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Abstract

Slow Feature Analysis (SFA) is an efficient algorithm for learning input-output func-
tions that extract the most slowly varying features from a quickly varying signal. It has
been successfully applied to the unsupervised learning of translation-, rotation-, and
other invariances in a model of the visual system, to the learning of complex cell recep-
tive fields, and, combined with a sparseness objective, to the self-organized formation
of place cells in a model of the hippocampus.

In order to arrive at a biologically more plausible implementation of this learning
rule, we consider analytically how SFA could be realized in simple linear continuous
and spiking model neurons. It turns out that for the continuous model neuron SFA can
be implemented by means of a modified version of standard Hebbian learning. In this
framework we provide a connection to the trace learning rule for invariance learning. We
then show that for Poisson neurons spike-timing-dependent plasticity (STDP) with a
specific learning window can learn the same weight distribution as SFA. Surprisingly, we
find that the appropriate learning rule reproduces the typical STDP learning window.
The shape as well as the timescale are in good agreement with what has been measured
experimentally. This offers a completely novel interpretation for the functional role of
spike-timing-dependent plasticity in physiological neurons.

1 Introduction

The formation of invariant representations is one of the major challenges the neural system of an
organism faces during interaction with the environment. Certain objects have to be identified as
being the same when encountered in different situations although the stimuli they produce may be
quite different. This means that the processing of sensory information has to be invariant to certain
aspects of the stimulus (those varying for the same object) and sensitive to others (those which do
not vary and identify the object).

It is widely accepted that the invariances found in the brain are at least partially a product
of learning. Because of the limited amount of information in the genome as well as the apparent
flexibility of the neural development in different environments, it seems unlikely that the informa-
tion needed to form invariant representations is already there at the beginning of the individual
development. Some must be gathered from the sensory input experienced during interaction with
the environment.

One powerful principle for the learning of invariances in an unsupervised fashion is temporal
stability, or slowness. A scene that the eye views is very unlikely to change completely from one
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second to the next. Rather, there is a good chance that an object that can be seen now will also
be present at the next instant of time. Therefore sensory signals that are more stable over time are
more likely to carry useful information about the world than those that vary quickly. This idea is
the basis of a whole class of learning algorithms (Földiak, 1991; Mitchison, 1991; Becker and Hinton,
1992; O’Reilly and Johnson, 1994; Stone and Bray, 1995; Wallis and Rolls, 1997; Peng et al., 1998).

Slow Feature Analysis (SFA,Wiskott and Sejnowski, 2002) is one of these unsupervised learning
algorithms based on the slowness principle. Given a multidimensional input signal x(t) and a finite-
dimensional function space F , SFA finds the input-output function g1(x(t)) in F that generates the
most slowly varying output signal y1(t) = g1(x(t)). It is important to note that the function g1(x(t))
is required to be an instantaneous function of the input signal. Otherwise, slow output signals could
be generated by simply lowpass filtering the input signal. As the goal of the slowness principle is
to detect slowly varying features of the input signals, a mere lowpass filter would certainly generate
slow output signals, but it would not serve the purpose.

As a measure of slowness or rather ’fastness’ SFA uses the variance of the time derivative,
〈ẏ1(t)

2〉t, which is the objective function to be minimized. Here, 〈·〉t denotes temporal averaging.
For mathematical convenience and to avoid the trivial constant response, y1(t) = const, a zero-mean
and unit variance constraint are imposed. Furthermore, it is possible to find a second function g2

extracting y2(t) = g2(x(t)) that again minimizes the given objective under the constraint of being
uncorrelated with y1, a third one uncorrelated with both y1 and y2 and so on, thereby generating a
set of slow features of the input ordered by the degree of ‘slowness’. However, in this paper, we will
consider just one single unit.

SFA has been successfully applied to the learning of translation-, rotation- and other invariances
in a model of the visual system (Wiskott and Sejnowski, 2002) and it has been shown that SFA
applied to natural image sequences learns functions that reproduce a wide range of features of
complex cells in primary visual cortex (Berkes and Wiskott, 2005). Iteration of the same principle
in a hierarchical model in combination with a sparseness objective has been used to model the self-
organized formation of spatial representations resembling place cells as found in the hippocampal
formation of rodents (Franzius et al., 2006).

Thus on an abstract level SFA seems to capture an important aspect of cortical information
processing. However, SFA as a technical algorithm is biologically rather implausible. There is in
particular one step in its canonical formulation that seems especially odd compared to what neurons
are normally thought to do. In this step the eigenvector that corresponds to the smallest eigenvalue
of the covariance matrix of the time derivative of some multidimensional signal is extracted. The
aim of this paper is to show how this kind of computation can be realized in a spiking model neuron.

In the first part we will consider a continuous model neuron and demonstrate that a modified
Hebbian learning rule enables the neuron to learn the slowest (in the sense of SFA) linear com-
bination of its inputs. In addition, we provide a link to the trace learning rule, which is another
implementation of the slowness principle. We then examine if these findings also hold for a spiking
model neuron and find that for a linear Poisson neuron spike-timing-dependent plasticity (STDP)
can be interpreted as an implementation of the slowness principle.

