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The ability to adapt behavior to maximize reward as a result of interac-
tions with the environment is crucial for the survival of any higher or-
ganism. In the framework of reinforcement learning, temporal-difference
learning algorithms provide an effective strategy for such goal-directed
adaptation, but it is unclear to what extent these algorithms are compati-
ble with neural computation. In this article, we present a spiking neural
network model that implements actor-critic temporal-difference learn-
ing by combining local plasticity rules with a global reward signal. The
network is capable of solving a nontrivial gridworld task with sparse
rewards. We derive a quantitative mapping of plasticity parameters and
synaptic weights to the corresponding variables in the standard algorith-
mic formulation and demonstrate that the network learns with a similar
speed to its discrete time counterpart and attains the same equilibrium
performance.

1 Introduction

A general problem in neuroscience is how system-level learning is realized
on the cellular level. It is a basic assumption that synaptic plasticity under-
lies learning, but in higher organisms, the gap between the description level
of synaptic efficacy and that of animal behavior remains largely unbridged
(but see Antonov, Antonova, Kandel, & Hawkins, 2003). One model of
learning that attracts considerable interest is reinforcement learning (RL).
Unlike supervised learning, which requires an explicit teacher signal, RL
requires only an evaluative feedback, which can be noisy or sparse. An RL
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agent attempts to maximize the amount of reward it receives from the envi-
ronment. This is more in keeping with the majority of learning situations an
animal encounters in the natural world, where direct supervision is largely
absent but rewards and penalties such as hunger, satiety, pain, and pleasure
abound. There is considerable evidence from behavioral and neurophysio-
logical studies that animals perform some kind of reinforcement learning.
In particular, many results can be accounted for by a variant of RL known as
temporal-difference (TD) learning, in which reward estimates at successive
times are compared. By comparing reward estimates rather than waiting
for a reward from the environment, a TD learning system is effective at
solving tasks where the reward is sparse. TD learning has been used to in-
terpret the activity of dopamine neurons in reward learning in nonhuman
primates (Schultz, Dayan, & Montague, 1997; Schultz, 2002); in humans,
dopamine-dependent prediction error has been shown to guide decisions
(Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). Moreover, in human
functional neuroimaging, a high correlation was found between the blood-
oxygenation-level-dependent (BOLD) activity and the error signal required
by a TD learning algorithm (O’Doherty, Dayan, Friston, Critchley, & Dolan,
2003; Seymour et al., 2004). It has also been used to model bee foraging in
uncertain environments (Montague, Dayan, Person, & Sejnowski, 1995; Niv,
Joel, Meilijson, & Ruppin, 2002) and human decision making (Montague,
Dayan, & Sejnowski, 1996). In the field of machine learning, TD learning has
been successfully applied to a variety of applications such as backgammon
(Tesauro, 1994), balancing a pole on a cart (Barto, Sutton, & Anderson, 1983),
and robotic control (Morimoto & Doya, 2001). For a comprehensive intro-
duction to TD learning and reinforcement learning in general, see Sutton
and Barto, 1998, and Bertsekas and Tsitsiklis, 1996.

However, it remains unclear how TD learning could be implemented in
the brain. The classical formulation of TD learning is defined in discrete
steps. In each step, the agent chooses an action, which is communicated to
the environment. The environment responds with a signal informing the
agent of its new state. It is therefore a simple operation to compare the
reward estimate for one state to the reward estimate for the state occupied
in the previous step. Neurons interact by means of pulses in continuous
times, so it is not immediately clear how to define the concept of “previous
step,” or which observable quantity should be compared. As a result of
this incompatibility, previous modeling attempts have generally focused
on either non-TD reinforcement learning strategies (Seung, 2003; Xie &
Seung, 2004; Florian, 2007; Baras & Meir, 2007) or nonspiking models (Suri
& Schultz, 1999, 2001; Foster, Morris, & Dayan, 2000). The former category
has demonstrated that spiking neuronal networks can solve simple tasks
such as the XOR problem, where a reward or penalty is awarded after every
decision of the network. The ability of such networks to solve more difficult
tasks with sparse rewards has not been shown. In the latter category, Foster
et al. (2000) have shown that a nonspiking neuronal implementation of TD
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learning is capable of solving a complex task, but it is not a priori clear
how the discrete synaptic weight updates employed in the model could be
realizable by a synapse operating in continuous time. A third category of
studies investigates aspects of TD learning in the context of spiking activity;
however, they focus only on the prediction problem of when rewards can
be expected and do not address the control problem of what actions to take
(Rao & Sejnowski, 2001) or only simple control problems where a reward or
penalty is awarded after every decision (Izhikevich, 2007; Farries & Fairhall,
2007).

We present for the first time a spiking neuronal network model that
concurrently solves the prediction and control problems by implement-
ing a complete actor-critic TD learning agent (see section 2). The synaptic
plasticity underlying the learning process relies on biologically plausible
measures of pre- and postsynaptic activity and a global reward signal. We
further show the equivalence between the synaptic dynamics and the dis-
crete time formulation of a TD algorithm (reviewed in section 1.1), yielding
a quantitative mapping between the parameters of the discrete time formu-
lation and those of the neuronal formulation (see section 3). The neuronal
network can solve a nontrivial gridworld task with sparse rewards almost
as fast as the equivalent discrete time algorithmic implementation and with
the same equilibrium performance (see section 4.1). We show that the de-
rived mapping has a high degree of accuracy (see section 4.2). Performance
and mapping remain robust for a wide range of parameters. The map-
ping accuracy decreases if the agent occupies each state for only very short
periods, but the learning behavior of the network remains robust until a
limiting time span is reached (see section 4.3). The synaptic update rules in-
vestigated here represent only one possible implementation of TD learning;
we discuss alternative implementations in section 5.

Preliminary work has been presented in abstract form (Potjans, Morrison,
& Diesmann, 2007a, 2007b).

1.1 Actor-Critic Temporal-Difference Learning. The goal of a rein-
forcement learning agent is to maximize the amount of reward it receives
from the environment over time. When the agent receives a reward (or
penalty), a major problem is how to distribute the reinforcement among
the decisions that led to it; this is known as the temporal credit assignment
problem. Temporal-difference learning represents a particularly effective
method of solving this problem. Here, we focus on a variant of TD learning
known as the actor-critic architecture (Witten, 1977; Barto et al., 1983). A
thorough introduction to TD learning and the actor-critic algorithm pre-
sented here can be found in Sutton and Barto, 1998. The two modules of
the actor-critic architecture (see Figure 1) are so called because the actor
selects which actions to take in a given state, and the critic evaluates the
consequences of the chosen action. In each discrete time step, the environ-
ment transmits its state to the agent. The actor selects an action by making
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Figure 1: Actor-critic architecture. In each state, the actor selects an action
(a ) on the basis of its policy. As a result of this action, a new state is entered.
The environment (E) transmits the new state information (s) to the actor and
the critic and transmits the reward (r ) associated with the new state to the critic.
The critic evaluates whether the new state is better or worse than expected on
the basis of its value function and the reward and emits an error signal (TD
error) that expresses this disparity. The TD error is then used to update both the
value function and the policy. (Figure adapted from Sutton & Barto, 1998.)

use of a policy π (s, a ), which gives the probability of selecting action a in
state s. As a result of the action, in the next time step, the environment will
transmit a new state to the agent and also any reward associated with the
new state. Additionally, in each time step, the critic evaluates to what extent
the current state is an improvement over the previous state by making use
of a value function, Vπ (s). The value function can be understood as the
expected discounted summed future reward obtained when starting from
a given state s at time step i and following policy π :

Vπ (s) = E
{
ri+1 + γ ri+2 + γ 2ri+3 + . . . | si = s

}
= E

{
ri+1 + γ

∞∑
k=0

γ kri+k+2 | si = s

}

= E
{
ri+1 + γ Vπ (si+1) | si = s

}
, (1.1)

where E {·} denotes an expectation value, ri+k is the reward delivered at
the state visited k time steps later, and γ is a discounting factor between 0
and 1. During the learning process, only estimates V(s) for the actual value
function Vπ (s) are available. Successive estimates of the value function will
generally not fulfill the self-consistency relationship given in equation 1.1.
The discrepancy is termed the TD error:

δi = ri+1 + γ V(si+1) − V(si ). (1.2)
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The sign and magnitude of δi contain information on how the estimate for
Vπ (s) must be adjusted with respect to self-consistency. If the TD error is
positive, this means that the new state si+1 is better than expected, so V(si )
needs to be increased. Conversely, if the TD error is negative, the new state
is worse than expected, so V(si ) should be decreased. The magnitude of δi

gives an indication of how far adrift the current estimate of Vπ (s) is. This
results in an update rule for V(si ):

V(si ) ← V(si ) + αδi , (1.3)

where α is a small positive step-size parameter. This is known as the TD(0)
algorithm (Sutton, 1988), and it converges for a given policy with probability
1 for sufficiently small α (Dayan, 1992; Dayan & Sejnowski, 1994). This
solves the prediction problem of determining the value function Vπ for a
particular policy π . To solve the control problem (i.e., determine an optimal
policy for the task), the actor also makes use of the information encoded
in the TD error signal to adjust the policy accordingly. A positive TD error
indicates that the selected action a resulted in a better state than expected;
therefore, the probability of selecting this action the next time the agent is
in state s should be increased. Likewise, a negative TD error implies that
the probability of selecting this action the next time the agent is in state s
should be reduced. For example, if the probability of selecting an action is
given by the Gibbs softmax method,

π(s, a ) = ep(s,a )

�bep(s,b)
, (1.4)

where p(s, a ) is a measure of the preference for action a in state s, then π

can be updated toward the optimal policy by means of the update

p(si , ai ) ← p(si , ai ) + βδi , (1.5)

where β is another small step-size parameter. In this way, an optimal policy
and associated value function can be learned incrementally, purely by the
agent’s own exploration of the environment.

