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Abstract

We study associative memory neural networks based on the Hodgkin-Huxley type of
spiking neurons. We introduce the spike-timing-dependent learning rule, in which the
time window with the negative part as well as the positive part is used to describe the
biologically plausible synaptic plasticity. The learning ruleis applied to encode a number
of periodical spatiotemporal patterns, which are successfully reproduced in the periodical
firing pattern of spiking neuronsin the process of memory retrieval. The global inhibition
is incorporated into the model so as to induce the gamma oscillation. The occurrence
of gamma oscillation turns out to give appropriate spike timings for memory retrieval of
discrete type of spatiotemporal pattern. The theoretical analysis to elucidate the station-
ary properties of perfect retrieval state is conducted in the limit of an infinite number of
neurons and shows the good agreement with the result of numerical smulations. The
result of this analysis indicates that the presence of the negative and positive parts in the
form of the time window contributes to reduce the size of crosstalk term, implying that
the time window with the negative and positive parts is suitable to encode a number of
spatiotemporal patterns. We draw some phase diagrams, in which we find various types
of phase transitions with change of the intensity of global inhibition.

1 Introduction

In the past few decades there has been some theoretical interest in associative memory neu-
ral networks [1-4]. A major breakthrough was made by Hopfield, who has introduced the
stochastic neural network model with an energy function [5]. By means of the method based
on the statistical mechanical theory several authors have conducted the investigations on Ising
spin networks [6-12] and analog neural networks [13-18], which have clarified much of the
fundamental properties of associative memory neural networks.

Meanwhile, in electrophysiological experiments, a significant effort has been devoted to
clarify the capability of the real nervous system to memorize spatiotemporal patterns[19,20].
Recently, it has been revealed that in the long spike sequences of the rat hippocampus short
spike sequences appear repeatedly [21]. This phenomenon imply the capability of the rat
hi ppocampus to memorize spatiotemporal patterns on the basis of spike timings, and hence,
concern has been raised about associative memory neural network models in which informa:
tion is represented by spike timings of neurons[22, 23].

To deal with the problem concerning spike timings of neurons one might consider inves-
tigating networks of simple phase oscillators. Since some theoretical analysis is available,
the stationary properties of associative memory based on networks of simple oscillators have
been studied extensively both in the case of an extensive number of stored patterns and in
the case of distributed natural frequencies [24-28]. Even in the presence of white noise as
well as a distribution of natural frequencies we can derive the storage capacity of networks
of phase oscillators analytically [29].
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For amore complete understanding of the information processing based on spike timings
of neurons, it is, however, necessary to adopt more biologically plausible neural network
model s because such features as the time evol ution of membrane potentials and decay time of
synaptic electric currents play a significant rolein the rhythmic behavior of neurons. For this
purpose, networks of spiking neurons are considered to be suitable models for investigation,
though it remains an unsolved problem to find the adequate learning rule to encode spike
timings in networks of spiking neurons.

Since networks of spiking neuronswith asymmetric synaptic connections exhibit sequen-
tial firings of neurons[30,31], one may consider that thelearning rule to encode spatiotempo-
ral patterns should generate asymmetric synaptic connections. Actually, incorporating asym-
metric synaptic connections, Gerstner et al. has investigated the networks of the integrated-
and-fire type of spiking neurons with discrete time dynamics, in which the encoded spa-
tiotemporal patterns are successfully reproduced in spike timings of neuronsin the process of
memory retrieval [32]. Then, the question arises asto how such asymmetric synaptic connec-
tions are developed in areal nervous system. The results of the recent electrophysiological
experiments have revealed that the modification of a excitatory synaptic efficacy depends on
the precise timings of pre- and postsynaptic firings [33-35]. A synaptic efficacy is found
to increase if firing of a presynaptic neuron occurs in advance of firing of a postsynaptic
neuron, and to decrease otherwise. Accordingly, the time window to describe the spike-
timing-dependent synaptic plasticity takes the form having the negative and positive parts as
is described in Fig. 1. Severa authors have proposed that this modification rule serves to
solve such the problems as path navigation [ 36, 37], direction selectivity [38,39], competitive
Hebbian learning [40], and biologically plausible derivation of the Linsker's equation as well
as the Hebbian learning rule [41]. In the present study, we aim to tackle the problem of how
spatiotemporal patterns are encoded in anetwork of spiking neurons on the basis of the spike-
timing-dependent moadification rule. We introduce the spike-timing-dependent learning rule,
which gives asymmetric synaptic connections so that networks of spiking neurons function
as associative memory.

Spiking neurons we assume in the present study interact with each other without time
delay, that is, every neuron obtains synaptic electric current immediately after one neuron
fires. Inthis case, the sequential firings of neuronsfor memory retrieval take place with rather
short timeintervals, and one might consider such rapid pattern retrieval makes no sense from
a biological point of view. It may be desirable that the network equips a certain mechanism
to control spike timings of neurons to realize the information processing with the adequate
processing period.

We hypothesize that the gamma oscillation is the key mechanism to solving this problem.
In the various regions of real nervous system, such as the neocortex and the hippocampus,
a population of neurons are found to exhibit synchronized firings with a characteristic fre-
guency 20-80Hz, and such synchronized firings of neurons, namely the gamma oscillation,
attract much attention of researchers [42-48]. When the gamma oscillation arises, firings of
neurons occur only around discrete time steps, and the situation is somewhat similar with the
case of the Hopfield model with the discrete time dynamics. We hypothesize that such the
discrete type of firing pattern serves to control spike timings of neurons. Some experimen-
tal and theoretical results support the hypothesis that the global inhibition, which is induced
by the presence of interneurons, plays a significant role in generation of the gamma oscilla-
tion [49-55]. In the present study, incorporating the global inhibition into the model, we aim
to investigate the influence of the gamma oscillations on the properties of memory retrieval.

It should be noted that we can apply some theoretical techniques to analyze the stationary
properties of the present system provided that the number of encoded patterns are sufficiently
smal (i.e. P/N < 1, where P is the number of encoded patterns and N is the number of
neurons). When retrieval is successful, the periodical behavior of every neuron is identical,
but shifts with respect to time depending on the value of the target pattern, and thus we can
reduce the many body problem into the single body problem in the limit of an infinite number
of neurons. By use of this exact reduction we can draw some phase diagrams, which clarify
the condition for successful retrieval and the occurrence of phase transitions. Furthermore,
this method of analysis leads us to find one surprising property of the present system: the
crosstalk term vanishes if the area of the positive part of the time window is equivalent to the
area of the negative part so that the time integration of the time window takesvalue zero. This
result implies that the present form of the time window, which has the negative and positive
parts, is suitable to encode a number of spatiotemporal patterns.