2 Continuous model neuron

2.1 Linear model neuron and basic assumptions

First consider a linear continuous model neuron with an input-output function given by

aout(t) =
nX

i=1

wi ain
i (t) , (1)

with ain
i indicating the input signals, wi the weights, and aout the output signal. For mathematical

convenience, let ain
i and aout be defined on the interval [−∞,∞] but differ from zero only on [0, T ],

which could be the lifetime of the system. We assume that the input is approximately whitened
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on any sufficiently large interval [ta, tb] ⊆ [0, T ], i.e. each input signal has approximately zero mean
and unit variance and is uncorrelated to other input signals:

Z tb

ta

ain
i (t) dt ≈ 0 (zero mean), (2)

Z tb

ta

“

ain
i (t)

”2

dt ≈ 1 (unit variance), (3)

Z tb

ta

ain
i (t)ain

j 6=i(t) dt ≈ 0 (decorrelation) . (4)

This can be achieved by a normalization and decorrelation step of the units projecting to the
considered unit. Furthermore, we assume that the output is normalized to unit variance, which for
whitened input means that the weight vector is normalized to length one. In an online learning rule
this could be implemented by either an activity dependent or a weight dependent normalization
term. Thus for the output signal we have

Z tb

ta

aout(t) dt
(1,2)
≈ 0 (zero mean), (5)

Z tb

ta

`
aout(t)2

´
dt

(1,3)
≈

nX

i=1

w2
i := 1 (unit variance). (6)

In the following we will often consider filtered signals. Therefore we introduce abbreviations for
the convolution f ◦ g and the cross-correlation f ⋆ g of two functions f(t) and g(t):

Convolution: [f ◦ g](t) :=

Z ∞

−∞

f(τ )g(t − τ ) dτ , (7)

Cross-correlation: [f ⋆ g](t) :=

Z ∞

−∞

f(τ )g(t + τ ) dτ . (8)

For convenience, we will often use windowed signals, indicated by a hat

ŝ(t) :=


s(t) if t ∈ [ta, tb]
0 otherwise

, (9)

which allows us to replace the integration of a signal s(t) over [ta, tb] by an integration of ŝ(t) over
[−∞,∞]. We assume that the interval [ta, tb] is long compared to the width of the filters. In this
case effects from the integration boundaries are negligible and we have

Z tb

ta

[f ◦ s](t)h(t) dt ≈

Z ∞

−∞

[f ◦ ŝ](t)h(t) dt . (10)

Similar considerations hold for the cross-correlation (8).
Since convolution and cross-correlation are conveniently treated in Fourier space, we repeat also

the definition of the Fourier transform Fs(ν) and the power spectrum Ps(ν) of a signal s(t).

Fourier transform: s(t) =:

Z ∞

−∞

Fs(ν) e2πiνt dν , (11)

Power spectrum: Ps(ν) := Fs(ν)Fs(ν) . (12)

Furthermore, we make the assumption that input signals (and hence also the output signals) do not
have significant power above some reasonable frequency νmax.
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2.2 Reformulation of the slowness objective

SFA is based on the minimization of the second moment of the time derivative,
R

ȧout(t)2 dt. Even
though there are neurons with transient responses to changes in the input, we believe it would be
more plausible if we could derive an SFA-learning rule that does not depend on the time derivative,
because it might be difficult to extract, especially for spiking neurons. It is possible to replace the
time derivative by a low-pass filtering as follows.

minimize

Z ∞

−∞

ȧout(t)2 dt (13)

=

Z ∞

−∞

Pȧout(ν) dν (because of Parseval’s theorem) (14)

= 4π2

Z ∞

−∞

ν2Paout(ν) dν (since Fṡ(ν) = 2πiνFs(ν)) (15)

⇐⇒ maximize

Z ∞

−∞

−ν2Paout(ν) dν (16)

⇐⇒ maximize

Z ∞

−∞

(ν2
max − ν2)Paout(ν) dν (17)

(since

Z ∞

−∞

Paout(ν) dν =

Z ∞

−∞

aout(t)2 dt
(6)

≈ const)

=

Z ∞

−∞

max(0, (ν2
max − ν2))Paout(ν) dν (18)

(since Paout(ν) = 0 for |ν| > νmax by assumption)

=

Z ∞

−∞

PfSFA(ν)Paout(ν) dν (19)

(with fSFA(t) defined such that PfSFA = max(0, (ν2
max − ν2))) (20)

=

Z ∞

−∞

ˆ
fSFA ◦ aout˜ (t)2 dt . (21)

Thus, SFA can either be achieved by minimizing the variance of the time derivative of the output
signal or by maximizing the variance of the appropriately filtered output signal. Figure 1 provides
an intuition for this alternative. The filter fSFA is obviously a low-pass filter, as one would expect,
with a (ν2

max − ν2)-power spectrum below the limiting frequency νmax. Because the phases are not
determined, further assumptions are required to fully determine an SFA-filter. However, we will
proceed without defining a concrete filter, since it is not required for the considerations below.

2.3 Hebbian learning on filtered signals

It is known that standard Hebbian learning under the constraint of a unit weight vector applied to
a linear unit maximizes the variance of the output signal. We have seen in the previous section that
SFA can be reformulated as a maximization problem for the variance of the low-pass filtered output-
signal. To achieve this we simply apply Hebbian learning to the filtered input- and output-signals
instead of the original signals.

