
Reinforcement Learning, Spike Time

Dependent Plasticity and the BCM Rule

Dorit Baras and Ron Meir

Department of Electrical Engineering

Technion, Haifa 32000, Israel

doritb@il.ibm.com, rmeir@ee.technion.ac.il

September 8, 2006

Abstract

Learning agents, whether natural or artificial, must update their internal parameters

in order to improve their behavior over time. In reinforcement learning, this plas-

ticity is influenced by an environmental signal, termed a reward, which directs the

changes in appropriate directions. We apply a recently introduced policy learning

algorithm from Machine Learning to networks of spiking neurons, and derive a spike

time dependent plasticity rule which ensures convergence to a local optimum of the

expected average reward. The approach is applicable to a broad class of neuronal

models, including the Hodgkin-Huxley model. We demonstrate the effectiveness of

the derived rule in several toy problems. Finally, through statistical analysis we

show that the synaptic plasticity rule established is closely related to the widely

used BCM rule, for which good biological evidence exists.

1 Policy Learning and Neuronal Dynamics

Reinforcement Learning (RL) is a general term used for a class of learning problems in

which an agent attempts to improve its performance over time at a given task (e.g.,

Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). Formally, it is the problem of

mapping situations to actions in order to maximize a given reward signal. The interaction

between the agent and the environment is modelled mathematically as a Partially Ob-

servable Markov Decision Process (POMDP, see Appendix C.3.2). At each (discrete) time

1

step t, the agent and the environment are in a particular state x(t). The state determines

a, possibly noisy, observation vector y(t) that is seen by the agent. Upon observing y(t)

the agent performs an action a(t), and receives a reward r(t), based on the quality of its

action. The mapping from states to actions is referred to as a policy. The objective of

RL is to learn an optimal policy through exploring and interacting with the environment.

An optimal policy is a policy that maximizes the long term average reward. Appendix

C.3 provides definitions of MDPs and POMDPs. We refer the reader to (Bertsekas and

Tsitsiklis, 1996; Baxter and Bartlett, 2001) for the precise mathematical definition of

policy learning in general.

We begin with the simple Leaky Integrate and Fire (LIF) neuronal model (e.g., Gerstner

and Kistler, 2002; Koch, 1999). A more general model neuron will be introduced in

Section 3. Consider a population of N lif neurons, each of which is characterized by a

potential vi(t), i = 1, 2, . . . , N . Each neuron receives inputs from both external sources

and from other neurons in the network. We assume that each lif neuron is characterized

by a reset value vr, a leakage voltage vL, and threshold vθ. The dynamics of neurons

between spikes is given by

τm
dvi(t)

dt
= −

(

vi(t) − vL

)

+ RIi(t) + RIext

i (t) (i = 1, 2, . . . , N). (1)

Upon reaching a threshold vθ a spike is emitted and the neuron is reset to vr (we neglect

the refractory period in the present analysis).

The current Iext
i (t) denotes the external current entering neuron i, and the synaptic

current Ii(t) is given by

Ii(t) =
∑

j

wij

∑

f

α
(

t − t
(f)
j

)

, (2)

where wij denotes the synaptic efficacy. The first summation in (2) is over all neurons

which connect to neuron i, while the sum over f runs over the firing times of the presy-

naptic neurons, where {t
(f)
j } denote the firing times of neuron j. Although the derivation

below applies to general α functions, we specify two special and analytically tractable

cases in Section 2.1.

An advantage of the simple linear dynamics (1) and (2) is that the potential value between

spikes can be precisely computed, yielding

vi(t) = vr exp

{

−
t − t̂

(0)
i

τm

}

+
1

c

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

(Ii(s) + Iext

i (t)) ds , (3)

where c = τm/R and t̂
(0)
i is the last spiking time of neuron i preceding t.

2

The mapping of our problem to a pomdp is defined as follows (see also Bartlett and

Baxter, 1999):

State The membrane potential value. We use discrete values within a fixed resolution

(the voltage range was [−60, 0] mV, divided into 120 discrete bins of equal size),

along with a binary variable denoting a spiking event in the neuron.1

Observation A noisy measurement of the state. In this work the observation is taken

to be the state itself, although the formalism is more general.

Actions Given the membrane potential, each neuron may fire or remain quiescent. The

action, to fire or not to fire, depends on the state stochastically.

Reward The reward is provided as a real valued number, based on the underlying task.

The reward process is assumed to be global, namely available to all the neurons in

the network.

The dynamics described by (1) and (2), including the spiking process, is purely de-

terministic. In order to allow for stochasticity in action selection, required within the

pomdp framework (Baxter and Bartlett, 2001), we assume that the spiking process is

random. For each neuron we define a spiking point process ζi(t) ∈ {0, 1} through

P [ζi(t) = 1|vi(t)] = [1 + exp (− (λvi(t) − ϕi))]
−1

△
= σ (λvi(t) − ϕi) (4)

where ζi(t) = 1 denotes a spike at time t, ζi(t) = 0 denotes the absence of a spike, and

λ determines the steepness of the sigmoidal function. In the sequel we use the same

threshold ϕ for all neurons, but for generality we allow different ϕi.

When applying the direct RL approach presented in Section 2 to networks of spiking

neurons, the set of synaptic weights parameterize the stochastic policy. In previous work,

as well as in ours, the neurons are modelled as MDPs or POMDPs (see Appendix C.3)

with the possible actions of generating or not generating a spike. The approach presented

in (Bartlett and Baxter, 1999) is similar to ours, but neurons are modelled as simple

1This state space suffices for deriving the algorithm. In simulations presented later in this paper,

the state space is larger and contains the following additional ingredients: exact spiking times of each

presynaptic neuron (required for exact computation of the weight update) and a variable denoting the

number of spike events that occurred in the particular neuron (required for the computation of the reward

signal). We emphasize that this extension of the state space does not affect the derivation of the algorithm

as appears in Section 2, and is only required for implementation of the simulations as described in Section

4

3

McCulloch-Pitts binary elements. In (Xie and Seung, 2004; Seung, 2003) a more realistic

neural model is used, but learning is based on spiking rates rather than on the mem-

brane potential itself, and the derivation of the algorithm requires additional statistical

assumptions about the spiking events. In addition, we are able to relate the plasticity

rule derived to the well-known BCM rule.

The remainder of the paper is organized as follows. Section 2 is devoted to the deriva-

tion of the basic synaptic plasticity rule in the context of lif neurons. The framework

is then extended to general neural models in Section 3. Some results demonstrating the

applicability of the approach to several toy problems is presented in Section 4. A detailed

statistical analysis of the derived rule is presented in Section 5, showing the close rela-

tionship to the BCM rule. We conclude with a Discussion and a presentation of several

open problems.

2 Derivation of the Weight Update

In order to limit the state space and efficiently implement the algorithm, a discretization

procedure is required. Discretizing the differential equation (1) we have

v(t + ∆) = v(t) +
1

τm

∆ (vL − v(t) + RI(t)) , (5)

where I(t) = Ii(t) + Iext
i (t). The notation t + ∆, t − ∆ refer to the next and previous

time steps, respectively. This procedure is analogous to solving the original differential

equation using Euler’s method. A similar approach is taken with respect to ζi(t), i.e.

spiking can occur with a certain probability in each discrete time step bin. Note that, as

in (1), the voltage is reset after every spiking event.

We use the update rule for the parameters as suggested in the gpomdp algorithm (Baxter

and Bartlett, 2001). In general, let θ denote the vector of parameters describing a system,

and let µa(y(t),θ) denote a probabilistic policy based on the observation y(t) and the

parameter value θ. More precisely,

µa(y(t),θ) = Pr {choosing action a|y(t),θ} .