The present paper isorganized asfollows. In section 2, we present the detail s of the neura

2



MasAHIKO Y OSHIOKA

network model we study, and then we introduce the spike-timing-dependent learning rule to
encode spatiotemporal patterns. In section 3, we investigate the stationary properties of the
network in perfect retrieval state analytically. In the course of this analysis, it becomes clear
that the negative and positive parts of the time window play an important role in reducing
the size of crosstalk term. In section 4, we apply this method of analysis to the case with
continuous type of patternsto clarify the condition for the occurrence of the perfect retrieval.
The result of the numerical simulations are presented showing good agreement with the result
of the theoretical analysis. Then, in section 5, we treat the case of discrete type of patterns,
which are successfully retrieved when the gamma oscillation arises. Finally, in section 6, we
give abrief summary of the present study.

2 Modd of a network of spiking neurons

In real nervous system some regions, such as the neocortex and the hippocampus, are found
to comprise a large number of pyramidal cells and interneurons. In these networks pyrami-
dal cells typically connect to other neurons (i.e., both pyramidal cells and interneurons) via
excitatory synapses, while interneurons connect to pyramidal cells via GABAergic synapses
(inhibitory synapses). When one pyramidal cell fires, the other pyramidal cells obtain exci-
tatory postsynaptic potential (EPSP) due to the excitatory synapses that connect pyramidal
cell to the other pyramidal cells. At the same time, some interneurons surrounding the firing
pyramidal cell also obtain EPSP due to the excitatory synapses that connect the pyramidal
cell to interneurons. Since the threshold value for firing of interneuronsis rather small, these
interneurons begin to fire immediately after the arrival of action potentials from the firing
pyramidal cell, and then such firings of the interneurons giverise to the inhibitory postsynap-
tic potentials (IPSPs) into alarge number of pyramidal cells via GABAergic synapses. In this
way, when one pyramidal cell fires, the other pyramidal cells obtain two kinds of post synap-
tic potentials: EPSP induced by the direct arrival of action potential from the firing pyramidal
cell and |PSPs mediated by firings of interneurons surrounding the firing pyramidal cell.

For the purpose of elucidating the fundamental properties of the nervous system com-
posed of pyramidal cells and interneurons, we investigate a network of N spiking neurons
interacting through two types of synaptic electric currents, namely, electric currents via plas-
tic synapses Ji; and global inhibition. The dynamics of a network of spiking neurons we
study is expressed in the form

Vi = f(Vi,Wiy,..., W) + 1i(0), (1)
V\./ij = gj(Vi’\Nil,u.,VVin),
i=1...,N, j=1,...,n 2
with
li () = lpyri(t) + line(t) + lex,i (1), )

where V;(t) denotes the membrane potential of neuron i and W;(t) auxiliary variables neces-
sary for neuronsto exhibit spiking behavior. The definition of the electric currents I pyr i (t), lint(t),
and lex.i(t) will be explained in what follows. Note that now we focus on the dynamics of a
network of N pyramidal cellsand omit describing the detailed dynamics of interneurons[56].
For the dynamics f (V, Wy, ..., W) and g; (V, Wi, ..., W), several authors have assumed the
Hodgkin-Huxley equations [57], the FitzHugh-Nagumo equations [58, 59], and so on. In
the present study we assume the Hodgkin-Huxley equations, and hence the degrees of free-
dom of a state of aneuron is 4 (i.e.,, n = 3). In appendix A, we present the details of the
Hodgkin-Huxley equations we adopt in the present study.

I oyri (t) denotes a sum of synaptic electric currents via plastic synapses J;j, which is acti-
vated by the arrival of action potential from other pyramidal cells. We define firing times of
neuron i as the time when the membrane potential V;(t) exceeds the threshold value Vo = 0
and denote k-th firing time of neuron i by ti(k). Then, the synaptic electric current | py;(t) is
written in the form

N
loyi() = A D > JiSpy ft-4(K).  i=1....N @
1K

where Ji; denotes a synaptic efficacy from neuron j to neuron i, and Ay, is the variable
controlling the intensity of synaptic electric current I, j(t). We assume the time-dependent
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postsynaptic potential Sy (t) of the form

0 t<O
Spyr(t) = 1 {exp(_ t )_a(p(_ t )} O<t (5)
Tpyr,l = Tpyr,2 Tpyr,1 Tpyr,2

In what follows, we set 7,y 1 = 10 (msec) and 7pyr 2 = 5 (MSsec).

For the sake of brevity, instead of describing the detailed dynamics of interneurons, we
simply assume that IPSPs are induced in other pyramidal cells immediately after one of N
pyramidal cellsfires[56], that is, we assume global inhibition I;(t) of the form

) N
n® =225 S s ft-100), ©)
[

where Ay is the variable controlling the intensity of global inhibition. Note that the global
inhibition lin:(t) is independent of index i since every neuron obtains the same amount of
inhibitory electric current. The time-dependent inhibitory postsynaptic potentia Sin(t) is

described as
0 t<O
Sin(t) = -1 {exp(_ t )_ a(p(_ t )} 0<t - (7
Tint,1 — Tint,2 Tint,1 Tint,2 -

Note that Sjn(t) takes negative value in the interval 0 < t. In what follows, we set Tjn 1 =
5 (msec) and 7int 2 = 2.5 (Msec) so that Sin(t) decays faster than Sy, (t).

The external electric current lei(t) is used to control initial firings of neurons. For the
initial condition of the network, we set state of neurons (Vi, {(Wi}) (i = 1,...,N) to be at the
stable fixed point of the dynamics of Egs. (1) and (2) with I;(t) = 0. It means that, without any
externa stimuli, all neurons keep quiescent irrespective of the strength of synaptic efficacy
Jij. Thus, for the purpose of invoking initial firings that act as a trigger to retrieve the target
pattern, we use the pulsed form of the external electric current lex;(t) only at the beginning
of the evolution of the dynamics. Then, the initial firings of neurons invoke the synaptic
electric currents, which become driving force for the next firings of neurons. Once note that
the external electric current lei(t) is used only at the beginning. In the theoretical analysis
below we set 1ei(t) = 0 because we focus on the stationary behavior in thisanalysis.