The simplest way to implement the value function is by using a look-
up table, with one entry per state. The memory required for this structure
increases linearly with the number of states. Similarly, in the case of discrete
actions, the policy can be represented by a look-up table in which each state
has one entry for each action. Consequently the amount of memory required
for this structure increases linearly with the product of the number of states
and the number of possible actions. Moreover, as each state has to be visited
many times in order to obtain a good approximation of the value function,
increasing the number of states generally results in slower learning. As a
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result, the algorithm presented above is well suited for tasks with small to
moderate numbers of states and actions. To address problems with large
numbers of states and actions, some kind of generalization is required. One
approach is to interpret the actor-critic algorithm as a stochastic gradient
algorithm where the critic implements TD learning with an approximation
architecture determining the update of a parameterized policy (Konda &
Tsitsiklis, 2003), for which convergence criteria have been identified. As
our aim in this article is to show proof of principle for spiking neuronal
networks implementing TD learning, in the following we restrict ourselves
to the simple tabular algorithm outlined above.

2 Spiking Neuronal Network Model

The structure of the network—the neuronal modules and the synapses that
encode value function and policy—is presented in section 2.1. For clarity,
the synaptic dynamics underlying the convergence of the value function
and policy to optimal values are presented separately (section 2.2). All
simulation details are given in appendix A.

2.1 Network Architecture. The network structure shown in Figure 2
is inspired by the actor-critic architecture and is similar to the nonspiking
network investigated by Foster et al. (2000). The agent consists of three mod-
ules of current-based integrate-and-fire neurons: the actor module, the critic
module, and the states module. The agent interacts with the environment,
which for the purposes of this work is implemented purely algorithmically.
The environment activates the representation of a state by providing the
corresponding neurons with a DC stimulus, causing them to fire with a rate
of 42.63 Hz; their firing rate in the inactivated condition is 0.01 Hz. The en-
vironment simultaneously inhibits the actor module for a short time (action
suppression period) to allow the activity of the state neurons to build up.
The state neurons project to the actor module and the critic module. The
stronger the synaptic weights between the activated state and a given actor
neuron, the greater the probability that it will fire first. Whichever actor
neuron fires first in response to the activation of a state is interpreted by
the environment as the chosen action (for a review of first-spike coding, see
VanRullen, Guyonneau, Thorpe, 2005). Thus, the synaptic weights between
the state neurons and the actor neurons encode the policy of the agent. As a
result of the chosen action, the environment deactivates the previous state
and activates a new state as determined by the environmental model. If the
new state is associated with a reward, the environment emits a constant
reward signal R until the agent leaves the state again. The synaptic weights
between the state neurons and the critic neurons encode the value function
of the agent. Thus, if the agent moves from a state associated with a low
value to a state associated with a high value, the rate of the critic neurons
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Figure 2: Neuronal implementation of the actor-critic architecture shown in
Figure 1. The states (circles; 9 shown) are represented by pools of 40 neurons
(triangles; 3 shown per state), the critic by one group of 20 neurons (3 shown),
and the actor by 1 neuron for each possible action (2 shown). The state signal (s)
consists of a positive DC stimulus from the environment (E) to the appropriate
group of state neurons. The action signal (a ) is defined as the first spike emitted
by one of the actor neurons after entering a new state. The real-valued reward
signal (R) has a modulatory effect on the state-critic synapses (see section 2.2.1).
The action suppression signal (supp) consists of a negative DC stimulus to the
actor neurons.

increases. Conversely, a move from a high-value to a low-value state results
in a decrease in the critic firing rate.

2.2 Plasticity.

2.2.1 State-Critic Plasticity. In this section, we formulate an update rule
for the synaptic weights between state and critic neurons that encode the
value function of the neuronal agent, that is, a biologically plausible real-
ization of the value function update of the TD(0) algorithm, equation 1.3. To
obtain such a rule, we must consider three important properties of the value
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function update. First, not all values are updated at the same time; when
the agent moves from state si to state si+1, only V(si ) is updated. Second, the
update depends on the values of the current and the successive states, V(si )
and V(si+1), respectively. Third, the update depends on an external reward
r associated with state si+1. In the neuronal framework, we can interpret
these properties as follows:

1. State-critic synapses are negligibly plastic except for a short time pe-
riod when the agent has just left the corresponding state; the plasticity
interval is smaller than the time period the agent typically stays in
one state.

2. State-critic synapses are sensitive to a characteristic dynamic response
of the critic neurons, which encodes the change in stimulus.

3. State-critic synapses are sensitive to a global signal representing the
reward.

In addition, the synaptic update rule should be biologically plausible, in
that it is formulated continuously, does not require a clock signal, and
relies largely on local information. In the following, we present and test
a candidate synaptic update rule; however, the constraints do not entail a
unique specification, and so the rule presented here should be considered as
only one example of a class of suitable rules. Further examples are discussed
in section 5.

In order for a synapse to detect when the agent has left the state with
which the synapse is associated, a locally available signal encoding this
information must be identified. One such signal is the presynaptic rate:
this drops from a high to low value when the agent leaves a state as the
environment stops stimulating the state neurons associated with that state
(see section 2.1). Although the rate of the presynaptic neuron is not a di-
rectly measurable quantity from the point of view of the synapse, individual
spikes of the presynaptic neuron can be considered to be directly measur-
able. We can therefore approximate the rate for a particular realization of
spikes times by an activity trace, defined as

�̇s
j (t) = − 1

τs


�s

j −
∑
tn

j <t

δ
(
t − tn

j

) , (2.1)

where tn
j is the nth firing time of the presynaptic neuron j and τs is the

time constant of the activity trace. This is a low-pass filtered version of the
presynaptic spike train. For a review of plasticity rules implemented by such
variables, see Morrison, Diesmann, and Gerstner, 2008. We propose that the
synapse can be in three activity-dependent states: high activity, low activ-
ity, and plastic (see Figure 3A). The transition from one activity-dependent
state to another occurs when its activity trace passes the corresponding
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Figure 3: Plasticity of the state-critic synapses. (A) A synapse can adopt three
states: low activity, high activity, and plastic. The transitions are controlled by
thresholds (θh, θp, and θl) on the presynaptic activity trace �s . (B) A presynaptic
activity trace �s as a function of time. At 6 s the presynaptic neuron is stimulated
to produce a firing rate of 42.6 Hz; at 9 s the stimulus is turned off. The gray
dashed lines show the values of θh, θp, and θl, which trigger the transition con-
ditions depicted in A. (C) Postsynaptic activity traces and resultant state-critic
weight development as functions of time. The state in question is represented
by 40 presynaptic neurons, which project to a critic module of 20 neurons (see
Figure 2). The agent moves out of the state represented by the presynaptic neu-
rons into a higher-valued state at 3s, 9s, and 15s. The synapses become plastic
when the agent leaves the state (see B), and the change in weight depends on
the difference between two postsynaptic activity traces. The rapid postsynap-
tic activity trace (dashed black curve, averaged over all postsynaptic neurons)
adapts more quickly to the changes in rate than the laggard postsynaptic activity
trace (solid black curve, averaged over all postsynaptic neurons). The weight of
the state-critic synapses (gray curve, averaged over 800 synapses) consequently
increases each time the agent leaves the state and is otherwise constant.
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threshold. A realization of an activity trace for a state-critic synapse, to-
gether with the three thresholds, is shown in Figure 3B. In the following,
let us assume that the state neuron j is part of the group of neurons rep-
resenting state x. Before the agent enters x, the presynaptic firing rate is
low, and so the synapse is in the low-activity state. When the agent enters
x, all neurons representing that state are stimulated, causing an increase in
firing rate and thus an increase in the activity trace �s

j for all state-critic
synapses of neuron j . When �s

j exceeds a threshold θh, the synapses en-
ter the high-activity state. When the agent leaves x and enters a different
state, the neurons representing x are no longer stimulated, so their firing
rate decreases. �s

j decreases exponentially below a threshold θp, and the
synapses enter the plastic state. When the activity decreases further below
a threshold θl, the synapses reenter the low-activity state. In the low- and
high-activity states, the synapse is static; the transitions into and out of the
plastic state define an interval of plasticity triggered by the agent leaving
x, and thus fulfill the first property of the value function update discussed
above. Note that only the state-critic synapses associated with x will be plas-
tic when the agent leaves x, all other state-critic synapses will be in the low-
or high-activity states. If the action chosen does not result in a new state,
the state-critic synapses associated with x remain in the high-activity state,
and no learning takes place. This is a deviation from the traditional discrete
time TD(0) algorithm, in which the value function is updated every time
step independent of whether the action chosen results in a new state. How-
ever, for tasks with a moderate number of states and sparse rewards, this
deviation is unlikely to result in a worse performance. For problems where
the reward is sparse, a good choice for the discount factor γ is close to 1, as
it allows the agent to be farsighted. According to equations 1.1 and 1.2, the
value function update when an action is chosen that does not lead to a new
state is proportional to (γ − 1)V(si ) that is, it is negligibly small. We show in
section 4.1 that this deviation does not lead to a worse performance on our
test task.