The gpomdp parameter update rule (Baxter and Bartlett, 2001) is given by

θ(t) = θ(t − ∆) + γr(t)z(t), (6)

where r(t) is the reward signal, and the eligibility trace, z(t), is given by

z(t + ∆) = βz(t) +
∇µa(t)

(

y(t),θ
)

µa(t)

(

y(t),θ
) . (7)

4

Here γ > 0 is a small step size parameter and β ∈ [0, 1) is a bias-variance tradeoff

parameter. The convergence of the (temporal) average reward to its expected value,

based on the parameter update rules (6) and (7), is established in (Baxter and Bartlett,

2001) under the appropriate technical conditions.

In the present context the parameters denote the synaptic weights W = {wij}
N
i,j=1, and

the actions are denoted by the firing pattern {ζi(t)}. From (4)

µζi(t)

(

y(t),W
)

= σ
(

(2ζi(t) − 1)(λvi(t) − ϕi)
)

,

where we have used σ(x) = 1 − σ(−x).

We compute the gradient required in (7). Assume initially that ζi(t) = 1. Setting

xi(t) = λ(vi(t) − ϕi), we have

∂µ1

(

y(t),W
)

∂wij

= σ′(xi(t))
∂xi(t)

∂wij

= λσ(xi(t))(1 − σ(xi(t)))
∂vi(t)

∂wij

= σ(xi(t))
(

1 − σ(xi(t))
)λ

c

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

α
(

s − t
(f)
j

)

ds ,

where we have used σ′(x) = σ(x)(1−σ(x)) and the explicit solution (3) in the derivation.

A similar result can be established for the case ζi(t) = 0, leading to the relation

∂µζi(t)

(

y(t),W
)

/∂wij

µζi(t)

(

y(t),W
) =

(

ζi(t) − σ(xi(t))
)λ

c

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

α
(

s − t
(f)
j

)

ds.

Summarizing the derivation, we obtain the following update rule for the synaptic weights,

wij(t) = wij(t − ∆) + γr(t)zij(t) ,

zij(t + ∆) = βzij(t) +
(

ζi(t) − σi(xi(t))
)λ

c

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

α
(

s − t
(f)
j

)

ds . (8)

Note that the weight update depends on the correlation between the reward and the

eligibility trace zij. The eligibility trace of a weight is updated based on the spiking activity

of the presynaptic and postsynaptic neurons only. The presynaptic spikes contribute only

if they occurred after the last postsynaptic spike (the reset effect), and the sign of the

5

change depends on the event of postsynaptic firing, through the term (ζi(t) − σi(xi(t)))

in (8). For example, the largest positive contribution to the eligibility trace occurs in the

event that both the presynaptic and the postsynaptic cells fire vigorously while a positive

reward is delivered.

2.1 Two Explicit Choices for α

In order to better understand the meaning of the update rule established, we consider

two special choices for the function α.

Pulse function Setting α(t) = qδ(t), the integral in (8) can be computed exactly leading

to the update

zij(t + ∆) = βzij(t) +
(

ζi(t) − σi(t)
)λq

c

∑

f

′

exp

{

−
t − t

(f)
j

τm

}

, (9)

where
∑′

f denotes a summation over all presynaptic firing times t
(f)
j such that t̂

(0)
i <

t
(f)
j ≤ t.

Exponentially decaying window A common choice for α is

α(t) =
q

τs

e−s/τsI
{

t ≥ 0
}

.

An explicit (but tedious) calculation (see Appendix C.1 for details), leads to the update

zij(t + ∆) = βzij(t) +
(

ζi(t) − σi(t)
)

F
({

t
(f)
j

}

, t̂
(0)
i

)

where

F
({

t
(f)
j

}

, t̂
(0)
i

)

=
λqτm

c (τm − τs)

∑

f

′

e−
(

t−t
(f)
j

τs

)

[

exp

{(

τm − τs

τmτs

)

(

min
(

t − t
(f)
j , t − t̂

(0)
i

)

)

}

−1

]

.

3 Extensions to General Neuronal Models

The synaptic plasticity rules derived in Section 2 are based on a simple integrate and

fire model, which neglects both nonlinearities and adaptation mechanisms known to take

place within a neuron. We consider now a network of generalized neural elements. Let

vi(t) denote the membrane potential of neuron i, and set ui(t) =
(

ui,1(t), ..., ui,P (t)
)⊤

to

be a vector of additional neural variables, describing, for example, adaptation mechanisms

6

neglected in the simple lif model. The network model is given by

dvi

dt
= F

(

vi(t),ui(t)
)

+ G
(

vi(t),ui(t)
)

Ii(t),

dui,k

dt
= Hk

(

vi(t),ui(t)
)

(i = 1, 2, . . . , N, k = 1, 2, . . . , P) ,

with appropriate reset definitions, if needed (e.g., reset vi(t) after spiking in integrate and

fire type models). For example, such a model may describe many biophysically motivated

models, such as the Hodgkin-Huxley model and simpler two-dimensional approximations.

In general, one cannot solve the differential equation and find an explicit solution for vi(t)

as was done in (3), and one has to resort to a different approach in order to determine

the synaptic update rules.

Proceeding similarly to the derivation in Section 2, we find that

wij(t) = wij(t − ∆) + γr(t)zij(t) ,

zij(t + ∆) = βzij(t) + λ
(

ζi(t) − σi(t)
)∂vi(t)

∂wij

.

In order to compute ∂vi(t)/∂wij we use an idea similar to the Real Time Recurrent

Learning algorithm described in (Haykin, 1999). Discretizing time, as in Section 2 (and

neglecting Iext for simplicity), the neural dynamics is given by

vi(t + ∆) = vi(t) + ∆

[

F
(

vi(t),ui(t)
)

+ G
(

vi(t),ui(t)
)

∑

j

wij

∑

f

αi(t − t
(f)
j)

]

ui,k(t + ∆) = ui,k(t) + ∆Hk

(

vi(t),ui(t)
)

. (10)

Note that t
(f)
j = ℓ∆ for some integer ℓ.

In order to obtain an algorithm that is both computationally efficient and requires low

memory, we demand that (and demonstrate in 3.1)

αi(t + ∆) = A
(

αi(t), n, ξi(t + ∆)
)

, (11)

for some function A, where ξi(t) is a binary vector which indicates a spike at a presynaptic

neuron, i.e. ξi
j(t) = 1 if a presynaptic spike occurred at neuron j at time t, and zero

otherwise. In other words, the value of αi(t + ∆) depends only on the values of αi(t) at

time t and not on previous times.

Denote wi =
(

wi1, wi2, ..., wiN

)⊤
, the vector of weights afferent to neuron i, and set

αi(t) =

(

∑

f

αi(t − t
(f)
1),

∑

f

αi(t − t
(f)
2), · · · ,

∑

f

αi(t − t
(f)
N)

)⊤

.

7

We express (10) as

vi(t + ∆) = vi(t) + ∆
[

F
(

vi(t),ui(t)
)

+ G
(

vi(t),ui(t)
)

w⊤
i αi(t)

]

. (12)

Differentiating (12) with respect to wi, and using the chain rule we obtain

∇wvi(t + ∆) = ∇wvi(t) + ∆F ′
(

vi(t),ui(t)
)

∇wvi(t)

+ ∆G′
(

vi(t),ui(t)
)

∇wvi(t)w
⊤
i αi(t)

+ ∆G
(

vi(t),ui(t)
)

αi(t) ,

or equivalently,

∇wvi(t + ∆) = ∇wvi(t)

[

1 + ∆F ′
(

vi(t),ui(t)
)

+ ∆G′
(

vi(t),ui(t)
)

w⊤
i αi(t)

]

+ ∆G
(

vi(t),ui(t)
)

αi(t) .

(13)

This is a recursive update rule for ∇wvi(t), with an initial condition set at every postsy-

naptic spike, namely

∇wvi(t)
∣

∣

t=t̂i
= 0 . (14)

Summarizing the learning algorithm along with the neuronal dynamics we obtain algo-

rithm 1.

3.1 Explicit Calculation of the Update Rules for Different α

Functions

As mentioned above, we assume that α(t) obeys (11). Here we demonstrate the update

rule of the α function.

