AN AGENT BASED MODELING APPROACH FOR THE EXPLORATION
OF SELF-ORGANIZING NEURAL NETWORKS

A Thesis

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

by

Timothy W. Schoenharl, B.S.

Greg Madey, Director

Graduate Program in Computer Science and Engineering
Notre Dame, Indiana

April 2005

AN AGENT BASED MODELING APPROACH FOR THE EXPLORATION
OF SELF-ORGANIZING NEURAL NETWORKS

Abstract
by
Timothy W. Schoenharl

In this thesis we present the ABNNSim toolkit for the simulation of biolog-
ically inspired neural networks. This work applies the Agent Based Modeling
paradigm to the simulation of biological neural networks, allowing rapid develop-
ment of models, easy addition of features and a richness of expression that is not
available with other tools. The focus of the ABNNSim toolkit is modeling neural
networks at the network level. This view leads to some loss of fidelity over other
computational neuroscience tools, but allows larger, system-level phenomena to
be explored. This is motivated by discoveries in the area of complex networks, in
their analysis and prevalence in biological systems. These networks have charac-
teristics that are desirable for biological systems: They are resilient in the face of
failure, efficient (both in terms of communication cost and speed of propagation)
and can be constructed using simple local rules. This thesis describes several meth-
ods of developing complex network topologies in neural networks using pruning.
Throughout the project the Agent-Based Modeling paradigm has been valuable

as a vital tool for speeding the development and deployment of simulations of this

type.

DEDICATION

For Ping, who continually threatened to beat me with her rolling pin if I didn’t

get this finished.

i

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Greg Madey, for his guidance and
support of this project.

Thanks to John Korecki for his work on software development and testing and
maintenance of the Sourceforge project site.

This work was supported by a Schmitt Foundation Fellowship.

il

CONTENTS

ACKNOWLEDGMENTS
FIGURES o
TABLES e

CHAPTER 1: INTRODUCTION
1.1 Overview o
1.2 Complex Systems

1.2.1 Complex Networks
1.3 Neural Networks
1.3.1 DBiological Neural Networks
1.3.2 Artificial Neural Networks
1.4 Agent-Based Modeling and Simulation
1.5 Research Goals

CHAPTER 2: BACKGROUND
2.1 Complex Networks
2.1.1 Metrics
2.1.1.1 Small Worlds
2.1.1.2 Scale Free Networks
2.1.1.3 Others
2.1.2 Prevalence of Complex Networks in the Real World
2.1.2.1 Constructs - Examples of Man-made Networks
2.1.2.2 Social Systemso
2.1.2.3 Biological Systems
2.1.3 Algorithms for Network Construction
2.1.3.1 Watts-Strogatz and Barabasi
2.1.3.2 Local Models

2.2 Biological Neural Networks
2.2.1 Reductionist Approach: Neurons

v

R ENBEBEH

BEB=

-
=

2.2.2 Networks 21

2.2.3 Network Formation: Possible Mechanisms 211
2.3 Artificial Neural Networks
2.3.1 Historical Perspective
2.3.2 Similar Work 25
2.3.2.1 Artificial Neural Network Toolkits
2.3.2.2 Biological Neural Network Simulators
2.3.2.3 Neural Network Simulations B1]
2.4 Agent Based Modeling and Simulation 32]
2.4.1 Historical Perspective 32
2.4.2 Applicability
2.4.3 Toolkits 38

CHAPTER 3: THE AGENT BASED MODELING APPROACH TO SIM-

ULATING NEURAL NETWORKS M4l
3.1 Abstract (41
3.2 Introduction (4T
3.3 Background oo 43]
3.3.1 Similar Work o (43
3.3.1.1 Artificial Neural Network Toolkits (43l
3.3.1.2 Biological Neural Network Simulators (44
3.3.2 Agent Based Modeling 5]
3.4 Designo 406}
3.4.1 System Goals 4061
3.4.2 System Overview 47
3.4.3 Implementation L. B0l
3.5 Results. 531
3.5.1 CaseStudies. 531
3.5.1.1 Case 1: Rewiring With Distance Bias 11
3.5.1.2 Case 2: Adding Inhibitory Neurons
3.5.1.3 Case 3: Chemical Signaling bR}
3.6 Conclusion 5%
3.7 Future Work 54
CHAPTER 4: A TOPOLOGICAL EXPLORATION OF SELF-ORGANIZING
NEURAL NETWORK STRUCTURES 60
4.1 Abstract 60}
4.2 Introduction 60
4.3 Background oo 611
4.3.1 Complex Networks 6 1]
4.3.2 Biological Neural Networks 631
4.3.3 Related Work 641

4.4 Design (%

4.4.1 Neuron Model, . (%
4.42 Pruning 65}
4.4.3 Networks GOl
4.4.4 Measurements GOl
4.5 Results. 671
4.5.1 Sensitivity Analysis 671
4.5.2 Pruning 671
4.6 Conclusion [74]
4.6.1 Discussion of Results 74
4.6.2 Implications [74
4.7 Future Work
CHAPTER 5: RESULTS AND CONCLUSION 70l
5.1 Summary of Results oo 76l
5.1.1 ABNNSim: A Framework for Building Neural Network Sim-
ulations 706l
5.1.2 An Exploration of Topological Structures Generated by Lo-
cal Rules oo 78]
5.2 Future Work 70}
APPENDIX A: ANT BUILD FILE BT
Al Overview. e Rl
A2 Build File &1l
APPENDIX B: SAMPLE SIMULATION OUTPUT 88
B.1 Overview. 8]
B.2 Naming Convention 8]
B.3 Sample Output File 9]
BIBLIOGRAPHY 901

vi

2.1

2.2

2.3

3.1
3.2

3.3
3.4

4.1

4.2

4.3

4.4
4.5

FIGURES

Global and Local Harmonic Mean Distance as a function of the
rewiring probability.

Graphical depiction of Relationship Between Rewiring Probability
p, Clustering Coefficient and Characteristic Path Length

The NetLogo Predator - Prey simulation Wolf-Sheep-Grass

UML of ABNNSim. o o

A screen shot of the ABNNSim application. The RePast frame-
work provides the simulation control panel and model parameter
window. ABNNSim users can view the network as the simulation
progresses. Also shown are two dynamic histograms that show the
link distributions of the network at the current time step.

Side by side comparison of distance vs. random rewired networks

Side by side comparison of original simulation and one with In-
hibitoryNeuron. The InhibitoryNeuron simulation is on the left,
the unmodified ABNNSim is on the right.

A Comparison of the In Degree Distribution Before and After the
Simulation, Starting with a Watts-Strogatz Small Worlds Graph .

A Log-Log Plot of the Link Distribution of the Network Before and
After Pruning

A Comparison of the In Degree Distribution Before and After the
Simulation, Starting with a Random Graph

The Evolution of Harmonic Mean Distance Over Time

The Number of Connections (Synapses) Over Time

vii

[(2)

2.1
2.2
2.3

4.1

TABLES

ARTIFICIAL NEURAL NETWORK MODELS 24]
NEURAL NETWORK SIMULATORS 28]
AGENT BASED MODELING TOOLKITS z0)
DEFAULT PARAMETERS OF SIMULATION 6]

viil

CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis presents the ABNNSim framework, a toolkit for computational
neuroscientists to explore developmental changes in biological neural networks.
ABNNSim fills a niche in the computational neuroscience realm. It lies at a
level of abstraction above Neural Modeling toolkits such as NEURON [32] and
GENESIS[72] but below that of Topographical6]. ABNNSim also brings the con-
cepts and analysis tools from Complex Network Analysis to evaluate developing
network topologies. Finally, ABNNSim uses the Agent-Based Modeling approach,
allowing researchers to explore neural network development by starting with mod-
els of neurons. This work has been presented several times throughout its devel-

opment at academic conferences[59][60] [58][61].

1.2 Complex Systems
The work in this thesis is best understood in the context of complex systems.

In the words of Alfred Hubler[36]:

A Complex System is a System with:

e Large Throughput of Energy, Information, Force, etc, through a
well designed boundary

e Many Parts That Form Emergent Structures (e.g. Fractals, Chaos,
Neural Networks, Genetic Algorithms, Cellular Automata)

Complex systems display interesting interactions between the elements of the sys-
tem, be they molecules in a flow-system that interact to form turbulence, or plants
and animals in a food web.

Complex systems are often described as existing on the boundary between or-
der and chaos. They are clearly not ordered, but there is a discernible structure to
them. Complex systems are important to this discussion because many interest-
ing systems, for example knowledge networks in sociology, food webs in ecology,
protein interaction networks in cell biology and neural networks in neurobiology,
can be best described and understood as complex systems.

Two of the best tools available for understanding complex systems are simula-
tion techniques using the Agent-Based Modeling approach and methods of network
analysis. Agent-Based Modeling simulations allow researchers to study the effects
of complex interactions. Complex network analysis, by abstracting away the play-
ers in a system and instead viewing them as nodes in a network, allows researchers
to analyze the large scale structure of complex systems. This approach enables
researchers to view the effects of interaction, characterize important elements and

to describe the overall structure of the system.

1.2.1 Complex Networks

For centuries mathematicians have used graphs to represent networks from the
real world. Euler was likely the first to do this when he formulated his solution to
the “Bridges of Konigsberg” problem [73]. Regular graphs (where each vertex has

an identical degree) have been used to represent idealized or artificial systems.

In the last century, mathematicians worked extensively with random graphs|[§].
These graphs are constructed in an iterative process whereby each node in the
network is visited and is given a probability to connect to a randomly chosen
node in the network. Random graphs were compelling in that they offered an
interesting approximation to the networks found in the real world. However,
in the 1990s it became apparent that these graphs did not characterize many
interesting real-world networks. Despite their random appearance, networks like
the World Wide Web and the actor collaboration network exhibit some underlying
nonrandom structure.

Two groups of researchers working on the analysis of complex networks in-
dependently discovered several important characteristics for classifying networks
and provided methods of generating networks with these characteristics. Watts
and Strogatz, at Cornell University, found that complex networks can be charac-
terized by two topological measurements: clustering coefficient and characteristic
path length[71]. Barabasi, Albert, et al at the University of Notre Dame discov-
ered that networks like the world wide web are characterized by a “scale-free”
distribution of links. This work has had an impact in nearly every area of science,
from sociology to molecular biology[41].

Watts and Strogatz, in [71], analyze the actors collaboration network, the neu-
ral network of the nematode C. elegans and the power grid of the western United
States. Their research demonstrates that not only do these diverse networks dis-
play similar topological characteristics, but they also are significantly different
than random graphs of the same size. Watts and Strogatz introduce two mea-
surements, characteristic path length and clustering coefficient, that they use to

characterize graphs. The characteristic path length is the “longest shortest path”

between two nodes in the network[70]. The clustering coefficient describes quan-
titatively the degree to which a node’s neighbors are interconnected. Averaging
the clustering coefficient over all nodes in the network yields the average cluster-
ing coefficient. Networks with a high clustering coefficient and low characteristic
path length are referred to as “Small World” networks[71], a term borrowed from
Stanley Milgram’s sociological studies conducted in the 1960s[51].

Watts and Strogatz present a method for constructing “Small World” networks
in [71]. The method involves starting with a regular lattice, then iteratively de-
forming it by randomly rewiring edges. This method, although it produces the
correct result, most likely does not adequately reflect the way in which “Small
World” networks form in the real world.

Barabasi et al began studying the topology of the internet. Their research
showed that the distribution of links follows a power law[2]. This was surpris-
ing as researchers expected that the links would be distributed according to a
Poisson distribution, as in random graphs[8]. This discovery lead Barabasi and
his collaborators to propose and refine a mechanism for forming representative

networks.

1.3 Neural Networks

The computational power of the brain is not due solely to the computational
power of a single neuron, but the coherent connection of billions. Accurate models
of a brain must begin with an accurate model of an individual neuron, however,

it does not suffice to merely wire them together in an arbitrary fashion.

1.3.1 Biological Neural Networks

Initial research into biological neural networks is attributed to William James
at the turn of the century [39]. Throughout the latter half of the 20th century
there has been an interesting interplay between biological and artificial neural
network research.

The main focus of this work is on topology, so I will focus on relevant research,
however, the interested reader is directed to canonical literature on the subject to
learn more[3][30]. Historically research efforts focused on either the more accurate
modeling of individual neurons or the description of large scale regions of the brain,
mainly due to the technological limitations of research equipment. In recent years,
technological advances such as high resolution Functional MRI and more accurate
lab techniques have enabled researchers to study neural networks in greater detail.

It has been argued by Segev in [63] that human DNA lacks the expressive
capability to contain an exact map of the brain. It is clear that on some level the
brain must self organize. According to Segev [63] although the large-scale (above
1 cm) the brain is largely deterministic, the small-scale (below 1mm) structure of
the brain appears to be random. Thus, if we accept that there is some organization
on the small scale and it is not defined by the DNA| then it must be the result of
self-organization.

One proposed mechanism of self-organization is that of pruning. It has been
documented that the mammalian brain undergoes massive pruning of axons,
synapses and neurons, beginning before birth and continuing until puberty[T4].
Approximately half of the neurons and one third of the synapses are pruned be-
fore adolescence. This pruning process is not random, but seems to act in a

manner resembling Hebbian learning[14]. Hebbian learning can be summarized in

the following manner: Given two neurons, A and B, where A has a connection to
B, if neuron A fires and in doing so causes neuron B to fire, then the connection
between A and B is strengthened. Chechik and Meilijson [I7] suggest that neu-
ronal requlation, a biological mechanism that maintains post-synaptic membrane
potential, may play a part in the synaptic pruning process. Neuronal regulation
complements the action of Hebbian learning, preventing a runaway strengthening

of the connections affected by Hebbian learning.

1.3.2 Artificial Neural Networks

Artificial neural network research was inspired by discoveries in biological neu-
ral networks. Applications of artificial neural networks include classification, clus-
tering, function approximation, financial modeling[64], pattern recognition[7] and
nonlinear optimization[19]. Artificial neural networks are ideal for situations where
the system must be able to generalize from a set of known data. The power and

utility of ANNs has been affected by three factors:

1. The sophistication of the neuron model.
2. The speed and effectiveness of the learning rule.

3. The topology of the network.

Early work used the perceptron, a simplistic neuron model. Later research
groups explored different threshold functions, namely the sigmoid, that were more
conducive to error based learning methods. Neuron models developed along with
learning rules. The first effective learning rule was Backpropagation, a method

pioneered by the PDP Research group led by Rumelhart and McClellan[56]. Re-

cently there has been an explosion of learning rules, many suited to very specific
areas.

The methods of wiring together artificial neural networks are varied and de-
pend heavily on the intended application. Neural networks are often given a stan-
dard input layer, hidden layer, output layer design, where each layer is fully wired
to the following layer. These networks are referred to as Feed-forward networks,

referring to the single direction of information flow[3].

1.4 Agent-Based Modeling and Simulation

Agent-Based Modeling is a paradigm where a simulation is built in a bottom-up
manner by specifying the individual components of a system and their interactions.
Aggregate behavior is observed as an emergent property of the interactions of the
agents and their environment. An emergent property of a system is a property that
arises from the interactions of entities in the system. ABM is often contrasted with
traditional, equation based approaches that model systems in a top-down manner.

In his article “Agent-based modeling: Methods and techniques for simulating
human systems” [9], Eric Bonabeau lists 5 criteria for situations that benefit from

the use of Agent Based Modeling techniques:

e When interactions between the agents are complex, nonlinear, discontinuous

or discrete.
e When space is crucial and the agents’ positions are not fixed.

e When the population is heterogeneous, when each individual is (potentially)

different.

e When the topology of interactions is heterogeneous and complex.

e When agents exhibit complex behavior, including learning and adaptation.