Consider a hypothetical unit that receives low-pass filtered inputs and therefore, because of the
linearity of the unit and the filtering, generates a low-pass filtered output

[fSFA ◦ aout](t)
(1)
=

"

fSFA ◦

nX

i=1

wi ain
i

#

(t) =

nX

i=1

wi [fSFA ◦ ain
i ](t) , (22)

where fSFA is the kernel of the linear filter applied. It is obvious that a filtered Hebbian learning
rule

ẇi = γ [f in ◦ ain
i ](t) [fout ◦ aout](t) (23)
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Figure 1: Choosing slow directions of the input. Finding the direction of least variance
in the time derivative of the input (which is part of the SFA algorithm) can be replaced by
finding the direction of maximum variance in an appropriately lowpass filtered version of the
input signal.

with f in := fout := fSFA maximizes (21).
Remember that the input is white, i.e. the ain

i are uncorrelated and have unit variance, and the
weight vector is normalized to norm one by some additional normalization rule, so that we know
that the output signal aout has the same variance no matter what the direction of the weight vector
is. Thus, the filtered Hebbian plasticity rule (together with the normalization rule not specified
here) optimizes slowness (13) under the constraint of unit variance (6). Figure 2 illustrates this
learning scheme. It also underlines the necessity for a clear distinction between processing and
learning. Although the slowness principle does not allow lowpass filtering as a means of generating
slow signals during processing, the learning rule may well make use of lowpass filtered signals in
order to detect slowly varying features in the input signal. This distinction will become particularly
important for the Poisson model neuron below, as it incorporates an EPSP that acts as a lowpass
filter during processing. An implementation of the slowness principle in such a system must avoid
that the system exploits the EPSP as a means of generating slow signals.
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Figure 2: ‘Filtered Hebbian’ learning rule. Input and output signals are filtered
(downward arrows). The weight change is the result of applying the Hebbian learning rule
on the filtered signals (square box and upward arrow). Thereby, the variance of the filtered
version of the output is maximized without actually filtering the output.

2.4 Alternative filtering procedures

If learning is slow, the total weight change over a time interval [ta, tb] in this synapse can be written
as

∆wi :=

Z tb

ta

ẇi dt (24)

(23)
= γ

Z tb

ta

[f in ◦ ain
i ](t) [fout ◦ aout](t) dt (25)

(10)

≈ γ

Z ∞

−∞

[f in ◦ âin
i ](t) [fout ◦ âout](t) dt (26)

= γ

Z ∞

−∞

[[fout ⋆ f in] ◦ âin
i ](t) âout(t) dt (27)

= γ

Z ∞

−∞

âin
i (t) [[f in ⋆ fout] ◦ âout](t) dt (28)

= γ

Z ∞

−∞

[f in ⋆ fout](t) [âout ⋆ âin
i ](t) dt . (29)

Thus one can either convolve input and output signal with filters f in and fout, respectively, the input
signal with fout ⋆f in, or the output signal with f in ⋆fout. Note that [f in ⋆fout](t) = [fout ⋆f in](−t).
One can actually use any pair of filters f in and fout as long as f in ⋆ fout fulfills the condition

Ff in⋆fout(ν) = PfSFA(ν) . (30)

2.5 Relation to other learning rules

Hebbian learning on lowpass-filtered signals is the basis of several other models for unsupervised
learning of invariances (Földiak, 1991; O’Reilly and Johnson, 1994; Wallis and Rolls, 1997). These
models essentially subject the output signal to an exponential temporal filter f(t) := θ(t)γ exp(−γt)
and then use Hebbian learning to associate it with the input signal. Here θ(t) denotes the Heaviside
step function, which is 0 for t < 0 and 1 for t ≥ 0. This learning rule has been termed the ’trace
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rule’. The considerations in the last section provide a link between this approach and ours. We
simply have to replace f in(t) by a δ-function and fout(t) by f(t). Equation (29) then takes the form

∆wi = γ
X

j

»Z ∞

−∞

f(t) [âin
j ⋆ âin

i ](t) dt

–

wj , (31)

since the output signal aout =
P

j wja
in
j is a linear function of the input (1). In the previously

mentioned applications of the ’trace rule’, the statistics of the input signals was always reversible,
so we will assume that all correlation functions [ain

i ⋆ ain
j ](t) are symmetric in time. This implies

that only the symmetric component of f(t) is relevant for learning:

f sym(t) :=
1

2
(f(t) + f(−t)) =

γ

2
exp(−γ|t|). (32)

It is easy to show that the learning rule (31) can be interpreted as a gradient ascent on the following
objective function:

Ψ =

Z ∞

−∞

f sym(t)[aout ⋆ aout](t) dt (33)

=

Z ∞

−∞

Ffsym(ν)Paout(ν) dν . (34)

By comparison with equation (19), it becomes clear that the ’trace rule’ implements a very similar
objective as our model. The only difference is that the power spectrum (20) is replaced by the
Fourier transform of the filter f sym. Note that in order to be able to interpret Ψ as an objective
function, it should be real-valued. The replacement of f by f sym ensures that Ffsym is real-valued
and symmetric, so Ψ is real-valued as well. The Fourier transform of f sym is given by

Ffsym(ν) =
γ

γ2 + (2πν)2
. (35)

This shows that the only difference between the ’trace rule’ and our model lies in the choice of the
power spectrum for the lowpass filter. While we are using a parabolic power spectrum with a cutoff
(20), the ’trace rule’ uses a power spectrum with the shape of a Cauchy function (35).