The aim of considering the present model is to investigate the properties of nervous sys-
tem composed of pyramidal cells and interneurons. As is mentioned above, in rea ner-
vous system, pyramidal cells are found to interact with other pyramidal cells via excitatory
synapses. Nevertheless, in what follows, for the purpose of simplifying the situation, we
assume synaptic efficacy J;; can take not only positive value but also negative value. This
assumption might be somewhat implausible, but allow one to introduce the simple learning
rule, which is amenable to satisfactory level of analysis. In the next subsection, on the basis
of naive assumption that this simplification does not change the fundamental properties of the
system, weintroduce the learning rule that is capable of encoding anumber of spatiotemporal
patterns.

2.1 Thespike-timing-dependent learning rule to encode spatiotempor al
patterns

The periodical spatiotemporal patterns we study in the present study are generated randomly
with the constraint that every neuron fires only once in one period. We represent these spa-
tiotemporal patterns by use of thefiringtimess' € [0,T) (i=1,...,N, u=1,...,P), where
P isanumber of patternsand T is aperiod of spatiotemporal patterns. To choose §' randomly
from theinterval [0, T) we use the equation:

g“:%q;‘, i=1....N,u=1...,P, (8

where Q isanatural number controlling the degree of discreteness of spatiotemporal patterns
and random integer ¢f is chosen from the interval [0, Q) with equal probability. We term
random patterns with finite Q discrete type of patterns, while we term those with Q — o
continuous type of patterns. In what follows, setting T = 100, we study the case of discrete
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type of patterns (Q = 10) as well as continuous type patterns (Q — o). By considering the
case of discrete type of patterns we aim to study the effect of the occurrence of the gamma
oscillation in the learning process. For convenience of the calculation below, we introduce
the phase variables ¢ defined as

2n 2n
A=5%4=7% ©)

To find aclue to encode spatiotemporal patternsin anetwork of spiking neurons, webegin
with estimating the modification of synaptic efficacy assuming that neurons fire periodically
according to one of the spatiotemporal patterns. The results of the recent electrophysiolog-
ical experiments suggest that the modification of a synaptic efficacy depends on the precise
timings of presynaptic and postsynaptic firings [33-35], and such modification of synaptic
efficacy AJ is approximately written in the form

-1 At At
P expT——expT— At <0
AJ o W(AY) = "W 1 w2 Wit w2 At (10)
— E&Xp ——)—exp(——)} 0 <At
TW1 — TwW2 T™w1 ™w2
with
At = tpost - tpre: (11)

where tpog and tyre denote firing times of presynaptic and postsynaptic neurons respectively.
In what follows, we set Tw; = 10 (msec) and Tw, = 5 (msec), with which the time win-
dow W (At) takes the form described in Fig. 1. When neurons fire periodically according to
pattern 1, namely gl the firing times of neurons are written in the form

§K=s+kT, i=1...,N k=...,-2-1,0,12,... (12)

Substituting Eq. (12) into Eqg. (10) we obtain the rough estimation of the modification of
synaptic efficacy:

AJij
o KZ kZ W{g (k) - 5 ()

ZZW(§—S}+KT—ij)
ki ki

x> W(s - +kT)

k=—c0
- W(s-s) @
where the periodical function W(At + T) = W(At) is defined as
W(At) = Z W (At + KT). (14)
k=—oc0

Substituting Eq. (10) into Eq. (14) yields the explicit form of the function W(At):

- 1 e—At/Twl _ e—(T—At)/Twl e‘At/TWZ _ e—(T—At)/TWZ
W(At) = { }

W1 — TW2 l-e T - 1-e T/
O<At<T. (15)

In the above estimation we have treated the case with only asingle spatiotemporal pattern.
Now wewould liketo extend thisresult to the case with a number of spatiotemporal patterns.
Since thetotal change of synaptic efficacy is assumed to be given by the sum of theindividual
changes, we extend Eq. (14) to the form

Jij=%Z;W(§‘S?)=%Z;W{%(¢_%)}’ (19

where we take proper scaling with respect to N. This is the learning rule we adopt in the
present study. In what follows, we investigate networks of spiking neuronsin which synaptic
efficacy J;j isgiven by Eq. (16). Aswill be shown in the next section, spatiotemporal patterns
encoded by use of the learning rule (16) are retrieved successfully if we give an appropriate
initial condition.



MasAHIKO Y OSHIOKA

3 Analysis of the stationary properties of perfect retrieval
statein the case of a finite number of encoded patterns

The present neural networks happen to show rich variety of dynamical behavior depending on
the value of the parameters such as Apyr and Air. Among these behavior the most important
one may be pattern retrieval in which every neuron fires periodically according to one of the
encoded patterns. In such a case, firing times of neurons are written in the form

ti(k) = T P+kf, i=1...Nk=...,-2-1012,..., (17)

where we chose pattern 1 as the retrieved one. Note that, in general, T, which is the period
of firing motion in the process of pattern retrieval, is not equivalent to T, which is the period
assumed in generating random patterns. Since no fluctuation of firing times is allowed in
Eqg. (17), weterm the stationary state defined by (17) perfect retrieval state. Inthis section, we
conduct the theoretical analysis to elucidate the stationary properties of the perfect retrieval
State.

One purpose of the present analysisisto determine the value of the period T. Inthe course
of the present analysis, we evaluate periodical synaptic electric currents Ii(t) = Ipyri(t) +
line(t) as a function of T. Once we know the time-dependent behavior of periodical synaptic
electric currents I;(t), we are allowed to calculate firing motion of neurons numerically by
use of Egs. (1) and (2). Then, based on this firing motion, we determine the value of the
period T self-consistently. In what follows, P is assumed to be finite since perfect retrieval is
impossible with an extensive number of encoded patterns.