Clearly biological neural networks meet most, if not all, of these criteria. One
focus of this work is on measuring changes in the topology of the network as a result
of pruning. Due to the sheer size and range of behaviors to be simulated (physical,
chemical, electrical), an equation based model is inadequate. Equation based
models would have difficulty capturing the complex interactions and merging the
various simulated behaviors, whereas Agent-Based Models are well-suited to this

domain.

1.5 Research Goals

The goals of this research are the following:

e Develop a Neural Network research tool that allows computational neuro-

scientists to explore topological development.
e Create the tool so that it is extensible and powerful.
e Demostrate the extensibility of the tool through a series of case studies.

e Explore the types of network topologies that can be developed using local

rules in a biologically-inspired neural network.
e Replicate similar work on the effects of local rules on network topology.

e Explore the effects of pruning in the development of global network topology.

In this Thesis, we synthesize the various research areas presented above into
a coherent model for the purpose of examining the effects of pruning on global
network topology and testing the flexibility and extensibility of a model built using

concepts from Agent-Based Modeling.

CHAPTER 2

BACKGROUND

This work intends to synthesize knowledge from several disparate domains.
The overarching goal of creating a new tool for studying the development of self-
organizing neural networks necessitates drawing elements from the study of bio-
logical neural networks, current thinking in artificial neural networks, simulation
techniques from Agent-Based Modeling and, in order to evaluate the research,
tools from complex network analysis.

The organization of this Chapter is as follows: We begin with summarizing
recent trends in complex network analysis. This is done first to introduce funda-
mental concepts and to justify the need for using complex network analysis tools
in the evaluation of ABNNSim simulations. As will be shown shortly, several types
of complex networks, specifically Small-World networks and Scale-Free networks,
are often found in biological systems that are characterized by growth and self-
organization. Second, we examine a selected set of work from neuroscience that
is relevant to our discussion, namely work related to growth and development in
biological neural networks. Third, we present historical trends and current work
on artificial neural networks, including neuron simulators from the computational
neuroscience field. Finally, we present the field of Agent-Based Modeling, with

background and justification for its usefulness in the modeling of neural networks.

2.1 Complex Networks

Here we introduce the field of Complex Network Analysis, discussing the met-
rics, construction and prevalence in the real world. The field became popular in
the mid-1990s, as computational power increased and appropriate datasets became
more available. Complex Network Analysis has come to fundamentally change
thinking on topics as diverse as the structure and formation of the world-wide

web and the layout of biological neural networks.

2.1.1 Metrics

There are numerous approaches to the analysis of complex networks. These
approaches can be divided into two main areas: classification based on degree
distribution and classification based on local or global statistics. Methods of
classification based on degree distribution usually create a histogram of the degree
of the nodes in the network, then using techniques from statistics, identify this
with a known distribution. Examples of distributions commonly used include the
normal, log-normal, exponential and scale-free. Methods of classification based
on network statistics involve computing some value based on a network property
(shortest path, connectivity among a node’s neighbors), and either comparing it
to networks of a known type with the same number of nodes, or normalizing the

value and comparing it to reference values.

2.1.1.1 Small Worlds

Watts and Strogatz present two metrics for describing complex networks.
These are the clustering coefficient (C') and the characteristic path length (L)[71].

The clustering coefficient, in the qualitative sense, is a measure of how connected

10

each node’s neighbors are, averaged over all the nodes in the network. The char-
acteristic path length is the average of every shortest path in the network.

The formula for calculating the clustering coefficient is given in For each
node 7 in the set of nodes N, there are n; neighbors, connected to 7 by an edge.
Given n; neighbors, there are at most "l("—l edges between them. For each node
in the network, count the number of edges among its neighbors and divide by

the number of possible edges. Average the resulting values to find the clustering

coefficient.

1 for €k € G

] k’EG)
E where €, = (2.1)
n; nzfl J5
N () 0 for €jk ¢ GYZ

Calculating the characteristic path length of a graph is more involved. The
formal definition of L is the median of the means of all shortest paths in the
network. To calculate L, (taken from [70]) for each vertex v € G, compute d(v, j)
Vj € G where d(v, j) is the distance between vertex v and vertex j. Next, compute
d, for each v. Finally, the characteristic path length L is the median of the set of
all d,.

Both the characteristic path length and the clustering coefficient are normal-
ized by dividing the computed value by the value for a similar size regular lattice.
For a more detailed discussion of these measurements, consult [71].

Watts and Strogatz analyzed several complex networks and demonstrated that
they could be differentiated from random graphs by their normalized L and C
values. A random graph of the same size (both number of nodes and edges) will
have a similar but lower L value and a significantly lower C' value. The value
of this cannot be overstated. It shows that there are demonstrable differences in

the structure of complex networks and random graphs. Moreover it suggests the

11

inadequacies of using random graphs to model complex networks.
Graphs with low L values and high C' values are considered ”Small Worlds”

graphs.

2.1.1.2 Scale Free Networks

Barabasi et al took a different approach to analyzing complex networks. They
drew from their experience measuring the topology of the internet and analyzed
the link structure of the resulting graph. A histogram of the link structure, orga-
nized by frequency, displayed a power law distribution. This was surprising, given
that a similar random graph would produce a Poisson distribution[2]. Again, ran-
dom graphs, which had been used in simulations of the internet, were found to be

inadequate for the representation of complex networks.

2.1.1.3 Others

In response to Watts and Strogatz, Latora and Marchiori created similar met-
rics based on the harmonic mean distance [48]. The global harmonic mean distance
behaves like L, the characteristic path length, whereas the local harmonic mean
distance behaves similarly to % The authors felt that L and C, while useful
for characterizing abstract graphs, could not handle graphs that were not con-
nected. The global and local harmonic mean distances work correctly regardless
of whether a graph is connected or not. They also will provide meaningful insight
on metrical graphs, ie graphs that are embedded in a metric space [48]. Finally,

the computation of the global and local measures is done in a similar manner,

leading to a unified description of the network from local and global perspectives.

12

The formula to calculate the global harmonic mean distance is:

N(N —1)

Dglobal(G) = Z—L
ijeG d@;

(2.2)

Similarly, the average local harmonic mean distance can be computed in the

following manner:

N
1 <L N(N—1)
Dipeat (G) = — E S 2.3
l l() N — Zj7k€Gi dleC ()

In this case, G; is the subgraph of nodes connected to .

These values are normalized by dividing by D iopei(0) and Djoeqi(0) respectively,
where 0 represents a regular lattice. In order to show that their measurement
provided results consistent with those of Watts and Strogatz, Latora and Marchiori
[48] produced a graph similar to Figure This graph is itself a replication of
the results of Watts and Strogatz, namely Figure 2 of their 1998 Nature paper[71].

) and DB’;“Z(?) are plotted against the rewiring probability of

: Dyiobal
In this graph globa
g p ’ Dglobal(o

Digeat (0 -
glc‘”(l) because the D, metric roughly corresponds
oca

a circular graph. We plot
to 1/C, as explained in [48]. It is noteworthy to mention that the x-axis of
the graph is on a logarithmic scale between 0 and 1. For values of p > 0 the
global harmonic mean distance rapidly drops, while the average local harmonic
mean distance remains relatively stable. Graphs with high average local harmonic

mean distance and low global harmonic mean distance are characterized as ” Small

Worlds” graphs, as discussed above.

2.1.2 Prevalence of Complex Networks in the Real World

Much of the research above was a result of the dissatisfaction with random

graphs as a representation of the complex networks found in the real world. Re-

13

Harmonic Mean Distance

1.00 m...,\\‘

0.90
: ‘
s g J‘*rh \\
g = 0.80 5 \
[S) > 0.70 Muy —— Local
)] N ‘M \\ Harmonic
cu 0.60 un Mean
=) s . i X Distance
E) ﬁ.
5.2 0.50 " = Global
o .""'q.._ .\, Harmonic

0.40 "q_\ \ Mean

Dist.

0.30 N_ —

0.20 *, |

0.10 i

0.00 ‘ ‘ ‘

0.00 0.00 0.01 0.10 1.00
Probability of Rewiring

Figure 2.1. Global and Local Harmonic Mean Distance as a function of
the rewiring probability.

14

searchers in fields spanning the sciences encounter systems that are most easily
understood as networks. In this section we present in more detail some examples

of these systems.

2.1.2.1 Constructs - Examples of Man-made Networks

The canonical example of a man-made network is the Internet. A graph of
the Internet can be made by letting each system (computer, router, etc.) be a
node in the network and each physical connection (fiber optic cable, Cat 5 cable,
etc) be an edge. Similarly, the World-Wide Web is a related but distinct network.
The attendant graph would represent an individual web page as a node and a
hyperlink between pages as an edge.

Other man-made entities that can be represented as graphs are power grids
and the network of airports and airline routes. Both of these examples have been
analyzed by Barabasi[b] and Watts[70]. The power grid can be modeled intuitively
as a graph. A graph of the airports and airline routes would represent airports as

nodes and a route between airports as an edge.

2.1.2.2 Social Systems

There are several examples of complex networks in social systems. Watts and
Strogatz analyzed the Actor’s collaboration network[70], where each actor is a
node in the network and edges represent the two actors working together on a
film. A similar collaboration network is found in academic research, where two
authors have a link between them if they wrote a paper together. Mathematicians
have considered this type of network for years, specifically in order to determine a

person’s Erdds number. This value is the number of links in the collaboration net-

15

work that it takes to go from a given person to Paul Erdds, an eminent Hungarian
mathematician. Barabasi analyzed the Mathematicians collaboration network in
[5].

Network analysis of social networks is prevalent in the context of sociology[62].
Friendship networks, advice networks and collaboration networks are examples of
these. An interesting example of a collaboration network is the Open Source
Software Developer’s network[24][74]. Here nodes represent software developers,
and two developers share an edge if they have worked on the same software project.
(These networks can also be bipartite graphs, with developers in one group and
projects in another. It can be shown that there is a transformation from the

bipartite graph to a developer-only graph, however this is not reflexive.)

2.1.2.3 Biological Systems

Several biological systems can be understood in terms of complex networks.
Barabasi has done some very interesting work analyzing the metabolic pathways
in cells as a network[4I]. At a much larger scale, food webs can be instructive
in the complex predator-prey relationships in an ecosystem. In this case, each
species is represented by a node, and an edge represents an “eats” or “eaten-by”
relationship.

Perhaps one of the most interesting applications of network analysis to biol-
ogy is the study of the connectivity of neurons in a neural network. Scientists
have analyzed the connectivity of the neural network in the nematode C. Elegans
[T1][48]. Biologists have also begun looking at the connectivity of the mammalian

brain with projects such as CoCoMac[43].

16

2.1.3 Algorithms for Network Construction

This section introduces some of the methods of creating complex networks.

2.1.3.1 Watts-Strogatz and Barabasi

The method presented by Watts and Strogatz creates a small-world graph by
tuning a regular graph[71]. First, start with a graph that is a ring lattice, where
each node connects to its k nearest neighbors. Then deform the graph in the
following manner: Step through the graph, visiting each node. At each node,
rewire an edge with probability p. The value of p determines the structure of
the resulting graph. For p = 0, the graph is the unchanged lattice. For p =
1, the graph is essentially random. For values of 0 < p < 1, the graph may
resemble a small-world network. For small values of p, the characteristic path
length drops quickly, while the clustering coefficient remains near its original value.
Networks that exhibit a high clustering coefficient and low characteristic path
length are considered to be Small Worlds networks. Figure[2.2| presents a graphical
description of the relationship between the rewiring probability p, the Clustering
Coeflicient and the Characteristic Path Length.

The Watts-Strogatz method is easily understood and provides a useful com-
putational tool, as it allows researchers to create graphs with the desired charac-
teristics. However, the construction of these graphs is decidedly artificial. Clearly
some other mechanism is responsible for their development in the natural world.

Barabasi in [5] provides a method for “growing” a scale-free network. He
adapted his method from the one given by Erdés and Renyi for constructing
random graphs. The original method works in the following way: Create N

nodes, where N is the intended size of the finished network. For each pair of

17

‘O Clustering Coefficient ‘O Characteristic Path Length

0.00

p=0.0 p=.001 p=.0I p=.1 p=

p=0.0 p=.01 p=I

Figure 2.2. Graphical depiction of Relationship Between Rewiring
Probability p, Clustering Coefficient and Characteristic Path Length

18

vertices, i, j add an edge with probability p. Barabasi first modified the random
graph algorithm so that it added nodes iteratively. Each time a node was added,
it created all of its edges immediately, in the same manner as the random graph.
The new node went through the list of existing nodes, but instead of adding nodes
with a fixed probability, the probability value varied. Each node was assigned a
fitness value uniformly at the beginning of the algorithm. Every time the node
is given a new incoming edge, its fitness value is increased. Thus, as a node gets
more links, its fitness value increases, creating a positive feedback loop.

Barabasi found that this method, although producing scale-free networks,
could not reproduce some of the behavior seen in evolving networks in the real-
world. The problem was that in this method nodes added first had a much higher
chance of becoming a hub than nodes added later in the algorithm. And contrary
to that result, there were numerous cases in real-world networks where a node
added much later to the network ended up with more links than older nodes.

Barabasi modified his method to account for this by adding a fitness value to
each node. The rate at which nodes receive new links in a network is proportional
to its fitness. The addition of fitness to the model accounts for such phenomena

as the rise of Google in the world wide web [5].

2.1.3.2 Local Models

Cancho Sole et al [I1I] present a method for generating scale-free network
topologies as a result of a network level optimization procedure. The authors
introduce the notion of network density, defined as in Equation 2.5 Here p is
related to < k >, the average degree of each of the n nodes. They present Equa-

tion [2.4] as the energy function for optimization, which is a linear combination of

19

the density and normalized vertex distance. By rewiring a random network and
varying A, the optimization process yields graphs of varying degree distributions.
As) increases in the range 0 < \ < 0.25, the resulting networks exhibit random,
exponential and finally scale-free link distributions. As A increases above 0.25,

the resulting networks display a star topology.

E(\) =X+ (1—\)p (2.4)
p="E2 (25

2.2 Biological Neural Networks

Here we present selected topics from recent work in neuroscience. The focus

here is on neurons and neural networks from a network development perspective.

2.2.1 Reductionist Approach: Neurons

Currently neuroscientists have highly sophisticated models of the behavior of
neurons. These models simulate the behavior of the neuron by representing it as
a series of compartments. A neuron can be modeled from thousands of compart-
ments to just one, with each compartment governed by cable equations. Cable
equations were initially derived for modeling the behavior of undersea telegraph
cables, and their application to the modeling of neurons is straightforward. Each
compartment represents a different physical component of the neuron, with appro-
priate cable equations related to the number of connections to the compartment

and the leakage current through the cell membrane.

20

2.2.2 Networks

The nematode C. FElegans has been systematically researched since it was
proposed as a model organism in the 1960s.The research relevant to our current
discussion is the characterization of the neural network of C.FElegans. The network
contains only 302 neurons (in the hermaphrodite form) and it is wired in a similar
fashion across individuals. The data for the wiring of the C. FElegans neural
network is available online [68]. As mentioned above, analysis of the structure
of the neural network of C. FElegans has shown that it displays a Small-World
topology.

Significant research has also explored the connectivity of the cortical regions
of the macaque brain[43]. Researchers have compiled a database of all work on
the macaque brain, and there exists a simulator that is intended to simulate
regions of the macaque brain using the connectivity information as described in

the database[12].

2.2.3 Network Formation: Possible Mechanisms

There have been several clues as to network formation that have emerged
from Neurobiology. An interesting result is described in the work of Chalup [14].
Studies conducted on rhesus monkeys demonstrated a significant loss of neurons,
axons and synapses between birth and adolescence. The major events in this

process are: (Adapted from [14])

1. Rapid growth of the number of neurons before birth.
2. Rapid growth of the number of axons before birth.

3. Slow synaptogenesis which starts before birth and continues until puberty.

21

4. Very rapid axon loss starting at birth.
5. Slow apoptosis of neurons until puberty.

6. Slow synapse elimination starting in the middle of the critical phase (between

birth and puberty) and continuing through the remaining life.