From this perspective, one can interpret SFA as a quadratic approximation of the ’trace rule’.
To what extent this approximation is valid depends on the power spectra of the input signals. If
most of the input power is concentrated at low frequencies where the power spectrum resembles
a parabola, the learning rules can be expected to learn very similar weight vectors. In fact any
Hebbian learning rule that leads to an objective function of the shape of equation (19) with a
lowpass filtering spectrum in the place of PfSFA essentially implements the slowness principle, as
among signals with the same variance, it will favor slower ones.

3 Spiking model neuron

Real neurons do not transmit information via a continuous stream of analog values like the model
neuron considered in the previous section, but rather emit action potentials that carry information
by means of their rate and probably also by their exact timing, a fact we will not consider here.
How can the model developed so far be mapped onto this scenario?

3.1 The linear Poisson neuron

Again, we restrict our analysis to a simple case by modeling the spike train signals by inhomogeneous
Poisson processes. First, sufficiently large constants cin

i are added to the continuous and zero-mean
signals ain

i (t) to turn them into strictly positive signals that can be interpreted as rates

rin
i (t) := cin

i + ain
i (t) . (36)
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The constants cin
i represent mean firing rates, which are modulated by the input signals ain

i . From
the input rates rin

i (t) we then derive inhomogeneous Poisson spike trains Sin
i (t) drawn from ensembles

Ein
i such that

〈Sin
i (t)〉Ein

i

= rin
i (t) , (37)

where 〈·〉Ein
i

denotes the average over the ensemble Ein
i .

The output rate is modeled as a weighted sum over the input spike trains convolved with an
EPSP ǫ(t) plus a baseline firing rate r0, which ensures that the output firing rate remains positive.
This is necessary as we allow inhibitory synapses, i.e. negative weights.

m(t) := r0 +
nX

i=1

wi [ǫ ◦ Sin
i ](t) . (38)

The output of this spiking neuron is yet another inhomogeneous Poisson spike train Sout(t) drawn
from an ensemble Eout given a realization of the input spike-trains Sin

i such that

〈Sout(t)〉Eout|{Sin
i

} = m(t) . (39)

It should be noted that not only the output spike train Sout(t) is stochastic in this model, but
also the underlying output rate m(t), which is a function of the stochastic variables Sin

i (t) and
generally differs for each realization of the input. This is the reason why the input and output
spike trains are not statistically independent. However, due to the linearity of the model neuron the
output rate is still simply

rout(t) := 〈Sout(t)〉Eout,Ein (40)

(39,38,37)
= r0 +

nX

i=1

wi [ǫ ◦ rin
i ](t) (41)

(36)
= r0 +

X

wic
in
i

Z ∞

−∞

ǫ(t) dt

| {z }

=:cout

+
nX

i=1

wi [ǫ ◦ ain
i ](t) (42)

= cout +

"

ǫ ◦

nX

i=1

wi ain
i

#

(t) (43)

(1)
= cout + [ǫ ◦ aout](t) , (44)

and the joint firing rate is

rin,out
i (t, t′) := 〈Sin

i (t)Sout(t′)〉Eout,Ein (45)

= rin
i (t)rout(t′) + wiǫ(t

′ − t)rin
i (t) (see Kempter et al., 1999). (46)

The first term would result also from a rate model, while the second term captures the statistical
dependencies between input and output spike-trains mediated by the synaptic weights wi and the
EPSP ǫ.

3.2 Spike-timing-dependent plasticity can perform SFA

In this section we will demonstrate that in an ensemble-averaged sense it is possible to generate the
same weight distribution as in the continuous model by means of a spike-timing-dependent plasticity
(STDP) rule with a specific learning window.

Synaptic plasticity that depends on the temporal order of pre- and postsynaptic spikes has been
found in a number of neuronal systems (Debanne et al., 1994; Markram et al., 1997; Bi and Poo,
1998; Zhang et al., 1998; Feldman, 2000). Typically, synapses undergo long-term potentiation (LTP)
if a presynaptic spike precedes a postsynaptic spike within a time scale of tens of milliseconds and
long-term depression (LTD) for the opposite temporal order. Assuming that the change in synaptic
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efficacy occurs on a slower time scale than the typical interspike interval, the STDP weight dynamics
can be modeled as

∆wi = γ

min
iX

α

mout
X

β

W (tiniα − tout
β ) . (47)

Here tiniα denotes the spike times of the presynaptic spikes at synapse i and tout
β the postsynaptic

spike times. W (t) is the learning window that determines if and to what extent the synapse is
potentiated or depressed by a single spike pair. The convention is such that negative arguments t in
W (t) correspond to the situation where the presynaptic spike precedes the postsynaptic spike. min

and mout are the numbers of pre- and postsynaptic spikes occurring in the time interval [ta, tb] under
consideration. γ is a small positive learning rate. Note that due to the presence of this learning rate
the absolute scale of the learning window W is not important for our analysis.