Substituting Eq. (16) into Eq. (4), we have

a0 = R 3 D {5 (- )} o 14 a9

Then, from Eq. (17), we obtain

o0 = S V(=) 35 1= 2ot
o] ——
A . N ~
- %;ZW{%W‘@}%(“%H})’ (19)
where )
épyr(t) = Z Spyr (t + k'f) . (20)
k=—oc0

Substituting Eq. (5) into Eq. (20) yields the explicit form of the function §pyr (®):

~ 1 e t/Tpyr1 —t/Tpyr.2 -
prl’,l - prr,2 1- e_T/TPy",l 1- e_T/TPy"’Z
where the periodical function Spy(t) satisfies the condition: Spyr(t + T) = Spyr (1).
For the purpose of evaluating the correlation with respect to the variables ¢, we decom-
pose Eq. (19) into the form

Loyri (1) = Mi(t) + Zi(1), (22)

where N
M) = o ZW{ 6L - 6" }spyr (t— %e}), (23)
ZM) = Ao Z ZW{ 4 )}spy,( - %e}) (24)

Since the term Z;(t) emerges as aresult of encoding a number of spatiotemporal patterns, we
call the term Z;(t) crosstalk term. In the limit of N — oo, the term M;(t) is evaluated as

Mi(t) = Q 4=0 (25)
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On the other hand, since &' (1 > 2) has no correlation with 6%, in the limit of N — oo,
crosstalk term Z;(t) is evaluated as

Zi(t) = Apr (P~ W S(1) (26)
where o1
_ é W (%q) finite Q
W = 0|=02]T T (27)
1 -
and o1
135 - T
— > S (t + —q) finite Q
(1) = ? ; " Q . 29)

o (T

Noting Egs. (14) and (20), we obtain another representation of W and S(t):

1 < (T ) i
— W(=q finite Q
W= qu;; QT (29)
gﬁmw(ﬁe)de Qo x
and .
S T -
_ Z Spyr (t + —q) finite Q
st =4 Q&b Q , (30)

Q> o

— ~ Q|+

whereweuse [~ Sy (t)dt = 1.
Following almost the same scheme as | . (t), from Egs. (6) and (17), we obtain the global
inhibition I (t) of the form

At & & ( T ) .
— > Sin|t+=q finite Q
2 2.5 g

lint(t) = . . , (31)
Aint é T d
Z o intt+Z9 7] Q—)oo
where
Sint) = > Simt (t+KT). (32)
k=—oo
Substituting Eq. (6) into Eq. (32), we obtain the explicit form of the function S;n(t):
- _1 e_t/Tinl,l e—t/Tim,Z o
Sine(t) = - - = , 0<t<T, 33
() Tint,1 — Tint,2 (1 —eT/tm 11— e_T/Ti”LZ) (33)

where the periodical function S;(t) satisfies the condition: Sin(t + T) = Sin(t). Utilizing
f_ °:o Sint(t)dt = —1, we obtain another representation of lin(t):

00

line(t) = % q;oo Sint (t + %q) finite Q |
A

_nt Q- o

F

Substituting Egs. (22) and (26) into Eq. (3), we obtain the periodical synaptic electric
currents |;(t) of the form

(34)

li(t) = Mi(t) + line(t) + Apyr (P — D)W S(t). (35)

Note that now all the termsin the right hand side of Eq. (35) are evaluated as a function of
6! and T, and hence we can evaluate the time-dependent behavior of N neurons as a function
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6! and T based on the dynamics (1) and (2) together with Eq. (35). In the case of perfect
retrieval, the periodical behavior of every neuron isidentical, but shifts with respect to time
depending on the value ¢*. In fact, noting Eq. (25), one can show that a sum of synaptic
electric currents |;(t) satisfies the condition:

T T . .
|i(t+§9il) = |j(t+Z9jl), i=1...,N, j=1...,N. (36)

By use of this property, the behavior of N neurons is easily evaluated once we know the
behavior of asingle neuron, that is, what we need to solve is not a many-body problem but a
single-body problem. We hence focus on investigating the behavior of a single neuron with
6! = 0in what follows.

For a single neuron with 6* = 0, we rewrite the dynamics Egs. (1), (2) and (35) in the
form

Vo= f(VMWi. . W) + (), (37)

W, = gj(VWi,...,W), j=1,...,n (38)
with

[(t) = M(t) + line(t) + Apyr (P — W S(1), (39)

where, from Eq. (25), the term M(t) is rewritten in the form

Apr & (T \ & T -

% Z W(aq) Spyr (t + aq) finite Q.
TG
21

M(t) = (40)

o Toae (T
- . W( )Spyr(t+ Ze)de Q- o
Note that I;(t), W, and S(t) in Eq. (39) is given by Egs. (31),(27), and (28) respectively.

By use of the Hodgkin-Huxley equations, we can evaluate the dynamics (37)-(39) numer-
icaly for arbitrary value of T. Asis describe in Fig. 2, with T that is sufficiently close to
the solution T*, the neuron exhibits periodical firing behavior, and hence the firing times are
written in the form

ti=r(F)+kf, k=...-2-1012.... (41)

Note that we can evaluate the explicit form of the function r(T) by conducting the numerical
integration of the dynamics (37)-(39) for various value of T.

On the other hand, since we evaluate the periodical synaptic electric current (39) based
on the assumption (17), with the solution T* the firing times take the form

t(k):%mkf*:kf* k=...,-2,-1,0,1,2..... (42)
Hence, from Egs. (41) and (42), we obtain the condition
r(f*) =o. (43)

Since we have evaluated the explicit form of the function r(T) by the numerical integration,
we can solve Eq. (43) so as to obtain the solution T*.

In the above analysis, we did not take account of the stability of the solution. Strictly
speaking, the present networks may happen to fail in perfect retrieval for lack of the stability
even when T issuccessfully evaluated in the above analysis. However, asfar asweinvestigate
by numerical simulations, every solution we obtain in the present analysis seems to ensure
the stability aswill be shown in section 4 and 5.

3.1 Thetimewindow W(At) with the negative and positive partsis suit-
ableto encode a number of spatiotemporal patterns

It has been shown that the crosstalk term of the standard type of the Hopfield model vanishes
with an appropriate learning rule as far as the number of encoded patterns is finite. In such
a case, perfect retrieval is aways realized irrespective of the number of encoded patterns. In
the case of the present neural network, the periodical synaptic electric current (35) includes
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the crosstalk term Ay, (P — 1)W S(t), which is proportional to P — 1. From Egs. (5) and (30),
one can show that S(t) always takes the positive value. Therefore, when W takes the nonzero
value, the quality of pattern retrieval changes depending on the number of encoded patterns;
As P increases, the size of the synaptic electric current |;(t) increases or decreases depending
on the sign of W, and eventually perfect retrieval becomes impossible. For these reasons, it
may be highly desirable that W takes the small value in the present purpose.