The process is characterized by a rapid overgrowth of the network, followed
by pruning. Pruning is an important mechanism in neural development and can
be seen as a way of reducing the size of the network while maintaining the overall
computational ability of the network[3]. Neurons have high energy requirements,
thus organisms will seek to limit the size of the neural network in order to reduce
its energy consumption.

Chechik et al describe a local mechanism that is useful in topological develop-
ment, called Neuronal Regulation|[I7]. Neuronal Regulation is a complementary

mechanism to Hebbian learning.

2.3 Artificial Neural Networks

Artificial neural network research is a vast field that shares its roots with
neuroscience, but has diverged significantly in recent decades. Lately there has
been less work in creating biologically plausible models of neurons and neural

networks and more focus on using neural networks as an engineering tool.

2.3.1 Historical Perspective

A detailed account of the history and development of the field of artificial
neural networks is beyond the scope of this thesis. However, there are certain

highlights that bear mentioning. The field owes much to the pioneering work of

22

D. O. Hebb, who formulated the first learning rule for neural networks and which
now bears his name[31]. Also of importance is the work of McCulloch and Pitts,
who, in 1943, described the behavior of a biological neuron in electrical terms and
created the first artificial neurons[50].

Various neuron models are presented in Table The table presents various
characteristics of artificial neural network and neuron models. The most important
of these are described in greater detail below.

The first neuron model of importance was the Perceptron, which is also referred
to as a threshold neuron. The perceptron uses a response function to map its
input to output. The response function for the Perceptron developed in concert
with learning algorithms. The first response functions were simple all or nothing
functions, however these could not be adapted with the tools of Calculus. This
led to the use of the sigmoid function, a differentiable equation that was more
suitable for optimization-based learning algorithms.

The Perceptron was used primarily in the context of feedforward networks,
a type of network where neurons are arranged in layers. In each layer, neurons
connect only to neurons in following layers, cycles are not permitted. The standard
configuration for a feedforward network is 3 layers: an input layer, a hidden layer
and an output layer.

The most recent advance in artificial neural networks is the development of the
spiking neuron[34][46]. This model is significantly closer to what neuroscientists
now understand about the behavior of biological neurons. In Perceptron networks,
the activity level of the neuron is defined by the level of the output of the neuron.
In biological neurons, the electrical output of the neuron is fixed and the activity

level is related to the frequency of activation.

23

U3t URIq4oH posed-orey SNOLIBA dd.Ls NNS
9)RIOPOIN urIqqoy poroauuo)) A | SIJ-YP0[MDOIN preydoy
9)RIOPOIN urIqqoy suzrue31()-Jog uoxydeorog INOS

MO uoryesodoidspeyqg pIremIojpooq uoxydeoreg uorydeoreg
Ayqqisned

reorSo[ore] a[ny Surugear] A3orodaq, odAT, uoanopN | odA[T, jjI0MmIoN

STHAONW MHOMIHAN TVHAAN TVIDIAILYYV “T'¢ HT1dV.L

24

2.3.2 Similar Work

This work is related to neural network toolkits in the artificial and biological
neural network realms. Its focus, however, is clearly directed towards the simula-
tion of biological neural networks. It shares some concepts and motivations with

works in both areas, and they are reviewed here.

2.3.2.1 Artificial Neural Network Toolkits

There exist several simulators for the development of neural networks. Most of
these tools focus on the creation of feedforward neural networks for use in classifi-
cation, optimization and regression. The most popular neural network simulators
are presented and compared in Table [2.2]

The premiere simulator is the Stuttgart Neural Network Simulator [75]. This
package is a large, comprehensive package that allows the specification of nearly
every detail of network construction and training. The Stuttgart Simulator in-
cludes support for a large number of learning methods, such as Hebbian and
backpropogation, and includes support for several types of pruning, Optimal Brain
Damage[45], magnitude based, skeletonization[52] and others. It allows construc-
tion of traditional feedforward, ART[13] and Kohonen[42] networks. Despite its
wealth of features and well-deserved reputation as the most comprehensive neu-
ral network toolkit, the Stuttgart Neural Network Simulator is not well suited to
the task of simulating the growth and development of biologically inspired neural
networks. Although it provides many of the required features, allowing arbitrary
network topology, providing pruning algorithms and spiking neurons, it is limited
by its ability to simulate network changes other than pruning during development

and it is limited in the automated specification of complex network topologies.

25

The MatLab Neural Network Toolbox is an addition to the MatLab scientific
modeling tool[22]. The package provides the ability to integrate feedforward and
recurrent neural networks into MatLab models. Feedforward, Kohonen and re-
current networks (such as the Hopfield net) are supported, as well as numerous
learning methods including variations of backpropagation and Hebbian. The Neu-
ral Network Toolbox is a powerful tool for engineers interested in using artificial
neural networks, but it is not well suited to the realm of biologically inspired
simulation.

JOONE is a neural network package developed entirely in Java[49]. It is an
object oriented design that is intended to provide a comprehensive environment
for developing artificial neural networks. JOONE supports feedforward neural
networks and backpropogation and Kohonen learning rules. Due to its limited
learning rules, lack of support for pruning and arbitrary network topology and
the absence of spiking neurons, the JOONE package is not suitable for modeling
biologically inspired neural networks.

The NEURODjects library [67] is a set of C++4- classes that provide a framework
for studying and using neural networks. The authors provide a class hierarchy
that allows user-defined components to be added in place of the provided classes,
allowing researchers to build a neural network to their precise specifications. The
work is directed at researchers and engineers who are exploring the computational
capability of feedforward neural networks or would like to incorporate a neural
network based component into a software product. NEURObjects is limited in
its ability to design networks. It is restricted to a "layer-based” view of neural
networks, and adding support to the tool to design and evaluate other network

topologies would be prohibitively difficult. The limitations of this framework,

26

while well designed, place it outside the domain of the biological neural network
researcher.

There are several other artificial toolkits that are similar, the most important of
these are the Artificial Neural Network Development Environment (ANNDE) [37]
and Neural Network Objects (NNO)[44]. ANNDE presents an Object-Oriented
Design of a neural network toolkit. It is focused on the development of neural
networks for use in structural engineering applications, but the overall design of
the toolkit makes it of interest. Neural Network Objects is a toolkit for developing

object oriented artificial neural networks for use in application software.

2.3.2.2 Biological Neural Network Simulators

There are several neural network simulators from the biological neural network
field that are also similar to ABNNSim. Among these are NEURON and Genesis.
Both of these focus on developing extremely precise models of the behavior of a
single neuron.

The premier toolkit for modeling biologically accurate neurons and neural
networks is NEURON [32][33]. NEURON is designed to provide researchers with
“biologically realistic models of electrical and chemical signaling in neurons and
networks of neurons” [32]. This simulator models each neuron as a series of com-
partments, with different values for each component of the cel. NEURON is
primarily aimed at simulations designed to calculate ionic concentrations and at
simulations to compute the extracellular potential near the membrane.

The application domain of NEURON is that of single neuron and small neural
network models[32]. The authors describe the upper limit of a NEURON model as

being 10* neurons with 10° total synapses. These numbers are from 1997, so the

27

ON ON SOA ONN
ON ON SOA HANNV
ON ON SOA 5320[OUNHAN
ON ON SOA ANOOTL
ON ON Sox asexped NN JRTIRIN
SOx ON SOX SNN 21e83Imn19
J8utunag | jA8orodog, xoidwo)) ajerouax) | ;A3o1odo], Ajroodg J0)e[NUIIS

SHOLVTANIS MHOMILHUN TVHAHIN ‘¢'¢ HTdV.L

28

upper limit of current hardware is certainly higher, but we can reasonably claim
that it is around 10° to 10° neurons. This number was arrived at by assuming
that the size of the model is constrained by the size of main memory and noting
that there has been a 1-2 order of magnitude increase in main memory since 1997.
This limitation makes the modeling of certain domains impossible.

The intended research area of ABNNSim is in the exploration of topology
change in neural development. This is a quite different area of application than
that of NEURON. NEURON is simply not well suited to the exploration of activity
induced topology change. Users can create network topologies by placing individ-
ual neurons, randomly wiring a network or reading a topology from a file[26]. The
ability to read from a file suggests that it would be possible to develop a tool
simply to handle topology formation. Although NEURON can easily provide an
accurate description of the chemical and electrical behavior of the neurons and
could be modified to provide more complex initial network topologies, it is not
well suited for modeling changes in topology.

Another important neuron and neural network modeling toolkit is GENESIS
[72][10]. GENESIS has a similar research domain as NEURON, that of the neu-
robiologist. It is designed to provide detailed simulations ranging in size from
individual biologically representative neurons to networks of less detailed neu-
rons. GENESIS, like NEURON, has a compartment-based model for simulating
the electrical behavior of neurons. GENESIS is ideal for modeling the behavior of
individual neurons and small neural networks. GENESIS can simulate networks of
up to 60,000 neurons on a single commodity desktop machine with 1GB RAM [35].
As in NEURON, simulations in GENESIS are limited by the system’s available

memory. Simulations are limited to around 10° neurons, as in NEURON.

29

As the focus of GENESIS is on modeling the behavior of neurons and net-
works and not on their development, it is also not well suited to our task. The
compartment-based model provides better fidelity and a more accurate represen-
tation of neuron function than the standard spiking neuron model in ABNNSim,
but does not scale well. Larger networks can be built with the artificial neurons
provided by GENESIS, but these are similar in their function to those provided
by ABNNSim and thus offer no added accuracy. Additionally, the GENESIS sim-
ulator is designed for the simulation of the electrical and chemical modeling of
neurons, and not with the development of networks. For researchers interested in
exploring the processes involved in network formation, GENESIS is not a good
fit.

GENESIS has a parallel version, PGENESIS, that runs on parallel machines[27].
PGENESIS is used to run single machine simulations in parallel, as well as large
scale simulations that are distributed across multiple machines. It can run in a
cluster environment that supports PVM, as well as several parallel architectures.
PGENESIS gives researchers the ability to model larger scale simulations than
those that can be modeled with GENESIS. Despite allowing larger simulations,
PGENESIS does not contain the functionality necessary to model neural network
development.

Catacomb?2 is a neural network simulator that provides the ability to simulate
regions of a Macaque monkey brain[29][12]. Catacomb simulates neurons and
neural networks at a level of detail similar to NEURON and GENESIS, but has
the distinct advantage of being able to create networks based on data from the
CoCoMac database. As with NEURON and GENESIS, Catacomb2 is a tool for

exploring the electrical and chemical behavior of individual neurons and small

30

neural networks and is not well suited to the simulation of developing neural
networks.

A very recent tool for modeling large-scale neural networks is Topographical6].
It has not yet been released to the public, but its purpose and capabilities have
been publicly announced. Topographica is intended to model cortical maps at a
higher level than NEURON and GENESIS. Its stated purpose is to focus on the
function and large-scale structure of biological neural networks. As it intended to
model function in a biologically plausible manner, Topographica is of interest to
our current research. Topographica does appear to be designed for functional, as

opposed to developmental, simulations, which tempers its utility.

2.3.2.3 Neural Network Simulations

Szirtes, Lorincz and Palotai describe a neural network simulation[65], Hebb-
Nets, that is constructed of spiking neurons and learning happens via a Hebbian
learning rule. Spike timing dependent plasticity (STDP) is an adaptation of Heb-
bian learning to spiking neurons, where the plasticity of the connection is related
to the timing of spikes [66]. They present a design where the network is sustained
by random input and over time develops structure. The authors demonstrate a
range of topologies that can be formed by varying certain local rules in the simu-
lation. HebbNets is compelling in that the global network topology is formed as
a result of local rules. The authors analyze their results in terms of the harmonic
mean distance of Latora and Marchiori and the scale-free analysis of Barabasi.

Segev and Ben Jacob present interesting work on the small-scale self-organization
of neural networks in [63]. Their work explores the use of chemotactic signaling to

direct the path of neuron growth cones during neural development. The authors

31

demonstrate a simulation that incorporates their hypothesis. The simulations
show that by simply following the gradients of chemicals in the medium, neurons
can be directed to grow around obstacles and link together. The focus on the
early formation of biological neural networks sets this work apart from that de-
scribed here. The authors are focusing on network formation during a different
developmental phase than that considered in ABNNSim. Also, their work does
not incorporate the effect of electrical signaling on network development. The
work described in Chapter [4] can be seen as complementary to the work of Segev

and Ben Jacob.

2.4 Agent Based Modeling and Simulation

2.4.1 Historical Perspective

Agent-Based Modeling grew out of the Cellular Automata community, grow-
ing side by side with the Artificial Life community. The first Agent-Based Models
shared much of the look and feel of Cellular Automata simulations. The environ-
ment was represented as a grid, and often agents were stationary and bound to a
particular location. Simulations were run as a series of integer time steps, which
was a severe limitation in terms of modeling real-world processes. The results of
these simulations were suggestive models, compelling in terms of their output, but
of limited use due to their lack of quantitative results.

The fundamental aspect of Agent-Based Modeling is the use of an agent as
the primary entity of interest. An agent in this context is similar to the Artificial
Intelligence concept of an agent. An agent is a self-contained entity with some
basic actions and decision making that can influence its environment and other

agents around it. Unlike Artificial Intelligence agents, ABM agents tend to be less

32

sophisticated in their ability to react and influence the surrounding environment.

Agent-Based Modeling is often contrasted with approaches using systems of
differential equations. An example would best illustrate the differences between
an Agent-Based approach and an equation-based approach. Consider a simple
Predator-Prey model. Current models using systems of differential equations are
able to accurately model population fluctuations, but they cannot provide much
more information. An Agent-Based Model would model each animal, predator or
prey, as an agent in the system. The agents would have a reproductive capability,
related to their ability to feed themselves. As the predator agents interacted with
the prey agents, the populations would fluctuate, providing a similar output to
the equation based model. An example of a predator-prey model is shown in
Figure [2.3] a screenshot of the NetLogo model "Wolf Sheep Grass”. The power
of ABM becomes clear when the model needs to be changed to incorporate a new
species into the food web. Adding a new type of agent is relatively easy, a small
amount of code, depending on the toolkit. The interaction of the new agent with
the ecosystem can be observed during the running of the simulation. In the case
of an equation based model, the modeler needs to specify in advance the type of
interaction that the new species will have with the system.

A more thorough comparison of Systems Dynamics and Agent Based Modeling
is given in [69]. The author presents a case study where the same system was
modeled with a Systems Dynamics tool (STELLA) and with an Agent-Based
Modeling tool (StarLogo). The study demonstrates that Agent-Based Modeling
is a desired approach for traditional researchers, as the modeling approach more

closely simulates a traditional (physical) experiment.