We circumvent the well-known stability problem of STDP by applying an explicit weight nor-
malization (||~w|| =const.) instead of weight-dependent learning rates as used elsewhere (Kistler
and van Hemmen, 2000; Rubin et al., 2001; Gütig et al., 2003). Such a normalization procedure
could be implemented by means of a homeostatic mechanism targeting the output firing rate, e.g. by
synaptic scaling (for reviews see Turrigiano and Nelson, 2000; Abbott and Nelson, 2000).

Modeling the spike trains as sums of delta pulses, i.e. Sin/out =
P

j δ(t − t
in/out
j ), the learning

rule (47) can be rewritten as

∆wi = γ

Z tb

ta

Z tb

ta

W (t − t′)Sin
i (t)Sout(t′) dtdt′ (48)

≈ γ

Z ∞

−∞

Z ∞

−∞

W (t − t′)Ŝin
i (t)Ŝout(t′) dtdt′. (49)

Taking the ensemble average allows us to retrieve the rates that underlie the spike trains and
thus the signals âin

i and âout of the continuous model:

〈∆wi〉Ein,Eout

(49)
≈ γ

Z ∞

−∞

Z ∞

−∞

W (t− t′)〈Ŝin
i (t)Ŝout(t′)〉Ein,Eout dtdt′ (50)

(46)
= γ

Z ∞

−∞

Z ∞

−∞

W (t− t′)
`
r̂in

i (t)r̂out(t′) + wiǫ(t
′ − t)r̂in

i (t)
´
dtdt′ (51)

(36,44)
≈ γ

Z ∞

−∞

Z ∞

−∞

W (t− t′)[ĉin
i + âin

i ](t)[ĉout + ǫ ◦ âout](t′) dtdt′

+ γ

Z ∞

−∞

Z ∞

−∞

W (t − t′)wiǫ(t
′ − t)[ĉin

i + âin
i ](t) dtdt′ . (52)

Expanding the products in equation (52) gives rise to a number of terms, among which only one
depends on both the input and the output signal âin

i and âout. Because all signals have vanishing
mean, terms containing just one of these signals lead to negligible contributions. The remaining
terms depend only on the mean firing rates cin

i and cout:

〈∆wi〉Ein,Eout

(52)
≈ γ

Z ∞

−∞

W (t − t′)âin
i (t)[ǫ ◦ âout](t′) dt

+ γwic
in
i Tab

Z ∞

−∞

W (t)ǫ(−t) dt (53)

+ γcoutcin
i Tab

Z ∞

−∞

W (t) dt .

The decisive term is the first one. The other two are rather unspecific in that they do not depend
on the properties of the input and output signals âin

i and âout.
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The second term alone would generate a competition between the weights: Synapses that ex-
perience a higher mean input firing rate cin

i grow more rapidly than those with smaller input firing
rates. If we assume that the input neurons fire with the same mean firing rate, all weights grow
with the same rate, i.e. the direction of the weight vector remains unchanged. Due to the explicit
weight normalization this term has no effect on the weight dynamics and can be neglected.

If the integral over the learning window is positive, the third term in equation (53) favors a
weight vector that is proportional to the vector of the mean firing rates of the input neurons. It
thus stabilizes the homogeneous weight distribution and opposes the effect of the first term, which
captures correlations in the input signals. Note that this is only true if the integral over the learning
window is positive, otherwise this term introduces a competition between the weights (cf. Gütig
et al., 2003, equation (8)). One possible interpretation is that the neuron has a ’default state’ in
which all synapses are equally strong and that correlations in the input need to surpass a certain
threshold in order to be imprinted in the synaptic connections. Interestingly, this threshold is
determined by the integral over the learning window, which implies that neurons that balance LTP
and LTD should be more sensitive to input correlations.

An alternative possibility is that the neuron possesses a mechanism of canceling the effects of
this term. From a computational perspective this would be sensible, as the mean firing rates cin

i and
cout do not carry information about the input, neither in rate nor in a timing code. If we conceive
neurons as information encoders aiming at adapting to the structure of their input, this term is thus
more hindrance than help. Assuming that the neuron compensates for this term, the dynamics of
the synaptic weights are governed exclusively by the correlations in the input signals as reflected by
the first term. In the following we will restrict our considerations to this term and omit the others.

Rearranging the temporal integrations, we can rewrite the equation for the weight updates as

〈∆wi〉Ein,Eout

(53)
≈ γ

Z ∞

−∞

[W ◦ ǫ](t)[âout ⋆ âin](t) dt . (54)

The first conclusion we can draw from this reformulation is that for the dynamics of the learning
process the convolution of the learning window with the EPSP and not the learning window alone
is relevant. As discussed in section 3.4, this might have important consequences for functional
interpretations of the shape of the learning window.

Second, by comparison with equation (29), it is obvious that in order to learn the same weight
distribution as in the continuous model, the learning window has to fulfill the condition that

[W ◦ ǫ](t) = [f in ⋆ fout](t) =: W0(t) (55)

⇐⇒ FW◦ǫ(ν) = FW (ν)Fǫ(ν) = Ff in⋆fout(ν) = PfSFA(ν) = FW0(ν). (56)

Here, W0 is the convolution of W with ǫ and is equal to the learning window in the limit of an
infinitely short, δ-shaped EPSP. As the power spectrum PfSFA(ν) is of course real, W0 is symmetric
in time. Note that the width of W0 scales inversely with the width of the power spectrum PfSFA ,
which in turn is proportional to νmax. Once the power spectrum PfSFA and the EPSP is given,
equation (56) uniquely determines the learning window W .