It should be noted that the quantity W, which is defined by Eq. (29), is the average of
the function W(At) over the time At € (-0, o), and thus the presence of the negative and
positive parts in the form of the time window W(At) is of advantage to reduce the value of
W. In fact, the form of the time window W(At) we assume in the present study satisfies the
condition:

00

ZW(%q):O finite Q |

o= (44)
f W()dr=0 Q-
Therefore, from Eq. (29), we obtain .
W=0. (45)

In the present case, the crosstalk term A, (P — 1)W S(t) vanishes completely. Accordingly,
perfect retrieval is aways realized irrespective of the number of encoded patterns as far as P
is finite. In what follows, setting W = 0, we analytically evaluate the stationary behavior of
the network. It turns out that the result of the present analysis shows the good agreement with
the results of the numerical simulations even when a number of patterns are encoded.

4 The case of continuoustype of patterns (Q — )

4.1 Perfect retrieval with the weak intensity of global inhibition

For the initial condition of the network, we set state of neurons (Vi, {(Wi}) (i = 1,...,N) to be
at the stable fixed point of the dynamics of Egs. (1) and (2) with I;(t) = 0. Since al neurons
keep quiescent without any external stimuli, to invoke initial firings that act as a trigger to
retrieve the target pattern s!, we use the external electric current ley(t) of the form

o A 0<F <agTerand§ <t < +Ateg
leci(V) = { 0 otherwise (46)
with T
= (47)

where the parameters Aext, Text, Atext, aNd Ak are appropriately chosen so that an initial part
of the target pattern is forced to be retrieved. In what follows, we set A = 10, Aty =
1,8e¢ = 0.2, and Texe ~ T. (Once note that T is not equivalent to T.)

In Fig. 3(a), we describe the result of the numerical simulation with the weak intensity of
global inhibition Ajyy = 250 in the case of Q — oo and Ay, = 20000. After theinitial firings
that are invoked by the application of the external electric current lei(t), perfect retrieval is
realized as a result of the emergence of the periodical synaptic electric currents. Sinceitis
somewhat difficult to see whether the target pattern isretrieved or not in Fig. 3(a), setting the
vertical axisto represent the phase variables of the target pattern eil, we replot the same result
in Fig. 3(b), where we see the continuous type of firing pattern implying the occurrence of
the perfect retrieval of the target pattern.

In Fig. 4(a), we describe the dynamical behavior of aneuron with ! = 0. In this result,
the neuron is found to fire periodically after along time. In the case of perfect retrieval, we
are allowed to apply the theoretical analysis conducted above so as to evaluate the periodical
firing motion of a neuron in the limit of an infinite number of neurons. The result of the
theoretical analysisis described in Fig. 4(b). Good agreement between the numerical result
in Fig. 4(a) and the theoretical result in Fig. 4(b) implies the validity of the present analysis.

4.2 The phase transition occurs with change of the intensity of global
inhibition

Asis discussed in the previous subsection, in the case of the weak intensity of globa inhi-

bition, perfect retrieval of continuous type of patternsis realized. On the other hands, when

9



MasAHIKO Y OSHIOKA

the strong intensity of global inhibition is applied, we observe the discrete type of firing pat-
tern asis described in Fig. 5, where we set A = 1250. In the present study, we call such
the discrete type firing pattern the gamma oscillation. In this discrete type of firing pattern
we find a number of components of the continuous type of firing patterns of short duration.
During the occurrence of each component, inhibitory synaptic electric currents Iin(t) accu-
mulate until they become to suppress more firings of neurons. After a stop of continuous
firings, the inhibitory synaptic electric currents I;(t) decay fast owing to the short decay
times 7.1 and i 2. Subsequently, neurons begin to fire again because of the synaptic elec-
tric currents I (t), which have the longer decay times Ty 1 and 7pyr 2 than those of lin(t).
The gamma oscillation in the present study is induced by the iteration of this process.

Asfar as perfect retrieval is concerned, it is uncomplicated to investigate the properties
of the stationary state analytically, while the analysis becomes quite difficult once the system
settles into the other state such as discrete type of firing patterns. Nevertheless, within the
scope of the present analysis, we can determine the critical intensity of global inhibition Af,
which characterizes the phase transition between the perfect retrieval state and the other state.
In Fig. 6, we depict the Ajx — Ay phase diagram showing the condition for the occurrence
of perfect retrieval. In the region denoted by PR, the period of the perfect retrieval T is
successfully evaluated, that is, the perfect retrieval isrealized in the region PR, while outside
the region the perfect retrieval isimpossible.

In this phase diagram, the critical intensity of the global inhibition in the case of Apy =
20000 is evaluated as AL, ~ 630. To clarify the occurrence of the phase transition at this
critical intensity A7, for various value of A, we compute a distribution of the inter spike
intervals (1Sls), which are the time intervals of sequentia firings of neurons in the numerical
simulations. Note that what we compute is not the ISls of a single neuron but the ISIs of
al neurons, that is, when neuron i and neuron j fire sequentially at t; and t; respectively, we
compute the time interval t; — t;. Theresult of the computation of 1SIsis plotted in Fig. 7(a).
Since, below the critical intensity A°,, the continuous type of firing pattern is realized, ev-

-
ery ISl becomes almost zero. Beyoné the critical intensity A7, owing to the occurrence of
non-perfect retrieval we see the distribution of the 1SIs with two components, namely, the
component with the short ISls and the component with the long 1SIs. The appearance of the
component with the short I1SIsis attributed to the emergence of the continuous type of firing
patterns of short duration while the appearance of the long ISls is attributed to the period
during which firing of neurons are suppressed. In Fig. 7(a), we clearly see the occurrence of

the phase transition at the critical intensity of global inhibition A,

5 Thecaseof discretetype of patterns (Q = 10)

As in the case of continuous type of patterns, perfect retrieval is realized even in the case
of discrete type of patterns. In Fig. 9, we describe the result of the numerical simulations,
where we see the discrete type of firing pattern as aresult of the retrieval of the discrete type
of pattern with Q = 10. In the numerical simulation in Fig. 9, we assume the weak intensity
of global inhibition (A = 250). In the case of discrete type of patterns, with change of the
intensity of global inhibition we find a variety of stationary behavior, which is much richer
than that in the case of continuous type of patterns.

