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Abstract

The curse of dimensionality plagues practical
uses of reinforcement learning. Temporal ab-
straction approaches have been proposed to
overcome this problem, but typically they re-
quire a priori design of the hierarchy and lack
the compact representation needed for large
sized problems, so their practical uses are
still limited. Inspired by recent research in
complex networks, we present a compact self-
organizing, growing network for world repre-
sentation to scale up reinforcement learning.
Continuous state space is represented with
a compact self-organizing network, and the
network is augmented to have small world
property without a priori knowledge. Ex-
perimental results with various problem sizes
show that the average path length between
nodes of this network scales subpolynomially
with the size of the network, and the conver-
gence of reinforcement learning is accelerated
significantly.

1. Introduction

In the framework of Reinforcement Learning (RL), an
agent attempts to learn a policy, i.e. a mapping from
state to action, that maximizes some time aggregate
of rewards. In the traditional RL framework, the envi-
ronment is defined as a discrete-time, discrete-state
Markov decision process (MDP). Popular RL algo-
rithms such as Q-Learning assume tabular represen-
tation of both the state and the action space, and es-
timates the values of all the state-action pairs to find
the optimal policy (Watkins & Dayan, 1992). How-
ever, in most real world problems with continuous or
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high-dimensional state spaces, it is impossible to enu-
merate all of the state-action pairs. Even with the
problems of discrete state space, it is impractical to
estimate the value function for all the states when the
problem size is large. So it is necessary to use some
kind of compact world representation schemes.

A common solution to large or continuous state spaces
is using a function approximator such as neural net-
works (Boyan & Moore, 1995). Using a function ap-
proximator with RL has shown good results in some
situations. However, it is also known that the num-
ber of parameters to be estimated grows exponentially
with the size of any compact encoding of a state (Barto
& Mahadevan, 2003). Attempts to combat this curse
of dimensionality lead to temporal abstraction where
decisions are not required to perform every single ac-
tion. This naturally leads to hierarchical control archi-
tectures and thus the associated learning algorithms
are called hierarchical reinforcement learning (HRL)
algorithms. However it is still hard to use these ap-
proaches directly to real world tasks. The first prob-
lem is that the structure of hierarchy, subgoals, sub
MDPs and subtasks should be decided in advance.
The user should ‘program’ with the problem specific
knowledge. Another problem is that these hierarchical
RL approaches still assume a tabular representation of
states and actions which makes it difficult to apply the
HRL algorithms directly to large sized problems that
really need them.

Meanwhile, recent studies of complex networks show
that many real-world networks, such as web graphs
and social networks, show the small world property
where most pairs of nodes are linked by short chains
of nodes (Watts & Strogatz, 1998). Based on this fact,
we propose a new approach of building temporal ab-
straction using the small world network models. The
MDP is augmented with subtasks whose structure is
determined by the corresponding small world network
models, where two states in the augmented MDP need
small number of decision steps between them.



And for the practical application to the continuous
state real world problems, we also utilize an incremen-
tal network that adaptively maps sensory input to ac-
tions. By augmenting the network to have the small
world property and using appropriate navigation algo-
rithms to select actions, we can build a scalable RL
algorithm with compact representation without prob-
lem specific knowledge.

This paper is organized as follows. In Section 2, we
briefly review the RL framework and the properties of
complex networks. In Section 3, we present a practi-
cal reinforcement learning algorithm with small world
network representation of the environment. In Section
4, we describe the experimental setup and the results.
Finally, in Section 5, we conclude with a few future
directions.

2. Related Works

2.1. Reinforcement Learning and Information
Propagation on Networks

Here we briefly review the standard reinforcement
framework of discrete time, finite MDPs. In this
framework, a learning agent interacts with an envi-
ronment at discrete time scale. On each time t, the
agent chooses an action at ∈ A using its policy based
on the state st ∈ S it perceives. Then the environ-
ment gives the agent a numerical reward rt+1 ∈ R and
moves to the next state st+1. The objective of the
agent is to learn a policy, mapping from states to ac-
tions, that maximizes the expected discounted future
reward defined as

Rt = rt+1 + γrt+2 + · · · =
∞∑

k=0

γkrt+k+1. (1)

To learn the optimal policy, we can get the optimal
action value function Q∗(s, a) using the following Q-
learning method (Watkins & Dayan, 1992)

Q(st, at) ← Q(st, at)+α[rt+1+γ max
a

Q(st+1, a)−Q(st, at)].