The second property of the value function update in TD(0) learning re-
quires a comparison of the values of two successive states. In order to fulfill
this property in the neuronal continuous time formulation, the synapse
needs information that encodes the values of the previous and the current
states during its plasticity interval. As the value of a state is encoded by
the strengths of the corresponding state-critic synapses, an appropriate lo-
cally available signal expressing the value of a state is the rate of the critic
neurons: the greater the strength of the synapses, the higher the firing rate
of the critic neurons. Assuming that the postsynaptic spikes are directly
measurable by the synapse due to backpropagation or other mechanisms,
the postsynaptic rate can be approximated by a low-pass filter of the spike
train, as in equation 2.1.

To provide the synapse with information about two successive states at
the same time, we posit that the spikes of a postsynaptic neuron k contribute
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to two postsynaptic activity traces at the synapse: a rapid (or fast) trace �r
k

and a laggard (or slow) trace �l
k , with unequal time constants τr < τl. As

the laggard activity trace contains information about the previous state for
longer than the rapid activity trace, a comparison of the two traces reveals
whether the strength of the stimulus has recently increased or decreased.
This is depicted for an example in Figure 3C. Here, the agent moves from
state x to state y at 3 s, 9 s, and 15 s and from y to x at 6 s and 12 s. For the
purposes of illustration, the network is initialized such that the estimate
of V(y) is greater than the estimate of V(x): the state-critic synapses asso-
ciated with y are stronger than the state-critic synapses associated with x.
Consequently, the firing rate of the critic neurons increases when the agent
moves from x to y and decreases when the agent moves from y to x. As
the rapid activity trace adapts to changes in the postsynaptic activity more
quickly than the laggard activity trace, �r is greater than �l during the plas-
ticity interval of the state-critic synapses of x (see Figure 3B). Conversely,
during the plasticity interval of the state-critic synapses of y, �r is less
than �l. Biophysical candidates for all three activity traces are discussed by
Pfister and Gerstner (2006) in the context of spike-timing dependent plas-
ticity (STDP). We can therefore make the following ansatz for a continuous
formulation of the value function update in analogy to the discrete time
algorithm 1.3:

ẇk j (t) =
{

R + A
(
γ̃ �r

k(t) − �l
k(t)

) + C if plastic

0 otherwise
, (2.2)

where R is a real-valued signal representing the reward associated with
the successive state (see section 2.1), A and γ̃ are coefficients, and C is a
constant; the plasticity condition is determined by the presynaptic activity
trace �s

j (see equation 2.1). Note that all terms rely on information local
to the synapse with the exception of the global reward signal R, which is
unspecific (it is the same for all synapses). A possible biological implemen-
tation is the release of a neurotransmitter such as dopamine, which has been
shown to act as a third factor in the plasticity of corticostriatal synapses (see
Reynolds & Wickens, 2002, for a review). In this study, we are not concerned
with the reproduction of specific neurotransmitter dynamics, so we imple-
ment the reward signal in the simplest possible way: if the agent enters a
state that is associated with a reward of R, a reward signal of R is effective
until the agent leaves the state. The development of the mean weight of
the state-critic synapses associated with the low-valued state x is shown
for the example in Figure 3C. In this example, no state is rewarded (R = 0).
As the difference between �r

k and �l
k is positive during the plasticity inter-

val of synapses associated with state x, the synaptic weights between the
neurons representing x and the critic increase. Conversely, when the agent
moves from y to x, the negative difference between �r

k and �l
k during the
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plasticity interval results in a decrease of strength for the synapses between
the neurons representing y and the critic (data not shown). This is clearly
analogous to the value function update defined in equation 1.3; the choice
of parameters R, A, and γ̃ required for equivalence of the two formulations
is demonstrated in section 3.1.

Our rule can be considered as belonging to the class of differential Heb-
bian learning rules, which depend on rate of change of neuronal activity,
rather than on simultaneous pre- and postsynaptic activity, as is the case
for classical Hebbian rules. Differential Hebbian rules were introduced by
Klopf (1986) and Kosko (1986) in the form ẇk j ∝ λ̇ j λ̇k—the change of weight
is proportional to the product of the changes in the pre- and postsynaptic
rates. Such a rule can account for classical conditioning (Klopf, 1988). More
recently, an alternative variant of a differential Hebbian rule, in which the
change of weight is proportional to the correlation of the presynaptic sig-
nal and the derivative of the output signal, was successfully applied to RL
control problems (Porr & Wörgötter, 2003, 2007; Wörgötter & Porr, 2005).
In our rule, the change of weight is proportional to the rate of change of
the postsynaptic rate, which is expressed by the difference between the two
activity traces �r

k and �l
k , but not to the rate of change of the presynaptic

rate. The presynaptic rate determines when the synapse is plastic, but not
the magnitude of weight changes; its influence is multiplicative in the weak
sense. Roberts (1999) demonstrated that under certain constraints, the ex-
perimentally observed phenomenon of STDP (Markram, Lübke, Frotscher,
& Sakmann, 1997; Bi & Poo, 1998; Zhang, Tao, Holt, Harris, & Poo, 1998)
implies differential Hebbian learning in the sense that the mean change in
synaptic weight is proportional to the rate of change of the postsynaptic
spike probability. It is outside the scope of this study to investigate to what
extent our rule is compatible with STDP or other empirical plasticity data.

2.2.2 State-Actor Plasticity. The synaptic weights between state and actor
neurons represent the policy in the neuronal actor-critic architecture. Here
we present a biologically plausible realization of the plasticity rules given
by equation 1.5. Analogous to the value function update, equation 1.3,
in the discrete time algorithm, preference values are updated only when
the corresponding action has just been chosen. In the case of an update
of a preference value, the size of the update is proportional to the size of
the update in the value function (compare equations 1.3 and 1.5). In the
neuronal framework, these properties can be interpreted as follows:

1. State-actor synapses are negligibly plastic except for when the corre-
sponding action has just been chosen.

2. State-actor synaptic updates are proportional to state-critic synaptic
updates.

To enable the correct timing of weight updates, we assume that the plas-
ticity is gated by the postsynaptic activity; a synapse between a state neuron
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j and an actor neuron l is plastic, while the postsynaptic activity trace �a
l

with time constant τa implemented as in equation 2.1 exceeds a threshold
value θa. For a sufficiently high value of θa, this condition is met for only a
brief period after an actor neuron has fired—just after that particular action
has been chosen (see section 2.1). To fulfill the proportionality criterion, we
assume that while the synapse is plastic, it is subject to an axonal heterosy-
naptic spread of potentiation or depression from the synapses between the
state neuron and the critic neurons:

ẇl j (t) =



B
Nk

∑
k

ẇk j (t) if �a
l > θa

0 otherwise
, (2.3)

where B is a scalar coefficient, Nk is the number of synapses each state
neuron makes to critic neurons, and ẇk j is the rate of change of the synaptic
weight between neuron j and critic neuron k, as defined in equation 2.2.
The weight is restricted to the range 30 fC to 90 fC. The continuous weight
update is analog to the preference update in the discrete time algorithm,
equation 1.5. It is local in the sense that it relies solely on postsynaptic spikes
and information available to the axon of the presynaptic neuron.

Axonal or presynaptic spread of potentiation and depression has been
observed in a variety of preparations. Bonhoeffer, Staiger, and Aertsen
(1989) demonstrated that if long-term potentiation (LTP) is induced in a
synapse in rat hippocampal slice cultures, enhancement can also be ob-
served in other axonal synapses of the presynaptic neuron within a range
of at least 150 µm. Presynaptic spread of potentiation was confirmed for rat
visual cortex by Kossel, Bonhoeffer, and Boltz (1990), in acute hippocampal
slices within a range of 300 µm by Schuman and Madison (1994), and in
sparse cultured hippocampal networks by Tao, Zhang, Bi, and Poo (2000).
Presynaptic spread of LTD was first shown in Xenopus nerve-muscle cul-
tures by Cash, Zucker, and Poo (1996) and in sparse cultures of rat hip-
pocampal cells by Fitzsimonds, Song, and Poo (1997). Here, we postulate a
form of heterosynaptic plasticity that is also dependent on the participation
of the postsynaptic neuron of the affected synapse. The evidence support-
ing this is ambiguous. In the case of LTD, voltage clamping such a neuron
at −80 mV did not prevent the heterosynaptic depression of its synapses
(Fitzsimonds et al., 1997), which suggests that no participation of the postsy-
naptic neuron is required. In the case of LTP, voltage clamping such a neuron
−95 mV combined with whole-cell dialysis and Ca2+ chelation did inhibit
the heterosynaptic potentiation of its synapses (Schuman & Madison, 1994),
which suggests that participation of the postsynaptic neuron is indeed
required. Similar forms of heterosynaptic plasticity have been used to
model the development of delay-line topologies that can detect the de-
lay between two stimuli (Kempter, Leibold, Wagner, & van Hemmen, 2001;
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Leibold, Kempter, & van Hemmen, 2001; Leibold & van Hemmen, 2002).
However, in these studies, the activity of the postsynaptic neuron of the
affected synapse modulated the synaptic weight in an additive rather than
multiplicative fashion.