3.1.1 Demonstration for α(s) = qδ(s)

In the present discrete time setting the Dirac delta function is replaced by a Kronecker

delta function, namely δ(t) 7→ δ0,t where t = ℓ∆ for some integer ℓ. Thus

∑

f

αi(t + ∆ − t
(f)
j) =

∑

f

δ
t+∆,t

(f)
j

= qξi
j(t + ∆)

since the only contribution to the last sum arises when a presynaptic spike occurs at t+∆.

8

-

Initialization

Initialize weights wij(0), eligibility traces zij(0) = 0 and αi(0) = 0

Initialize vi(0), ui,k(0).

Step 1: Weight Update

wij(t) = wij(t − ∆) + γr(t)zij(t) ,

zij(t + ∆) = βzij(t) + λ
(

ζi(t) − σ
)∂vi(t)

∂wij

,

Step 2: Dynamic Update

vi(t + ∆) = vi(t) + ∆

[

F
(

vi(t),ui(t)
)

+ G
(

vi(t),ui(t)
)

∑

j

wij

∑

f

αi(t − t
(f)
j)

]

ui,k(t + ∆) = ui,k(t) + ∆Hk

(

vi(t),ui(t)
)

.

Step 3: Parameter Update

∂vi(t + ∆)

∂wij

=
∂vi(t)

∂wij

[

1 + ∆F ′
(

vi(t),ui(t)
)

+ ∆G′
(

vi(t),ui(t)
)

w⊤
i αi(t)

]

+ ∆G
(

vi(t),ui(t)
)

∑

f

αi(t − t
(f)
j) ,

∑

f

αi(t + ∆ − t
(f)
j) =

∑

f

A
(

αi(t − t
(f)
j), n, ξi(t + ∆)

)

.

At every postsynaptic spike at neuron i

Reset vi(t), ui(t) and ∂vi(t)/∂wij.

Algorithm 1: Synaptic update rule for a generalized neuronal model

9

3.1.2 Demonstration for α(s) = q
τs

e−
s
τs

In this case,

∑

f

αi(t + ∆ − t
(f)
j) =

q

τs

∑

f

e−
(

t+∆−t
(f)
j

τs

)

=
q

τs

e−
∆
τs

∑

f

e−
(

t−t
(f)
j

τs

)

+
q

τs

ξi
j(t + ∆)

= e−
∆
τs

∑

f

αi(t − t
(f)
j) +

q

τs

ξi
j(t + ∆) ,

with the appropriate initial conditions αi(0) = 0.

3.2 Depressing Synapses

As a simple application of the general procedure presented we consider the case of lif

neurons possessing a synaptic depression mechanism. While several formulations currently

exist for depression, we consider the simple formulation proposed in (Richardson et al.,

2005), leading to the dynamic equations (between spikes)

τm
dvi

dt
= −

(

vi(t) − vr

)

+ R
∑

j

wij

∑

f

α
(

t − t
(f)
j

)

Dj(t)

dDj(t)

dt
=

1 − Dj(t)

τd

(t
(f−1)
j ≤ t ≤ t

(f)
j),

where t
(f)
j are the presynaptic spiking times. Whenever a presynaptic spike occurs, the

depression variable, Dj(t), is updated according to the rule

Dj(t
(f)
j) ← Dj(t

(f)
j) − vDDj(t

(f)
j) ,

where vD is related to the level of synaptic resource depletion (Richardson et al., 2005).

These equations describe a depletion of the synaptic resources whenever a presynaptic

spike arrives, followed by a recovery process at a temporal scale of τd. Note that setting

Dj(t) = 1, we recover the standard lif model.

An explicit expression for Dj(t) between two presynaptic spikes can be easily derived.

The initial conditions are

Df
△
= Dj(t)

∣

∣

∣

∣

t=t
(f)+
j

=

[

Dj(t) − vDDj(t)

]∣

∣

∣

∣

t=t
(f)−
j

,

10

and for the first presynaptic spike, Dj(0) = 1.

Integrating the differential equation for Dj(t), we obtain

Dj(t) = 1 − e
−

(

t−t
(f)
j

)

/τD

[

1 − Df

]

(

t
(f−1)
j ≤ t ≤ t

(f)
j

)

.

The exact solutions for vi(t) and Dj(t) enable an explicit calculation of the update rule

for the case of depressing synapses. The general solution is rather cumbersome, and we

present only the result for the case where α(t) = qδ(t). The full derivation and general

solution can be found in Appendix C.2.

wij(t) = wij(t − ∆) + γr(t)zij(t) ,

zij(t + ∆) = βzij(t) +
λq

c

(

ζi(t) − σi(t)
)

∑

f :t
(f)
j >t̂

(0)
i

exp

{

−
t − t

(f)
j

τm

}

Dj(t
(f)
j) ,

which is very similar to (9), except that the presynaptic contribution is multiplied by the

depression variable Dj(t).

4 Simulation Results

In order to study the effectiveness of the update rules derived above, we present two

learning experiments. The experiments are performed with the simple lif neuron model

augmented with the stochastic spiking procedure described in Section 1. We note that

these experiments are aimed at demonstrating the derived synaptic rules, rather than

proving their efficiency. Moreover, the results presented were obtained using episodic

learning only (see definition below). We refer the reader to (Baras, 2006) for further

numerical experiments and the application to online learning.

The learning rule presented in Section 2 is derived for a single neuron. However, based

on Theorem 1 in (Bartlett and Baxter, 1999) the same learning rule applies at the network

level. What these authors show is that each neuron essentially treats other neurons as

though they were part of the environment; the only communication between neurons is

through the global reward signal and the influence of other neurons on the state obser-

vations. The claim can be formally demonstrated by noting that the derivative of the

average reward with respect to the (concatenated) vector of parameters corresponding

to all neurons, can be broken down into derivatives with respect to each of the neurons’

parameters, since the values of the weights afferent to each neuron are independent of

11

those relating to other neurons. This argument is similar to the one used to derive the

real time recurrent learning algorithm (e.g., Haykin, 1999).

The derivation in Section 2 assumed an online learning setup, where both the eligibility

trace and the weights are updated continually in time. In many applications, especially

where the inputs and outputs are encoded using rates averaged over a temporal window,

it is more meaningful to consider episodic learning. Episodic learning over a temporal

window T is obtained when the eligibility traces are updated at each Euler step, but the

weights are only updated at the end of the period T . More precisely,

Episodic learning: wij(T) = wij(0) + γr(T)z̄ij(T), (15)

z̄ij(T) = 〈zij(t)〉T

△
=

1

Nep

T−∆
∑

t=0

zij(t), (16)

where T is the episode length, Nep = T
∆

+ 1 and zij(t) is given by (8), i.e. the eligibility

traces are updated at every (discrete) time step (we assume for simplicity that T/∆ is an

integer).

We comment briefly on the rate coding used in the experiments discussed below.

From initial experimentation we found that a high rate input stimulus is required in

order to generate a network response. Therefore input coding consists of high firing rates

(the exact values are provided in Section 4). Since the network weights are restricted,

limiting the possible firing rates of output neurons, we used a lower threshold for output

coding; specifically an output value of 1 was coded by a firing rate above 80 Hz. Low

rates are encoded as 0 Hz for both input and output regardless of the problem.

We consider the following learning tasks.

XOR The network shown in Figure 1(a), is a fully connected feedforward network with

two input neurons, two hidden neurons and a single output neuron. We denote the

weights entering hidden neuron i by wh
ij, j = 1, 2 and the output weights by wout

i , i = 1, 2.

The task consists of solving the xor problem, where inputs ‘0’ and ‘1’ are encoded as

spike trains with low and high firing rates, respectively. The high input/output rates

used in this experiment were 200/120 Hz. During the learning process, time is split into

different learning epochs (or episodes). In each episode the network is presented with a

randomly chosen pattern (the probability of all 4 patterns is equal). At the end of each

episode, the output is determined as correct, incorrect or undetermined. The decision

is obtained by comparing the output spiking rate to a predetermined threshold. An

undetermined output relates to the case of a spiking rate very close to the threshold.

