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1 Introduction

Change in synaptic efficacy is believed to underlie learning and memory, and has long been es-
tablished in the forms of long term potentiation (LTP) and long term depression (LTD) [2]. Ex-
perimental and theoretical work on plasticity has addressed the dependence of plasticity on pre-
synaptic firing rates [1, 3] and the timing [7] and interaction [4, 6] of pre- and post-synaptic spikes.
Computational studies have further explored the consequences of plasticity on the distribution of
synaptic strengths [10, 6] but this work has not clearly addressed correlated pre- and post-synaptic
activity. An important issue for modelling plasticity is limiting synaptic strength following cor-
related activity, as correlations among input spikes can drive synapses without bound. Modelling
studies have used hard [8] and soft [5] caps on synaptic strength to address this issue.

We recently proposed a new interpretation of Bi and Poo’s [7] spike-time-dependent plasticity
(STDP) data, deriving a weight- and spike-time-dependent plasticity rule that leads to fixed points
of synaptic weights following correlated pre- and post-synaptic spike trains [9]. Under our rule,
fixed points are achieved by a balance of LTP and LTD, where LTD increases faster than LTP and
therefor dominates strong synapses. These fixed points are dependent on the rate and distribution
of pre-synaptic spikes, post-synaptic spike latency, and the probability of synaptic transmission.
Here, we build on this work by adding a weight-dependent probabilistic term to our plasticity rule.
Without this term, fixed points are several orders of magnitude larger than experimental values,
and our rule leads to runaway weights when LTP is isolated from LTD, as is typically the case in
STDP protocols. Accordingly, input associations quickly lead to weights capable of driving the
post-synaptic neuron on their own. We show that our new, probabilistic rule retains the features
of our earlier rule, but lowers fixed points to biologically realistic values. We further demonstrate
that associations between pre-synaptic events driving a model neuron are captured by this rule, so
that several synapses are on average required to drive a post-synaptic neuron following associative
learning, commensurate with biological findings.

2 Methods and Results

We consider the weight- and spike-time-dependence of synaptic change, assuming independence
between these factors for simplicity. Our learning rule is

Awipay = agpayu’ e wd Ay(w), (1)

where Aw is the change in synaptic strength (weighlt = )05t — tpre is the temporal dif-
ference between post-synaptig,(;) and pre-synaptictf,..) spikes,y is a weight-dependent
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Bernoulli random variable, and constantg, ;; = {431,-59}/60, by, 4y = {0.4,0.1}, and

cqp.dy = 10.039,0.043} were derived by fitting Bi and Poo's weight- and spike-time-dependent
data under the assumption that each of their 60 spike pairings [7] contributed equally to the mea-
sured synaptic change.

The maximally correlated case between a pre-synaptic event and postsynaptic spike results in
an ongoing potentiation of synaptic weights, but every pre-synaptic event can also trigger depres-
sion in conjunction with a previous post-synaptic spike. For Poisson-distributed correlated pre-
and post-synaptic spikes, an equilibrium valuteis given by
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wherer, = 500ms was chosen because LTP was not reliably produced when initial synaptic
strengths were greater than 500pA in [7].

Figure 1A shows the effects of LTP under Equation 1 in the absence of LTD, with and without
the probabilistic termy. Without~y, Equation 1 leads to runaway LTP because large weights are
potentiated more than small weights (despite thencentageotentiation being smaller). With
the inclusion ofy, LTP leads to weight values on the order of those found in [7]. Figure 1B shows
fixed points as a function of firing rate for correlated and uncorrelated pre- and post-synaptic spike
trains. Solid and dashed curves show fixed points with and without the inclusiorespectively.

These equilibrium values depend on rate, correlation, and spike latency.

Figure 1C shows the effect of correlated input activity on synaptic weights under Equation 1.
Fifty correlated inputs representing a specific pre-synaptic event drive a leaky integrate-and-fire
(LIF) node, where synaptic weights associated with this event are initialised to 100pA. After a few
instances of the event, weights have increased enough that five synapses are able to drive the node.
Small weights (10pA) that are active during the LTP time window due to a second event (onset at
t = 10*ms) are also potentiated, and soon five of these synapses are able to drive the neuron in the
absence of the first event. Weight values quickly plateau, as seen in the figure.
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Figure 1: (A) In the absence of LTD, Equation 1 leads to runaway weights (dashed line) when
v = 1. When~ is w-dependent, LTP leads to stable weights (solid). (B) Equation 1 leads to
synaptic fixed points that depend on the rate and correlation of spike trains. Curves depict these
dependencies with (solid) and without (dashed) the weight-dependent probabilistic. €250
correlated inputs (initial weight 100pA, 5 shown) drive an LIF node leading to potentiation under
Equation 1. Five synapses (left) are soon able to drive the post-synaptic node. Five weak synapses
(10pA) then piggyback this pre-synaptic event and are also potentiated (right).



3 Conclusions

In their classic paper [7] Bi and Poo state that they limit their experiments to synapses with initial
strengths less than 500pA because they were unable to reliably elicit LTP for larger synapses. Be-
cause their weight-dependent data show significant LTP for several synapses with initial strengths
of around 1000pA, we hypothesise that LTP may be probabilistic, depending on initial strength.
This hypothesis could be tested under established STDP protocols [7, 4]. By adding a weight-
dependent, probabilistic term to our weight- and spike-time-dependent plasticity rule in [9] we
provide an STDP rule that leads to rate-dependent synaptic fixed points on the order of experi-
mental values. Our rule retains the features shown in [9], leads to stable LTP without recourse to
a cap on synaptic strength, and captures associations among input spikes driving a model neuron.
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