3 Mapping Between Continuous and Discrete Time Update Rules

3.1 Value Function Mapping. The weight update for the synapses be-
tween state and critic neurons presented in equation 2.2 is heuristically
motivated by the value function update of the discrete time TD(0) algorithm,
equation 1.3. In this section, we show the equivalence of the continuous and
the discrete time formulation of the value function update.

In the neuronal network, the value of each state is represented by the
set of synapses connecting the pool of the corresponding state neurons
with the pool of neurons representing the critic. As each synapse belonging
to this set undergoes slightly different weight changes, we consider the
dynamics of the mean weight of the state-critic synapses associated with a
state s:

ẇ(s, t) = 1
Nj Nk

∑
k, j

ẇk j (t),

where the dynamics of the weight wk j between a neuron j representing
state s and a critic neuron k is given by equation 2.2, Nj is the num-
ber of neurons representing state s, and Nk is the number of critic neu-
rons. The dynamics for the mean synaptic weight in the plasticity interval
is

ẇ(s, t) = R + A(γ̃ λr (t) − λl (t)) + C, (3.1)

where λr/l denotes the mean of the activity trace �r/l, which can be obtained
by averaging over the dynamics of the activity trace �r/l:

λ̇r/l = − 1
τr/l

(
λr/l − λ(t)

)
,

where λ(t) denotes the postsynaptic firing rate. The solution of this inho-
mogeneous differential equation is

λr/l(t) = λr/l (t0) e−(t−t0)/τr/l − 1
τr/l

∫ t

t0
λ(t′)e−(t−t′)/τr/l dt′. (3.2)

For simplicity, we consider λ(t) to be constant while the agent is in state s.
If the agent moves from si to si+1 at time t0, the rate of the critic neurons
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changes from λ(si ) to λ(si+1), and the adaptive rate functions λr/ l describe
the development of the postsynaptic rate according to equation 3.2 as

λr/l(t) = λ (si ) e−(t−t0)/τr/l + λ (si+1)
(
1 − e−(t−t0)/τr/l

)
. (3.3)

When the agent moves from si to si+1, the state-critic synapses associated
with state si are plastic for a short time interval �t = t2 − t1 (see section
2.2.1) after si is left. According to equations 3.1 and 3.3, the total change of
the mean synaptic weight w(si , t) during this time interval is

∫ t2

t1
ẇ(si , t) dt = R�t + A

{
γ̃ [(λ(si ) − λ(si+1))τ̂r + λ(si+1)�t]

− [(λ(si ) − λ(si+1))τ̂l + λ(si+1)�t]
} + C�t , (3.4)

where τ̂r = τr(e−(t1−t0)/τr − e−(t2−t0)/τr ) and τ̂l = τl(e−(t1−t0)/τl − e−(t2−t0)/τl ). The
period �t in which the synapse is plastic is determined by the presynaptic
activity thresholds θp and θl, as described in section 2.2.1: t1 is the time at
which the presynaptic rate reaches the upper threshold θp and t2 the time
at which it reaches the lower threshold θl. These times can be calculated by
formulating an expression for the development of the presynaptic rate λs

analogous to equation 3.3 and solving for λs = θp and λs = θl, respectively:

t1 =−τs ln
(

θp − λin

λac − λin

)
+ t0

t2 =−τs ln
(

θl − λin

λac − λin

)
+ t0. (3.5)

Here, λac is the rate of state neurons in the active condition, and λin is the
rate of state neurons in the inactive condition.

To compare the total change in w (si ) to the total change in V(si ) given
by equation 1.3 after the agent’s movement, we require a transformation
between the units of synaptic weight and the units of the value function.
We therefore start with two linear variable transformations:

V(si ) = mVλ (si ) + cV (3.6)

λ(si ) = mλw (si ) + cλ, (3.7)

where λ (si ) is the firing rate of the critic neurons corresponding to state si . A
linear relationship between the mean synaptic weight w and the firing rate of
the critic neurons λ is a good fit for weights in the range 30 fC to 90 fC (mλ =
0.65 Hz/fC, cλ = −13.7 Hz). For the transformation from λ to V, we require
that the extremal values of V lie within the range of appropriate weights:
Vmin corresponds to wmin ≥ 30 fC, and Vmax corresponds to wmax ≤ 90 fC.
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The extremal values of V are fully determined by the task and the value of
γ . Parameters mV and cV can therefore be obtained by solving the linear set
of equations,

Vmin = mVmλ · wmin + (mVcλ + cV) (3.8)

Vmax = mVmλ · wmax + (mVcλ + cV), (3.9)

for the particular task. The discrete time value function update rule 1.3
transformed into the units of synaptic weights according to the linear vari-
able transformations 3.6 and 3.7 is

w (si ) ← w (si ) + αδ′
i (3.10)

with

δ′
i = 1

mλmV
[ri+1 + mV (γ λ(si+1) − λ(si )) + cV (γ − 1)] . (3.11)

The continuous and the discrete time formulations of the value function
update are equivalent if the total change of the synaptic weight due to
the continuous time update, equation 3.4, is the same as the discrete time
update of the value function transformed into the units of synaptic weights,
equation 3.10:∫ t2

t1
ẇ (si , t) dt !=αδ′

i . (3.12)

Comparing coefficients in equations 3.11 and 3.4 leads to the following
mapping of parameters from the traditional discrete time algorithmic
implementation of TD(0) to the continuous time neuronal implementation:

R = α
1

�t
1

mλmV
ri+1

γ̃ = �t + τ̂l (γ − 1)
�t + τ̂r (γ − 1)

A = −α
1

mλ

�t + τ̂r (γ − 1)
�t (τ̂r − τ̂l )

C = α
1

�t
1

mλmV
cV (γ − 1) .

(3.13)

3.2 Policy Mapping. In this section, we demonstrate that the synaptic
weights between the state and the actor neurons are equivalent to the policy
of a discrete time algorithmic implementation of TD(0). As described in
section 2.1, whichever neuron fires first after the action suppression period
determines the selected action for that state. Therefore, the policy of the
agent π(s, a ) is equivalent to the probability that actor neuron a fires first
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when the agent is in state s. As each actor neuron receives identical spike
trains from the state neurons, the probability that an actor neuron fires first
is dependent on the strength of its own synaptic weights and the strength of
the synaptic weights of the other competing actor neurons. As each synapse
undergoes slightly different weight changes, we calculate the probability
of choosing a specific action with respect to the mean synaptic strength:
wl = 1

Nj
� jwl j , where wl j is the strength of the synapse between state neuron

j and actor neuron l and Nj is the number of neurons corresponding
to state s. Given that the strengths of the incoming synapses to actor
neurons p and q are wp and wq , respectively, the probability that p fires
before q is

P
(
tfs

p < tfs
q | wp, wq

) =
∫ ∞

0
fwp (t)

[
1 −

∫ t

0
fwq (t′) dt′

]
dt, (3.14)

where tfs
p/q is the first spike time of the corresponding neuron and fw(t) is the

first spike time distribution of a neuron with synaptic weights of strength
w. This expression is easily extendable to more than two weights. To obtain
an analytical expression, we can fit empirical first spike time distributions
with gamma probability density functions

f (t | κ, θ ) = 1
θκ(κ)

tκ−1e− t
θ , (3.15)

where  is the gamma function. For the purpose of this study, we deter-
mined parameters κ and θ for synaptic strengths between 30 fC and 90 fC in
steps of 1 fC and a presynaptic rate of 42.63 Hz at 40 synapses, correspond-
ing to the input received from the state neurons in the activated condition.
Figure 4 shows two examples of empirical distributions and the correspond-
ing fits. This results in the following expression for the probability of neuron
p firing before neuron q :

P
(
tfs

p <tfs
q

∣∣ wp, wq
) =

∫ ∞

0
f (t | κ(wp), θ (wp))

[
1 − γ

(
t

θ (wq )
, κ(wq )

)]
dt.

Here γ (t, κ) is the incomplete gamma function, with γ (t, κ) =
1

(κ)

∫ t
0 e−ttκ−1dt. As equation 3.14 is equivalent to the probability π (s, a )

of choosing action a (represented by neuron p) in state s, we can quantita-
tively compare the probabilities of taking given actions in a given state in
the neuronal implementation of TD(0) with those learned by a discrete time
algorithmic implementation.