12

(a) XOR learning

(b) Path learning in a small network

(c) Path learning in a large network

Figure 1: Networks architectures used in the simulations.

Reward is assigned depending on the output: positive reward for correct output and

negative reward otherwise. Weights are randomly initialized but the following constraints

were used: wh
11 and wh

22 are initialized with positive values, and wh
12 and wh

21 are initialized

with negative values. This is the only problem (among those solved in Baras, 2006) in

which a solution forces some of the weights to be negative (inhibitory synapses). All

technical details and further explanations (exact reward values, parameter values etc.)

are given in Appendix B. Figure 2 displays learning curves averaged over all successful

learning simulations (99% successful convergence out of 100 experiments). We observe

that hill climbing occurs for the average reward. Since the curves are averaged, it is

impossible to see that the learning speed differs from simulation to simulation, although

this phenomenon does indeed occur (Baras, 2006).

Path learning The networks shown in Figures 1(b) and 1(c) consist of a single input

neuron, two output neurons and a varying number of hidden neurons. The aim here is to

13

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Episodes

R
at

e
va

lu
e

Pattern 01
Pattren 10
Pattern 11
Pattern 00
Threshold value

(a) Firing rates of output neurons

0 100 200 300 400 500 600 700 800
10

15

20

25

30

35

Episodes

A
ve

ra
ge

 r
ew

ar
d

va
lu

e

(b) Average reward

0 100 200 300 400 500 600 700 800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Episodes

W
ei

gh
ts

 v
al

ue

w h1i1
w h1i2
w h2i1
w h2i2

(c) Evolution of first layer weights

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Episodes

W
ei

gh
ts

 v
al

ue

w outh1
w outh2

(d) Evolution of second layer weights

Figure 2: XOR Learning (color online).

cause one of the output neurons to fire vigorously upon stimulation of the input neuron,

while demanding that the other output neuron remains silent. There are no limitations

on the behavior of other neurons in the network (“hidden” neurons). We consider both

feedforward and recurrent networks here.

The reward scheme used in this case is more informative than the one used in the previous

task, and depends on the exact spiking rate of each output separately. The idea is that the

reward should be proportional to the performance of the network. Every output neuron

contributes a positive term when it is correct, and a negative term otherwise. The exact

details are given in Appendix B. The high input/output rates used in this experiment

were 200/160 Hz. Figure 3 displays learning curves averaged over all successful learning

simulations for the small network (94% successful convergence).

14

We also studied sequential switching between the two tasks for the smaller network of

Figure 1(b). When considering switching tasks, we allow the network to learn a certain

path for 2000 episodes. We then reverse the learned task. This process is repeated 3

times (6 tasks overall). Figure 4 displays learning curves averaged over all successful

learning simulations in the small network (99% successful convergence). Note especially

the behavior of weights during the learning process. Several observations are in order

• From Figure 4(c), weights reaching the same output neuron are high together or

low together. Namely w31 and w32 increase together when the first output should

be high, while w41 and w42 decrease together and vice versa, depending on the task.

• The speed of learning in different weights is different. Observe that w31 and w41

reach stable values (either low or high) faster than w32 and w42. This occurs since

the input neuron stimulus possesses a high rate, but weights are constrained. No

matter how high w21 is, neuron 2 will always have a lower rate than the input neuron.

Therefore, the input neuron has more influence on both output neurons, and hence

on the reward. Thus, the correlation between the reward and the eligibility traces

of w31 and w41 is higher than the correlation between the reward and the eligibility

traces of w32 and w42. This causes the slower learning process of these “indirect”

weights.

Figure 5 displays learning curves averaged over all successful learning simulations in the

large network of Figure 1(c) (82% successful convergence). The “hidden” units rate curve

(Baras, 2006) show that the recurrence (closed loop in the network) did not cause satura-

tion in the rates, and they all remain within some reasonable area. The convergence rate

is smaller than the previous network due to the following reasons:

1. A large network implies a large number of parameters. When the number of pa-

rameters increases, the correlation between the reward and each eligibility trace is

reduced, sometimes leading to unsuccessful learning.

2. A large number of parameters increases the probability of converging to a local

maximum due to a larger number of extrema.

3. The state space is larger (proportional to the number of neurons in the network).

Therefore, more exploration might be required.

All learning experiments described perform hill-climbing in the sense that the average

reward increases with time. However, in some cases the system reaches a local maximum

15

of the average reward. By unsuccessful learning we refer to situations where the reward

did not reach a prescribed reward threshold value within the allotted time. This may

result from either slow convergence or a poor local maximum.

0 500 1000 1500
0

20

40

60

80

100

120

140

160

180

200

Episodes

R
at

e
va

lu
e

N3 output rate
N4 output rate
Threshold value

(a) Firing rates of output neurons

0 500 1000 1500
−200

−150

−100

−50

0

50

100

Episodes
A

ve
ra

ge
 r

ew
ar

d
va

lu
e

(b) Average reward

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Episodes

W
ei

gh
ts

 v
al

ue

w31
w32
w41
w42

(c) Weight evolution

Figure 3: Path learning in a small network (color online).

5 Relation to the BCM Rule

The synaptic plasticity rules derived in Section 2 belong to the class of spike time de-

pendent plasticity rules. In this section we consider the average behavior of the derived

rule, where the expectation is taken over a temporal window allowing us to transform

individual spikes to firing rates. We will show that the derived average rule behaves very

similarly to the well known BCM rule (Bienenstock et al., 1982), for which good exper-

16

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

180

200

Episodes

R
at

e
va

lu
e

N3 output rate
N4 output rate
Threshold value

(a) Firing rates of output neurons

0 2000 4000 6000 8000 10000 12000
−800

−700

−600

−500

−400

−300

−200

−100

0

100

Episodes

A
ve

ra
ge

 r
ew

ar
d

va
lu

e

(b) Average reward for each task

0 2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Episodes

W
ei

gh
ts

 v
al

ue

w31
w32
w41
w42

(c) Weight evolution

Figure 4: Path learning - switching tasks (color online).

imental evidence exists (e.g., L. Cooper and Shouval, 2004). A related result for several

forms of STDP was presented in (Izhikevich and Desai, 2003). We comment on this work

at the end of the present section.

For the analysis presented in this section we assume α(t) = qδ(t), and episodic learning.

In order to average the synaptic rule one needs to make appropriate statistical assump-

tions. Here we assume that the presynaptic firing pattern is described by a stationary

Poisson process, while the output firing is given by a Poisson process with a rate function

which depends on the presynaptic neurons. More precisely

• The input spike train is a homogeneous Poisson process with rate xj.

17

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

Episodes

R
at

e
va

lu
e

High output rate
Low output rate
Threshold value

(a) Firing rates of output neurons

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−140

−120

−100

−80

−60

−40

−20

Episodes

A
ve

ra
ge

 r
ew

ar
d

va
lu

e

(b) Average reward

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Episodes

W
ei

gh
ts

 v
al

ue

w35
w36
w47
w48

(c) First layer weight evolution

Figure 5: Path learning in a large network (color online).

• The output spike train is an inhomogeneous Poisson process with rate λi(t), where

λi(t) = xi + ηwij

∑

f

′

e−
(

t−t
(f)
j

)

/τm , (17)

where
∑

f
′ denotes a summation over all presynaptic firing times following the last

postsynaptic spike, and where xi is the output rate when no presynaptic activity

at neuron j is present. This relation captures the effect of increased postsynaptic

firing rate due to both enhanced presynaptic activity and large synaptic weight (a

similar and slightly more general approach is presented in Gerstner and Kistler,

2002, p. 408). In the sequel we will allow η to be a function of the weight wij

and the presynaptic firing rate xj. This allows for extra flexibility in determining

postsynaptic firing rate based on (17).

18

Based on (15) and (16), the expected weight change over an episode is given by

E∆wij(T) = Epost,pre

T−∆
∑

t=0

zij(t + ∆)

= Epost|preEpre

T−∆
∑

t=0

zij(t + ∆), (18)

where we have assumed for simplicity that wij(0) = 0 and have neglected the constant

term Nep, which does not affect the form of the result. The expectation in (18) is with

respect the presynaptic and postsynaptic spike trains.