5.1 Twotypesof perfect retrieval state

Following the same scheme as continuous type of patterns, we describe the Ay — Apyr phase
diagram in Fig. 8. Unlikethe case of the continuous type of patterns, we find the two kinds of
critical intensity of global inhibition A7 (1) and AS,(2) inthe region with 13000 <Ay <23000,
that is, we see two types of the phase transitions with change of the intensity of global inhi-
bition Ajpt.

To elucidate the nature of these two types of the phase transitions, fixing A,y = 17000,
we conduct the numerical simulations for the various value of Ai;. In Fig. 9, we describe
the result of the numerical simulations with A = 250, which is weaker than the first critical
intensity A7 (1). Asis expected from the phase diagram in Fig. 8, perfect retrieval occurs
with this intensity of global inhibition. In this case, globa inhibition is so weak that the
influence of global inhibition on the properties of the retrieval state isinsignificant.

On the other hand, when we apply the stronger intensity of global inhibition Ay than
the second critical intensity AS,(2), the global inhibition exerts the significant influence on

10
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the nature of the retrieval process. In Fig. 10, we describe the result of numerical simulation
with A = 1250, where we see the perfect retrieval with the long period. With the strong
intensity of global inhibition the gamma oscillation arises and affects to make the retrieval
period long. In the retrieval process of discrete type of patterns, a cluster of neurons with
o1 = 2n 5 fire after acluster of neuronswith 61 = 23 fire. Firing of acluster of neuronswith

eil = Zn% induces two types of synaptic electric currents: the global inhibition as well asthe

excitatory synaptic electric current that evokes firing of a cluster of neurons with 6 = 2k,
The emergence of the global inhibition prevents the immediate firing of the next cluster.
After acertain timeinterval the global inhibition decays, and then a cluster of neurons with
6l = 271% begins to fire owing to the excitatory synaptic electric current. As a result of
the interaction of these processes, the gamma oscillation arises so that the pattern retrieval
occurs with the long period. It turns out that the occurrence of the gamma oscillation gives
the appropriate spike timings for memory retrieval of discrete type of patterns though it is of
disadvantage in the case of continuous type of patterns.

5.2 Disordered statewith theintermediate intensity of global inhibition

With the intermediate intensity of global inhibition AS (1) < Aine < A, (2) the perfect re-
trieval isimpossible asisshown in Fig. 8. In Fig. 11, we describe the result of the numerical
simulations with the intermediate intensity of global inhibition Ajy; = 750, where we find the
disordered firing pattern. In this case, the dynamical behavior of aneuron is so complicated
that it is quite difficult to specify whether the time evolution of |;(t) and V; is periodic or not.
In addition, neurons with the same value of 6! exhibits the different dynamical behavior, be-
cause we see the slight distribution of the firing times of neurons with the same value of 6} in
Fig. 11(a).

For the purpose of elucidating the difference of the disordered state from the prefect
retrieval state, we compute the |SIs for various value of A asisdescribed in Fig. 12. In the
two intervals A < Af (1) and A7 (2) < Aint, where the perfect retrieval is expected to occur,
the ISIstake 0 or T/Q. Anaytically evaluated Ain:-dependence of T/Q in Fig. 12(b) shows
the good agreement with the result of numerical simulations in Fig. 12(a). Meanwhile, in
the interval A7 (1) < At < A7, (2), where perfect retrieval is impossible, we see the quite
complicated distribution of the ISIs. It turns out that with change of the intensity of global
inhibition two types of phase transitions occur at the critical intensity A7 (1) and Af,(2).

6 Discussion

We have investigated associative memory neural networks of spiking neurons interacting
through two types of synaptic electric currents: currents viaplastic synapses and global inhi-
bition. Based on the result of the electrophysiological experiments, we have introduced the
spike-timing-dependent learning rule (16), which encodes spike timings of neurons so that
networks function as associative memory.

To elucidate the stationary properties of perfect retrieva state, we have evaluated the
periodical firing motion of neurons analytically in the limit of an infinite number of neurons.
Based on this method of analysis, we have shown that the present form of the time window
W(At) has the great advantage in encoding a number of spatiotemporal patterns since the
crosstalk term is proportional to the quantity W, which has been shown to vanish owing to
the negative and positive parts of the time window W(At).

We have examined to encode two types of spatiotemporal patterns. continuous type of
patterns (Q — oo) and discrete type of pattern (Q = 10). In the case of continuous type of
patterns, perfect retrieval is realized with the weak intensity of global inhibition, while it is
impossible with the strong intensity of global inhibition since the occurrence of gamma os-
cillation prevents the realization of perfect retrieval. Applying the present method of analysis
we have drawn the Aiy; — Ay phase diagramin Fig. 6, in which we have eval uated the critical
intensity Af;; characterizing the phase transition between the perfect retrieval state and the the
other state.

Meanwhile, in the case of discrete type of patterns, we have found two types of perfect
retrieval state, which is characterized by the two critical intensity: A (1) and Af,(2) (seethe
Aint — Apyr phase diagram in Fig. 8). When the intensity of global inhibition Ay is weaker
than the first critical intensity Aii(1), retrieval is successful as in the case of the continuous
type of patterns. In addition, even with the strong intensity of global inhibition A, perfect
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retrieval isrealized provided that theintensity A isstronger than the second critical intensity

it(2). Inthis case, the gamma oscillation arises, and it gives the appropriate spike timings
for retrieval of discrete type of patterns. With the intermediate intensity A7 (1) < A <
Al (2) we have observed the rather complicate firing patterns asis shownin Fig. 11.