3.3 Learning windows

According to the last section, we require special learning windows in order to learn the slow directions
in the input. This of course raises the question which window shapes are favorable and in particular
if these are in agreement with physiological findings.

Given the shape of the EPSP and the power spectrum PfSFA , the learning window is uniquely
determined by equation (56). Remember that the only parameter in the power spectrum PfSFA is
the frequency νmax, above which the power spectrum of the input data was assumed to vanish. For
simplicity, we model the EPSP as a single exponential with a time constant τ :

ǫ(t) = θ(t) e−
t

τ . (57)
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For this particular EPSP shape, the learning window can be calculated analytically by inverting the
Fourier transform in (56). The result can be written as

W (t) =

»
d

dt
+

1

τ

–

W0(t) . (58)

W0 is symmetric, so its derivative is antisymmetric. Thus, the learning window is a linear
combination of a symmetric and an antisymmetric component. As the width of W0 scales with the
inverse of νmax, its temporal derivative scales with νmax. Accordingly, the symmetry of the learning
window is governed by an interplay of the duration τ of the EPSP and the maximal input frequency
νmax. For τ ≪ 1/νmax the learning window is dominated by W0 and thus symmetric whereas for
τ ≫ 1/νmax the temporal derivative of W0 is dominant, so the learning window is anti-symmetric.

We have assumed that the input signals have negligible power above the maximal input frequency
νmax. Thus, the temporal structure of the input signals can only provide a lower bound for νmax.
On the other hand, exceedingly high values for νmax lead to very narrow learning windows, thereby
sharpening the coincidence detection and reducing the speed of learning. Moreover, it may be
metabolically costly to implement physiological processes that are faster than necessary. Thus, it
appears sensible to choose νmax such that 1/νmax reflects the fastest time scale in the input signals.
Accordingly, the symmetry of the learning window is governed by the relation between the length
of the EPSP and the fastest time scale in the input data. If the EPSP is short enough to resolve
the fastest input components, the learning window is symmetric. If the EPSP is too long to fully
resolve the temporal structure of the input, i.e. it acts as a low-pass filter, the learning window will
tend to be antisymmetric.

We choose a value of νmax = 1/(40ms). The argument for this choice is that within a rate code,
the cells that project to the neuron under consideration can hardly convey signals that vary on a
faster time scale than the duration of their EPSP. It is thus reasonable to choose the time constant
of the EPSP and the inverse of the cutoff frequency to have the same order of magnitude. Typical
durations of cortical EPSPs are of the order of tens of milliseconds (see Koch et al. (1996) for further
references and a critical discussion), so 40ms is a reasonable value.

Figure 3 illustrates the connection between PfSFA , W0, the learning window and the EPSP. It also
shows the learning windows for three different durations of the EPSP, while keeping νmax =1/(40ms).
The oscillatory and slowly decaying tails of W (t) are due to the sharp cutoff of the power spectrum
PfSFA at |ν| = νmax and become less pronounced, if PfSFA is smoothened out.

As negative time arguments in W (t) correspond to the case, in which the presynaptic spike (and
thus the onset of the resulting EPSP) precedes the postsynaptic spike, the shape of the theoretically
derived learning window for physiologically plausible values of τ and νmax (τ = 1/νmax = 40ms,
middle row in figure 3) predicts potentiation of the synapse when a postsynaptic spike is preceded
by the onset of an EPSP and depression of the synapse when this temporal order in reversed. This
behavior is in agreement with experimental data from neocortex and hippocampus in rats as well
as from the optic tectum in Xenopus (Debanne et al., 1994; Bi and Poo, 1998; Feldman, 2000;
Markram et al., 1997; Zhang et al., 1998). To further illustrate this agreement, Figure 4 compares
the data as published by Bi and Poo (1998) with the learning window resulting from a smoothened
power spectrum with the shape of a Cauchy function (35) instead of PfSFA . As demonstrated above,
this corresponds to implementing the slowness principle in form of the ’trace rule’. Interestingly,
the resulting learning window has the double-exponential shape that is regularly used in models of
STDP (e.g. van Rossum et al., 2000; Song and Abbott, 2001; Gütig et al., 2003). As the absolute
scale of the learning window is not determined in our analysis, it was adjusted to facilitate the
comparison with the experimental data.

3.4 Interpretation of the learning windows

The last section leaves a central question open: why are these learning windows optimal for slowness
learning and why does the EPSP play such an important role for the shape of the learning window?

Let us first discuss the case of the symmetric learning window, i.e. the situation in which the
EPSP is shorter than the fastest time scale in the input signal. Then the convolution with the
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Figure 3: Relation between the EPSP and the learning window. The power spec-
trum PfSFA is the Fourier transform of W0, which in turn is the convolution of the learning
window W and the EPSP ǫ. The figure shows the learning windows required for SFA for
three different EPSP durations (τ = 4, 40, 400ms). The maximal input frequency νmax was
1/(40ms) in all plots.