(2)
We can generalize the MDP framework to Semi-MDP
framework where each action a can take variable
amounts of time k(s, a) (Sutton et al., 1999). A
slightly different update rule can be used such as

Q(s, a) ← Q(s, a)+α[r+γk(s,a) max
a′

Q(s′, a′)−Q(s, a)].

(3)

In the update rules (2), (3), action value functions of
a state s, Q(s, a) are updated using the value func-
tions of its successor state s′, Q(s′, a′). This can be

viewed as the propagation of information from state
s to its successor state s′. When the agent receives
positive reward in a certain state, the information of
that reward is propagated to adjacent states, in the
form of action value function. When each state collects
enough amount of information, their action value func-
tion converges and the RL problem is solved. By mak-
ing the propagation of information faster by adopting
temporal abstraction, we can expect better efficiency
in solving RL problem.

2.2. Complex Networks

Recent researches on complex networks have showed
that most of the real world networks share the follow-
ing three features. (a) Small world property. There
exists a short path between any two nodes, compared
to their size (Watts & Strogatz, 1998). (b) High clus-
tering coefficient. Two nodes with a common neighbor
has much more likely to be connected than two nodes
without one. (c) Scale free degree distribution. The
distribution of the degree decays as a power law, which
is invariant to scaling. This property is often related
to the hierarchical organization of the network.

Various network models with these properties are sug-
gested. Here we present two small network models we
will use for our task. First model is the Kleinberg’s
model (Kleinberg, 2001). In this model, we start with
a regular lattice network and random long links (u,w)
are added to current network with probability propor-
tional to d−α where d is the lattice distance from u
to w. It is known that if we set the value of α to
the dimension of underlying lattice, a decentralized
greedy algorithm can achieve polylogarthmic search
time. Second model is the scale free growing network
model (Barabási & Albert, 1999). In this model, when
a new node u is added to current network random long
links (u,w) are added with probability proportional to
degree of w, which is called the linear preferential at-
tachment. This model also shows the scale free degree
distribution.

3. Building a Small World Network for
World Representation

Temporal abstraction approaches reduce the number
of decision steps between states by augmenting the
MDP with subtasks. But they require a priori knowl-
edge of the problem in most cases. Instead of using
the problem specific knowledge, we propose to use the
network model with small world property to determine
the structure of hierarchy. By the small world prop-
erty, the augmented MDP will have small number of
decision steps between states, which will help solving



RL problem efficiently.

3.1. The Small World Network-Based World
Representation

To apply RL for continuous problem, we have to ap-
proximate the state space by discretization or using
function approximators such as neural networks. To
adopt two small world networks we mentioned above,
we need an incremental network model with a regu-
lar lattice structure. An example of such a model is
the growing neural gas network(Fritzke, 1995). Similar
approaches were used in(Gross et al., 1998; Toussaint,
2003) for world representation. Its online extension is
the incremental topology preserving map(Millan et al.,
2002) which we will use as the base of our algorithm.

Our algorithm is summarized in figure 1. It incremen-
tally adds nodes to the unexplored regions of state
space, and uses self-organization rule to modify the
connectivities and positions of nodes. Links between
edges are modified so that each node is only connected
to its neighbors, and the position of nearest node and
the positions of all its neighboring nodes are moved
closer to the input position. Furthermore, long range
edges are added to make the network have the small
world property. If we assume that all the state transi-
tions are local, we can use this network model as the
discrete MDP which approximates the original prob-
lem. Each node represents a corresponding region of
state space, and each edge correspond to a subtask of
moving to a specific state in original problem. This ap-
proach has much in common with topological mapping
approaches in robotics (Thrun, 1998) and node graph
approaches used in many 3D games (Rabin, 2002).

Our approach has two major differences from other
network based approaches. The first difference is the
existence of long links. When a new node is added, a
long link denoting the corresponding subtask is added
with the probability given by a small world network
model. This procedure makes the resulting network to
have the small-world property. The second difference
is the constraint of visibility, which requires that there
should be a straight, non-blocked path between two
linked nodes in state space. If this requirement is met,
the optimal subpolicy for a subtask is trivially given
as moving straightly to its subgoal.

