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Recent studies have shown that synchronous neural
activity in the cortex area occurs related to behavior or
recognition of animals, which suggests that such neu-
ral activity involves in information processing. Func-
tions enabled by synchronous firing, however, are still
unknown. Results reporting that a transition between
recall states of associative memory is induced by ex-
ternal synchronous spikes in a neural network formed
by spike-timing dependent plasticity indicate the pos-
sibility of a function of synchronous neural activity as
a transition signal, requiring further examination us-
ing detailed cortical neuron models [1]. We introduced
a mathematical model of pyramidal and fast-spiking
cortical neurons based on Hodgkin-Huxley, and con-
firmed the transition between recall states through
synchronous spike inputs in detailed neuron models.
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1. Introduction

Information processing by neural brain circuits, which
is a typical example of an adaptive system, is real-
ized by individual neurons mutually transmitting mes-
sages through synapses by generating electrical signals
called spikes. This information exchange among neurons
through spikes enables neural circuitry to conduct overall
information processing in the brain. Therefore, the synap-
tic network connecting neurons – a neural network – is
basic to information processing in the brain. Thus, the
elementary process of adaptation in neural brain circuits
arises in the modulation of synaptic connections, called
synaptic plasticity. Synaptic plasticity changes the neu-
ral network by changing synaptic connection strength be-
tween neurons based on neuronal activity in response to
external stimuli. Therefore, the neural brain circuit is
a system that adapts its behavior to a new environment
through synaptic plasticity.

Synaptic plasticity was first described by the Hebb rule
[12], which states that synaptic connection changes de-
pending on pre- and post-synaptic neuronal activity. Such

-40 -20 20 40

-0.1

-0.05

0.05

0.1
Δg(tpre -tpost )

time time
tpre -tpost < 0 tpre -tpost > 0

LTP LTD

Fig. 1. Spike-timing dependent plasticity (STDP). In synap-
tic plasticity as an elementary process of learning, LTP
or LTD is evoked depending on spike timing. When a
post-synaptic neuron fires after pre-synaptic neuron firing,
the synaptic connection strength increases. In contrast, if
post-synaptic neuron firing proceeds pre-synaptic firing, the
synaptic connection strength decreases.

activity has been described by the firing rate alone and
was considered independent of spike time. It was found,
however, that spike-timing dependent plasticity (STDP)
indicates that plasticity is based on spike sequence and
timing between pre- and post-synaptic neurons (Fig. 1) [4,
6, 15, 20, 24, 27]. This discovery of STDP provides a neu-
ral basis for information processing based on a temporal
structure of spike sequences. Furthermore, reports have
focused on firing correlation, especially on synchronous
firing between neurons, mainly for those in the cortex
[10, 11, 19]. This synchronous spike activity occurs selec-
tively depending on external stimulus input or tasks such
as behavior, implying the coding and transmission of in-
formation through synchronous spikes.

These findings imply possible information processing
by neural networks based on spike time [5, 7]. It remains
unknown, however, just what information processing is
realized by the temporal structure of the spike sequence.
Many questions remain unanswered as to what the net-
work structure generated by STDP is, what functions are
provided, and what information synchronous spike activ-
ity represents, requiring further study [8, 9, 22, 23].

For this reason, we studied the function of the STDP-
based network, focusing on the following points (Fig. 2):
Does the STDP-based network memorize temporal spike
patterns given from external stimuli? If so, how does
memorized state of the network respond to correlated
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Fig. 2. Scheme of neural network model formed by STDP
learning rules and problems posed. When spike patterns cor-
responding to external events are applied to the neural net-
work as stimulus input, how is the neural network organized
by STDP? Does the neural network memorizes given spike
patterns? What effect does the correlation between the in-
coming spikes have on network behavior?

spikes from external input, especially to synchronized
spikes?

In previous work, we found that STDP learning cre-
ates associative memory circuits to memorize spike pat-
terns, and that the recalled state transits to the next in-
duced by the synchronous activity of input spikes based
on the sequence of given stimuli in the learning period
[1]. This result indicates that synchronous neural ac-
tivity may act as a transition signal to the next memo-
rized state in associative memory, and is of interest re-
lated to higher functions. The model, however, is neu-
rophysiologically unnatural because recurrent excitatory
or inhibitory connections are formed by the same neu-
ron group. The model uses the Leaky Integrate-and-Fire
Model, as a single-neuron model, requiring additional ex-
periments with more detailed neuron models. In this way,
we improve on the previous model by introducing a more
detailed cortical neuron model.