33

& O O Netlogo: Wolf Sheep Predation {/Users/tschoeh/Download /NetLogo 2.1/models/Sample Models/Biclogy}

-

%w Information Procedures Errors

| [Ed|t| | . Delete| I | abe Bul‘lon‘ ‘Hshder| |ﬂ Switch | ‘-Chco;er| |E‘_—| Momtcr‘ ‘

P\ct| | B 0ulput| ‘ il Text|

s | 7 o o] B e |

Grass settings

B |]

Sheep settings

‘Wolf settings
_

tirme-ticks

233 133 36 139
populations Pens
261 j)\ M sheep
i W wolves
\ Marass /4
%
da
2
o
0 time 254

Figure 2.3. The NetLogo Predator - Prey simulation Wolf-Sheep-Grass

34

2.4.2 Applicability

One of the earliest examples of an Agent-Based Model for academic research is
that of Schelling in his study of housing segregation[57]. Schelling was attempting
to explain how segregation in housing can occur as the result of well-meaning
individual behaviors and not solely due to systemic prejudice. Schelling set up his
simulation in the following manner: The simulation occurs on an 8 by 8 grid, with
each space representing a house. An agent can choose to occupy an unoccupied
house, but not to take over an occupied house. Once a space (house) is occupied,
it receives the value of the agent type that took it over. The agents are given
preferences such as "wants to choose a house with at least one neighbor of the
same type”. With simples rules like this, Schelling was able to demonstrate that
the system organized into a state of segregation. Agents of type 1 formed an
enclave and agents of type 2 created a separate enclave, and there was very little
mixing between them. Schelling’s model was not sophisticated enough to prove
his point, however it was very valuable in that it showed that segregation could
happen as a result of local “innocent” behaviors, instead of solely cause by global
(systemic) rules.

Another example of an application of Agent-Based Modeling is in the simu-
lation of the aggregation of slime mold[55]. Biologists had noted an interesting
behavior of slime mold. Under normal circumstances colonies of the slime mold
Dictyostelium do not display any group-level behavior, each individual acts in a
local manner, eating, dividing and moving with seeming disregard for its neigh-
bors. However, when the colony was put under stress, such as a lack of nutrients
or water, an amazing behavior was noticed. The slime mold cells gathered to-

gether and formed a macro-scale structure which was able to move the colony as a

35

whole in search of a more favorable environment. This observation was unprece-
dented. Some biologists believed that this behavior was only possible if there was
a certain type of ”pacemaker” or organizer cells that directed the formation of the
macro-entity.

However, researchers used an Agent-Based model to dispute this claim[53].
They showed that by modeling the swarm of slime mold cells as homogenous
agents and giving them simple chemotactic communication abilities, the colony as
a whole could self organize into the macro-entity, without a need for specialized
pacemaker cells. The model was comprised of a grid on which the slime mold cells
lived. Each grid square contained some nutrients. The slime mold agents were able
to communicate in a rudimentary way using chemotaxis, which is the depositing
and sensing of chemicals in the environment. Research had previously shown that
individual Dictyostelium amoeba did indeed communicate through chemotaxis,
using the chemical cyclic AMP (cAMP). In the model, Agents released chemical
signals, corresponding to cAMP, in the environment as a response to stress. For a
few agents under stress, this release of chemicals had little effect on group behavior.
However, when an agent detected that the chemical’s concentration was above its
personal threshold, it changed behavior and attempted to aggregate with other
agents, as well as releasing more of the chemical signal into the environment. The
releasing of additional cAMP creates a positive feedback loop, encouraging more
agents to aggregate, leading to the desired results, the agents congregate and form
a macro-entity. The result of this simulation showed that a few pacemaker cells
were not necessary to organize the macro-entity.

The examples presented above represented some of the early models that cre-

ated interest in the techniques of Agent-Based Modeling. More recent examples

36

have built upon these early successes, but also extended them to the point where
we can now create models that are capable of generating empirical results. Models
such as TRANSIMS [23] and CompuCell [18][38] allow modelers to examine the
effects of different starting conditions on the behavior of their systems. In the
case of TRANSIMS, researchers can examine the effects of environmental policy
changes on automobile pollution [54]. In the case of CompuCell, researchers have
developed a complex model of avian limb morphogenesis that accurately models
the development of a chicken wing.

Use of Agent-Based Models was initially limited to suggesting potential hy-
potheses or providing potential explanations of phenomena. Now many Agent-
Based Models have reached a level of sophistication that makes it possible to
use them in suggesting policy changes[4]. Bankes argues that Agent-Based Mod-
els should be viewed as a method of mathematical modeling akin to statistical
modeling or systems of differential equations, and as such, subjected to the same
standards of rigor, as opposed to being held to the much higher standard of math-
ematical proof[4d]. Bankes goes on to claim that computational science is the
“search for credible arguments based on computational experiments” [4] and as
such, it provides the ability to suggest policy changes. Bankes cites as an example
of this the use of Agent-Based Models of climate change and public policy.

In the context of this research we consider our Agent-Based Model as a way of
demonstrating the possibility of local interaction affecting global network topology.
The intent is not to prove that the behavior described in the system is in fact that
seen in biological neural networks. The model is too simplistic to claim proof, but

is clearly sophisticated enough to provide a plausible hypothesis.

37

2.4.3 Toolkits

There are several important elements to an Agent-Based Modeling toolkit.
First is a scheduler. This can be as simple as a priority queue for single proces-
sor, discrete event simulations or a more complex method such as the Time Warp
algorithm[40] or the Chandy-Misra algorithm [15], both used for the scheduling
of events in distributed simulations. Next is an agent, which can be an Interface
or Abstract Class which will be made concrete by the user. An agent can be sim-
ple and reflexive, with behavior governed by a finite state automaton, or highly
sophisticated, using neural networks or other methods to reason about its sur-
roundings. Finally, the last essential element is a space for the agents to occupy.
Spaces also range from the simple to the complex. Often a space is represented
by a 2D grid, a design constraint that can be traced back to models based on
Cellular Automata.

It is within the ability of most programmers to “roll their own” Agent-Based

Model, however, there are numerous benefits of using pre-made toolkits.
e Toolkits provide users with all of the basic components.

e Toolkits will often provide sample simulations, which aid immensely in the

creation of a new simulation.

e They often provide a richness of features that could not be practically coded

by an individual.

e They also often provide data analysis and visualization tools, which aid in

rapid development and analysis

Several toolkits of varying maturity are freely available. Table lists some

of the most popular toolkits and presents a summary of their features. Some of

38

the toolkits allow development with general purpose languages, like Java or C++,
while others are limited to the use of toolkit specific languages and tools. Each
toolkit was developed for a slightly different area and audience. StarLogo was
initially a language for introducing students to computer programming[55]. In
its current form, StarLogo allows users to create simulations using a drag and
drop GUI. NetLogo is an offshoot of StarLogo, implemented in Java with a new
user interface and redesigned modeling language. Swarm is a toolkit written in
Objective-C with wrappers that allow models to be developed in Java. Swarm was
initially developed at the Santa Fe Institute and is one of the first general-purpose
Agent-Based Modeling toolkits. Toolkits are ranked according to Maturity, which
is a subjective measure of the robustness of the toolkit and sophistication of its
APL

RePast was chosen for this project for several reasons. It is a Java API,
allowing models to be developed in Java. It is open source, allowing components
of the API to be replaced or rewritten if necessary. RePast includes sophisticated
display and analysis tools, allowing simulations to be developed quickly. Finally,
its fine-grained discrete scheduler allows events to occur at intervals as small as

can be represented with a Java double value.

39

S[PPOIN (% 030 pur eAR[910I0SI(]) 0307T19N

IdV JO ssoumoN RAR[91RIOSI(] 9 UOSR]N
S[PPOIN (% 0307 91RIISI(] 9 0807TIR)g
ssouoAlsso1dxr] odensuer| Y[R, uasy 91RIISI(] 9 S109YQ U3y
IdV YIomjioN ON rAR[910I0SI(] G odeosy
somydern) MI./TDL N-9A1399[q) 910I0SI(]) wIemg
[dV uoryeziensiA dc¢ eAR[9FOIOSI(] poute.r)-oul g 8 1sedoY
suorje} I aSenduer] Js[npayds %ﬁ.ﬂﬁuﬁmm N[00,

SLIMTOOL DNITHAOW ddSVd LNHOV -€C H'TdV.L

40

CHAPTER 3

THE AGENT BASED MODELING APPROACH TO SIMULATING NEURAL
NETWORKS

3.1 Abstract

This chapter describes a modular approach to the modeling and simulation
of neural networks using the ABNNSim framework. Building on concepts from
Object-Oriented Design and Agent-Based Modeling, the ABNNSim framework
provides researchers with a useful tool for exploring and simulating artificial and
biological neural networks. The framework was initially developed to explore self
organizing structures in biologically inspired neural networks. ABNNSim is built

using the RePast Agent-Based Modeling framework. *

3.2 Introduction

The tools of neurobiological researchers have increased beyond in vitro and in
viwo experiments. Researchers have a new frontier for conducting research: com-
putational simulation. Simulations, sometimes referred to as in silico, have certain
limitations regarding their predictive ability, however they have huge benefits over

the various in vitro and in vivo techniques currently available.

!Some elements of this work were previously presented in [60] and [58]

41

Simulations do not require the complex (expensive) lab equipment and con-
stant attention of in wvitro experiments. Many @n vivo experiments require spe-
cialized equipment, e.g. fMRI, that is expensive and maintenance intensive. In
addition, researchers must weigh the cost and ethical considerations involved in
conducting experiments on living subjects. Simulations can also be run in paral-
lel, allowing several different experiments to be conducted simultaneously. Most
research institutions provide adequate computational resources, researchers can
therefore take advantage of these resources at little or no cost.

There are certain drawbacks associated with conducting experiments using
simulations. First, researchers must have a certain amount of Computer Science
background, not only in terms of programming, but also in Operating Systems,
Distributed Systems and System Administration. The performance of the simula-
tions will be related to the programming ability of the researcher. The complexity
of the simulation will be limited by the researcher’s ability as well. Building a fully
developed simulation is beyond the capability of most neurobiological researchers,
therefore in order to take advantage of computational simulations, researchers
must build upon existing tools. ABNNSim is intended to be such a tool. It it
built upon the RePast Agent Based Modeling framework, a robust Java-based
API. ABNNSim in turn provides a framework that is directed at neurobiology re-
search, with pre-built Neuron and Axon classes, as well as methods of generating
network topology and connecting input and output to the network. The source

code for ABNNSim is freely available at the TMANS Sourceforge website[47].

42

3.3 Background

3.3.1 Similar Work

There exist several simulators and packages that are designed to simulate neu-
rons and neural networks at various levels of detail. These are reviewed here

briefly.

3.3.1.1 Artificial Neural Network Toolkits

There exist several simulators for the development of artificial neural networks.
Most of these tools focus on the creation of feedforward neural networks for use
in classification, optimization and regression. Given this focus, most of these
tools are not suitable for biologically inspired simulations. The most applicable
packages are reviewed here.

The most sophisticated of the Artificial Neural Network simulators is the
Stuttgart Neural Network Simulator [75]. SNNS provides researchers with a pow-
erful tool to create and develop Artificial Neural Networks. It provides a compre-
hensive set of neuron types and learning rules and allows users to create arbitrary
networks. It also includes support for various types of pruning. Although SNNS
provides most of the functionality that we would desire, it is limited in its abil-
ity to simulate biologically plausible neural networks. Specifically, SNNS does
not include functionality to generate large networks with small-world or scale-
free topologies and does not support Neuronal Regulation[I7], which we believe is
important in tempering the effects of Hebbian learning.

The NEURODbjects library [67] is a collection of C++ classes that simplify
the creation of artificial neural networks. The library is limited to the study

of feedforward networks, but is mentioned for its modular approach and object-

43

oriented design. We have used some of the ideas of this approach in the design
of ABNNSim, focusing on modularity and making it easy for end users to add
functionality.

Several other important Artificial Neural Network toolkits should be men-
tioned, but the area of focus of these packages makes them unsuitable for the
simulation of biologically inspired neural networks. The MatLab Neural Network
Toolbox is an addition to the MatLab scientific modeling tool[22]. Tt is a powerful
tool for engineers interested in using artificial neural networks, but it is not well
suited to the realm of biologically inspired simulation. JOONE is a neural network
package developed entirely in Java[49]. Due to its limited learning rules, lack of
support for pruning and arbitrary network topology and the absence of spiking
neurons, the JOONE package is not suitable for modeling biologically inspired

neural networks.

3.3.1.2 Biological Neural Network Simulators

ABNNSim was designed to complement the existing tools in computational
neurobiology. The two top tools for simulating the behavior of neurons are
NEURON|[32] and Genesis[72]. These simulators provide the ability to precisely
model the electrical and chemical behaviors of individual neurons, but are limited
in the size of network they can feasibly simulate.

The GENESIS simulator[72][10] simulates biological neurons using a compart-
ment model. Each section of the neuron is simulated using a cable equation with
parameters for the capacitance and conductance of the cell and the incoming and
outgoing electrical signal.

The NEURON simulator [32][33] is intended to model neurons using the com-

44

partment model, just as GENESIS does. NEURON differs from GENESIS in that
it is a more recent design and strives to let researchers focus on the designing of
models while abstracting away the details of compartment size. NEURON also
includes a more advanced GUI for the development of models.

Catacomb2[29][12] is a neural network simulator that uses cortical map data
from the CoCoMac database[43]. It models networks at a similar level of complex-
ity as NEURON and GENESIS, but it is significant for its ability to instantiate
cortical maps from the CoCoMac database.

The Topographica simulator [6] is a recent project designed to simulate several
regions of a mammalian brain in parallel, enabling researchers to study phenon-
mena such as object segmentation and grouping in the visual system. Topograph-
ica is focused on the simulation of the behavior of cortical regions, and is not well

suited as a simulator of the development of such regions.

3.3.2 Agent Based Modeling

Agent Based Modeling is an approach to the simulation of complex systems
that attempts to model a system from the ground up. Any active component of
a model can be considered an agent.Agents have behaviors and can interact with
each other and with the simulated environment. The result of the interaction
of the agents is a model of the system. Agent Based Modeling is an attractive
paradigm for simulating systems where the principal actors are known and the
researcher is interested in exploring the overall behavior of the system.

The Agent-Based Modeling approach is intuitive for researchers, as systems
are modeled from the individual up. For areas like neurobiology, we have data

concerning the functioning of individual neurons, allowing us to build simulated

45

neural networks. The flexibility of the Agent-Based Modelling paradigm allows
researchers to extend the behaviors of individual agents to explore new phenom-
ena. In the case of ABNNSim, we extend the behaviors of the neuron beyond the
electrical properties to include behaviors that can modify a neuron’s physical con-
nections with other neurons. This added behavior enables the model to explore a
completely different paradigm, that of network topology change over time.
Agent-Based Modeling is often considered in opposition to the more tradi-
tional modeling approach using systems of differential equations. Models based
on systems of differential equations are well suited to tasks that attempt to model
aggregate behavior, for example predator-prey models. Despite the apparent com-
petition between modeling paradigms, Agent-Based Models are not at odds with
traditional equation based approaches. Indeed, Agent-Based Models may incor-
porate differential equations to approximate behaviors at lower levels, while al-
lowing agent interactions to define high level, aggregate behavior. For example,
in ABNNSim, the Neuron’s spiking behavior is modeled by an equation and the
overall interactions of the Neurons yield the system level behavior that we are

studying.

3.4 Design

3.4.1 System Goals

The ABNNSim toolkit is intended to provide computation neuroscientists with
a tool to study the growth and development of biologically inspired neural net-
works. Given the computational demands of simulating large networks of biolog-
ically accurate neurons, we argue that it is an acceptable trade off to sacrifice

some biological plausibility in order to be able to simulate larger networks. The

46

Agent-Based Modeling approach allows us to approximate some of the electrical
properties of the neuron while synthesizing these with other behaviors, such as
pruning, that are of primary interest.

ABNNSim should offer a solid set of basic features and yield good performance,
while offering the flexibility to allow researchers to tailor models to their own
particular needs. This is a difficult balancing act and we provide evidence that

we have done well on all fronts.

3.4.2 System Overview

In this section we give the overview of the ABNNSim framework, including
relevant components from the RePast Agent-Based Modeling framework. For a
more comprehensive presentation of RePast readers are directed to the RePast
website [21]. The basic overview of ABNNSim is shown in the UML diagram in
Figure |3.1]

The ABNNSim framework is composed of the following components:

1. ABNNSimModel - The model, this class handles the intialization of the

model and the scheduling of various actions.