The plasticity dynamics for the state-actor synapses given in equation 2.3
implies a change in weight proportional to the mean change in weight of the
state-critic synapses and is thus analogous to the update of the preferences
for the softmax action selection method given in equation 1.5; by combining
equations 2.3 and 3.12, we obtain wa (si ) ← wa (si ) + β ′δ′

i , where β ′ = αB.
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Figure 4: First spike time distribution for synaptic weights of 30 fC (black stairs)
and 40 fC (gray stairs) collected over 1000 trials with a bin size of 5 ms. The
solid curves indicate gamma probability function fits (see equation 3.15) to the
two distributions, with parameters κ = 2.2, θ = 820 (black curve) and κ = 2.8,
θ = 287 (gray curve), respectively.

However, a given weight change will not produce the same change in
policy in the two implementations, as the neuronal action selection method
described above and softmax action selection are different nonlinear func-
tions. Therefore, the parameters β and β ′ in the two implementations are
analogous but not equivalent.

4 Performance

4.1 Latency in a Gridworld Task. A common test case for reinforcement
learning algorithms is that of the gridworld (Sutton & Barto, 1998), in which
an agent can move from one state to the next in four different directions
(see Figure 5, inset). In our variant of this task, only one state is associated
with a reward. If the agent enters this state, it receives the reward. When
the agent selects its next action, it is moved to a random state on the grid,
independent of the direction chosen. Therefore, in order to maximize the
amount of reward the agent receives, it must learn the quickest path from
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Figure 5: Learning curves for gridworld task. Average latency over 10 runs for
α = 0.4, γ = 0.9, and β ′ = 0.8 in the neuronal implementation (gray curve) and
β = 0.3 for the corresponding algorithmic implementation (black curve). Each
data point represents the average latency over 15 successive trials. Inset: The
gridworld task. The agent (A) can move in four different directions, indicated
by arrows. If the agent is at the edge of the world and selects an action that
would take it outside the world, no movement is made. If the agent reaches
the rewarded state (*), a reward r = 12 is awarded in the case of the discrete
time algorithmic implementation, and the equivalent reward R = 13.1 fA (see
section 3.1) is awarded in the case of the neuronal implementation. Independent
of the direction of the next action selected, the agent is transported to a randomly
chosen state.

any given state to the rewarded state. This is a nontrivial task, as the rewards
are sparse; correct actions must also be learned for states that the agent
passes through considerably earlier than the reward is obtained.

To measure performance, we consider the latency of the agent in finding
the reward. The shortest distance from a state s with coordinates (x, y) to the
rewarded state with coordinates (xr, yr) is given by the Manhattan distance:
dM = | x − xr | + | y − yr |. We define the latency of a trial as the difference
between the number of steps d an agent takes to get from its initial position
to the rewarded state and the Manhattan distance between those two states:
l = d − dM. The minimum latency for any state is therefore 0.
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By performing a parameter scan, we established that the optimal pa-
rameters for a discrete time algorithmic implementation of the actor-critic
learning agent (see appendix A) on this task are α = 0.4, γ = 0.9, and
β = 0.3. In analogy to the neuronal algorithm, we implemented the dis-
crete time agorithm such that the value function is updated only when
the action chosen resulted in a new state. This deviates from the text-
book TD(0) algorithm, where the value function is updated every time
step independent of whether the action chosen results in a new state. How-
ever, no improvement of performance on the gridworld task could be ob-
served if the discrete time algorithm also performed value function and
policy updates after actions that did not lead to a state transition (data not
shown).

Choosing a reward of r = 12 results in extremal values for the value
function of Vmin = 14.8 and Vmax = 30.9 (simulated results averaged over
10 runs). Setting wmin = 44.1 fC and wmax = 68.99 fC (see equations 3.8 and
3.9) results in particularly simple mapping parameters mV = 1 s and cV = 0,
and thus to the following coefficients for the plasticity of the state-critic
synapses: R = 13.1 fA, A = 4.75 fC, γ̃ = 0.98, and C = 0 fA according to sec-
tion 3.1 (see appendix A for the activity trace time constants and thresholds).
The optimal performance for the neuronal implementation was achieved
for β ′ = 0.8, resulting in B = 2.0 for the weight dynamics of the state-actor
synapses (see section 3.2).

Figure 5 shows the learning curves for the continuous time neuronal
implementation and the discrete time algorithmic implementation with
optimal parameter settings averaged over 10 runs. Initially the two imple-
mentations learn equally fast: the average latency drops from more than
20 to less than 10 within 30 trials. The algorithmic implementation then
learns slightly faster and improves its latency to approximately 1 by 75 tri-
als, whereas the neuronal implementation requires 105 trials to reach this
level of performance. Increasing the network size to 80 neurons per state
and 40 critic neurons does not improve the learning speed of the neuronal
implementation. In both cases, the performance improves hyperbolically,
and both attain the same equilibrium performance, which remains stable
over at least 600 trials.

4.2 Accuracy of Mapping. As the shortest path between two states in
the gridworld environment is often not unique, there is no unique optimal
policy. In the neuronal network, the policy for state s is determined by
the average synaptic weights between the state neurons representing s
and the actor neurons as described in section 3.2. Figures 6A to 6C show
three substantially different policies learned by three runs of the neuronal
algorithm with different initial seeds for the random number generator. The
preferred movement direction for each state is indicated by an arrow �p(s),
where the x-component gives the difference between the probabilities of
choosing east and west and the y-component the difference between the
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A B C D

Figure 6: Policy learned by the neuronal network for the gridworld task (see
Figure 5, inset). (A–C) Preferred movement direction for each state for different
runs of the neuronal implementation. (D) Preferred movement direction for
each state averaged over 10 runs. All parameters as in Figure 5.

probabilities of choosing north and south:

�p(s) =
(

π(s, east) − π (s, west)
π(s, north) − π (s, south)

)
,

where the probability of choosing an action in a given state is obtained from
the state-actor weights as described in section 3.2. The policy averaged over
a number of runs shown in Figure 6D gives a clearer indication of the
general trend. In order to quantitatively compare the policies and value
functions learned by the neuronal and algorithmic implementations, we
restrict ourselves to consideration of these quantities averaged over several
runs.

The average value function and policy for the two implementations
is shown in Figure 7. Both implementations learn the same qualitative
value function: a pronounced gradient can be seen, with states that are
close to the reward state having higher values than states farther away. A
quantitative measure of similarity is given by the root mean square error of
the average value function learned by the continuous time neuronal (ctn)
implementation Vctn(s) with respect to that learned by the discrete time
algorithmic (dta) implementation Vdta(s):

σV =
(∑

s(Vdta(s) − Vctn(s))2

Ns

)1/2

, (4.1)

where Ns is the number of states. For the value functions depicted in
Figure 7, the root mean square error is 2.7 fC, or 3.9% of the maximum
weight of Vdta(s).

The average policies learned by the two implementations are also simi-
lar. In both cases, the preferred directions are generally directly toward the
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Figure 7: Comparison of the average value function and the average policy
learned by the neuronal implementation and the algorithmic implementation.
(A) Neuronal implementation. The value function V(s) (left) is expressed as
the average synaptic weight between the respective state neurons and the critic
neurons in units of fC. The preferred direction for each state is determined by
the synaptic weights between state neurons and actor neurons (see section 3.2).
(B) Algorithmic implementation. As in A, the value function is transformed into
units of synaptic weight as described in section 3.1. Parameters as in Figure 5;
all plots averaged over 10 runs.

rewarded state, but the algorithmic implementation learns stronger prefer-
ences for the top row of states than the neuronal implementation.

4.3 Robustness to Parameters. The mapping derived in section 3.1
transforms the discrete time TD(0) parameters into the parameters of the
synaptic plasticity rule as a function of various free parameters such as
the time constants of the rapid and laggard activity traces, τr and τl. The
range of possible time constants is limited by the period of time during
which the actor module is inhibited after a new state is entered: the action
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suppression period τasp. The results presented in the previous section are
obtained with a comparatively long action suppression period of 1000 ms,
permitting the use of large time constants: τl = 500 ms, τr = 250 ms. This is
advantageous for the estimation of spike rates by the activity traces �r/l but
has the disadvantage that the agent moves rather slowly. In this section, we
investigate whether the network can be accelerated without loss of perfor-
mance and mapping accuracy. Theoretically, the same discrete time TD(0)
parameters can be realized with any choice of τr < τl < τasp, as this choice
just determines a different set of continuous time parameters A, γ̃ , R, and
C . To test this, we investigate the robustness to the relationship of the rapid
and laggard time constants τr/τl and the action suppression period τasp.