The computation of the expectations in (18) is rather tedious, and can be found in the

appendix. Based on this derivation we obtain an expression which holds in the low firing

rate limit, where (∆xj)
2 ≪ 1.

E∆wij(T) ≈ r(T)(xj∆)
T−∆
∑

t=0

(1 − xj∆)
h
∆
−1

{

xiH1(xi, t) − H2(xi, wij, t)

}

, (19)

where

H1(xi, t) = ∆

h
∆

∑

k=1

(e−
t−tk
τm) ,

H2(xi, wij, t) =

h
∆

∑

k=1

{

ηwij∆
(

e−
t−ti
τm

)2

− e−
t−tk
τm f(e−

t−tk
τm)

}

,

and where h = min (t,m), f(x) = σ(vr +wijx), tk = t−h+k∆, and m is defined through

(20) in the appendix. Note that both H1 and H2 depend on xi through h which depends

on xi through (20) in Appendix A.

While the expressions are rather cumbersome, it is easy to compute them numerically

and compare them graphically with the BCM plasticity rule. Figure 6 presents examples

of the synaptic modification curve. The curves were created with η such that ηwij = 0.1xj,

meaning that the contribution of a presynaptic spike to the weight update is no more than

10% of the presynaptic rate. This type of normalization guarantees that the firing of a

single presynaptic cell does not dominate the postsynaptic firing rate. The specific choice

of 0.1 is arbitrary, and different values lead to very similar behaviors. For example, we

have tried corrections of the form ηwij = constxj. This relation is not mandatory, but

some restriction on the value of η should be enforced, in order to prevent unrestrained

growth of the postsynaptic firing rate. Note, however, that the effect of η is in any event

small as can be seen in (31), where it is multiplied by an additional (small) term ∆. Other

19

0 50 100 150 200

xi (Hz)

E
xp

ec
ta

tio
n

(a) xj = 20

0 20 40 60 80 100 120 140 160 180

xi (Hz)

E
xp

ec
ta

tio
n

(b) xj = 100 Hz

0 50 100 150 200

xi (Hz)

E
xp

ec
ta

tio
n

(c) xj = 180 Hz

Figure 6: Average weight change as a function of the firing rate of the postsynaptic neuron

for three presynaptic firing rates.

terms in (31), contain products of the form xi∆ or xj∆, where xi and xj, the firing rates,

are much larger.

Examining (19) and Figure 6 we observe the following properties:

• The qualitative form of the expected weight change is similar to that of the BCM

rule.

• Both potentiation and depression are observed, based on an activity dependent

threshold.

• Zero crossing depends on both pre and postsynaptic activities. Higher presynaptic

activity leads to increasing the threshold, which prevents uncontrolled weight in-

crease (self-regulation). In fact, we find that the threshold is essentially linear in

the presynaptic firing rate.

The curves were obtained using the same parameter values used in the simulations of

the toy problems in Section 4. Using other parameter values (such as τm, T etc.) led to

qualitatively similar results.

Izhikevich and Desai, 2003 have also recently presented some theoretical work related to

the relationship between STDP and the BCM rule. Essentially, this work showed that

BCM followed directly from STDP when the pre- and postsynaptic neurons fire weakly

correlated Poisson spike trains, and only near-neighbor spike interactions are taken into

account (in contrast to some implementations of STDP which use all spikes to update the

weight). It is interesting to observe that our formulation leads to a similar result, except

that instead of considering only nearest neighbors, we take into account all spikes between

two consecutive postsynaptic spikes. This follows from the resetting mechanism taking

place upon reaching threshold. Additionally, the STDP rule used here was derived from

20

the gradient pomdp framework rather than being postulated. Note that in the statistical

analysis of the learning rule, we take into account all spikes over a fixed temporal window.

6 Discussion

Learning is a behavioral process, taking place at the level of an organism, based on in-

teracting with the environment and receiving feedback. Synaptic plasticity is an internal

process, that depends on neural activity. The aim of this work was to suggest an answer

to how these two processes are related in the context of learning a stochastic policy in

a network of spiking neurons. By formalizing the learning process as a Reinforcement

Learning problem, and using the direct RL approach (Baxter and Bartlett, 2001), we

derived an algorithm that updates the synaptic weights, based on the reward obtained as

feedback. While previous work has addressed these issues (Bartlett and Baxter, 1999; Se-

ung, 2003; Xie and Seung, 2004), we have been able to extend these approaches to general

neural models, which can be made as biologically realistic as is required. Additionally, a

detailed analysis has shown that the derived rule is related to the BCM rule. We are not

aware of any previous work relating the BCM rule to reinforcement learning.

The synaptic update rule derived is computationally efficient, and yields good results

in several learning tasks. Moreover, the basic rule derived in Section 2 depends on local

activity and data available at the synaptic site, and requires mechanisms that are available

at the cellular level. The update rule derived in Section 3 for more realistic neural models is

indeed rather complex. A question left open at this point relates to the possible biological

implementation of such rules.

Finally, we comment on the relation of our work to other recent contributions (we have

already related our work to Bartlett and Baxter, 1999 and Xie and Seung, 2004). The

work of Rao and Sejnowski, 2001 begins with a biophysical model of a neuron and shows

how the temporal difference learning rule (e.g., Sutton and Barto, 1998) can reproduce the

temporally asymmetric window observed in STDP plasticity rules. Wörgötter and Porr,

2004 present a general overview of temporal difference learning and its implementation in

networks of spiking neurons. Both these approaches relate to ours in that they connect

a well known computational approach, namely temporal difference learning, to synaptic

plasticity rules. Our work differs form these in at least three ways. First, we derive

(rather than relate) a synaptic modification rule for learning an optimal policy (a control

problem), rather than attempting to estimate an optimal value function (a prediction

task), as is done in temporal difference methods. The latter approach always requires an

additional step of deciding on an appropriate action, given the value estimate. Second,

21

the relationship to the BCM rule, and its direct relation to policy improvement is novel.

Third, the approach taken here enables the extension of the approach to a broad range of

novel policy improvement algorithms proposed in the recent machine learning literature

(see below).

As a final note, we comment that Toyoizumi et al., 2005 have recently derived a BCM-

like learning rule for spiking neurons based on information theoretic arguments within

an unsupervised learning framework. Based on an integrate and fire neuronal model

and Poisson statistics assumptions, they show that maximizing the mutual information

between the input and output, subject to constraints on the output neuron’s firing rate,

leads to a BCM-like plasticity rule. It would be interesting to see whether this type of

result, may shed an information theoretic light on the reinforcement learning setup we

have considered in this paper.

The framework developed here can be extended in many directions. For example, more

realistic neural models may be easily incorporated within the setting presented in Section

3. Moreover, general synaptic window functions can be considered, based on more de-

tailed physiological information. Finally, recent extensions of gradient pomdp approaches,

based on actor-critic architectures (Konda and Tsitsiklis, 2003), are based on a tempo-

ral difference signal, rather than on the reward itself as in this work. Given the flurry

of recent interest in the relationship between the temporal difference signal in RL, and

the behavior of Dopaminergic neurons in the brainstem (e.g. Schultz, 2002), it would be

particularly interesting to extend the present framework accordingly.

Acknowledgments This work was partially supported by EU Project PASCAL, and

by the Technion VPR fund for promotion of research and by the Ollendorf foundation.

The authors are grateful to the anonymous reviewers for helpful remarks, which greatly

improved the clarity of the presentation.

A Appendix

Our objective here is to compute the expectation

Epost,pre

T−∆
∑

t=0

zij(t + ∆) = Epost,pre

T−∆
∑

t=0

(

ζi(t) − σi(t)
)

∑

f :t
(f)
j >t̂

(0)
i

exp

{

−
t − t

(f)
j

τm

}

,

where the expectation is with respect to the presynaptic and postsynaptic spike processes.

Calculating this expression directly is very difficult.