2. Neuron - The Neuron class is a model of a Neuron. It holds state infor-
mation on the Neuron relating to its spike level, outgoing and incoming
connections. The Neuron can schedule behaviors to occur at later times

through ABNNSimModel.

3. Axon - The Axon class acts as a connector between Neurons. It allows spikes

to travel in one direction and feedback to travel in the reverse direction.

4. TimeQueue - This is a simple class to help in the calculation of a Neuron’s

47

activity level. Incoming spikes are stored in the TimeQueue in (time, value)
pairs. Given a time value, TimeQueue will return the activation level at

that time.
5. Timeltem - A simple (time, value) pair stored in a TimeQueue.

6. NetworkConstructor - This class will create networks of a specified distri-
bution. Currently it supports the creation of networks with Scale-Free link

distributions in the manner specified by Barabasi et al [I] and random net-

works. Creation of Small Worlds networks is handled by the RePast API.

The ABNNSimModel class handles not only the set up of the simulation but, as
is encapsulates the Schedule, also the actual running of the simulation. ABNNSim-
Model contains various behaviors that are added to the schedule at different times.
These behaviors handle the injection of random noise into the network, pruning
and regrowth of connections between Neurons and output of the network and
computed statistics at specified intervals.

The Neuron class defines the standard neuron. It encapsulates the function-
ality commonly found in a spiking neuron, as well as some additional attributes
and behaviors that make it more appropriate for simulations exploring neurode-
velopment. The standard spiking neuron has a spike level, a mechanism for deter-
mining whether its firing threshold has been exceeded and incoming and outgoing
connections to other neurons. We implement an interrupt driven mechanism to
determining firing times for the neuron. The use of an interrupt driven mecha-
nism allows simulations to run faster and model larger networks. In addition to
the standard spiking neuron behaviors, we have added facilities for Hebbian learn-
ing and neuronal regulation, two mechanisms that are regarded by researchers as

important mechanisms underlying neural development[25][16].

48

At a more abstract level, the Neuron inherits from the DefaultDrawableNode
class in the RePast API. This gives the Neuron fields for x and y coordinates in
the display space, a reference to the model’s Scheduler as well as various methods
controlling the display style of the object. Also inherited are methods that allow
the Neuron to be treated as a node in an abstract network.

The Axon class is a very simplified version of a biological Axon. As envisioned
in ABNNSim, it acts as a conduit for exchanging various messages between Neu-
rons in the simulation. Spikes travel down the Axon and reach the post-synaptic
Neuron. In order to facilitate Hebbian learning, we defined the Axon to allow
feedback to travel to the pre-synaptic Neuron. Axons also carry some state that
specifies the weight of the connection. This weight can be modified by both the
pre-synaptic and post-synaptic Neurons.

As in the Neuron class, the Axon class inherits from DefaultDrawableEdge
from the RePast API. This allows Axons to be drawn on the simulation space
and includes methods governing the way the Axon is displayed. Methods are also
inherited that allow the Axon to be treated as an edge in a network.

The TimeQueue and Timeltem classes are convenience classes that make it
easy to determine when a Neuron has reached its threshold and must fire a spike.
A Timeltem holds a time value and a spike value. The time value is set by the
Neuron when it fires. The time value is determined by the scheduler, so time values
are globally ordered. The spike value is simply the value set by the originating
Neuron, modified by the weight in the transmitting Axon. The TimeQueue is an
ordered list of Timeltems, sorted by the time value. The TimeQueue maintains
a window, and as new Timeltems are added, it checks to see whether all existing

Timeltems are within the window. Old Timeltems that are now outside the

49

window are dropped from the TimeQueue.

Each Neuron maintains a seperate TimeQueue to keep track of the spikes
that it receives. When a new spike is received, the associated Timeltem is added
to the TimeQueue. The Neuron then queries the TimeQueue to determine the
activation level of the Neuron at this time step. The TimeQueue calculates the
activation level by summing the values of each Timeltem. As the Timeltems
represent spikes, the value of the spike degrades over time. The TimeQueue can
calculate the current value of a spike simply by using the equations governing the
spike and plugging in the elapsed time. Given the nature of the spike, it is only
necessary to calculate the activation level of the Neuron when new spikes arrive, a
computational convenience that allows large scale simulations to be modeled with
good performance.

The NetworkConstructor class builds networks with various topologies. It
currently allows users to construct Random networks in the style of Erdds and

Rényi [8] and scale-free graphs using the method described by Barabasi et al [1].

3.4.3 Implementation

ABNNSim is written in Java [28] and uses the RePast Agent-Based Modeling
Toolkit, version 2.2 [20]. RePast is an ABM API providing a discrete time event
scheduler, various GUI and display components and built-in analysis tools. To
this we added several Neuron classes, helper classes for managing the timing of
Neuron outputs and additional classes for constructing various types of networks.
A screen shot of the ABNNSim application is shown in Figure [3.2]

The resulting ABNNSim API is a pure Java framework that runs unmodified

on all Java 1.4 compatible systems. Development and testing of the system was

20

conducted on various Sun Solaris, Mac OSX and x86 Linux machines.

3.5 Results

3.5.1 Case Studies

Several case studies were conducted using ABNNSim. These studies were
meant to examine the flexibilty of the framework and determine its suitability
for use by research groups. Each study began with the ABNNSim framework
and developed extensions to explore a particular behavior or mechanism that was

considered to be potentially interesting by the research community.

3.5.1.1 Case 1: Rewiring With Distance Bias

In this case study, we extend the ABNNSim model by adding a rewiring pro-
cess. In the initial model, neurons are selected to add a new connection to another
neuron (rewire). The neuron selects another target neuron at random from those
in the model. Next, we consider the effects of making the choice of target neurons
related to the distance of the target neuron from the source neuron. Neurons that
are farther away are less likely to be chosen than those that are nearby.

The distance bias is added to the system by creating a “distance list” for
each neuron, basically a list of all other neurons in the system, sorted by dis-
tance from the target neuron. The coding time was 3 hours, including debugging.
Three new classes were created: DistanceNeuron, DistanceNeuronWrapper and
DistanceNeuronTests. The DistanceNeuron is a sub-class of the Neuron class,
with an extra 30 lines of code handling the creation and management of a sorted
list of the other Neurons in the model. DistanceNeuronWrapper is a wrapper

that allows DistanceNeurons to be added to a TreeMap and sorted by distance.

o1

DistanceNeuronTests is a class with unit tests validating the functionality of the
DistanceNeuron class. Additional code was added to ABNNSimModel for setting
up the distance lists and adding rewiring actions.

A screenshot comparing the effects of random and distance-based rewiring is
given in Figure [3.3] As pruning takes place, both random and distance rewired
networks suffer a drop in Local Harmonic Mean Distance. The randomly rewired
networks show a smooth growth in Local Harmonic Mean Distance, whereas the
distance rewired network shows much slower growth. These results are the reverse
of what was expected, but can be explained by the way the Local Harmonic
Mean Distance is calculated. The Average LHMD is measured without regard to
distance on the substrate, only in regards to distance in the network, where each

link is considered to be length 1.

3.5.1.2 Case 2: Adding Inhibitory Neurons

In this case study, we add a new Neuron to the ABNNSim model. In the
original simulation, all Neurons signal with positive values. Research has shown
that there exist Neurons that have an inhibtory effect upon their surrounding
neurons. We add a Neuron of this type to the simulation.

The new Neuron type is called InhibitoryNeuron. Instead of activating its
surrounding Neurons, this Neuron will suppress them. We start by extending the
Neuron class and modifying its default behavior. Then we add some extra setup
code to ABNNSimModel to add some InhibitoryNeuron to the simulation.

A visual comparison of the networks resulting from the original simulation
and from the simulation including InhibitoryNeurons is given in Figure 3.4 Note

that the network formed with 10% InhibitoryNeurons is significantly more dense

52

than the unmodified simulation. The degree distribution histograms confirm this

quantitatively.

3.5.1.3 Case 3: Chemical Signaling

In this case study, we add rudimentary chemical signaling to the ABNNSim
model. We utilize the RePast API to provide classes for the diffusion of chemicals
through the medium. We add behaviors to the standard Neuron class to sense
and react to changes in the chemical concentrations in the surrounding medium.

This case study is motivated by research indicating that neuron behavior is
greatly affected by the presence of chemicals in the medium. The presence of
adrenaline, for example, noticeably lowers the firing threshold of hippocampal
neurons. These chemicals can be introduced into the medium by various glands
or organs, or by the neurons themselves. Chemicals can be used by the neurons
as another means of interacting with their environment.

This modification is made feasible by the Agent-Based Modeling paradigm.
When a Neuron agent senses a change in the medium, it adjusts its threshold level
accordingly. We extend the Neuron class and include functionality for sensing and

releasing chemicals in the new ChemNeuron class.

3.6 Conclusion

We claim that ABNNSim provides a useful framework for simulation, speeds
up development time and allows easy modification of the model. The component-
based framework allows researchers to develop new models of Neurons and use
these in place of current implementations without needing to rewrite their sim-

ulation. The approach offered by the Agent-Based Modeling paradigm allows

23

researchers to step away from the traditional equation-based approach, allowing
the network to be modeled in an intuitive manner. This leads to thinking about
neural networks as a collection of interacting agents, each with individual be-
haviors, that, when observed over the entire system, yields a similar output to
equation-based modeling.

Researchers can use ABNNSim to quickly explore new ideas and provides a
level of simulation that is not provided in existing tools. ABNNSim focuses on
a level of detail that is at a higher level than some computational neuroscience
tools like NEURON and GENESIS, but below the level of behavioral simulations
such as Topographica. Although the level of biological plausibility of each Neuron
in ABNNSim is well below that found in a computational neuroscience tool like
NEURON or GENESIS, the relaxing of these restrictions allows researchers to
explore more complex interactions and behaviors. While the accuracy of these
results rest upon replication by more accepted tools, they at least can be used to
generate possible directions of research.

Users interested in developing simulations with ABNNSim are encouraged to

contact the authors or may visit the project website http://tmans.sourceforge.net.

3.7 Future Work

This work provide a solid base on which to build more detailed and biologically
plausible neural network simulations. The components currently in ABNNSim
already provide researchers with a useful base, however there is room for the
framework to grow.

A new, extended version of ABNNSim is currently under development. The

next version will offer more neuron types and a more flexible method of sending

o4

input to and from the network. In order to make the framework more useful for
other researchers, the next version will be as comprehensive as is reasonably pos-
sible. Several biological structures with relevance to neural modeling, such as glial
cells and various neuron components may be added to the framework. Refined
input to and output from the networks will allow researchers to use constructed
networks for computation and validation against biological neural networks. Cur-
rently there are plans to add support for restarting the simulation given a snapshot
of a prior simulation. This could be important when exploring dynamic networks.
Another important addition to ABNNSim is the inclusion of support for writ-
ing simulation output data to a database. Such work would simplify the task of
categorizing and analyzing simulation results.

Users of the current framework would like to be able to better calibrate the
model with data on the functioning of biological neurons. Should a researcher
want to create a network of, for example, frog neurons, it would be beneficial to
be able to easily calibrate the system’s neurons with data from a frog neuron.
Making it easier to calibrate and validate the model will ensure that ABNNSim
is a relevant and useful tool for researchers.

There is ongoing work being conducted that will allow a model or series of
models to be run across a cluster of machines in parallel. Currently there exist
methods for running simulations in parallel, but each simulation must run in-
dependently. Having simulations running in a distributed manner would allow
researchers to simulate very large scale neural networks. The ability to have simu-
lations span multiple machines will allow researchers the ability to study networks
of a unprecedented size, allowing the modeling of not only the entire brain of an

animal, but potentially a colony of interacting animals.

25

SimModellmpl (RePast) DefaultDrawableMode DefaultDrawableEdge
— (RePast) (RePast)
escriptors
modelManipulator
firesimEwvent draw draw
fireEndsim
firestopsim
ABMNMSImM Meuron
Axon
Schedule oD ni
bu!IdD|spIav M hoolean feedbackstate
(RePast) buildModel fire double value
tc:Ireege:tnersletwork freellae?xtlElEK duoble |astTime
signal
feadbacksignal
TimeQueue Timeltem
Network Analyzer MetworkConstructor .
TimelternList ggﬂg:g tsm;lie
camputelocalHMD add(Timeltem) Axan :
computeGlobalHMD createBANetwork getsum getTime
calcAllPairsshortestPath createRandamMetwork, setiWindowi{double) getspike
createsubGraphadiMatrix getaxon

Figure 3.1. UML of ABNNSim.

26

0006 ABNNSim Display —
Options |- [3134 n Q@Ml‘rick Count: 0.0 /“
/)
L™ O O O AgentBasedNeuralNetworkSimulatior
~——_Parameters | Custom Actions -—z_‘
rModel F
ActionThreshold: 0.2
Alpha: 0.7
Gamma: 1.0
GuiFlag: v
MaxTicks: 1000
MeanNumLinks: 12
Out Degree Distribution NetworkType: !
Nu: 0.1
100
04D || NumberOfinputNeurons: 1
NumberOfOutputNeurons: 4
QutputFlag: O
PruningThreshold: 0.01
RelaxationTime: 13
RewireProb: 0.2
Schedule: (Schedule
SigmaNumlLinks: 15 L
TestingFile: unknown
8 TrainingFile: unknown
& WTheta: 0.1
\ g WorldXSize: 500
WorldYSize: 500 vy
o 2 = I
g o ”\ I ; - —
—= | I I - 1415 3233 5051 6B-60 8585 i

. . .
B E 04 1445 3132 4840 6586 E2.83

T R

Figure 3.2. A screen shot of the ABNNSim application. The RePast
framework provides the simulation control panel and model parameter
window. ABNNSim users can view the network as the simulation
progresses. Also shown are two dynamic histograms that show the link
distributions of the network at the current time step.

2

Distance Rewire Display SIENE 2 Random Rewire Display BCIES
Options Options

@ @ Fltk Count: lﬂﬂﬂ.; :

|agentBasedNeuralNetworksin | =[5 % |

Parameters |

del Parameters

ionThreshold: 0.2
ha: 0.7
Imma: 10
i iFlag: fif
Ticks: 1000
anNumLinks:
workType:

iff ImNeurons:
 ImberOfinputNeurons:

7

FE

0.1

50

o]
imberOfOutputNeurons: |0

a

oor |

8

0.2

tputFlag:
ningThreshold: 01
axationTime:
ireProb:
edule: Schedule
maNumLinks: 15
tingFile: unknown
iningFile: unknown |
o1 |

Harmonic Mean Distance wTheta:

Harmonic Mean Distance

Harmonic Mean Distance

In Degree Dist| AvgLocali]

4 GlobalH
10 22 241 Cligeniycay In Degree Distribution
B] n Dearee Distribution e
o 20f 22 10
a 2l 9 Al Entries: 50
18
& | - Underflow: 0
15 o 8 Overflow: 0
i 15 Mean: 17.34
1ar 7 Rims: 3,656
& Ler
12
12
10 T T
10
1]
08
06|
05
01 3
04
02 T
00 o
7 . (11} I
0 o2 04 0§ [T 0

8]

0-1 45 89 1314
0l 45 89 1314 19-20 25-26

Figure 3.3. Side by side comparison of distance vs. random rewired
networks

o8

v Suppress Neuron Display FCIES (2 ABNNSim Display SICIES

Options Options

TN

|

i

ly

In Degree Distribution

In Degree Distribution | In Degree Distribution
— T T T T SR T R - | In Degree Distribution
10 1 e 1
Al Entries: 50 A'vz‘L:;: 0 | 1 Al Entries: 50| [] auglac
9 Underflow: 0 —telistEing Underflow: 0 Glok
Overflow: 0 Overflow: 0 L Clusterin
Mean: 5.96 — . 10 Mean: 3.1
8 Rms: 2.919 Rms: 2.184

=

s

1 1 L 1 L 1 - - - -
01 7.8 1617 26-27 36-37 46.47 _ 0-1 0-1 7-8 16-17 26-27 36-37 46-47 I |

Figure 3.4. Side by side comparison of original simulation and one with
InhibitoryNeuron. The InhibitoryNeuron simulation is on the left, the
unmodified ABNNSim is on the right.