3.2. Reinforcement Learning in a Small World
Network

Now we need an appropriate RL algorithm for the
small world network based world model. To select
actions, the easiest way is using conventional action
selection methods such as ε-greedy method. Although

1. Perceive the current position x.
2. Find the nearest node b visible from x

and second nearest node b′ visible from x.
3. If the distance between x and b exceeds the unit

radius r, then
(A) Add a node u at x.
(B) Create edges from u to b and b′,
(C) Remove any edge between b and b′,
(D) Select nodes v visible from x according to

probability proportional to:
(MODEL 1) dist(u, v)−α, where dist(u, v) is

the euclidian distance between u and v.
(MODEL 2) d(v), the number of long range edges

starting from v.
(E) Create long range edges from u to v with the

probability pl.
Else

(F) Create an edge between b and b′

if b is visible from the position of b′.
4. Move wb, the position of b, and wr, the positions

of all its neighboring nodes r, toward x if possible:
wb ← wb + δ(x− wb)
wr ← wr + δr(x

′ − wr)

Figure 1. An algorithm to build a small world network
based world model.

this method ignores the network structure, augment-
ing MDPs with temporal abstraction alone can help
reinforcement learning process (Sutton et al., 1999).
And it is also known that random walking in a scale
free network gravitate towards the high degree nodes,
making the search more efficient (Adamic et al., 2001).
So for the simplicity, we use a simple ε-greedy action
selection rule in this work. To update the value func-
tions, we can directly use Semi-MDP value update rule
(3) for both of the models we described above. Finally,
we need to get a subpolicy for each subtask. For the
navigation task we are interested in, finding subpoli-
cies can be trivial. However, for a general RL task,
we have to use a local policy learning algorithm such
as the Experience Replay procedure(Lin, 1992). We
leave this as a future work.

4. Experimental Results

In this section we describe two experiments. For both
experiments, we first let the agent explore the state
space and use our algorithm to generate Semi-MDP
network. And we run standard Q-learning algorithm
on the network. Two versions of proposed algorithm,
each using model 1 and model 2 we discussed above,
are tested against standard ITPM algorithm. Com-
mon parameter values we use are as follows: move-
ment parameter δ=0.0002, δr=0.00002, long link ratio
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0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Model 2

Figure 2. Example of networks generated using each algo-
rithms and their degree distributions. Networks are gen-
erated with r=0.02 and degree distributions are measured
with r=0.00625. Only long links are shown for Models 1
and 2.

pl=0.1. The lattice dimension p is empirically deter-
mined from the average degree of the baseline network.
Various values for unit radius r are used to examine
the scaling behaviors of each algorithms.

Our experiment is greatly simplified by the visibility
constraint, by which the optimal subpolicy for a sub-
task is trivially given as going straight to their sub-
goal position. Although this approach is not suitable
for general RL tasks where visibility constraint is not
applicable, it suits well for navigation task we are in-
terested in. For reinforcement learning part, we use
simple epsilon-greedy action selection rule with ε=0.1,
α=0.5, γ=0.9. we used the Semi-MDP update rule
(3), using the length of edges normalized by the unit
radius r as the execution time k(s, a). We will discuss
each experiments further in following subsections.

4.1. 2D Puddleworld

The first experiment uses a [0,1) by [0,1) continuous
state space with a T-shaped obstacle in it. At each
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Figure 3. The scaling behavior of the averaged shortest
path length. In contrast to baseline ITPM which shows a
polynomial growth of shortest length, model 1 and model
2 show a polylogarithimic growth of shortest path length
which is shown as the straight line on semi-log plot.

time step the agent can move to any direction, with
step size r/10. We let the agent do random walk
and generate networks for each models using unit ra-
dius r=0.2,0.1,0.05,0.025,0.02,0.0125,0.01 and 0.00625.
Generated networks from each models and their degree
distributions are shown in figure 2. Figure 2a shows
the baseline network ITPM generates where each node
is connected to only its neighbors. From figure 2b,
we can see the degree distribution of the network is
peaked at 5, and the lattice dimension is determined
as p=log25=2.322. Figure 2b and 2c show the addi-
tional long links model 1 and 2 add to the baseline
network. From figure 2f, we can see the emergence of
hub structures and the characteristic power law curve
of degree distribution in model 2. The average shortest
path length of each network is shown in figure 3. We
can see that in contrast to the baseline network where
the average shortest path length grows linearly with
problem size, the average shortest path length grows
polylogarithmically in model 1 and model 2.