A possible solution to this difficulty is to sum over a fixed time window of length m. A

22

reasonable choice for the window length is given by the average inter-spike interval of a

Poisson process with rate xi. Since these intervals are exponentially distributed with the

same parameter as the original process, we set2

m′ , E(Interspike interval) =
1

xi

and m = ∆

⌈

m′

∆

⌉

, (20)

implying the approximation

∑

f :t
(f)
j >t̂

(0)
i

exp

{

−
t − t

(f)
j

τm

}

≈
∑

f :t
(f)
j >t−m

exp

{

−
t − t

(f)
j

τm

}

.

This approximate equality can also be expressed as

∑

f :t
(f)
j >t̂

(0)
i

exp

{

−
t − t

(f)
j

τm

}

≈
⊤

∑

t′=t−h

[

I(Spike at time t′) exp

{

−
t − t′

τm

}]

,

where we have introduced an indicator function at the times of the presynaptic spikes,

and where h = min (t,m) and all times are multiples of ∆.

Defining

y(t) ,

T
∑

t′=t−h

[

I(Spike at time t′) exp

{

−
t − t′

τm

}]

, (21)

and

f(θ) = σi

{

vr + wijθ
}

, (22)

we are left with

Epost,pre

∑

t

zij(t + ∆) ≈ EpreEpost|pre

∑

t

[(

ζi(t) − f
(

y(t)
)

)

y(t)

]

. (23)

Expectation with respect to the postsynaptic spike train

The expectation Epost|pre[·] can be computed easily, based on the relation

ζi(t) =

{

1 with probability λi(t)∆

0 with probability 1 − λi(t)∆
,

where λi(t) = wij + ηwijy(t).

2Note that the postsynaptic rate is not strictly xi (see (17)).

23

We obtain

Epost|pre

∑

t

zij(t + ∆) = Epost|pre

∑

t

[(

ζi(t) − f
(

y(t)
)

)

y(t)

]

=
∑

t

[

λi(t)∆

(

1 − f
(

y(t)
)

)

y(t) + (1 − λi(t)∆)

(

0 − f
(

y(t)
)

)

y(t)

]

=
∑

t

[

y(t)

(

λi(t)∆ − f
(

y(t)
)

)]

=
∑

t

[

y(t)

(

xi∆ + ηwijy(t)∆ − f
(

y(t)
)

)]

. (24)

Expectation with respect to the presynaptic spike train

Based on (24), we are the left with the task of to computing

Epre
∑

t

[

y(t)

(

xi∆ + ηwij∆y(t) − f
(

y(t)
)

)]

=
∑

t

[

xi∆Eprey(t) + ηwij∆Eprey
2(t) − Epre

(

y(t)f
(

y(t)
)

)]

,
(25)

which involves expectations of functions of the form EpreGi(y(t)) with G1(y) = y, G2(y) =

y2 and G3(y) = yf(y)). To do so, we present the computation of EpreG
(

y(t)
)

for any

function G. We first prove a simple lemma.

Lemma A.1 Let y be a random variable with characteristic function Ψ(ω)
△
= Ee−jωy.

Then

EG
(

y
)

=

∞
∫

−∞

dsG(s)F−1
(

Ψ(ω)
)

(s),

where F−1
(

Ψ(w)
)

is the inverse Fourier transform of Ψ(w), given by

F−1
(

Ψ(w)
)

=
1

2π

∞
∫

−∞

Ψ(ω)ejωydω .

24

Proof Using the equality δ(t) = 1
2π

∫ ∞

−∞
dωejωt, we have

EG
(

y
)

= E

∞
∫

−∞

dsG(s)δ
(

s − y
)

=
1

2π
E

∞
∫

−∞

dsG(s)

∞
∫

−∞

dωejω
(

s−y
)

=
1

2π

∞
∫

−∞

dsG(s)

∞
∫

−∞

dωejωsEe−jωy

=

∞
∫

−∞

dsG(s)F−1
(

Ee−jωy
)

(s) . ¤

Note that Lemma A.1 follows easily from the equality EG(y) =
∫

G(s)f(s)ds, where f

is the pdf of the random variable y, and recalling that the pdf is the inverse Fourier

transform of the characteristic function.

Using Lemma A.1 we have

EpreG
(

y(t)
)

=

∞
∫

−∞

G(s)F−1
(

Epree
−jωy(t)

)

(s)ds. (26)

Defining the Fourier pair

Φt(ω)
△
= Epree

−jωy(t) ; φt(s)
△
= F−1

(

Φt(ω)
)

(s),

we have

Φt(ω) = Epree
−jω

∑t
t′=t−h

[

I(Spike at time t′) exp
{

− t−t′

τm

}]

(a)
=

t
∏

t′=t−h

Ee−jω
[

I(Spike at time t′) exp
{

− t−t′

τm

}]

=
t

∏

t′=t−h

{

xj∆e−jω
[

exp
{

− t−t′

τm

}]

+
(

1 − xj∆
)

}

,

where (a) used independence.

Inverse Fourier transforming Φt(ω) we have

φt(s) = F−1

(t
∏

t′=t−h

{

xj∆e−jω
[

exp
{

− t−t′

τm

}]

+
(

1 − xj∆
)

})

(s) .

25

Based on the properties of the Fourier transform, we convert a product over functions

in the time domain to a convolution of transforms in the frequency domain. Setting

K = h/∆, and defining

Φk
t (ω) , xj∆e−jω

[

exp
{

−
t−tk
τm

}]

+
(

1 − xj∆
)

, (k = 0, 1, . . . , K),

where tk = t − h + k∆, and

φk
t (s) , F−1

(

Φk
t (ω)

)

(s),

we have that

Φt(ω) =
K
∏

k=0

Φk
t (ω),

and denoting a convolution by ⋆ we have that

φt(s) = φ1
t ⋆ φ2

t ⋆ · · · ⋆ φK
t (s). (27)

Now,

φk
t (s) = F−1

(

xj∆e−jω
[

exp
{

−
t−tk
τm

}]

+
(

1 − xj∆
)

)

(s)

= xj∆δ
(

s − e−
t−tk
τm

)

+ (1 − xj∆)δ
(

s
)

(tk = t − h + k∆).

In computing (27)we face the following task. Given m numbers, {x1, x2, ..., xm}, and a

constant a, compute

A
△
=

(

aδ(x − x1) + (1 − a)δ(x)
)

⋆ · · · ⋆
(

aδ(x − xm) + (1 − a)δ(x)
)

.

Using the properties of the δ-function, it is not hard to show that

A = amδ
(

x −
m

∑

k=1

xk)
)

+ am−1(1 − a)
m

∑

i=1

δ
(

x −
∑

k:k 6=i

xk

)

+ · · · + (1 − a)mδ(x).

Thus, we find

φt(s) =
[

(xj∆)Kδ(s −
K

∑

k=1

e−
t−tk
τm) + (xj∆)K−1(1 − xj∆)

K
∑

i=1

δ
(

s −
∑

k:k 6=i

e−
t−tk
τm

)

+ · · · + (1 − xj∆)Kδ(s)
]

(28)

where K = h/∆.

Recalling that φt(s) = F−1(Φ(ω)), and substituting (28) into (26) yields

EpreG
(

y(t)
)

=

[

(xj∆)KG(
K

∑

i=1

e−
t−ti
τm) + (xj∆)K−1(1 − xj∆)

K
∑

i=1

G
(

∑

k:k 6=i

e−
t−tk
τm

)

+ · · · + (1 − xj∆)KG(0)

]

. (29)

26

Thus, the expectation of a function of y(t) equals a weighted sample of this function at

particular points in time.

At this stage, we assume a single presynaptic neuron. The extension to several presy-

naptic neurons is straightforward.