Figure 8 shows the robustness of the network behavior to a systematic
variation in τr while keeping τl constant. The average summed reward the
agent accumulates over 4400 steps exhibits a weak dependence on τr/τl. The
best performance is seen for τr/τl = 0.5, but a robust learning behavior is ex-
hibited for the entire range 0.05 ≤ τr/τl ≤ 0.99999. Similarly, the root mean
square error of Vctn(s) with respect to Vdta(s), equation 4.1, remains low
across the range, with a minimum at τr/τl = 0.3. Note that at τr/τl = 0.05,
the time constant of the rapid activity trace is in the same order of magnitude
as the average interspike interval of the critic neurons, and so the trace itself
conveys very little information about the postsynaptic rate. However, the
synapse integrates the activity trace throughout the entire plastic interval,
equation 2.2. For synaptic time constants much smaller than the average
interspike interval, the integral of the postsynaptic trace between two post-
synaptic spikes is 1; consequently, the integral of the trace over the plasticity
interval gives the sum of postsynaptic spikes in this interval. As a result,
the synapse can estimate the postsynaptic rate even for very small time
constants. Learning still takes place in the limit τr = 0 ms, albeit with the
minimum average summed reward recorded. Similarly, the error σV/Vdta

max
is maximal for τr = 0 ms at 16%. At the other end of the range, robust learn-
ing is still exhibited for τr/τl = 0.99999, although the difference between the
fast and the slow postsynaptic activity traces is almost 0. The very small
differences between the two postsynaptic activity traces due to similar time
constants can still be detected, as the multiplicative factor A increases in in-
verse proportion to the difference between the time constants (see equation
3.13). We also tested the limiting case τr = τl, using the parameters A, γ̃ , R,
and C , obtained for τr/τl = 0.99999. The resultant network is not capable
of learning the task. The average reward accumulated over 4400 steps was
52 ± 5 and σV/Vdta

max = 0.62. This demonstrates that both traces are needed
to implement TD learning; however, the relationship between the time con-
stants of the traces has very little influence on the learning performance and
mapping accuracy.

Shorter action suppression periods entail smaller time constants and
thus shorter time intervals of plasticity �t. As the difference in the number
of critic neuron spikes �sp evoked by states with weights of w1 and w2
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Figure 8: Mapping accuracy and performance as functions of the relationship
between the time constants of the rapid and laggard activity traces τr/τl for con-
stant τl = 500 ms and τasp = 1000 ms. Root mean square of the average value
function of the neuronal implementation divided by the maximum value of
the function learned by the algorithmic implementation (gray curve). Number
of times the neuronal implementation locates the reward state in 4400 steps
averaged over 10 runs (black curve; error bars show ±1 standard deviation).
The gray dashed line shows the mean number of rewards (±1 SD; dash-dotted
lines) obtained by the algorithmic implementation over the same period. Re-
inforcement learning parameters α, γ , r , and β, β ′ as in Figure 5; for all other
parameters, see appendix A.

decreases linearly with the plasticity interval, �sp = mλ(w1 − w2)�t, the
ability of the system to distinguish between the values of states decreases
for shorter plasticity intervals. To investigate the impact of this, we vary
the action suppression period systematically while maintaining the rela-
tionships τs = τl = 0.5 · τasp and τr = 0.5 · τl. Figure 9 shows the average
summed reward accumulated by the agent over 4400 steps and the root
mean square error of Vctn(s) with respect to Vdta(s) as functions of the action
suppression period. Between 1000 ms and 600 ms, the mapping accuracy
deteriorates only slightly, but between 600 ms and 200 ms, the root mean
square error increases rapidly to 16.95 fC, or 24.57% of the maximum weight
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Figure 9: Mapping accuracy and performance as functions of the action sup-
pression period τasp. All curves and markings as in Figure 8. Reinforcement
learning parameters α, γ , r and β, β ′ as in Figure 5. For all other parameters see
appendix A.

of Vdta(s). However, despite the deterioration of the mapping accuracy, the
neuronal implementation still performs well on the gridworld task even
for very short action suppression periods. Between 1000 ms and 200 ms,
there is no loss in performance; the neuronal implementation finds the re-
ward state as often as the algorithmic implementation. Between 200 ms and
150 ms, there is a sudden drop in performance. Note that for τasp = 150 ms,
τl and �t are shorter than the average spike interval of the postsynaptic
spikes. As a result, the synapse can no longer detect the difference between
the rapid and the laggard activity trace, and TD learning is no longer im-
plemented. Due to this fundamental limit in representing the change of
postsynaptic rate, it is not to be expected that time averaging of the rate can
be replaced by spatial averaging in a larger network; indeed, doubling the
number of state and critic neurons did not significantly increase the perfor-
mance of the neuronal implementation for an action suppression period of
150 ms.
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5 Alternative Plasticity Rules Implementing TD Learning

In sections 2.2.1 and 2.2.2, we presented a set of properties for state-critic
and state-actor synapses that enable the implementation of value function
and policy updates for actor-critic TD(0) learning. The motivation for the
specific plasticity rules we formulated was to map the properties of the
discrete time algorithm as accurately as possible to continuous time plastic-
ity mechanisms. In this section, we relax this constraint and consider some
other biologically plausible plasticity rules with the described properties.

The first property of the state-critic neurons is that they exhibit negli-
gible plasticity except for a short period just after the agent has left the
corresponding state. To fulfill this criterion, we introduced a presynaptic
activity trace �s

j (see equation 2.1) and made the plasticity contingent on
passing certain thresholds. As an alternative timing mechanism, let us con-
sider a presynaptic efficacy trace ε j , which is set to 0 at every presynaptic
spike and recovers exponentially to 1 with a time constant τε :

ε̇ j (t) = −ε j − 1
τε

−
∑

t f
j

ε jδ
(
t − t f

j

)
, (5.1)

where t f
j denotes the f th spike of the presynaptic neuron j . Such traces

were introduced by Froemke and Dan (2002) to define a model for STDP
that accounts for data obtained from triplet and quadruplet spike protocols.
We can now define an alternative formulation for the plasticity of state-critic
synapses:

ẇk j (t) = ε j (t)�s
j (t)

(
R + A

(
γ̃ �r

k(t) − �l
k(t)

) + C
)
. (5.2)

The correct timing properties of this rule can be understood as follows.
Before the agent enters a state, the neurons representing this state receive
very little stimulation and thus have an extremely low rate. While the
agent is in the state, the presynaptic rate is high, but the mean efficacy is
effectively 0 if τε is much longer than the interspike interval. The product
ε j (t)�s

j (t) is significant only when the agent has just left the state and the
efficacy is recovering to 1. The time interval of nonnegligible plasticity is
determined by the decay time of the presynaptic activity trace back to 0. If
the time constant τs of the presynaptic activity trace is small in comparison
to τasp, the interval of nonnegligible plasticity is short enough such that only
one state transition is taken into account. This is depicted in Figure 10 for
τε = 4000 ms and τs = 200 ms.

This plasticity rule is not such a strict implementation of TD(0) learning
as equation 2.2 because the synapse is weakly plastic thoughout. However,
if we assume that the changes in the synaptic weights outside the time
interval τasp after the agent has left the corresponding state are negligibly
small, it is once again possible to derive a mapping from the parameters of
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Figure 10: Plasticity of state-critic synapses: alternative formulation. The agent
leaves a lower-valued state for a higher-valued state at 2 s and 4 s and returns
to the lower-valued state at 3 s and 5 s. The top three panels show for one
state-critic synapse associated with the lower-valued state the presynaptic trace
�s, the efficacy ε, and the product ε · �s, respectively, as functions of time. The
bottom panel shows the average weight (over 800 synapses) of the state-critic
synapses associated with the lower-valued state; the synaptic weight remains
essentially constant except for the period shortly after the agent leaves the
corresponding state.

the discrete time value function update of TD(0) learning (see appendix B).
We tested the learning behavior for this synaptic plasticity rule in simula-
tions in the gridworld task (see section 4.1) with τε = 1000 ms, τs = 300 ms,
τasp = 1000 ms, τl = 500 ms, and τr = 0.5 · τl. For the discrete time TD(0)
learning parameters α = 0.4, γ = 0.9, and r = 12 with cV = 0, we obtain for
the synaptic plasticity parameters A = 1.1 fC/Hz2, γ̃ = 0.98, R = 2.8 fC, and
C = 0 fC. Over 10 runs, the average measure for the accuracy of the map-
ping σV (see equation 4.1) is 2.1 fC, or 3.3% of the maximum value of Vdta(s),
and the average summed reward after 4400 steps is 774.2 ± 35.5 (data not
shown). This is a comparable performance to that obtained by the plastic-
ity rule given by equation 2.2 (σV = 2.7 fC; average summed reward after
4400 steps: 769 ± 50.8). The plasticity rule given by equation 5.2 therefore
also represents a biologically plausible implementation of value function
updates for TD(0) learning in spiking neuronal networks. This rule can also
be considered as belonging to the class of differential Hebbian rules (see
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section 2.2.1); this time it depends on the correlation between presynaptic
activity and the rate of change of postsynaptic activity. It is very similar
to rules used in isotropic sequence order learning (Porr & Wörgötter, 2003)
and nonspiking network models of TD learning (Barto, 1995; Houk, Adams,
& Barto, 1995; Foster et al., 2000).

The second property of the state-critic neurons is that they are sensitive
to a characteristic dynamic response of the critic neurons. In section 2.2.1 we
made the simple assumption that the rate of the critic neurons encodes the
value of the state, and formulated a synaptic plasticity rule that is sensitive to
changes in postsynaptic rate. However, other dynamic responses could also
encode a change in input stimulus, for example, a transient rate excursion
before relaxing to the new rate (e.g., Gazeres, Borg-Graham, & Frégnac,
1998; Muller, Buesing, Schemmel, & Meier, 2007).

