of R" gen-
erated by m - (2n)? arbitrary hyperplanes is at most as
large as the number of different regions of R"** gener-
ated by m - (2n)? hyperplanes that all pass through the
origin. By Lemma 2.6 this partition consists of at most
2(4emn)™ different regions. Hence, for inputs from S it
suffices to consider these many delay vectors.

Now we show that for each fixed delay vector at most
2(2em)™ many weight vectors are relevant. The up-
per bound (1) follows then from this number and the
number of different delay vectors. For each fixed input
vector s € S and each delay vector d there are at most
2n — 1 hyperplanes that have to be considered corre-
sponding to the intervals during which there are pulses
active. Each hyperplane is characterized by a subset of
{wy,...,w,} and by the threshold 6,,. If for the given s
and d two weight vectors of the spiking neuron result in
different outputs, then these outputs must be different
for one of the intervals and hence, for the hyperplane
corresponding to this interval. Consequently, the num-
ber of regions of the space R™"" of weights w1, ..., wy,
and threshold 6, is not larger than the number of regions
that arise from the at most 2n — 1 hyperplanes. Taking
into account all s € S, the space R""" is partitioned by
at most m - (2n — 1) hyperplanes that all pass through
the origin. By Lemma 2.6 the number of different re-
gions that arise from these hyperplanes is bounded by
2(2em)™. Hence (1) follows.

Finally, the following claim implies the bound O(n logn)
for the VC-dimension and hence the statement of the
theorem.

Claim. For n > 8¢?, VC-dim(S2P) < 8nlog(2n).

Assume that S has size m and is shattered by S2P.
Hence, all 2™ dichotomies of S can be computed by
a spiking neuron. Then (1) implies
2m < 2(4demn)™ - 2(2em)"

= 4(8*m*n)"

< 4(mmn)?",
where we have used the assumption n > 8¢? for the last
inequality. Taking logarithms on both sides yields

m < 2nlog(mn) + 2,
which implies
m < 2n(log(mn) + 1). (2)

For any m > logn there is a real number r > 1 such
that m = rlog(rn). (This can easily be seen from the

fact that for arbitrary n the function ¢, : [1,00) —

[logn, 00) defined by ¢,,(z) = zlog(zn) is 1-1 and onto.)

Substituting m = rlog(rn) on both sides of (2) yields
rlog(rn) < 2n(log(rnlog(rn)) + 1)

2n(log(rn) + log(log(rn)) + 1)

2n(log(rn) + log(rn/2) + 1),

IN

where the last inequality follows from log(rn) < rn/2.
(This requires rn > 4 which is guaranteed by the as-
sumption n > 8¢2.) Hence we have

rlog(rn) < 4nlog(rn).

Dividing both sides by log(rn), which is positive due to
rn > 8e?, we get
r <d4n,
which implies
rlog(rn) < 4nlog(4n?).

Resubstituting m = rlog(rn) for the left hand side and
rearranging the right hand side yields

m < 8nlog(2n)

as claimed. This completes the proof of Theorem 2.4.

0

The bound (1) can also be used to estimate the number
of Boolean functions that can be computed by a spiking
neuron. Substituting m = 2" yields the bound 20(n?)
Combining this with the lower bound 22("*) of [16] for
T,Pb and our Theorem 2.1(c), we get the upper and lower
bound almost matching.

Corollary 2.7 There are 20(n*) many Boolean func-
tions computable by a spiking neuron with binary coding
of the inputs.

For the case of binary coding the analysis can even be
made easier, because the factor 2(4emn)™ in (1) that
is due to the number of relevant delay vectors can be
replaced by a simpler bound: One observes that for a set
S C {0,1}" of input vectors at most n? many different
values have to be considered for each delay. Hence, the
number of relevant delay vectors is at most 227087,
Thus one derives the upper bound 9n*+0(nlogn) for the
number of Boolean functions. This result is particularly
interesting in the light of the fact that there are at most
on’ many different functions in 7,P® [15].

3 COMPUTATIONAL COMPLEXITY
OF PAC-LEARNING FOR A
SPIKING NEURON

In order to investigate the computational complexity of
learning within the PAC framework one has to specify

which class of hypotheses the learner may use. If SPP
were PAC-learnable with some arbitrary polynomial-
time computable hypothesis class, then this would im-
ply the same result for DNF (which is one of the major
open problems in computational learning theory). This
follows from our Theorem 2.1(d) in combination with
the corresponding result in [11].

In this section we consider the complexity of PAC-learn-
ing when only hypotheses from SPP may be used by
the learner (“proper PAC-learning”). This appears to
be the more adequate assumption for the analysis of
learning for a single spiking neuron.

We investigate the computational complexity of the con-
sistency problem for a spiking neuron which is defined as
follows: Given a set of labelled examples from {0,1}" x
{0,1}, does there exist a function in SP® that is consis-
tent (i.e., does agree with) all examples?