It is noted that the crosstalk term A, (P — 1)W S(t) vanishes if the time window W(At)
satisfies the condition (44). Although the results of some electrophysiological experiments
indicate the slight dominance of the positive part of the time window W(At) over the negative
part, the presence of the negative part is still profitable to reduces the size of W because of
Eqg. (29). Although the function of the form like the Mexican hat may also satisfy the condi-
tion (44), the present form of the time window W(At) is considered to be more adequate to
encode spatiotemporal patterns since the emergence of the excitatory synaptic electric current
before firing of a neuron in the retrieval process is attributed to the positive part of the the
time window W(At), while the fast decay of this excitatory synaptic electric current after fir-
ing is attributed to the negative part. We have to, however, keep in mind that the assumption
that synaptic efficacy J;; can take negative value as well as positive value may be somewhat
implausible from a biological point of view since synapses among pyramidal cells are found
to be excitatory in experiments. The present learning rule (16), which gives either negative
synaptic efficacy or positive synaptic efficacy by chance, is introduced based on the rough es-
timation of the modification of synaptic efficacy in the subsection 2.1. This rough estimation
is somewhat tricky since some quantities diverge in its procedure owing to the absence of the
dumping effect. Rubin et al. has investigated the modification of synaptic efficacy incorpo-
rating severa types of dumping scheme so that the synaptic efficacy is restricted to positive
value [60], and such the approach may be required to get further insight.

Inthe present study, we have investigated the stationary properties of perfect retrieval state
analyticaly in the limit of an infinite number of spiking neurons provided that the number
of encoded patterns is finite. The method of our analysis is extended to the cases such as
superimposed firing patterns, in which the firing times of neurons are defined as

ti(k) = zﬂl/l{eilmod @/} +kT,  i=1...Nk=..,-2-1,012...., (49
where pattern 1 isthetarget pattern and positive integer | denotes the degree of superimposing
(Taking | = 1 corresponds to the case of perfect retrieval). In addition, more complicated
firing patterns such as amixture state, in which two or more patterns are retrieved at the same
time, are expected to be realized under an appropriate initial condition, though theoretical
treatment of them may be difficult to achieve. We have shown that perfect retrieval isrealized
in the region represented by PR in Figs. 6(a) and 8(a). Neverthel ess, what happens below the
perfect retrieval phase remains unclear for lack of the method of analysis. On the basis of
the numerical simulations, we have shown that disordered state can occur below the perfect
retrieval phasein the case of discrete type of patternsasis described in Fig. 11. Whether this
disordered firing patternsis chaotic or not is of interest, but is beyond the scope of the present
study.

It isworth noting that the learning rule (10) is applicable to awide class of spatiotemporal
patterns. For example, following almost the same scheme as the present study, we would be
able to encode spike trains generated by independent Poisson process. In this case, the firing
rate assumed in the Poisson process is expected to affect the quality of memory retrieval,
because the presence of the refractory period of neurons prevents retrieval of the spike trains
with the high firing rate. It is of interest to investigate the properties of the retrieval process
of the present model under the influence of white noise. It has turned out that the occurrence
of the gamma oscillation contributes to the realization of retrieval of discrete type of pat-
terns, and investigating the stability of such the gamma oscillation against noise is particular
interesting. It is aso of interest to study the retrieval process of networks of neurons with
heterogeneity.

It seems to be difficult to carry out the rigorous derivation of the storage capacity of
the present model though it might be possible to evaluate approximate value of the storage
capacity by reducing the present model into networks of simple phase oscillators [61]. In
the previous study we have introduced the method to reduce networks of spiking neurons
into the Hopfield models when networks of spiking neurons exhibits roughly synchronized
firing [23]. This reduction technique might be also applicable to the present model to obtain
the approximate value of the storage capacity when discrete type of patterns are encoded
and firing pattern of neurons becomes discrete. For the purpose of elucidating how global
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inhibition affect the retrieval properties of the network, we numerically estimate the storage
capacity a°® = P°/N for various value of global inhibition in the case of the discrete type of
patterns (Q = 10, Ay = 17000, and N = 2000, see Fig. 13). With the strong intensity of
global inhibition (A, = 1250), the storage capacity is estimated to be ® ~ 0.008, while with
the weak intensity of global inhibition (Air: = 250) it is estimated to be a® ~ 0.006. It seems
that networks with strong intensity of global inhibition is alittle more tolerant with regard to
such fluctuation as crosstalk term than that with weak intensity of global inhibition.

In the present study, the occurrence of the gamma oscillation is assumed for the purpose
of controlling spike timings of neurons. On the other hand, it is also possible to control spike
timings of neurons by assuming the conduction delay with respect to action potentias. In
such a case, the spike-timing-dependent learning rule takes the form

P
Jij = ZVNV(Q‘—S}'—dij), (49)
pu=1

Zl-

where d;; represents the conduction delay of action potential from neuron j to neuroni. Even
in this case, following the same scheme as [23], the stationary properties of perfect retrieval
state can be evaluated analytically provided that the time delays d;; are independent random
variables obeying a certain probability distribution Py(d;;).

Finally, we discuss the implication of the present study in the light of the experimental
studies regarding place cellsin therat hippocampus. It has been reported that place cellsinthe
rat hippocampus becomes to exhibit the environment-specific distribution of center of place
field after exploring severa environments (i.e., exploring a number of test circuits) [62—64].
These results imply that the rat hippocampus is capable of memorizing not only a single
pattern but aso a number of patterns, and this aspect of the rat hippocampus may be well
accounted for by the present model. In the present study, encoded periodical spatiotemporal
patterns are retrieved with the different time scale depending on the intensity of global inhibi-
tion. Some recent results of experiments begin to suggest that the spike sequences observed
in the hippocampus of running rats is replayed in a time-compressed manner during sharp
wave burst in slow-wave sleep [21, 65]. These results imply that the spike sequences memo-
rized in arunning rat is replayed with the different time scale when ratsisin slow-wave sleep.
It may be possible to give some qualitative explanation to this phenomenon if we observe the
retrieval period of more precise neural network models changing the value of some parame-
ters such as the intensity of global inhibition. For a more complete understanding of areal
nervous system it might be necessary to assume interactions among interneurons though we
neglect them for brevity in the present study.