Finally we run a Q-learning algorithm on generated
networks. At each episode, the agent starts at a ran-
dom start point and move up to 100 steps. In an ab-
sorbing goal area positioned upper right corner of the
state space, a reward of 100 is given. The number
of episodes in a run is empirically determined to fully
cover its convergence phase. The total distance from
start point to goal is measured at each episode. To
penalize the episodes that fail to reach the goal within
100 unit distance, we assign 1000 unit distance as the
penalized distance to the goal of that episode. We run
a number of runs and average the penalized distances
to goal. Figure 4 shows the convergence of penalized
distance to goal for various network sizes. We can see
that using model 1 and 2 improves the convergence
speed of RL, and this effect is more apparent in bigger
problem. To see the scaling behavior of RL perfor-
mance over problem size, we measure the number of
episodes needed to reach 50% convergence from each
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(a) r=0.05, 200 nodes
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(b) r=0.025, 795 nodes
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(c) r=0.0125, 3157 nodes
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(d) r=0.00625, 12501
nodes

Figure 4. The penalized distances to the goal at each
episode, averaged after 100 runs. 1000 unit distance is used
to penalize the failed episodes. Each graph is normalized
to fit in the range of 0 to 1.

learning curves. To reduce the effect of variance,
we apply a smoothing filter which averages outcomes
within a given window size. Figure 5 shows the scaling
behaviors of RL using each models. Though they do
not scale polylogarithmically like shortest path length,
we can accelerate the convergence of reinforcement
learning algorithm significantly.

4.2. 3D Gameworld

To show that our algorithm can handle a complex
problem with a continuous state space, we now con-
sider a 3D gameworld task. For our experiment plat-
form, we use a popular 3D game Half-Life 2 (Hodgson,
2004) which enables the real-time simulation of con-
tinuous 3D world. We use a map named dm lockdown
whose size is approximately 50*150*10 m. Learning
agent has size 1*1*1 m and has maximum movement
speed of 7 m/s (27k mph). The position of agent is
checked every 1/20 second to update the network and
get a new action. To explore the state space efficiently,
we use a RL based multi agent exploration algorithm,
which we do not cover in this paper.

We generated three networks using unit radius
r=0.5,0.75,1.0 m. Generated networks consist of 4594,
6403, 13252 nodes and 6933, 11447, 13866, 23341 links,
respectively. Long links generated by model 1 and 2
account for about 5% of total links. Generated net-
work using r=0.75 meter is shown in Figure 6. With
the same setting we use for the first experiment, we run
Q-learning on each networks. A reward of 100 is given
at the single goal located in one of the rooms. Figure 7
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Figure 5. The scaling behavior of the number of episodes
to reach 50% convergence.
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Figure 6. The 3D view of generated baseline network using
r=0.75 m. Total number of nodes is 6403.

shows the convergence properties of penalized length
to goal for each models. In contrast to the baseline
ITPM algorithm which shows very slow convergence
speed, our algorithm quickly start to converge.

5. Conclusion and Future Work

We propose a novel network based world representa-
tion to cope with the curse of dimensionality in rein-
forcement learning. By augmenting the network with a
small number of additional links based on small world
network models, we demonstrate that we can keep the
growth of the number of decision steps polylogarith-
mically, which can accelerate the convergence of RL
as the problem size grows bigger. Experimental result
with 3D game environment shows that our algorithm
can learn usable policy in reasonably short time, even
with a huge problem with state size exceeding 10,000.
Although still preliminary, our approach is promising
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(b) r=0.75, 6403 nodes
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(c) r=0.5, 13252 nodes

Figure 7. The penalized distances to goal at each episode
for a 3D gameworld task, averaged after 10 runs. The 1000
unit distance is used as the penalized distance for failed
episodes.

in several aspects: it is scalable, takes continuous state
and action space, has a compact representation and
does not need problem specific knowledge.

There are many interesting directions for future work.
The most interesting one is extending our approach to
general continuous state space RL problems by adopt-
ing a subpolicy learning algorithm. Using larger sub-
tasks can help reducing the number of decision steps
between states, but it may add overhead of learning
subpolicies for larger subspaces. Finding the right
tradeoff between these two will be a challenging prob-
lem.
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