In the following we show that this problem is NP-com-
plete for a spiking neuron that may choose its delay
values only from the set {0,1}. A spiking neuron with
two delay values and binary coding is only slightly more
powerful than a Boolean threshold gate, which can be
thought of as a spiking neuron with only one delay value.
Therefore, this intractability result appears to be opti-
mal in a certain sense. Moreover, the proof shows that
the result also holds when the weights and the threshold
are kept fixed.

Theorem 3.1 The consistency problem for a spiking
neuron where each delay is 0 or 1 is NP-complete.

The proof is by a reduction from 3SET-SPLITTING [6],
a problem which was also used in [3] for intractability
results concerning certain two-layer networks of thresh-
old gates. In fact, the problem considered here seems
to be closely related to the consistency problem for the
AND of two threshold gates analyzed in [3]. However,
their reduction cannot be used here in a straightforward
manner (e.g., by flipping the labels to change the AND
into an OR), because due to our Theorem 2.1(e) the
OR of two threshold gates is not equivalent to a spiking
neuron with delays from {0, 1}.

Proof of Theorem 3.1. The problem is in NP be-
cause the delay values are binary and the weights can
be bounded polynomially in size. The latter is shown
similarly as in the case of threshold gates.

To prove NP-hardness we define a polynomial-time re-
duction from 3SET-SPLITTING, which is the problem
to decide for an instance (U, C'), where U is a finite set
and C is a collection of subsets of U such that |¢| = 3
for all ¢ € C, if there exists a partition Uy, Uy of U such

that all ¢ € C satisfy ¢ Uy and ¢ € U, .2

Let (U,C) be given and n = |U|. The set of examples
is defined as S = ST US™ C {0,1}*>" x {0,1}, where
the elements of ST and S~ are labelled by “1” and “0”,
respectively. For a set I C {1,...,2n} we denote by 1;
the binary vector of length 2n that has “1s” exactly at
the positions in 1.

o Let 1€ S™.
e For each u; € U let 1(9;_1 ;3 € ST.

e For each ¢ € C where ¢ = {u;, u;, ui} let
Tg2i1,2i,25-1,2j,26—1,2k} € ST.

Obviously, there is a function computable in polynomial
time that maps each (U, C) to the corresponding S. We
show now that (U, C) has a set splitting iff there exists
a function in SE? with binary delays that is consistent
with S.

(=) Assume that (U,C) has a set splitting 8 : U —
{0,1} (i.e., u; € U; iff B(u;) = j). Define the weights
wi, ..., W, and threshold 6, as follows:

w2i—1 =

1 .
Wos _ _Q}forzl,...7n and 60, =1/2.

Define the delays dy, ..., ds, as:
dyi1 = P(uy) L
da; = 1- B(u;) fori=1,...,n.

This spiking neuron is consistent with S: For input 1y
it does not fire because 6, > 0. For each 1y ;25
one of the two active inputs generates an EPSP of 1,
hence the Output is 1. For each 1{21',1127'/12]‘,112]‘12]‘7,112]“}
corresponding to a ¢ € C there is associated with each
delay value at least one of wa;, wa;, wor. Hence, for both
delay values the corresponding PSP cannot be larger
than 0.

(<) Assume that the spiking neuron is consistent with
S. Let g be the threshold function which has threshold
0., the weights assigned to delay value 0, and where
the weights of delay value 1 are replaced by 0. Define
B:U —{0,1} as

B(u;) = 9(1{21'71721'})'

We claim that 3 is a set splitting of (U, C'). Assume the
contrary. Then there exists ¢ € C, ¢ = {u;, uj,ur} and
b € {0,1} such that

B(u;) = Bluj) = B(ux) = b.

%Strictly speaking, the restriction of SET-SPLITTING as
defined in [6] allows that |c¢| < 3. However, it is straightfor-
ward to define a reduction that avoids subsets of size 2.

(i) If b = 1 then g(1{3—1,213) = 1 for each | € {i,j, k}.
Because 1j is a negative example and g is a thresh-
old funCtiOn this lmplles g(l{Qifl,21’,2]’71,2]’,2]{‘,71,2/6‘,}) =1.
Hence, the neuron fires on the input vector correspond-
ing to ¢, in contradiction to the definition of S.

(ii) If b = 0 then consider the threshold function g¢'
consisting of the weights assigned to delay value 1. Ac-
cordingly, g' must output 1 on input 1yy_; 5 for each
I € {i,j,k} (because the label is 1 and g outputs 0).
The label of 1 then implies that ¢’ outputs 1 on input
I{Zi*]:2i12.7*112.7:2k*]:2k}' It follows that the neuron fires
on this input in contradiction to the definition of S.
Finally, (i) and (ii) imply that g8 is a set splitting of
(U,0). 1

The fact that the weights need not be modifiable in the
previous proof leads to the following stronger result.

Corollary 3.2 The consistency problem for a spiking
neuron with binary delays and certain fized weights is
NP-complete.