2. Methods

2.1. Single-Neuron Model

We take up two typical single neurons consisting of cor-
tical neural networks, i.e., the excitatory pyramidal neu-
ron and the inhibitory fast-spiking neuron.

A mathematical model of the excitatory pyramidal neu-
ron is expressed in the following equation [2]:

Cm
dV
dt

= −INa − IK − ICa − ISK − IL + Iapp . . (1)

where membrane capacitance Cm = 1 μF/cm2, and INa, IK
represent voltage-dependent ion channel currents de-
scribed by Hodgkin-Huxley formalism.

INa = gNam3h(V −ENa) . . . . . . . . . . (2)

IK = gKn4(V −EK) . . . . . . . . . . . (3)
dx
dt

= Φx[αx(V )(1− x)−βx(V )x], (x = m,h,n)

. . . . . . . . . . . . . (4)

αm = −0.1(V+25)
exp(−0.1(V+25))−1

βm = 4exp(−(V +50)/12)
. . . . . . . . (5)

αh = 0.07exp(−(V +42)/10)
βh = 1/exp(−0.1(V +12)+1)

. . . . . . (6)

αn = −0.01(V +26)
exp(−0.1(V+26))−1

βn = 0.125exp(−(V +36)/25)
. . . . . . (7)

where m, n and h represent gating variables of activation
and inactivation, turning each ion channel on or off via
voltage dependence. Parameters are follows: gNa = 130,
gK = 35 [mS/cm2] , ENa = 55, EK = −97 [mV]. ICa is
similarly described as follows:

ICa = m2IGHK . . . . . . . . . . . . . . (8)
dm
dt

= Φm[αm(V )(1−m)−βm(V)m] . . . . (9)

αm = 1.6
1+exp(−0.072(V−5))

βm = 0.002(V +8.69)
(exp((V+8.69)/5.36)−1)

. . . . . . . (10)

IGHK = PmaxV ([Ca2+]in − [Ca2+]outξ )/(1−ξ )
ξ = exp(−2FV/RT )

(11)

where F = 96.5 C/mol, T = 293 K, R = 8.31 J/(K·mol),
Pmax = 0.01 μA/(μM·mV·cm2). The temperature factor
is set constant: Φx = 10. ISK is expressed as,

ISK = gSKm(V −ESK) . . . . . . . . . (12)

dm
dt

=
m∞[Ca2+]in −m

τSK[Ca2+]in
. . . . . . . . . (13)

m∞ = [Ca2+]in
[Ca2+]in+Kd,SK

τSK = ψSK
[Ca2+]in+Kd,SK

. . . . . . . . . . (14)

where gSK = 0.85 mS/cm2 , ESK = −97 mV, Kd,SK =
0.4 μM, ψSK = 2.8 μM·msec. Calcium concentration
[Ca]2+ in ICa and ISK equations are described by,

d[Ca2+]in
dt

= −ηICa + k−[B]Oc − k+[Ca2+]in[B](1−Oc)

−gpump
[Ca2+]in

[Ca2+]in +Km,pump
. . . . (15)

Oc

dt
= −k−Oc +K+[Ca2+]in(1−Oc) . . . . (16)

where [B] represents total Ca buffer in cells, Oc repre-
sents the binding ratio to the Ca buffer. [Ca2+]in flows
into cells by ICa, which is rapidly trapped by the Ca buffer
and extruded slowly by the pump. Therefore, each param-
eter is set as follows: k− = 0.3 msec−1, k+ = 0.1 msec−1

μM−1, Km,pump = 0.75 μM, gpump = 3.6 μM/msec, [B] =
30 μM, η = 0.027, [Ca2+]out = 2100 μM. Leak current
is given by IL = gL(V −VL), where gL = 0.13 mS/cm2,
VL = −68.8 mV. Iapp represents an external input current
by synaptic connections. A typical firing response when a
constant current is applied to the single excitatory neuron
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