EPSP has practically no effect on the temporal structure of the signal and the output firing rate
can be regarded as an instantaneous function of the input rates. We can thus neglect the EPSP
altogether. The learning mechanism can then be understood as follows: Assume at a given time t
the postsynaptic firing rate rout is high and causes a postsynaptic spike. Then the finite width of
the learning window leads to potentiation not only of those synapses that participated in initiating
the spike, but also of those which transmit a spike within a certain time window around the time
of the postsynaptic spike. As this leads to an increase of the firing rate within this time window,
the learning mechanism tends to equilibrate the firing rates for neighboring times and thus favors
temporally slow output signals.

If the duration of the EPSP is longer than the fastest time scale in the input signal, the output
firing rate is no longer an instantaneous function of the input signals, but generated by lowpass
filtering the signal aout with the EPSP. This is crucial for learning, because the objective of the
continuous model is to optimize the slowness of aout, whose temporal structure is now “obscured”
by the EPSP. In order to optimize the objective, the system thus has to develop a deconvolution
mechanism to reconstruct aout. From this point of view, the learning window has to perform two
tasks simultaneously. It has to first perform the deconvolution and then enforce slowness on the
resulting signal. This is most easily illustrated by means of condition (55). The convolution of the
learning window with the EPSP generates a function W0(t) that is independent of the EPSP and
which coincides with the learning window for infinitely short EPSPs. Intuitively, we could solve this
equation by choosing a learning window that consists of the “inverse” of the EPSP and the EPSP-
free learning window W0. An intuitive example is the limiting case of an infinitely long EPSP. The
EPSP then corresponds to a Heaviside function and performs an integration, which can be inverted
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Figure 4: Comparison of the learning window with experimental data. The plot
compares the theoretically predicted learning window with experimental data from hip-
pocampal pyramidal cells as published by Bi and Poo (1998) (larger plot, middle). Instead
of the ideal power spectrum PfSFA with the abrupt cutoff at νmax as stated in equation
(20), a Cauchy function with γ=1/(15ms) was used (top left, the dashed line is PfSFA for
νmax=1/(40ms)). Again, the EPSP decay time was τ = 40ms. This learning window corre-
sponds to an implementation of the ’trace rule’ (Földiak, 1991; O’Reilly and Johnson, 1994;
Wallis and Rolls, 1997) for a decay time of the exponential filter of 15ms.

by taking the derivative. Thus the learning window for long EPSPs is the temporal derivative of the
learning window for short EPSPs. The dependence of the required learning window on the shape of
the EPSP is thus caused by the need of the learning window to “invert” the EPSP.

These considerations shed a different light on the shape of physiologically measured learning
windows. The antisymmetry of the learning window may not act as a physiological implementation
of a causality detector after all but rather as a mechanism for compensating intrinsic lowpass filters
in neuronal processing such as the EPSP. For functional interpretations of STDP, it may be more
sensible to consider the convolution of the learning window with the EPSP than the learning window
alone.

It should be noted that, according to our learning rule, the weights adapt in order to make a
hypothetical instantaneous output signal aout optimally slow. This does not necessarily imply that
the output firing rate rout, which is generated by lowpass filtering aout with the EPSP, is optimally
slow. In principle, the system could generate more slowly varying signals by exploiting the temporal
structure of the EPSP. However, the motivation for the slowness principle is the idea that the system
learns to detect invariances in the input signal and that from this perspective the goal of creating a
slowly varying output signal is not an end in itself, but a means to learn invariances.

4 Discussion

Neurons in the central nervous system display a wide range of invariances in their response behavior,
examples of which are phase invariance in complex cells in the early visual system (Hubel and Wiesel,
1968), head direction invariance in hippocampal place cells (Muller et al., 1994), or more complex
invariances in neurons associated with face recognition (Quiroga et al., 2005). If these invariances
are learned, the associated learning rule must somehow reflect a heuristics as to which sensory
stimuli are supposed to be categorized as being the same. Objects in our environment are unlikely
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to change completely from one moment to the next but rather undergo typical transformations.
Intuitively, responses of neurons with invariances to these transformations should thus vary more
slowly than others. The slowness principle uses this intuition and conjectures that neurons learn
these invariances by enforcing their output signals to vary slowly without exploiting lowpass filtering.

Slow Feature Analysis (SFA,Wiskott and Sejnowski, 2002) is one implementation of the slowness
principle in that it minimizes the mean square of the temporal derivative of the output signal for a
given set of training data. SFA has been shown to successfully model a wide range of physiologically
observed properties of complex cells in primary visual cortex (Berkes and Wiskott, 2005) as well as
translation-, rotation-, and other invariances in the visual system (Wiskott and Sejnowski, 2002). In
combination with a sparse coding objective, SFA has also been used to describe the self-organized
formation of place cells in the hippocampal formation (Franzius et al., 2006).

As an algorithm SFA is highly efficient, but its formulation is rather technical and it has not
yet been examined if it is feasible to implement SFA within the limitations of neuronal circuitry. In
this paper, we approach this question analytically and demonstrate that such an implementation is
possible in both continuous and spiking model neurons.

In the first part of the paper, we show that for linear continuous model neurons, the slowest
direction in the input signal can be learned by means of Hebbian learning on lowpass filtered
versions of the input and the output signal. The power spectrum of the lowpass filter required for
implementing SFA can be derived from the learning objective and has the shape of an upside-down
parabola.