In a similar way, NP-completeness can be shown for
the case that the delays are allowed to take on values
from a bounded set {0,...,k — 1} where &k > 3. The
reduction is from GRAPH-k-COLORABILITY and is
basically a modification of the reduction used in [2] for
the AND of £ threshold gates. Again, the weights and
the threshold can also be kept fixed. Combining this
with Theorem 3.1 we get the following result.

Corollary 3.3 For each k > 2, the consistency problem
for a spiking neuron with delays from {0,..., k — 1} is
NP-complete. This holds also for a spiking neuron with
certain fized weights.

4 CONCLUSIONS

We have investigated a new type of computational mod-
el where a set of parameters becomes quite relevant that
plays little or no role in other models: transmission de-
lays. We have shown that these new parameters have an
even larger impact on the richness of the class of Boolean
functions that can be computed by a spiking neuron
than those parameters that are traditionally considered
to be the main “programmable parameters” of a neuron:
the “weights” of its synapses. We have shown that the
VC-dimension of a spiking neuron is superlinear in the
number of delays that can be varied, and we have given
asymptotically tight bounds for this VC-dimension.

In Section 3 we have shown that the learning complex-
ity of a single spiking neuron is surprisingly large, in
particular much larger than the learning complexity of
a single threshold gate. Similarly as the corresponding

result for multi-layer threshold circuits, this should not
be interpreted as saying that supervised learning is im-
possible for a spiking neuron. However it tells us that it
will become quite difficult to formulate rigorously prov-
able positive learning results for spiking neurons.

Unfortunately, one cannot hope that the negative learn-
ing result of Section 3 is a consequence of the rather
simple model for a spiking neuron that we have consid-
ered. This negative result, as well as the lower bound on
the VC-dimension in Theorem 2.2, can easily be seen to
hold also for biologically more realistic shapes of post-
synaptic potentials.

References

[1] H. Agmon-Snir and I. Segev. Signal delay and in-
put synchronization in passive dendritic structures.
Journal of Neurophysiology, 70:2066 2085, 1993.

[2] M. Anthony and N. Biggs. Computational Learn-
ing Theory. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cam-
bridge, 1992.

[3] A. L. Blum and R. L. Rivest. Training a 3-node
neural network is NP-complete. Neural Networks,
5:117-127, 1992.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the Associ-
ation for Computing Machinery, 36:929-965, 1989.

[5] T. M. Cover. Geometrical and statistical proper-
ties of systems of linear inequalities with applica-
tions in pattern recognition. IEEFE Transactions on
Electronic Computers, 14:326-334, 1965.

[6] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, 1979.

[7] W. Gerstner. Time structure of the activity in
neural network models. Phys. Rev. E, 51:738 758,
1995.

[8] W. Gerstner, R. Kempter, J. L. van Hemmen, and
H. Wagner. A neuronal learning rule for sub-
millisecond temporal coding. Nature, 383:76 78,
1996.

[9] D. Haussler. Decision theoretic generalizations of
the PAC model for neural net and other learn-
ing applications. Information and Computation,
100:78-150, 1992.

[10] K.-U. Hoffgen, H.-U. Simon, and K. S. Van Horn.
Robust trainability of single neurons. Journal of
Computer and System Sciences, 50:114-125, 1995.

[11] M. Kearns, M. Li, and L. Valiant. Learning
Boolean formulas. Journal of the ACM, 41:1298
1328, 1994.

[12] M. J. Kearns, R. E. Schapire, and L. M. Sellie. To-
ward efficient agnostic learning. Proceedings of the
Fifth Annual ACM Workshop on Computational

Learning Theory, ACM Press, New York, 1992, pp.
341-352.

W. Maass. Fast sigmoidal networks via spiking neu-
rons. Neural Computation, 9:279-304, 1997.

W. Maass. Networks of spiking neurons: the third
generation of neural network models. Neural Net-
works, to appear; extended abstract in Proceedings
of the Seventh Australian Conference on Neural
Networks, Canberra, 1996, pp. 1 10.

S. Muroga. Threshold Logic and Its Applications.
John Wiley & Sons, New York, 1971.

S. Muroga and I. Toda. Lower bound of the num-
ber of threshold functions. IEEE Transactions on
Electronic Computers, 15:805 806, 1966.

A. Murray and L. Tarassenko. Analogue Neural
VLSI: A Pulse Stream Approach. Chapman & Hall,
London, 1994.

L. Schlafli. Gesammelte Mathematische Abhand-
lungen I. Birkhauser, Basel, 1950, pp. 209-212.

H. C. Tuckwell. Introduction to Theoretical Neuro-
biology, vols. 1 and 2. Cambridge University Press,
Cambridge, 1988.

L. G. Valiant. A theory of the learnable. Commu-
nications of the ACM, 27:1134-1142, 1984.

A. M. Zador and B. A. Pearlmutter. VC dimen-
sion of an integrate-and-fire neuron model. Neural

Computation, 8:611 624, 1996.