Similarly, alternative rules can be found that implement the actor-critic
policy update. The first property of the state-actor synapses is that they
be negligibly plastic, except when the corresponding action has just been
chosen. We implemented this by making the plasticity contingent on the
postsynaptic activity �a

l being above a certain threshold. An alternative
formulation of the state-actor update rule that fulfills this timing criterion
can be obtained analogous to equation 5.2 by multiplying the weight update
rule, equation 2.3, by the postsynaptic rate:

ẇl j (t) = B
Nk

�a
l

∑
k

ẇk j (t). (5.3)

The second property of the state-actor synaptic update rule is that of propor-
tionality to the updates of the state-critic synapses. This entails the existence
of a mechanism that is not strictly local, as information is required that
cannot be derived from pre- and postsynaptic activity alone; this is the price
of the modular structure of the actor-critic architecture. We implemented
this directly in equation 2.3, by positing that synaptic changes spread along
the axon of the state neurons. However, the updates in the state-critic
synapses are dependent on the dynamic response of the critic neurons.
Therefore, an alternative approach is to assume that the critic neurons
project to the state-actor synapses and influence their plasticity as a neuro-
modulatory third factor, as has been demonstrated in the case of dopamine
for corticostriatal synapses (for a review, see Reynolds & Wickens, 2002).

6 Discussion

In this study we demonstrated that a network of spiking neurons can imple-
ment an actor-critic TD learning agent. To this end, we derived a mapping
that permits the discrete time algorithm to be performed by a pulse-coupled
dynamical system operating in continuous time. As in the traditional dis-
crete time algorithm, the agent moves in a discrete state space and takes
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discrete actions. However, many interesting real-world problems, such as
learning how to catch a ball, cannot easily be reduced to such a framework.
Once it is shown that it is possible to implement this simple case, a nat-
ural next step would be to extend the network model to be able to solve
continuous space and time tasks. Nonspiking algorithms for continuous
time problems have already been been formulated, for example, in Munos
(2006) and Doya (2000b). We investigated the actor-critic method rather
than actor-only techniques such as the REINFORCE algorithm, as the latter
is dependent on frequent reward, whereas many real-world problems are
characterized by sparse, delayed, and unreliable rewards (Williams, 1992;
Seung, 2003). The basis of the actor-critic is that the critic generates an inter-
nal reward that allows the actor to adapt its policy even when no external
reward is present. This division of labor enables an actor-critic learner to
solve the temporal credit assignment problem even for tasks with sparse
rewards, such as the gridworld used as an example here. We investigated
the actor-critic method in preference to TD learning approaches based on
action values such as Sarsa and Q-learning (see Sutton & Barto, 1998), which
are also capable of learning a task with sparse rewards, because the mod-
ular layout of the actor-critic architecture already suggests an appropriate
network structure. Indeed, there is experimental evidence to support an
actor-critic paradigm in which different areas of the brain fulfill the roles of
actor and critic (O’Doherty et al., 2004; Tricomi, Delgado, & Fiez, 2004). The
modular structure of the actor-critic architecture has also inspired numerous
theoretical studies of the basal ganglia (Barto, 1995; Houk et al., 1995; Suri &
Schultz, 1999; see Joel, Niv, & Ruppin 2002, for a recent review). However,
recent evidence also supports other modes of TD learning such as those
based on action values (Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006)
or an actor-director model (Attalah, Lopez-Paniagua, Rudy, & O’Reilly,
2007; Lerchner, La Camera, & Richmond, 2007), so further research into
neuronal implementations of these techniques is needed.

Here we have focused on neural mechanisms that are capable of imple-
menting one specific algorithm for system-level learning, but we do not
claim that this is the algorithm used by the brain. Indeed, it seems probable
that the brain employs a variety of learning strategies depending on the
problem to be solved. Various parts of the brain have been associated with
different categories of learning, such as the cerebellum with supervised
learning, the basal ganglia with reinforcement learning, and the cerebral
cortex with unsupervised learning (see Doya, 2000a, for a review). It is also
possible that the brain uses combinations of strategies that have yet to be
formalized.

Reinforcement learning is often criticized for taking too long to converge
to be practical for biological purposes. In our example, an agent requires
approximately 100 attempts to learn the task. However, the task is much
harder than it may initially seem, as the agent has no information about the
underlying gridlike structure. Consider the following thought experiment.
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You are presented with a card with an easily recognizable image, such as
is used in the game memory. You may choose a number between 1 and 4,
at which point the card is (deterministically) replaced with a different card.
You may keep choosing numbers until you find the card with a picture of a
doughnut on it, for which you receive a reward. You then start again from
a random card. Informal experiments with such a setup in our lab reveal
that it is very difficult to learn a fast route to the rewarded card, even if the
subjects are aware that each card has been assigned to a position on a grid
and each number has been assigned to a direction. Much faster convergence
times can be achieved by reinforcement learning techniques if knowledge
of the underlying problem structure is incorporated in the algorithm, for
example, the contiguity of space in a navigation task (Foster et al., 2000).
But in some respects, the task is also easier than it seems, as the agent has
perfect knowledge of its state and policy. It makes no identification errors,
whereas the authors sometimes mistake the second floor of their office
building for the third floor, and no execution errors, whereas the authors
know they are living in Japan but still often look the wrong way when
crossing the road. Another limitation of reinforcement learning in its basic
form is that the learning agents are purely reactive. Once the learning has
stabilized, the agent will have the same probabilistic response to a given
stimulus at each occurrence. This is reflected in the feedforward architecture
of our model. A more sophisticated system would be able to switch between
different internal states as a result of its own dynamics, for example, due to
motivation or attention, and thus generate different probabilistic responses
to the same stimulus.

We have shown that a reasonably small network with biologically real-
istic spike rates can perform the necessary calculations to update its value
function and policy in as little as 200 ms. This seems to be compatible with
the reaction times required for survival. Due to the paucity of information
at the synaptic level for response times of less than 200 ms, the performance
of the network cannot be improved by increasing the number of neurons in
the network. The performance of the network is also robust with respect to
the time constants of the activity traces, even in the limits as τr approaches
0 or τl. In all experiments, the parameters A, γ̃ , C , and R were carefully
chosen (see appendix A), which may give the impression that the system
is highly sensitive to parameter choice. In fact, the careful choice of param-
eters was motivated by the requirement of equivalence with the discrete
time algorithmic implementation; the network learns for a wide range of
parameters in the same way that the traditional discrete time algorithm can
solve a task for a range of the parameters α and γ . This raises the question of
how such parameters might be determined by the brain given that different
parameters are optimal for different tasks. Does the brain employ one set of
parameters that are “good enough” or are appropriate parameters learned
through metaplasticity (Doya, 2002)? This question can be addressed only
by carefully designed behavioral experiments.
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Our model relies on two particular types of synaptic plasticity: differ-
ential Hebbian in the critic module and heterosynaptic axonal plasticity in
the actor module. Aspects of both mechanisms have been discussed in the
experimental and theoretical literature, but there is no direct evidence for
the complete forms of the weight dynamics postulated here. The plastic-
ity of the critic module is local, depending on only pre- and postsynaptic
spikes, except for its sensitivity to a global signal encoding the reward.
An experimental setup to reveal this kind of plasticity could be realized by
stimulating a pre- and postsynaptic neuron pair for a certain interval so that
they fire at constant rates. At the end of the interval, the presynaptic stimu-
lation should be stopped while the strength of the postsynaptic stimulation
is increased or decreased. The prediction of the plasticity rule proposed
in section 2.2.1 is that the synaptic strength remains constant during the
simultaneous stimulation and subsequently undergoes potentiation or de-
pression depending on whether the postsynaptic stimulation is increased
or decreased. The plasticity of the actor module is local in that it depends
on the postsynaptic activity, but it also depends on information available
to the axon of the presynaptic neuron, which is not local in the strict sense.
The experimental prediction of the rule proposed in section 2.2.2 is that
axonal spread of long-term potentiation and long-term depression has a
much greater effect on synapses if their respective postsynaptic neurons
are active than if they are not. However, an alternative plasticity for the
actor module, discussed in section 5, is that the output of the critic module
influences the state-actor directly as a neuromodulatory third factor. In this
case, the experimental prediction is that such synapses undergo the greatest
changes when there has been recent pre- and postsynaptic activity and that
potentiation is induced by a transient increase in the neuromodulator and
depression by a transient decrease. An obvious candidate for the neuro-
modulatory third factor is dopamine. In further work, we will investigate
to what extent the plasticity rules postulated here are compatible with or
can be replaced by well-established synaptic plasticity mechanisms.

The action selection mechanism implemented here is both extremely
simple and rather vulnerable: if the neuron representing west dies, the
agent will never be able to go west again. However, it is easy to conceive
of extending the network to incorporate a more robust action selection
mechanism, for example, via attractor networks (Amit, 1989), competing
synfire chains (Hayon, Abeles, & Lehmann, 2004), or rate-based coding of
action populations (Georgopoulos et al., 1982).