Combining (24), (25) and (29) yields the final result. While the computation can be

performed exactly, it leads to the following very cumbersome expressions:

Epre
∑

t

[

y(t)

(

xi∆t + ηwij∆ty(t) − f
(

y(t)
)

)]

=
∑

t

[

xi∆tEprey(t) + ηwij∆tEprey
2(t) − Epre

(

y(t)f
(

y(t)
)

)]

=
∑

t

{

xi∆t

[

(xj∆t)
h
∆t

h
∆t

∑

i=1

e−
t−ti
τm + (xj∆t)

h
∆t

−1(1 − xj∆t)

h
∆t

∑

i=1

∑

k:k 6=i

e−
t−tk
τm + · · ·

]

+ ηwij∆t

[

(xj∆t)
h
∆t (

h
∆t

∑

i=1

e−
t−ti
τm)2 + (xj∆t)

h
∆t

−1(1 − xj∆t)

h
∆t

∑

i=1

(

∑

k:k 6=i

e−
t−tk
τm

)2
+ · · ·

]

−

[

(xj∆t)
h
∆t f

(

h
∆t

∑

i=1

e−
t−ti
τm

)(

h
∆t

∑

i=1

e−
t−ti
τm

)

+ (xj∆t)
h
∆t

−1(1 − xj∆t)

h
∆t

∑

i=1

f
(

∑

k:k 6=i

e−
t−tk
τm

)(

∑

k:k 6=i

e−
t−tk
τm

)

+ · · ·

]}

.

Note that here, t1 = t − h, tK = t, and Gi(0) = 0, i = 1, 2, 3.

The expressions become easier to handle under the approximation of low firing rates,

where (∆xj)
2 ≪ 1, which allows us to neglect higher order terms. Specifically, neglecting

27

terms of order (xj∆t)k, k ≥ 2, we obtain

Epre
∑

t

[

y(t)

(

xi∆t + ηwij∆ty(t) − f
(

y(t)
)

)]

=
∑

t

[

xi∆tEprey(t) + ηwij∆tEprey
2(t) − Epre

(

y(t)f
(

y(t)
)

)]

=
∑

t

[

xi∆t(xj∆t)(1 − xj∆t)
h
∆t

−1

h
∆t

∑

i=1

(e−
t−ti
τm)

+ ηwij∆t(xj∆t)(1 − xj∆t)
h
∆t

−1

h
∆t

∑

i=1

(e−
t−ti
τm)2

− (xj∆t)(1 − xj∆t)
h
∆t

−1

h
∆t

∑

i=1

{

e−
t−ti
τm f(e−

t−ti
τm)

}]

.

(30)

Which can be rewritten as

Epost,pre

T−∆
∑

t=0

zij(t + ∆) ≈ (xj∆)
T−∆
∑

t=0

(1 − xj∆)
h
∆
−1

[

xi∆

h
∆

∑

k=1

e−
t−tk
τm + ηwij∆

h
∆

∑

k=1

(e−
t−tk
τm)2

−

h
∆

∑

k=1

{

e−
t−tk
τm f(e−

t−ti
τm)

}]

, (31)

where tk = t − h + k∆.

B Simulation Details

The values used for the main simulation parameters are shown in Table 1. The reward

values for the xor problem are summarized in Table 2. For the path learning problem,

we first define the following variables:

• nth - the threshold value for determining “high” and “low” output.

• Sout1, Sout2 - the number of spikes that occurred in the first and second outputs,

respectively.

• F1high, F2low - Boolean flags denoting whether output 1 is high and output 2 is low,

respectively.

28

Parameter Value Comments

∆ 5 · 10−4 Euler step size

λ 120 Squashing function parameter

β 0 Bias/variance tradeoff variable

γ 0.001 Learning rate for the policy gradient method

T 250 msec Episode length

vr = vL −60 mV Neuron resting potential

Rm 106Ω Membrane resistance

Cm 3 · 10−8 F Membrane capacitance

τm 30 msec τm = Rm · Cm

τs 3 msec Time constant of α function

q 1.8 · 10−9 C

Table 1: Simulation parameter values

Description Value

Correct output R+ = 96

Incorrect output R− = −66

Undetermined output Ru = −69

Table 2: xor reward values

The reward is determined based on the formula

R = 3(F2low(nth −Sout2)− 2(1−F2low)Sout2 +F1highSout1 − 2(1−F1high)(nth −Sout1)− 50).

We also comment about the reward signals used to train the networks. In the case of the

xor learning network, the reward values are constant based on the network’s performance.

The specific values were chosen by trial and error. The fact that the reward scheme affects

the quality of the solution is a well known phenomenon in direct policy search methods.

As far as we are aware, there do not appear at present to be systematic approaches to

selecting optimal reward schemes. In the case of the path learning task, in both networks,

we tried a more realistic and informative reward signal. The general approach that led

us to the reward function form has already been explained in Section 4, and the exact

constants and coefficients were also determined by trial and error.

29

Problem Episode

length

(msec)

Number of

episodes

Successful

convergence

percentage

xor 250 800 99%

Path learning, small network 500 1500 94%

Path learning, small network,

switching tasks

500 2000 per task 99%

Path learning, large network 500 5000 82%

Table 3: Technical details and convergence rates

Problem Weight

Constrains

Weight Initialization

xor range [−1, 1] randomly initialized from a uniform

distribution over [−0.1, 0], [0, 0.1], sign

predetermined (see section 4 for de-

tails)

Path learning, small

network

range [0, 0.5] randomly initialized from a uniform

distribution over [0, 0.1]

Path learning, small

network, switching

tasks

range [0, 0.5] randomly initialized from a uniform

distribution over [0, 0.1]

Path learning, large

network

range [0, 0.5] randomly initialized from a uniform

distribution over [0, 0.1]

Table 4: Weight constraints and initialization used

30

C Technical Derivations

The objective of this appendix is to provide some explicit technical derivations that are

not essential to understanding the main results.

C.1 Decaying Exponential α function

We present the calculation leading to the expression for the case of a decaying exponential

function presented in 2.1. The α function is α(s) = q
τs

exp
(

− s
τs

)

I
{

s ≥ 0
}

.

Substituting this choice of α(s) on the right hand side of (8) we obtain

t
∫

t̂
(0)
i

exp

{

− t−s
τm

}

∑

f α
(

s − t
(f)
j

)

ds

=
t
∫

t̂
(0)
i

exp

{

− t−s
τm

}

∑

f
q
τs

exp

(

−
s−t

(f)
j

τs

)

I
{

s − t
(f)
j ≥ 0

}

ds

= q
τs

∑

f

t
∫

t̂
(0)
i

exp

{

− t−s
τm

}

exp

(

−
s−t

(f)
j

τs

)

I
{

s − t
(f)
j ≥ 0

}

ds

= q
τs

∑

f exp

{

−t
τm

}

exp

{

t
(f)
j

τs

}

t
∫

t̂
(0)
i

exp

{

s
(

1
τm

− 1
τs

)

}

I
{

s − t
(f)
j ≥ 0

}

ds

= q
τs

∑

f exp

{

−t
τm

}

exp

{

t
(f)
j

τs

}

t
∫

max
(

t
(f)
j ,t̂

(0)
i

)

exp

{

s
(

1
τm

− 1
τs

)

}

ds

= q
τs

∑

f exp

{

−t
τm

}

exp

{

t
(f)
j

τs

}

1

(1
τm

− 1
τs

)

{

exp

{

t
(

1
τm

− 1
τs

)

}

− exp

{

max
(

t
(f)
j , t̂

(0)
i

)

(

1
τm

− 1
τs

)

}}

= 1

(1
τm

− 1
τs

)
q
τs

∑

f

{

exp

{

−

(

t−t
(f)
j

τs

)}

− exp

{

−t
τm

}

exp

{

t
(f)
j

τs

}

exp

{

max
(

t
(f)
j , t̂

(0)
i

)

}}

= qτm

(τs−τm)

∑

f exp

{

−

(

t−t
(f)
j

τs

)}[

1 − exp

{

(

t − max
(

t
(f)
j , t̂

(0)
i

)

) (

1
τm

− 1
τs

)

}]

= qτm

(τm−τs)

∑

f exp

{

−

(

t−t
(f)
j

τs

)}[

exp

{

(

τm−τs

τmτs

) (

min
(

t − t
(f)
j , t − t̂

(0)
i

)

)

}

− 1

]

,

hence

zij(t + ∆t) = βzij(t)

+

(

ζi(t) − σi(t)
)

λqτm

c (τm − τs)

∑

f

e−
(

t−t
(f)
j

τs

)

[

exp

{(

τm − τs

τmτs

)

(

min
(

t − t
(f)
j , t − t̂

(0)
i

)

)

}

− 1

]

.