When a rat is running, a population of neurons in the hippocampus exhibit the theta
rhythm, which is roughly synchronized firings of neurons with a characteristic frequency 7-
9Hz. To get more insight into the information processing conducted in the hippocampus it
may be necessary to pay more attention to the role of the thetarhythm in the retrieval process
of the spatiotemporal patterns. In the presence of the theta rhythm, the sequential firings of
neurons are suppressed during the period when the averaged activity of neuronstakesthe low
value. In such acase, we may need to assume some kind of synaptic electric currentsthat act
as atrigger to retrieve the target pattern for individua theta cycles. Giving a good account
for these problems will be one of the future targets of our study.
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Appendix

A TheHodgkin-Huxley equations
Hodgkin-Huxley equations are the ordinary differential equations with four degrees of free-

dom, which have been developed to describe the spike generation of the squid's giant axon
[57]. In the present study, for the dynamics f (V, Wy,...,Wy) and g; (V, Wy,... . W) (j =
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1,...,n), we assume the Hodgkin-Huxley equations, which are written in the form

Cin f (V,WA,...

g1 (Wi, ...
O (V, Wi, ...
03 (V, Wi, ...

with

ay
b1
a2

B2

@3

B3

, Wa)
, Wa)
, Wa)

JWa) = GuaWaW (Via — V) + GcWs (Vi = V)

+g. (VL - V),

a1 (1 - W) — B1Wa,
a2 (1 - Ws) — B2Wo,
a3 (1-Ws) - B3Ws

0.01(10-V) /{exp(lol—av) - 1} ,
0.125exp (-V/80),

0.1(25-V) /{@(p(ZSl_BV) - 1} ,
dexp(-V/18),

0.07 exp(-V/20),

fleol 552

(50)
(51)
(52)
(53)

(54)
(55)
(56)

(57)
(58)

(59)

where V represents the membrane potential, and W; and W, the activation and inactivation
variables of the sodium current, and W5 the activation variable of the potassium current.
The values of parameters are Vya = 50 (mV), Vk = =77 (mV), VL = -54.4(mV), Qya =
120 (mS/cn?), Gk = 36 (mSen?), §, = 0.3 (mS/en?), and Cy, = 1 (uF/cn).
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Figure 1: The shape of the time window W(At) with Ty = 10 (msec) and Ty = 5 (Mmsec).
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Figure 2: The stationary behavior of the single neuron dynamics (37)-(39), which is ana-
Iyticaly derived for the purpose of evaluating the periodical firing behavior of a network
of neurons. For the several value of T, which is close to the solution T*, the time evolu-
tion of I(t) and V are plotted together with the firing times, which are marked by closed
circles (@) T =T*-10,(b) T = T*, (¢) T = T* + 10). Inset, A magnification represent-
ing the behavior of I(t) and V within one period. Note that the firing time takes the form
t(k) = kT (k =...,-2,-1,0,1,2,...) only in the case of (b). The value of parameters are
Q — o0, Apyr = 20000, and Ay = 250, which are the same values aswe use in Figs. 3 and 4.
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Figure 3: Theresult of the numerical simulation with Q — oo, Ayyr = 20000, Ay = 250, P =
3, and N = 2000. (a) The traces of firing times of neurons are plotted with points. In the
interval 0 < t < agTexx = 12, We apply the pulsed external electric current lex(t) of the
form (46) with T = 60 so that the initial part of the target pattern is forced to be retrieved.
(b) Setting the vertical axis to represent the phase variables of the target pattern 6, we replot
theresultin (a).
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Figure 4: (a) Time evolution of the membrane potential V of aneuron with 6F = 0, whichis
observed in the numerical simulation in Fig. 3, is plotted together with a sum of the synaptic
electric currents li(t) = lpyri(t) + lint(t) + lex,i(t). (b) The result of the theoretical evaluation
of the stationary behavior of a neuron. In the numerical ssimulation (a), the neuron exhibits
periodical firing motion after along time, and this periodical firing motion shows the good
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agreement with the result of the present analysis (b).
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Figure5: Theresult of thenumerical simulation with Q — oo, Apyr = 20000, Ay = 1250, P =
3, and N = 2000. (a) The traces of firing times of neurons are plotted with points. Note that
the vertical axis represents the phase variables of the target pattern 61. (b) Time evolution
of the membrane potential V of a neuron with 6! = 0 is plotted together with a sum of the
synaptic electric current 1i(t) = lpyri(t) + lint(t) + lexi(t).
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Figure 6: A — Apyr phase diagram showing the condition for the occurrence of the perfect
retrieval in the case of Q — oo. In the region represented by PR, the perfect retrieval is
realized since the period T is successfully evaluated in the present analysis(see text). Outside
the region represented by PR, the other type of stationary state is realized.
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Figure 7: (a) A distribution of the inter spikeintervals (1Sls) isplotted for the various val ue of
At inthe case of Q — oo, Ay = 20000, P = 1, and N = 2000. Seetext for the definition of
the 1SIswe compute. (b) Ai-dependence of the period T obtained from the present analysis.
We see the phase transition at the critical intensity of global inhibition A, ~ 630, beyond
which perfect retrieval isimpossible.
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Figure 8: Same as Fig. 6, except that Q = 10.
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Figure 9: Same as Fig. 5, except that Q = 10, Ay = 17000, and Aix = 250. Note that each
point in (a) showsfiringsof ~ N/Q neurons, because acluster of neurons with the same value
of 6 fire synchronously.
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Figure 10: Same as Fig. 5, except that Q = 10, Ay, = 17000, and Ay = 1250.
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Figure 11: Same asFig. 5, except that Q = 10, Ay = 17000, and Ay = 750.
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Figure 12: (a) Same as Fig. 7(a), except that Q = 10 and Ay, = 17000. (b) Air-dependence

of T/Q obtained from the present analysisisplotted. We seethe two types of phase transitions

at the critical intensity of global inhibition A7, (1) ~ 420 and A7,(2) ~ 1080. In the interval
it (D) < At < AL (2), the perfect retrieval isimpossible.
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Figure 13: We estimate the storage capacity a® = P¢/N based on the numerical simualtions
stored patterns P increases, the distribution of the firing
times of neurons becomes wider as a result of the increase in the size of the crosstalk term.
is still successful since the loading rate « = P/N = 0.007
is less than the storage capacity o°. On the other hand, in the case of (b), pattern retrieval is
impossible since the loading rate @ = 0.01 is beyond the storage capacity af. The vaue of

with N = 2000. As a number of

In the case of (a), pattern retrieval
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parameters are Q = 10, Ap,y = 17000, and Ay = 1250.
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