The idea of using lowpass filtered signals for invariance learning is a feature that our model has
in common with several others (Földiak, 1991; O’Reilly and Johnson, 1994; Wallis and Rolls, 1997).
Section 2.5 discusses the relation of our model to these ’trace rules’ and shows that they bear strong
similarities.

The second part of the paper discusses the modifications that have to be made to adjust the
learning rule for a Poisson neuron. We find that in an ensemble-averaged sense it is possible to re-
produce the behavior of the continuous model neuron by means of spike-timing-dependent plasticity
(STDP). Our study suggests that the outcome of STDP learning is not governed by the learning
window alone but rather by the convolution of the learning window with the EPSP, which is of
relevance for functional interpretations of STDP.

The learning window that realizes SFA can be calculated analytically. Its shape is determined by
the interplay of the duration of the EPSP and the maximal input frequency νmax, above which the
input signals are assumed to have negligible power. If νmax is small, i.e. if the EPSP is sufficiently
short to temporally resolve the most quickly varying components of the input data, the learning
window is symmetric whereas for large νmax or long EPSPs, it is antisymmetric. Interestingly,
physiologically plausible parameters lead to a learning window whose shape and width is in agree-
ment with experimental findings. Based on this result we propose a new functional interpretation
of the STDP learning window as an implementation of the slowness principle that compensates for
neuronal lowpass filters such as the EPSP.

A different approach to unsupervised learning of invariances with a biologically realistic model
neuron has been taken by Körding and König (2001). In their model, bursts of backpropagating
spikes gate synaptic plasticity by providing sufficient amounts of dendritic depolarization. These
bursts are assumed to be triggered by lateral connections that evoke calcium spikes in the apical
dendrites of cortical pyramidal cells.

Of course the model presented here is not a complete implementation of SFA. We have only
considered the central step of SFA, the extraction of the most slowly varying direction from a
set of whitened input signals. To implement the full algorithm, additional steps are necessary: a
nonlinear expansion of the input space, the whitening of the expanded input signals and a means
of normalizing the weights. When traversing the dendritic arborizations of a postsynaptic neuron,
axons often make more than one synaptic contact. As different input channels may be subjected
to different nonlinearities in the dendritic tree (cf. London and Häusser, 2005) the postsynaptic
neuron may have access to several nonlinearly transformed versions of the same presynaptic signals.
Conceptually, this resembles a nonlinear expansion of the input signals. However, it is not obvious,
how these signals could be whitened within the dendrite. On the network level, however, whitening
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could be achieved by adaptive recurrent inhibition between the neurons (Földiak, 1989). This
mechanism may also be suitable for extracting several slow uncorrelated signals as required in
the original formulation of SFA (Wiskott and Sejnowski, 2002) instead of just one. We assumed
an explicit weight normalization in the description of our model. However, one could also use a
modified learning rule that implicitly normalizes the weight vector as long as it extracts the signal
with the largest variance. A possible biological mechanism is synaptic scaling (Turrigiano and
Nelson, 2000), which is believed to multiplicatively rescale all synaptic weights according to the
postsynaptic activity, similar to Oja’s rule (Oja, 1982; Abbott and Nelson, 2000). Thus, it appears
that most of the mechanisms necessary for an implementation of the full SFA algorithm are available
but that it is not clear how to combine them in a biologically plausible way.

Another critical point in the analytical derivation for the spiking model is the replacement of
the temporal by the ensemble average, as this allows to recover the rates that underlie the Poisson
processes. The validity of the analytical results thus requires some kind of ergodicity in the training
data, a condition, which of course needs to be justified for the specific input data at hand.

It is still open if the results presented here can be reproduced with more realistic model neurons.
The spiking model neuron used here was highly simplified in that it had a linear relationship between
input and output firing rate. In many real neurons highly nonlinear behavior was observed. We have
also neglected nonlinearities in the learning rule such as the frequency- and the weight-dependence
of STDP (Bi and Poo, 1998; Sjöström et al., 2001). Furthermore, modeling the spiking mechanism
of a neuron by an inhomogeneous Poisson process is also a severe simplification that ignores basic
phenomena of spike generation in biological neurons like refractoriness and thresholding. It is not
clear how these characteristics would change the learning rule that leads to an implementation of
the slowness principle. It seems to be a very difficult task to answer these questions analytically.
Simulations will be necessary to verify the results derived here and to analyze which changes appear
and which adaptations must be made in a more realistic model of neural information processing.

In summary, the analytical considerations presented here show that (i) slowness can be equiv-
alently achieved by minimizing the variance of the time derivative signal or by maximizing the
variance of the lowpass filtered signal, the latter of which can be achieved by standard Hebbian
learning on the lowpass filtered input and output signals; (ii) the difference between SFA and the
trace learning rule lies in the exact shape of the effective lowpass filter, for most practical purposes
the results are probably equivalent; (iii) for a spiking Poisson model neuron with an STDP learning
rule it is not the learning window that governs the weight dynamics but the convolution of the
learning window with the EPSP; (iv) the STDP learning window that implements the slowness
objective is in good agreement with learning windows found experimentally. With these results we
have reduced the gap between slowness as an abstract learning principle and biologically plausiple
STDP learning rules and we offer a completely new interpretation of the standard STDP learning
window.
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