29

CHAPTER 4

A TOPOLOGICAL EXPLORATION OF SELF-ORGANIZING NEURAL
NETWORK STRUCTURES

4.1 Abstract

In this chapter we present an analysis of some of the global topologies that
can be induced in a neural network using only local rules. Given a network of
neurons we utilize the principles of overgrowth and selective pruning to induce
topological changes in the network. This general process is in line with accepted
research into biological neural network development. Pruning is guided via a
process incorporating Hebbian learning and a similar result from neurobiology

research, Neuronal Regulation. Results and discussion are presented. !

4.2 Introduction

The model presented is of a biologically-inspired neural network. Effort has
been made to bring the model in line with current thinking on biological neural
networks, however, the authors acknowledge the limitations of the presented model
and its distance from accepted theory. This work is intended to demonstrate the
possible topological structures that can be derived from local rules in biologically

inspired neural networks.

'Elements of this work were previously presented in [59] and [61]

60

Understanding the development of the human brain is one of the foremost chal-
lenges facing scientists today. The brain is a complex network of the highest order,
with a number of elements that rivals the size of the Internet. However, exposing
the mechanisms at work in the organization of the brain is significantly more diffi-
cult that charting the course of a man-made network like the Internet. Numerous
mechanisms at different levels are responsible for this organization. In this work,

we examine the effects of overgrowth and pruning on network development.

4.3 Background

This work draws upon recent research in biological and artificial neural net-
works, complex network analysis and the techniques of Agent-Based Modeling.

Each of these diverse areas is given a basic introduction here.

4.3.1 Complex Networks

One method of evaluating the results of our simulation is to use accepted
network measurements and compare our results with those of known networks. We
use the Harmonic Mean Distance metric of Latora and Marchiori [48] to examine
whether the networks form Small World graphs and we examine the link structure
using histograms as in the work of Barabasi et al [2].

The Harmonic Mean Distance measurement is a metric related to both the clus-
tering coefficient, C', and characteristic path length, L, measurements introduced
by Watts and Strogatz[71]. It is a measurement of the efficiency of a network,
in terms of information propagation[48]. Harmonic Mean Distance can be calcu-
lated as a local value, with Equation , in which case it is related to % When

Harmonic Mean Distance is calculated as a global value, as in Equation it is

61

similar to the characteristic path length L. In the calculation of these metrics,
G is a given graph with N nodes and d;; is the distance (in number of edges
traversed) between vertices ¢ and j. In the calculation of the Global Harmonic
Mean distance, the distance is calculated between each pair of vertices. For the
Local Harmonic Mean Distance calculation, we pick a vertex i, then calculate the

distance between every pair of vertices in the subgraph (without including paths

through 7).
N(N = 1)
D lobal(G) - (41)
! > ijec ﬁ
N
1 N(N -1
Dlocal(G) = N Z (_> (42)

i=1 ijkGGi dﬁ

The Harmonic Mean Distance has some advantages over the clustering coef-
ficient and characteristic path length. First, Harmonic Mean Distance can be
calculated as a local or global value, giving a unified description of the network
from local and global perspectives. Next, the global Harmonic Mean Distance
value is meaningful for graphs that are not connected. Given that we have no
guarantees of connectivity, this is relevant to our work. Finally, Harmonic Mean
Distance provides meaningful insight on graphs that are embedded in a metric
space [48], such as graphs existing in Euclidean space.

We use the Harmonic Mean Distance measurement to determine whether re-
sulting graphs are Small Worlds graphs. Given that the networks resulting from
the simulations are of differing sizes, we normalize the graphs using the Harmonic
Mean Distance values associated with a regular lattice of the same size, as de-
scribed in [48].

We also examine the link structure of resulting graphs in a manner similar

62

to that of Barabasi [2]. We analyze the graphs by creating a histogram of the
number of incoming links per node for all nodes in the network. We then determine

whether the graphs are indicative of an exponential or scale-free distribution.

4.3.2 Biological Neural Networks

The development of mammalian brains is characterized by a rapid overgrowth
of axons and neurons before birth, a rapid loss of axons and neurons after birth
and an associated rise of synapses after birth, peaking at adolescence[I4]. This
overgrowth and associated pruning coincides with a critical time period of network
development and is suggestive of the importance that pruning plays in network
formation.

Given the size of the human neural network (10" neurons and 10" connec-
tions), Segev and Ben Jacob have argued that the wiring diagram of the brain
exceeds the ability of DNA to encode that information[63]. Thus the brain must
self organize. As a potential method of self-organization, Segev and Ben Jacob
present a mechanism using chemical signaling.

In this chapter we describe a complementary approach, based on network over-
growth and selective pruning. Here pruning is guided by two local processes: Heb-
bian learning and neuronal regulation. Hebbian learning is the accepted theory
that neurons that fire in sequence have a strengthened connection. Neuronal reg-
ulation, as presented in [I7], is a mechanism that regulates the neuron’s output
multiplicatively with an inverse relationship to its activity level. Hebbian learning
adjusts the strength of individual synapses between neurons and neuronal regu-
lation maintains the overall output level of each individual neuron, preventing a

positive feedback loop.

63

The equations for neuronal regulation are presented in Equation [£.3)and Equa-
tion[4.4] The first step is the degradation, where each synapse’s weight is reduced
according the Equation [£.3] Next, Hebbian learning occurs. Then, the neuron
uses Equation [£.4] to restore its input field to the previous level. In Equation [4.3]
the initial weight of a synapse at time ¢ + 1, W’*! is determined by subtracting
the weight at time ¢, W by W' raised to the degradation dimension «, where
0 < a < 1, and multiplied by a Gaussian distributed noise term n'. The input
field is restored by multiplying the intermediate weight W'*t! by the ratio of the

input field at time 0, f?, to the input field at time ¢, ff.

W/t+1 — Wt _ (Wt)a?]t (43)
WtJrl — W/t+1 X f_’LO (4 4)
fi '

4.3.3 Related Work

This work is closely related to the HebbNets project[65]. HebbNets is de-
signed to examine the types of network topologies that can form in a network of
Perceptrons using Hebbian learning and random noise. The results of the work
showed that many different network topologies could be formed with just Hebbian
learning. The authors of the HebbNets study use the Harmonic Mean Distance
measurement to analyze their work. For comparative purposes we display the

results of our work in terms of Harmonic Mean Distance as well.

64

4.4 Design

This work is built on the ABNNSim framework, a tool for simulating neural
networks that uses simulation techniques from Agent-Based Modeling. ABNNSim
is in turn built upon the RePast 2.2 API, a toolkit for building Agent-Based
Models. ABNNSim models each neuron as an agent, endowing it with a rich
set of behaviors. Thus in addition to the standard electrical properties, we can

represent some of the physical processes that affect neural network development.

4.4.1 Neuron Model

This work examines pruning in networks of Perceptrons. Perceptrons are arti-
ficial neuron models that were chosen for their computational simplicity. Although
Perceptrons do not accurately represent biological neurons, in this context they

allow us to explore behaviors in large networks.

4.4.2 Pruning

Pruning seems a likely candidate for being a local mechanism that directs the
development of the mammalian brain. We look at pruning directed by Hebbian
learning and neuronal regulation and examine its effect on network topology. The
simulation is setup as follows. First, the network is created in an “overgrown”
state. We examine three initial topologies, Random, Scale-Free and Small World.
Next, we activate the network with random noise. The random noise stimulates
the network and Hebbian learning and neuronal regulation occur, leading to the
strengthening of some synapses and the weakening of others. Finally, connections

that have been weakened below a certain threshold are removed from the system.

65

4.4.3 Networks

We chose to examine several initial network configurations, to see if initial
conditions played a role in the outcome of the network self-organization. We
initially used only Random networks, then added Scale-Free networks and Small
World networks. Small World networks are constructed using the methods in the
RePast framework. These involve constructing a network as a ring lattice and
doing probabilistic rewiring. The Scale-Free network constructor was written to
create networks using the algorithm described by Barabasi et al [I]. The Random

network constructor uses the Erdos-Renyi method, as described in [§].

4.4.4 Measurements

In order to determine our progress towards self-organization, it is important
to be able to rate the outcome of the experiment. We analyze the networks using
a link distribution histogram, as done by Barabasi[2] and others. With this mea-
surement we are interested in determining whether the resulting pruned network
displays a discernible link structure. We also examine the networks using the
Harmonic Mean Distance measurement, as described above. This measurement
allows us to determine whether the graph is a Small Worlds graph or not.

We chose these measurements out of the belief that biological neural networks
would display a Small Worlds or Scale-Free distribution. This belief is grounded
upon the large body of work that suggests that many large, complex networks
found in nature display one or both of these characteristics. The selection of the
Harmonic Mean Distance measurement also allows this work to be more closely

compared with the HebbNets project[65].

66

4.5 Results

4.5.1 Sensitivity Analysis

The simulation, as presented, has an 11-dimension parameter space. The pa-
rameters are the number of neurons, average number of connections per neuron,
the two neuronal regulation parameters o and 7, the activation threshold, the
pruning threshold, w6, a Hebbian learning parameter, the relaxation time, the
mean amount of gaussian distributed noise to inject into each neuron and the
type of network to use initially. The parameters and their values are given in
Table 411

The selection of appropriate values for these parameters was a nontrivial task.
Appropriate values were inferred from the associated literature for Hebbian learn-

ing and neuronal regulation, as well as a parameter sweep.

4.5.2 Pruning

In this section, we present an analysis of data from an ensemble of simulation
runs. The simulations were run with 1000 nodes and 10 links per node. All
neuronal regulation and Hebbian learning parameters were kept constant. We ran
the simulations for 200 time steps. These time steps correspond to the firing rate
of the neurons. The simulations began with initial graphs that were constructed
with Small Worlds, random and scale-free topologies, respectively.

First we observe the link distribution before and after the simulation. Figure
4.1| shows a comparison of the in degree distribution measured at the beginning
and end of the simulation. Before running the simulation, the in degree is dis-
tributed according to a Gaussian normal distribution with mean 10, variance 1.5.

The graph construction method ensures that the links are distributed in this fash-

67

TABLE 4.1
DEFAULT PARAMETERS OF SIMULATION

Parameter Value
Number of Neurons 1000
Mean Connections 10
Sigma Connections 1.5

o 7
i 1
Activation Threshold 2
Pruning Threshold .01
W 1
Relaxation Time 1.3
Noise Mean 2
Network Type Small Worlds

68

Evolution of In Degree Distribution

Over Time

180

160

140
0
3 120
4 100 W InDegree Distribution
s Before Pruning
3 80 W InDegree Distribution
-E After Pruning
S5 60
4

40

SRy

1 3 5 7 911131517 192123252729
Incoming Links per Node

Figure 4.1. A Comparison of the In Degree Distribution Before and
After the Simulation, Starting with a Watts-Strogatz Small Worlds
Graph

ion. After the simulation, the links display an exponential distribution. This
transformation indicates that the resulting link structure resembles what would
be expected of a random graph of equivalent size.

We start with a scale-free link distribution and repeat the above simulation.
The results, plotted on a log-log scale are given in Figure 4.2, The simulation
starts with a Barabasi-Albert network, displaying the characteristic scale-free link
distribution, evidenced by the linear distribution of points and heavy tail. After
pruning, the simulation displays a somewhat more sparse distribution, but it is

still consistent with a scale-free distribution.

69

BA Graph Link Distributions

1000

-
o
Is)

* Before Pruning
u After Pruning

Nodes with Given Number of Links
=
=)

1 10 100 1000
Number of Incoming Links

Figure 4.2. A Log-Log Plot of the Link Distribution of the Network
Before and After Pruning

70

Random Graph - Degree Distribution

450

400

350

300

250

O1n Degree Dist Before
B In Degree Dist After

200

Number of Nodes

150

100

L ﬁ ﬁhﬂu

\\\\\\\\\\\\\\\\\\\\\\\
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
In Degree of Node

Figure 4.3. A Comparison of the In Degree Distribution Before and
After the Simulation, Starting with a Random Graph

Next, we repeat the above experiments with a random network. The results
of this simulation are shown in Figure 4.3 The random graph displays a much
greater degree of perturbation than either the Watts-Strogatz or Barabasi-Albert
graph. However, like the Watts-Strogatz graph, the resulting link distribution is
also exponentially distributed.

Harmonic Mean Distance data from the simulation runs was averaged and
plotted in Figure[4.4] At the given parameters, the graph quickly diverges from its
initial values. The Global Harmonic Mean Distance value increases within the first
two time steps, then remains unchanged for the rest of the simulation. Similarly,

the Average Local Harmonic Mean Distance value (plotted here as the inverse

71

Evolution of Harmonic Mean Distance Over Time

3.5

r——

2.5

—e— Global Harmonic Mean Distance
—=—1 / Local Harmonic Mean Distance

1.5

Global HMD Value

0.5

"

-

L e L e e e e B
1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43
Time Step

Figure 4.4. The Evolution of Harmonic Mean Distance Over Time

of the recorded value in order to correspond with C' the Clustering Coefficient)
degrades within the first two steps of the simulation, then holds for the rest of
the simulation. For these parameters, the (inverse) Average LHMD stabilizes at
0, putting the resulting graph outside the regime of the Small World.

The results from several runs are presented in Figure [4.5, We present a graph
of the number of links over time, in order to compare the results of the simulation
to the known degradation of synapses in mammalian brains as presented in [14].
Although this result does not completely correlate with the results from [14], we
believe that some tuning of the model parameters should allow us to achieve a

better fit.

72

Total Links Over Time

12000

10000 \]
8000

w
x
c
£
- \\ m—— \Vatts-Strogatz
E 6000 === Random
é = BarabasiAlbert
3
z

4000 N

2000

0

1 4 7 101316 19 22 2528 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88
Time Step

Figure 4.5. The Number of Connections (Synapses) Over Time

73

4.6 Conclusion

4.6.1 Discussion of Results

We have shown the power of locally-directed pruning as a tool for topology
formation in neural networks. Our results demonstrate that for some starting
topologies, neuronal regulation and Hebbian learning guided pruning will maintain
link distribution. This result indicates the importance of developing a resilient
initial topology.

The presented results demonstrate that Barabasi-Albert networks are very re-
silient to change, whereas Watts-Strogatz networks rapidly degenerate to random

networks.

4.6.2 Implications

This work suggests that pruning is indeed a potential method of self-organization
in biological networks. We have demonstrated that under certain conditions, var-
ious network topologies can form as a result of only local mechanisms.

Additionally this work highlights the importance of the value of Agent-Based
Modeling in the construction of models of complex systems. By modeling neurons
as agents, we can construct intuitive models using the behaviors observed in bio-
logical neurons. These include electrical and physical behaviors and mechanisms,
yielding a rich, complex model. The Agent-Based Modeling approach is well
suited to our approach of focusing on local mechanisms like neuronal regulation

and Hebbian learning.

74

4.7 Future Work

This work would be more biologically plausible with the addition of integrate
and fire (spiking) neurons. That work is currently underway. The difficulty of
the adjustment lies in the translation of the Hebbian and neuronal regulation
mechanisms to a rate-based paradigm.

It would be interesting to compare this work to a more accurately modeled
simulation using a computational neuroscience tool such as NEURON or GENE-
SIS. Modeling several thousand neurons using compartments and cable equations
would be computationally challenging. It would be interesting to note to what

degree this added realism affects the results of the model.