One interesting technological aspect of this work is that we have taken a
discrete, serial algorithm and reformulated it in continuous time exploiting
finely grained parallelism. In our model, there is no central instance ad-
justing the value function and policy; the synapses adjust themselves to
the appropriate values on the basis of their individual dynamics. Adopt-
ing standard algorithms to the finely grained parallelism of the bio-
logical substrate does not give us an immediate practical advantage. If
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the biological substrate is simulated on standard hardware, this is likely
to be less efficient than a direct implementation of the standard algo-
rithm. However, intense research is under way to create hardware emu-
lating the capabilities of the neural tissue, prominently FPGAs and ana-
log VLSI (Guerrero-Rivera, Morrison, Diesmann, & Pearce, 2006; Philipp,
Grübl, Meier, & Schemmel, 2007). Fundamental problems have been solved,
but limitations still exist in the number of neurons and synapses. Once these
technologies can produce devices with an appropriate number of neurons
and synapses, they can make full use of microscopically parallel algorithms
like the one developed in this article and solve problems with at least the
same speed and accuracy as natural brains. However, almost like standard
computers, these devices are general-purpose engines and need to be pro-
grammed to solve a particular task. Thus, from a technological perspective,
this work can also be interpreted as an exploration into neuronal software
for the upcoming neuromorphic hardware.

Appendix A: Parameters and Simulation

The neuron model used in this study is a current-based leaky integrate-
and-fire neuron. In the subthreshold range, the dynamics of the membrane
potential υ is

dυ

dt
= − υ

τm
+ I (t)

C
,

where τm is the membrane time constant, C is the capacity, and I (t) is the
input current to the neuron, which is the sum of any external current and
the synaptic currents. The synaptic current is given by

Isyn (t) =
∑

j

w j

∑
tn

j <t

δ
(
t − tn

j

)
,

where tn
j is the nth spike of the presynaptic neuron j and w j the weight of

the corresponding synapse. The arrival of a single spike of weight w = 50 fC
evokes an instantaneous postsynaptic potential of amplitude 0.2 mV, which
decays with the time constant of τm. If the membrane potential passes the
threshold θ , a spike is emitted, and the neuron is clamped to the reset
potential Vreset for the duration of the refractory period τr. The spike is
delivered to the downstream neurons with a synaptic propagation delay d .
The neuronal parameters used in our simulations are given in Table 1.

In addition to input received from other neurons in the network, each
neuron receives both excitatory (82.1 Hz; 10 fC) and inhibitory (43.2 Hz;
−10 fC) background stimulation in the form of independent Poissonian
spike trains. The neurons representing the active state receive a further
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Table 1: Neuronal Parameters.

τm C θ Vreset τr d

10 ms 250 pF 20 mV 0 mV 2 ms 5 ms

Table 2: Activity Thresholds for Different Action Suppression Times �tasp.

�tas [ms] θh [Hz] θp [Hz] θl [Hz] θa [Hz]

150 40 35 20 2.6
200 40 30 15 2
250 40 30 15 1.6
300 40 30 15 1.3
400 40 30 15 1
600 36 31 10 0.7

1000 36 31 10 0.4

stimulus from the environment in the form of a DC current of amplitude
160 pA. When the agent enters a new state, the actor neurons receive a DC
current of −250 pA for the duration of the action suppression period.

Unless otherwise stated, the time constants for the activity traces (see
sections 2.2.1 and 2.2.2) were chosen with respect to the action suppression
period τasp as follows: τs = τl = τa = 1/2 · τasp and τr = 1/2 · τl . Appropri-
ate activity thresholds to determine the plasticity window were chosen
as in Table 2; all synaptic weights were initialized at 50 fC. The network
was simulated with NEST (see www.nest-initiative.org and Gewaltig &
Diesmann, 2007) using a time step of 0.1 ms.

For the purposes of comparison, we implemented an actor-critic TD
learning agent with softmax action selection equation 1.4 as a traditional
discrete time algorithm in C++. To make the comparison as fair as possible,
we deviated from the textbook approach in the following two ways. First,
in the neuronal implementation, the synaptic weights are restricted to the
range [30 fC, 90 fC], which results in a maximum probability of choosing
a given action of 96.7% and a minimum probability of 3.1 · 10−5%. We
therefore restricted the preferences p(a , s) in the discrete time algorithmic
implementation to the range [1, 5.47], which results in the same maximum
probability as in the neuronal implementation but a minimum probability of
0.38%. Second, analogous to the neuronal implementation, value function
updates were carried out only in the discrete time algorithm when the
action chosen resulted in a new state. If the preferences are not restricted,
the discrete time algorithmic implementation attains a marginally better
equilibrium performance. If the agent can also learn from actions that do
not result in a state transition, no improvement in performance can be
observed.
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Appendix B: Value Function Mapping for an Alternative
Plasticity Rule

If we assume that the synapses following the weight dynamics given
in equation 5.2 are negligibly plastic except for a time period equal to
the action suppression time τasp after the agent has left the correspond-
ing state, we can derive a mapping from the parameters of the discrete
time value function update of TD(0) learning to the synaptic parameters as
follows.

As in section 3.1, we consider the mean weight change for the state-
critic synapses associated with state si when the agent moves from state
si to state si+1 at time t0. If we assume that the rate of the state neurons
representing si is 0 when the agent is in si+1, the averaged value for the cor-
responding efficacy trace, equation 5.1, and the presynaptic activity trace,
equation 2.1, are

εsi (t) = 1 − e− t−t0
τε

λsi (t) = λ (si ) e− t−t0
τs .

The averaged postsynaptic activity traces λr and λl are given by equation
3.3, and the mean synaptic weight has the following dynamics:

ẇ(si , t) = εsi (t) λsi (t) (R + A(γ̃ λr(t) − λl (t)) + C).

The synaptic weight update is equivalent to the discrete time value function
update expressed in synaptic weights (see equation 3.10), if the following
equation if fulfilled:

∫ t0+τasp

t0
ẇ (si , t) dt =! αδ′

i .

A comparison of the coefficients leads to the following mapping:

R =α
1

mVmλλ (si )
1

T s r

A=α
1

mλλ (si )
γ T r

1 + T r
2

T l
1 T r

2 − T r
1 T l

2

γ̃ = T l
2 + γ T l

1

T r
2 + γ T r

1

CV =α
1

mVmλλ (si )
1

T s (1 − γ ) cV,
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with τ̂ (x) = 1/x · (1 − e−xτasp ) and
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Gazeres, N., Borg-Graham, L., & Frégnac, Y. (1998). Phenomenological model of
visually evoked spike trains in cat geniculate nonlagged X-cells. Vis. Neurosci.,
15, 1157–1174.

Georgopoulos, A., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations
between the direction of two-dimensional arm movements and cell discharge in
primate motor cortex. J. Neurosci., 11(2), 1527–1537.

Gewaltig, M.-O., & Diesmann, M. (2007). NEST (neural simulation tool). Scholarpedia,
2(4), 1430.

Guerrero-Rivera, R., Morrison, A., Diesmann, M., & Pearce, T. C. (2006). Pro-
grammable logic construction kits for hyper real-time neuronal modeling. Neural
Comput., 18, 2651–2679.

Hayon, G., Abeles, M., & Lehmann, D. (2004). Modeling compositionality by dy-
namic binding of synfire chains. J. Comput. Neurosci., 17, 179–201.

Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia generate
and use neural signals that predict reinforcement. Cambridge, MA: MIT Press.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cereb. Cortex, 17(10), 2443–2452.



A Spiking Neuronal Actor-Critic Agent 337

Joel, D., Niv, J., & Ruppin, E. (2002). Actor-critic models of the basal ganglia:
New anatomical and computational perspectives. Neural Networks, 15, 535–
547.

Kempter, R., Leibold, C., Wagner, H., & van Hemmen, J. (2001). Formation of
temporal-feature maps by axonal propagation of synaptic learning. Proc. Natl.
Acad. Sci. USA, 7(98), 4166–4171.

Klopf, A. (1986). A drive-reinforcement model of single neuron function. In J. Denker
(Ed.), Neural networks for computing: AIP Conference Proceedings (Vol. 151, pp. 265–
270). New York: American Institute of Physics.

Klopf, A. (1988). A neuronal model of classical conditioning. Psychobiology, 16, 85–
125.

Konda, V., & Tsitsiklis, J. (2003). On actor-critic algorithms. SIAM Journal on Control
and Optimization, 42(4), 1143–1166.

Kosko, B. (1986). Differential Hebbian learning. In J. Denker (Ed.), Neural networks for
Computing: AIP Conference Proceedings (Vol. 151, pp. 277–288). New York: Ameri-
can Institute of Physics.

Kossel, A., Bonhoeffer, T., & Boltz, J. (1990). Non-Hebbian synapses in rat visual
cortex. NeuroReport, 1(2), 115–118.

Leibold, C., Kempter, R., & van Hemmen, J. (2001). Temporal map formation in the
barn owl’s brain. Phys. Rev. Lett., 87(24), 248101.

Leibold, C., & van Hemmen, J. (2002). Mapping time. Biol. Cybern., 87, 428–439.
Lerchner, A., La Camera, G., & Richmond, B. (2007). Knowing without doing. Nat.

Neurosci., 10(1), 15–17.
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