75

CHAPTER 5

RESULTS AND CONCLUSION

5.1 Summary of Results

In this thesis, we have shown that Agent-Based Modeling is a useful and nat-
ural approach to the simulation of biologically inspired neural networks. This ap-
proach yields a simulation environment that is flexible and extensible. The three
presented variations on the project demonstrate the ease with which researchers
can adapt the model to their own needs. It is therefore reasonable to conclude
that the model is sufficiently extensible. One in depth experiment conducted
with the ABNNSim framework is presented: an exploration of the self-organizing

topologies that can be generated with local rules.

5.1.1 ABNNSim: A Framework for Building Neural Network Simulations

We presented the ABNNSim framework for the simulation of neural networks.
ABNNSim provides researchers with a flexible yet powerful tool for the simulation
of neural networks. Included in the framework is a simple threshold gate (Per-
ceptron) neuron model, support for discrete and continuous timing, the ability
to build networks with Scale-Free, Small World or Random distributions and the
ability to record various information about the simulation at user-defined inter-

vals. Data is output as flat ASCII text files, suitable for processing with standard

76

Unix text editing tools. Researchers can specify the amount of information they
want to store, from computed statistics (average clustering coefficient, link distri-
bution) to a snapshot of the entire system, including a connectivity matrix of the
network as well as the state of each entity in the system.

We demonstrated three small projects that extended the ABNNSim structure.
These projects demonstrate the extensibility of the ABNNSim framework. In each
project, we begin with the ABNNSim framework and extend it. The projects were
intended to be examples of the type of extensions that real researchers would add
to the system.

The first project looked at the effects of distance-based rewiring on global
topology, an extension of the work done in Chapter 4} In the initial version of the
simulation, when a neuron was selected to rewire, it did so in a random manner.
This project modified the rewiring routine to add a distance-based bias. Thus
when a neuron is selected to rewire, it is more likely to pick a nearby neuron.

The second project documented the addition of a new Neuron implementation
to the framework and the work required to do so. Here we add a spiking neuron
to the simulation. The spiking neuron is a more accurate model of the neurons
in biological neural networks. This work is demonstrative of one of the typical
extensions that a researcher would add to the framework.

The third project added chemical signaling in the medium. The existence and
quantity of certain compounds (adrenalin, etc) in the medium surrounding bio-
logical neurons affects a neuron’s behavior. This project shows that it is possible
to add support for the release, diffusion and sensing of various compounds in the

medium to the model.

7

5.1.2 An Exploration of Topological Structures Generated by Local Rules

We presented a study of topological structures generated by local rules in a
biologically-inspired neural network. We constructed a network of Perceptrons,
initialized the network to a given topology (we examined random networks, Small
World networks and Scale-Free networks), stimulated the network with random
noise and observed the changes in topology. The topological changes were a result
of Hebbian learning and Neuronal Regulation, two local mechanisms based on
established neurobiological research.

Part of our work replicated that done by Szirtes, Palotai and Lorincz in [65].
We demonstrated that the ABNNSim framework can produce similar results. The
replication also served to validate the results of the HebbNets study, that various
global network structures can be derived from the application of global rules to
neurons in a neural network. All structures are derived using random noise as
input. The resulting changes in network topology are a function of pruning. The
pruning of connections in the network is guided by Hebbian learning and neuronal
regulation, which hints at the value of these mechanisms in the development of
topology in biological neural networks.

We evaluated the topological changes that were observed as a result of various
initial conditions. We explored the parameter space over a large range of values
in order to determine the robustness of our results. We evaluated the effects of
different numbers of connections, starting topologies and link distributions. We
also conducted a sensitivity analysis on the different parameters in the equations

for Hebbian learning and Neuronal Regulation, in order to find suitable values.

78

5.2 Future Work

This work provide a solid base on which to build more detailed and biologically
plausible neural network simulations. The components currently in ABNNSim
already provide researchers with a useful base, however there is room for the
framework to grow. There are several areas that I would like to explore further,
both in the development of the framework and in the exploration of biologically
inspired neural networks.

First, we would like to develop a new version of ABNNSim, with different neu-
ron types and a more flexible method of sending input to and from the network.
In order to make the framework more useful for other researchers, we would like
to make it as comprehensive as is reasonably possible. Several biological struc-
tures with relevance to neural modeling, such as Glial cells and various Neuron
components could be added to the framework. Refined input to and output from
the networks will allow researchers to use constructed networks for computation
and validation against biological neural networks. We would like to add support
for restarting the simulation given a snapshot of a prior simulation. This could
be important when exploring dynamic networks. Another important addition to
ABNNSim would be to include support for writing simulation output data to a
database. Such work would simplify the task of categorizing and analyzing simu-
lation results.

Second, we would like to be able to better calibrate the model with data on the
functioning of biological neurons. Should a researcher want to create a network of,
for example, frog neurons, it would be beneficial to have a pre-calibrated model
of a frog neuron. Making it easier to calibrate and validate the model will ensure

that ABNNSim is a relevant and useful tool for researchers.

79

Third, we would like to develop extensions to ABNNSim that allow a model
or series of models to be run across a cluster of machines in parallel. Currently
there exist methods for running simulations in parallel, but each simulation must
run independently. This would allow researchers to simulate very large scale neu-
ral networks. The ability to have simulations span multiple machines will allow
researchers the ability to study networks of a unprecedented size, allowing the
modeling of not only the entire brain of an animal, but potentially a colony of

interacting animals.

80

APPENDIX A

ANT BUILD FILE

A.1 Overview

This section contains the ANT build file for the construction and distribution

of the project.

A.2 Build File

<?xml version="1.0"7>

<!-- build.xml - a simple Ant buildfile -—>
<!I-- Author: Tim Schoenharl, based on sample from OReilly "Ant: The

Definitive Guide" -->

<project name="Agent Based Neural Network Sim" default="all" basedir=".">

<!-- The Repast 1lib directory -->

<property name="repast.lib.dir" Value="/Applications/repast-2.0.2/1ib"/>

<!-- Libraries needed to execute RePast sims -->

<property name="class.path" value="${repast.lib.dir}/repast. jar

81

${repast.lib.dir}/junit. jar ${repast.lib.dir}/colt.jar "/>

<!-- Name of executable jar file -->

<property name="jar.file" value="ABNNSim.jar"/>

<!-- Name of executable jar file -->

<property name="jar.nogui.file" value="ABNNSimNoGUI.jar"/>

<!l-- Name of cluster targeted executable jar file -—>

<property name="export.jar.file" value="ClusterABNNSim.jar"/>

<!-- The directory containing source code -->

<property name="src.dir" value="src/abnnsim"/>

<!-- Temporary build directories -->

<property name="build.dir" value="build"/>

<property name="build.classes" value="${build.dir}/classes"/>
<property name="build.lib" value="${build.dir}/1lib"/>
<property name="build.tests" value="${build.dir}/tests"/>

<property name="build.docs" value="${build.dir}/docs"/>

<!-- Target to create the build directories prior to the -->
<l-- compile target. -->
<target name="prepare">

<mkdir dir="${build.dir}"/>

<mkdir dir="${build.classes}"/>

<mkdir dir="${build.libl}"/>

82

<mkdir dir="${build.tests}"/>
<mkdir dir="${build.docs}"/>
<copy file="glass.cod" todir="${build.classes}"/>

</target>

<target name="clean" description="Remove all generated files.">
<delete dir="${build.dir}"/>

</target>

<target name="compile" depends="prepare"
description="Compiles all source code except tests.">
<javac srcdir="${src.dir}" destdir="${build.classes}"
excludes="tests" />

</target>

<target name="jar" depends="compile"
description="Generates ABNNSim.jar in the ’dist’ directory.">
<!-- Exclude unit tests from the final JAR file -—>
<jar jarfile="${build.lib}/${jar.file}" Basedir="${build.classes}">
<manifest>
<attribute name="Main-Class" value="abnnsim.ABNNSimModel"/>
<attribute name="Class-Path" value="${class.pathl}"/>
</manifest>
</jar>

</target>

<target name="jarnogui" depends="compile"

83

description="Generates jar file in the ’dist’ directory.">
<!-- Exclude unit tests from the final JAR file -—>
<jar jarfile="${build.lib}/${jar.nogui.file}"
Basedir="${build.classes}">

<manifest>
<attribute name="Main-Class" value="abnnsim.ABNNModelNoGUI"/>
<!-- attribute name="Class-Path" value="${class.path}"/-->
<attribute name="Class-Path"
value="/usr/local/repast-2.0/1ib/repast. jar :
/usr/local/repast-2.0/1lib/colt. jar :
/home/tschoenh/Research/classesl2.jar : ./"/>
</manifest>
</jar>

</target>

<target name="export" depends="compile"
description="Generates ABNNSim.jar in the ’dist’ directory and
uses scp to copy the file to apocalypse.cse.nd.edu">
<!-- Exclude unit tests from the final JAR file -->
<jar jarfile="${build.lib}/${export.jar.file}"
Basedir="${build.classes}">
<manifest>
<attribute name="Main-Class" value="abnnsim.ABNNSimModel"/>
<attribute name="Class-Path"
value="/usr/local/repast-2.0/1ib/repast. jar :
/usr/local/repast-2.0/1ib/colt.jar :

/home/tschoenh/Research/classesl2.jar : ./"/>

84

</manifest>
</jar>
<exec executable="scp" dir="${build.lib}" timeout="6000">

<arg line="${export.jar.file} tschoenh@apocalypse.cse.nd.edu:" />

</exec>

</target>

<target name="test" depends="compile" description="Runs junit tests">
<java fork="true" classname="junit.textui.TestRunner"
dir="${build.classes}"
classpath="${class.path}" failonerror="true">
<arg value="abnnsim.tests.AllTests"/>
<!-- arg value="junit.samples.AllTests"/ -->
</java>

</target>

<target name="testgui" depends="compile" description="Runs junit tests">
<java fork="true" classname="junit.swingui.TestRunner"
dir="${build.classes}"
classpath="${class.path}" failonerror="true">
<arg value="abnnsim.tests.AllTests"/>
<!-- arg value="junit.samples.AllTests"/ -->
</java>

</target>

<target name="exec" depends="jar" description="Runs the executable jar">

<echo message="Running ${build.lib}/${jar.file}"/>

85

<java fork="true" jar="${build.lib}/${jar.file}"/>

</target>

<target name="nogui" depends="jarnogui"
description="Runs the executable jar">
<echo message="Running ${build.lib}/${jar.nogui.file}"/>
<java fork="true" jar="${build.lib}/${jar.nogui.file}"/>

</target>

<target name="batch" depends="jar"
description="Runs the sim in batch mode">
<tstamp>
<format property="now" pattern="hh:mm:ss:SSS aa" />
</tstamp>
<echo> now = ${now} </echo>
<java fork="true" classpath ="${build.lib}/${jar.file};${class.path}"
classname="uchicago.src.sim.engine.SimInit">
<arg line="-b"/>
<arg value="abnnsim.SFNNModel"/>
<arg value="ABNNSimParams.pf"/>
</java>
<tstamp>
<format property="then" pattern="hh:mm:ss:SSS aa" />
</tstamp>
<echo> now = ${then} </echo>

</target>

86

<target name="doc" depends="prepare"
description="Creates javadoc of project">
<javadoc excludepackagenames="tests.*" destdir="${build.docs}">
<package name="abnnsim.x*"/>
<sourcepath location="src"/>
<classpath location="${class.path}"/>
</javadoc>

</target>

<target name="all" depends="clean,test,jar"

description="Cleans, compiles, tests then builds the JAR file."/>

</project>

87

APPENDIX B

SAMPLE SIMULATION OUTPUT

B.1 Overview

This Appendix contains an example of the type of output file generated by
ABNNSim. The file given here is reduced in size from a standard output file.
This file contains only information from the beginning and end of the simulation,

but output files usually contain information from every time step.

B.2 Naming Convention

In order to ensure that subsequent runs of the program do not overwrite ex-
isting output files, we have created a naming convention that uniquely identifies

each output file. The names are generated with the following Java code:

String fileName = "ABNNSimQOutput" + getRngSeed() + "RngSeed" + \\
getMeanNumLinks() + "Links" + getNetworkType() + "NetType" + \\

n .dat n.

This convention not only creates unique file names, but allows users to search
and sort the output files based on the simulation parameters. With standard Unix
tools like sed and awk, these flat ASCII files can be used in a manner similar to

a database system, but in a significantly more portable way.

88

B.3 Sample Output File

Clock is 2

Network Type 1

Clustering Coefficient is: 0.0885275557775558

Global Harmonic Mean Distance is: 2.140771975348663

Avg Local Harmonic Mean Distance is:

In Degree Hist:

Tue Mar 08 15:37:43 EST 2005
RngSeed: 1110314257229
ActionThreshold: 0.2
Alpha: 0.7

Gamma: 1.0

GuiFlag: false

MaxTicks: 100
MeanNumLinks: 10
NetworkType: 1

Nu: 0.1

NumNeurons: 100
NumberOfInputNeurons: 1
NumberOfOutputNeurons: 4
OutputFlag: true
PruningThreshold: 0.01

RelaxationTime: 1.3

89

9.730779541632263

RewireProb: 0.2

Schedule: uchicago.src.sim.engine.Schedule@16e46f5
SigmaNumLinks: 1.5

TestingFile: unknown

TrainingFile: unknown

WTheta: 0.1

WorldXSize: 500

WorldYSize: 500

In Degree Distribution:
Entries=100, ExtraEntries=0
Mean=9.57, Rms=3.00418
MinBinHeight=0, MaxBinHeight=14

Axis: Bins=101, Min=0, Max=101

Heights:
0123456 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0000261081214 13107 7 5 3 1 1 1 0 O O O

Out Degree Hist:

Tue Mar 08 15:37:43 EST 2005
RngSeed: 1110314257229
ActionThreshold: 0.2

Alpha: 0.7

90

Gamma: 1.0

GuiFlag: false

MaxTicks: 100
MeanNumLinks: 10
NetworkType: 1

Nu: 0.1

NumNeurons: 100
NumberOfInputNeurons: 1
NumberOfOutputNeurons: 4
OutputFlag: true
PruningThreshold: 0.01
RelaxationTime: 1.3
RewireProb: 0.2
Schedule: uchicago.src.sim.engine.Schedule@16e46£f5
SigmaNumLinks: 1.5
TestingFile: unknown
TrainingFile: unknown
WTheta: 0.1

WorldXSize: 500

WorldYSize: 500

Out Degree Distribution:
Entries=100, ExtraEntries=0
Mean=9.18, Rms=2.174304

MinBinHeight=0, MaxBinHeight=30

91

Axis: Bins=101, Min=0, Max=101

Heights:
012345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22

04000016153017197 1 0 0 0 0 0 O O O O

Clock is 100

Network Type 1

Clustering Coefficient is: 0.0

Global Harmonic Mean Distance is: 44.27064107141005
Avg Local Harmonic Mean Distance is: 0.0
In Degree Hist:

Tue Mar 08 15:38:32 EST 2005

RngSeed: 1110314257229

ActionThreshold: 0.2

Alpha: 0.7

Gamma: 1.0

GuiFlag: false

MaxTicks: 100

MeanNumLinks: 10

92

NetworkType: 1

Nu: 0.1

NumNeurons: 100
NumberOfInputNeurons: 1
NumberOfOutputNeurons: 4
OutputFlag: true
PruningThreshold: 0.01
RelaxationTime: 1.3
RewireProb: 0.2
Schedule: uchicago.src.sim.engine.Schedule@16e46f5
SigmaNumLinks: 1.5
TestingFile: unknown
TrainingFile: unknown
WTheta: 0.1

WorldXSize: 500

WorldYSize: 500

In Degree Distribution:
Entries=100, ExtraEntries=0
Mean=1.36, Rms=1.228983
MinBinHeight=0, MaxBinHeight=55
Axis: Bins=101, Min=0, Max=101

Heights:

0 1 23456789 1011 12 13 14 15 16 17 18 19 20 21 22

93

1865561364310000 0 0 0 OO O OO O O O O

Out Degree Hist:

Tue Mar 08 15:38:32 EST 2005
RngSeed: 1110314257229
ActionThreshold: 0.2

Alpha: 0.7

Gamma: 1.0

GuiFlag: false

MaxTicks: 100

MeanNumLinks: 10
NetworkType: 1

Nu: 0.1

NumNeurons: 100
NumberOfInputNeurons: 1
NumberOfOutputNeurons: 4
OutputFlag: true
PruningThreshold: 0.01
RelaxationTime: 1.3
RewireProb: 0.2

Schedule: uchicago.src.sim.engine.Schedule@16e46£f5
SigmaNumLinks: 1.5
TestingFile: unknown

TrainingFile: unknown

94

WTheta: 0.1
WorldXSize: 500

WorldYSize: 500

Out Degree Distribution:
Entries=100, ExtraEntries=0
Mean=0.93, Rms=0.255147
MinBinHeight=0, MaxBinHeight=93
Axis: Bins=101, Min=0, Max=101
Heights:
01 234567891011 12 13 14 15 16 17 18 19 20 21 22

793000000000 0 O O 0 0O OO O OOODO

95

10.

11.

BIBLIOGRAPHY

Reka Albert and Albert-Laszlo Barabasi. Topology of evolving networks: Lo-
cal events and universality. Physical Review Letters, 85(24), 2000.

Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Diameter of the
world wide web. Nature, 401:130-131, 1999.

J. Anderson. An Introduction to Neural Networks. MIT Press, Cambridge,
MA, 1996.

Steven C. Bankes. Agent-based modeling: A revolution? Proceedings of the
National Academy of Sciences, 99:7199-7200, May 2002.

A. Barabasi. Linked: The New Science of Networks. Perseus Publishing,
Cambridge, MA, 2002.

James A. Bednar, Yoonsuck Choe, Judah De Paula, Risto Miikkulainen, Jef-
ferson Provost, and Tal Tversky. Modeling cortical maps with topographica.
Neurocomputing, in press, 2004.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., 1995.

Bela Bollobas. Random Graphs Second Edition. Cambridge University Press,
United Kingdom, 2001.

Eric Bonabeau. Agent-based modeling: Methods and techniques for simulat-
ing human systems. Proceedings of the National Academy of Science, 99:7280
— 7287, May 2002.

James M. Bower, David Beeman, and Michael Hucka. The genesis simulation
system. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural
Networks. The MIT Press, 2002.

R. Cancho and R. Sole. Optimization in complex networks, 2001.

96

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. R. C. Cannon, M. E. Hasselmo, and R. A. Koene. From biophysics to be-
havior catacomb2 and the design of biologically-plausible models for spatial
navigation. Neuroinformatics, 1(1):3-42, February 2003.

Gail A. Carpenter and Stephen Grossberg. Adaptive resonance theory (ART),
pages 79-82. MIT Press, 1998.

S. Chalup. Issues of neurodevelopment in biological and artificial neural net-
works. In Proceedings of the Fifth Biannual Conference on Artificial Neural
Networks and Expert Systems (ANNES 2001), pages 40-45, 2001.

K. Mani Chandy and Jayadev Misra. Asynchronous distributed simulation via
a sequence of parallel computations. Commun. ACM, 24(4):198-206, 1981.

D. Horn Chechik, G. and E. Ruppin. Neuronal regulation and hebbian learn-
ing. In M. Arbib, editor, The handbook of brain theory and neural networks,
Cambridge, MA, 2000. MIT Press.

G. Chechik, I. Meilijson, and E. Ruppin. Neuronal regulation: A mechanism
for synaptic pruning during brain maturation. Neural Computation, 11(8),
1999.

T. Cickovski, C. Huang, R. Chaturvedi, T. Glimm, H.G.E. Hentschel, M.
Alber, J. A. Glazier, S. A. Newman, and J. A. Izaguirre. A framework for
three-dimensional simulation of morphogenesis. IEEE Transactions on Com-
putational Biology and Bioinformatics, 2004. Submitted, preprint at.

A. Cochocki and Rolf Unbehauen. Neural Networks for Optimization and
Signal Processing. John Wiley & Sons, Inc., 1993.

N. Collier. Repast: An extensible framework for agent simulation. Technical
report, University of Chicago, 2003.

Nick Collier. Repast homepage. http://repast.sourceforge.net.

Howard Demuth and Mark Beale. Neural Network Toolbox Users Guide. The
Math Works, 2004.

C. L. Barrett et al. Transportation analysis simulation system. Technical
report, Los Alamos National Laboratory, 2004.

Yongqin Gao. Topology and evolution of the open source software community.
Master’s thesis, University of Notre Dame, Notre Dame IN, 2003.

W. Gerstner and W.M. Kistler. Mathematical formulations of hebbian learn-
ing. Biological Cybernetics, 87:404-415, 2002.

97

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

Andrew Gillies and David Sterratt. A neuron programming tutorial. Technical
report, 2004.

Nigel H. Goddard and Greg Hood. Large-scale simulation using parallel gen-
esis. In James M. Bower and David Beeman, editors, The Book of GENESIS.
Springer-Verlag, 1998.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

Mike Hasselmo. Catacomb2: Components and tools for accessible computer
modeling in biology. http://www.compneuro.org/catacomb/index.shtml,
2001.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, 1998.

D.O. Hebb. The Organization of Behavior. John Wiley and Sons, NY, 1949.

M. L. Hines and N. T. Carnevale. The neuron simulation environment. Neural
Computation, 9:1179-1209, 1997.

M. L. Hines and N. T. Carnevale. The neuron simulation environment. In
M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks.
The MIT Press, 2002.

J.J. Hopfield and A.V.M. Herz. Rapid local synchronizations of action po-
tentials: Towards computation with coupled integrate-and-fire neurons. In
Proceedings of the National Academy of Science, volume 92, pages 66556662,
1995.

F. W. Howell, Jonas Dyhrfjeld-Johnsen, Reinoud Maex, Nigel H. Goddard,
and Erik De Schutter. A large-scale model of the cerebellar cortex using
pgenesis. Neurocomputing, 32-33:1041-1046, 2000.

Alfred Hubler. Lecture notes for Nonlinear Dynamics: An Introduction, 2004.

S. L. Hung and Hojjat Adeli. Object-oriented backpropagation and its appli-
cation to structural design. Neurocomputing, 6(1):45-55, 1994.

J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G.
Thomas, G. Forgacs, M. Alber, G. Hentschel, S. A. Newman, and J. A.
Glazier. CompuCell, a multimodel framework for simulation of morphogene-
sis. Bioinformatics, 20(7):1129-1137, 2004.

William James. Principles of Psychology. Henry Holt, 1890.

98

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
920.

ol.

d2.

53.

David R. Jefferson, Brian Beckman, Frederick Wieland, Leo Blume, Mike Di
Loreto, Phil Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tupman, Van
Warren, John J. Wedel, Herb Younger, and Steve Bellenot. Distributed sim-
ulation and the time warp operating system. In SOSP, pages 77-93, 1987.

H. Jeong, B. Tombor, R. Albert, Z. Oltvai, and A. Barabasi. The large-scale
organization of metabolic networks. Nature, 407:651, 2000.

Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43:59-69, 1982.

Rolf Kotter. Online retrieval, processing, and visualization of primate con-
nectivity data from the cocomac database. Neuroinformatics, 2(2):127-144,
2004.

Marcel Kunze and Johannes Steffens. The neural network objects. Proceedings
of the 5th Annual AIHENP Workshop, 1996.

Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel. Optimal
brain damage. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems II, San Mateo, CA, 1990. Morgan Kauffman.

W. Maass. Networks of spiking neurons: The third generation of neural net-
works. In Australian Conference on Neural Networks, 1996.

Greg Madey, Matthias Scheutz, Sunny Boyd, Tim Schoenharl, and John Ko-
recki. Tmans home page. http://tmans.sourceforge.net, 2004.

Massimo Marchiori and Vito Latora. Harmony in the small-world. Physica
A, 285:539-546, 2000.

Paolo Marrone. JOONE: The Complete Guide. 2005.

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

Stanley Milgram. The small world problem. Psychology Today, pages 60 — 67,
May 1967.

Michael C. Mozer and Paul Smolensky. Skeletonization: a technique for trim-
mang the fat from a network via relevance assessment, pages 107-115. Morgan
Kaufmann Publishers Inc., 1989.

Athanasius F. M.Marée and PaulienHogeweg. How amoeboids self-organize
into a fruiting body: Multicellular coordination in dictyostelium discoideum.
Proceedings of the National Academy of Science, 98(7):3879-3883, 2001.

99

o4

25.
26.

57.

28.

29.

60.

61.

62.
63.

64.

65.

66.

67.

68.

. K. Nagel, R. Beckman, and C. Barrett. Transims for urban planning. Tech-
nical Report LA-UR 984389, Los Alamos National Laboratory, Los Alamos,
NM., 1999.

Mitchel Resnick. Turtles, Termites and Traffic Jams. MIT Press, 1994.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323:533-536, 1986.

Thomas C. Schelling. Dynamic models of segregation. Journal of Mathemat-
1cal Sociology, 1:143-186, 1973.

Timothy Schoenharl. Agent based modeling aproach to self-organizing neural
networks. In Institute for Math and its Applications: Workshop on Agent-
Based Modeling, November 2003.

Timothy Schoenharl. Exploring alternate topologies in neural networks. In
Proceedings of Swarmfest 2003, March 2003.

Timothy Schoenharl. Using agent based modeling in the exploration of self-
organizing neural networks. In Proceedings of the Workshop on Agent/Swarm
Programming, October 2003.

Timothy Schoenharl. Agent based exploration of self-organizing neural net-
works. In Understanding Complex Systems Symposium 2004, May 2004.

John Scott. Social Network Analysis. SAGE Publications, 1991.

R. Segev and E. Ben-Jacob. From neurons to brain: Adaptive self-wiring of
neurons. Advances in Complex Systems, 1:67-78, 1998.

Jimmy Shadbolt and John G. Taylor. Neural networks and the financial mar-
kets: predicting, combining and portfolio optimisation. Springer-Verlag, 2002.

G. Szirtes, Zs. Palotai, and A. Lorincz. Hebbnets: Dynamic network with
hebbian learning rule. http://arxiv.org/pdf/nlin.AO/0212010, 2002.

G. Szirtes, Zs. Palotai, and A. Lorincz. Emergence of scale-free properties in
hebbian networks. http://arxiv.org/pdf/nlin.AO /0308013, 2003.

Giorgio Valentini and Francesco Masulli. Neurobjects: An object-oriented
library for neural network development. TBA, 2001.

http://www.wormbase.org/.

100

69.

70.

71.

72.

73.

74.

75.

Wayne W. Wakeland, Edward Gallaher, Louis Macovsky, and C. Athena Ak-
tipis. A comparison of system dynamics and agent-based simulation applied
to the study of cellular receptor dynamics. In Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS04), 2004.

Duncan Watts. Small Worlds: The Dynamics of Networks Between Order
and Randomness. Princeton University Press, Princeton, NJ, 1999.

Duncan Watts and Steven Strogatz. Collective dynamics of ’small world’
networks. Nature, 393:440-442, 1998.

Matthew A. Wilson, Upinder S. Bhalla, John D. Uhley, and James M. Bower.
Genesis: A system for simulating neural networks. In NIPS, pages 485-492,
1988.

Robin J Wilson. Introduction to Graph Theory. John Wiley & Sons, Inc.,
1986.

J. Xu and G. Madey. Exploration of the open source software community. In
Proceedings of the NAACSOS Conference 2004, June 2004.

Andreas Zell, Niels Mache, Ralf Huebner, Michael Schmalzl, Tilman Sommer,
and Thomas Korb. SNNS: Stuttgart neural network simulator. Technical
report, University of Stuttgart, Stuttgart, 1992.

This document was prepared & typeset with pdfIATEX, and formatted with
NDdiss2¢ classfile (v1.0[2004/06/15]) provided by Sameer Vijay.

101

	Abstract
	DEDICATION
	ACKNOWLEDGMENTS
	CONTENTS
	FIGURES
	TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Overview
	1.2 Complex Systems
	1.2.1 Complex Networks

	1.3 Neural Networks
	1.3.1 Biological Neural Networks
	1.3.2 Artificial Neural Networks

	1.4 Agent-Based Modeling and Simulation
	1.5 Research Goals

	CHAPTER 2: BACKGROUND
	2.1 Complex Networks
	2.1.1 Metrics
	2.1.1.1 Small Worlds
	2.1.1.2 Scale Free Networks
	2.1.1.3 Others

	2.1.2 Prevalence of Complex Networks in the Real World
	2.1.2.1 Constructs - Examples of Man-made Networks
	2.1.2.2 Social Systems
	2.1.2.3 Biological Systems

	2.1.3 Algorithms for Network Construction
	2.1.3.1 Watts-Strogatz and Barabasi
	2.1.3.2 Local Models

	2.2 Biological Neural Networks
	2.2.1 Reductionist Approach: Neurons
	2.2.2 Networks
	2.2.3 Network Formation: Possible Mechanisms

	2.3 Artificial Neural Networks
	2.3.1 Historical Perspective
	2.3.2 Similar Work
	2.3.2.1 Artificial Neural Network Toolkits
	2.3.2.2 Biological Neural Network Simulators
	2.3.2.3 Neural Network Simulations

	2.4 Agent Based Modeling and Simulation
	2.4.1 Historical Perspective
	2.4.2 Applicability
	2.4.3 Toolkits

	CHAPTER 3: THE AGENT BASED MODELING APPROACH TO SIMULATING NEURAL NETWORKS
	3.1 Abstract
	3.2 Introduction
	3.3 Background
	3.3.1 Similar Work
	3.3.1.1 Artificial Neural Network Toolkits
	3.3.1.2 Biological Neural Network Simulators

	3.3.2 Agent Based Modeling

	3.4 Design
	3.4.1 System Goals
	3.4.2 System Overview
	3.4.3 Implementation

	3.5 Results
	3.5.1 Case Studies
	3.5.1.1 Case 1: Rewiring With Distance Bias
	3.5.1.2 Case 2: Adding Inhibitory Neurons
	3.5.1.3 Case 3: Chemical Signaling

	3.6 Conclusion
	3.7 Future Work

	CHAPTER 4: A TOPOLOGICAL EXPLORATION OF SELF-ORGANIZING NEURAL NETWORK STRUCTURES
	4.1 Abstract
	4.2 Introduction
	4.3 Background
	4.3.1 Complex Networks
	4.3.2 Biological Neural Networks
	4.3.3 Related Work

	4.4 Design
	4.4.1 Neuron Model
	4.4.2 Pruning
	4.4.3 Networks
	4.4.4 Measurements

	4.5 Results
	4.5.1 Sensitivity Analysis
	4.5.2 Pruning

	4.6 Conclusion
	4.6.1 Discussion of Results
	4.6.2 Implications

	4.7 Future Work

	CHAPTER 5: RESULTS AND CONCLUSION
	5.1 Summary of Results
	5.1.1 ABNNSim: A Framework for Building Neural Network Simulations
	5.1.2 An Exploration of Topological Structures Generated by Local Rules

	5.2 Future Work

	APPENDIX A: ANT BUILD FILE
	A.1 Overview
	A.2 Build File

	APPENDIX B: SAMPLE SIMULATION OUTPUT
	B.1 Overview
	B.2 Naming Convention
	B.3 Sample Output File

	BIBLIOGRAPHY