31

C.2 Depressing Synapses

We present the exact details and derivation in the case of the depressing synapses. We

will not repeat details presented in Section 3.2.

POMDP model

We use the same POMDP model as in previous case (see Section 1), except that the state

of each neuron also includes the current value of the depression variable.

Parameter update

The same update rule for the parameters is used. Let us now calculate an explicit expres-

sion for the weight update for this neural model.

As presented in Section 3.2, the update rule is given by,

wij(t) = wij(t − ∆t) + γr(t)zij(t) , (32)

zij(t + ∆t) = βzij(t) +
(

ζi(t) − σ
)λ

c

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

α
(

s − t
(f)
j

)

Dj(s)ds . (33)

We distinguish between two cases: no presynaptic spike occurred since the last postsy-

naptic spike, or at least one presynaptic spike occurred since then.

Case 1: No presynaptic spike occurred since the last postsynaptic spike

Denote t
(f),last
j as the time of the last presynaptic spike, and Df,last as its initial condition.

In the first case, the algorithm has the form

wij(t) = wij(t − ∆t) + γr(t)zij(t) ,

zij(t + ∆t) = βzij(t) +
(

ζi(t) − σ
)λ

c

t
∫

t̂
(0)
i

e−
{

t−s
τm

}

[

1 − e
−

{

s−t
(f),last
j

τD

}

(

1 − Df,last

)

]

(34)

×
∑

f

α
(

s − t
(f)
j

)

ds .

Case 2: At least one presynaptic spike occurred since the last postsynaptic

spike

In this case, assume that k spikes occurred since t̂
(0)
i . Denote t

(0)
j as the time of last

presynaptic spike before t̂
(0)
i and denote the appropriate initial condition for Dj(t) for this

32

spike as Ds0. Let t
(s1)
j , ..., t

(sk)
j denote the presynaptic spike times that occurred in the

time interval [t̂
(0)
i , t], and denote the appropriate initial conditions for Dj(t) at those times

as Ds1, ..., Dsk respectively. Then the integral in (33) is given by

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

α
(

s − t
(f)
j

)

Dj(s)ds =

t
(s1)
j
∫

t̂
(0)
i

e−
{

t−s
τm

}

∑

f

α
(

s − t
(f)
j

)

Dj(s)ds

+

t
(s2)
j
∫

t
(s1)
j

e−
{

t−s
τm

}

∑

f

α
(

s − t
(f)
j

)

Dj(s)ds + ... +

t
∫

t
(sk)
j

e−
{

t−s
τm

}

∑

f

α
(

s − t
(f)
j

)

Dj(s)ds

=

t
(s1)
j
∫

t̂
(0)
i

e−
{

t−s
τm

}

[

1 − e
−

{

s−t
(f),last
j

τD

}

(

1 − Df,last

)

]

∑

f

α
(

s − t
(f)
j

)

ds (35)

+

t
(s2)
j
∫

t
(s1)
j

e−
{

t−s
τm

}

[

1 − e
−

{

s−t
(s1)
j

τD

}

(

1 − Ds1

)

]

∑

f

α
(

s − t
(f)
j

)

ds + ...

+

t
∫

t
(sk)
j

e−
{

t−s
τm

}

[

1 − e
−

{

s−t
(sk)
j

τD

}

(

1 − Dsk

)

]

∑

f

α
(

s − t
(f)
j

)

ds ,

and the algorithm can be written using the expressions above.

Explicit expression for α(t) = qδ(t)

In this case,
t

∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

α
(

s − t
(f)
j

)

Dj(s)ds =

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

∑

f

qδ
(

s − t
(f)
j

)

Dj(s)ds

=
∑

f

q

t
∫

t̂
(0)
i

exp

{

−
t − s

τm

}

δ
(

s − t
(f)
j

)

Dj(s)ds

= q
∑

f :t
(f)
j >t̂

(0)
i

exp

{

−
t − t

(f)
j

τm

}

Dj(t
(f)
j)ds ,

hence

zij(t + ∆t) = βzij(t) +
(

ζi(t) − σ
)

·
λq

c

∑

f :t
(f)
j >t̂

(0)
i

exp

{

−
t − t

(f)
j

τm

}

Dj(t
(f)
j) .

33

Two remarks:

• The contribution of the depression variable is considered only at presynaptic spiking

times (for this α-function).

• An explicit expression for Dj(t
(f)
j) is available. The expression depends on t

(f−1)
j .

C.3 MDPs, POMDPs

C.3.1 MDPs

An MDP (Markov Decision Process) is a quartet {S,A,P, r} where

• S is the state space.

• A is the action space.

• P(a) = pij(a) = P(xt+1 = j|xt = i, at = a) is the transition probability when action

a is taken.

• Pr(r) = P(r|x, a) is the reward distribution when choosing action a in state x.

Additionally, we set

• π : S → A (policy) is a mapping from state space to action space.

• A(x) is the set of available actions from A in state x.

C.3.2 POMDPs

A POMDP (partially Observed Markov Decision Process) is a sextet S,A,O,Ps,Pr,Po

where

• S is the state space.

• A is the action space.

• O is the observation space.

• Ps = ps
ij(a) = P(xt+1 = j|xt = i, at = a) is the transition probability when action a

is taken.

34

• Pr(r) = P(r|x, a) is the reward distribution.

• Po(y) = P(y|x) is the observation process distribution.

Additionally, set

• π : S → A (policy) is a mapping from state space to action space.

• A(x) is the set of available actions from A in state x.

Note that the states (hidden variables) form a standard MDP.

35

References

Baras, D. (2006). Direct policy search in reinforcement learning and synap-

tic plasticity in biological neural networks. Msc, Technion - IIT.

http://www.ee.technion.ac.il/rmeir/BarasThesis06.pdf.

Bartlett, P. L. and Baxter, J. (1999). Hebbian synaptic modifications in spiking neurons

that learn. Technical report, Reasearch School of Information Sciences and Engineer-

ing, Australian National University.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal

of Artificial Intelligence Research, 15:319–350.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific, Belmont, Mass.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the development

of neuron selectivity: Oreientation specificity and binocular interaction in visual

cortex. The Journal of Neuroscience, 2(1):32–48.

Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models. Cambridge University

Press.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd

edition.

Izhikevich, E. M. and Desai, N. S. (2003). Relating STDP to BCM. Neural Comp.,

15(7):1511–1523.

Koch, C. (1999). Biophysics of Computation. Oxford University Press.

Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM journal on

Control and Optimization, 42(4):1143–1166.

L. Cooper, N. Intrator, B. B. and Shouval, H. Z. (2004). Theory of Cortical Plasticity.

World Scientific, Singapore.

Rao, R. and Sejnowski, T. (2001). Spike-timing-dependent Hebbian plasticity as temporal

difference learning. Neural Comput, 13(10):2221–2237.

Richardson, M. J. E., Melamed, O., Silberberg, G., Gerstner, W., and Markram, H.

(2005). Short-term synaptic plasticity orchestrates the response of pyramidal cells

and interneurons to population bursts. Journal of Computational Neuroscience,

18(3):323–331.

36

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2):241–63.

290.

Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of stocahstic

synaptic transmission. Neuron, 40:1063–1073.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Inoriduction. MIT

Press.

Toyoizumi, T., Pfister, J., Aihara, K., and Gerstner, W. (2005). Generalized Bienenstock-

Cooper-Munro rule for spiking neurons that maximizes information transmission.

Proc Natl Acad Sci U S A, 102(14):5239–5244. 401.

Wörgötter, F. and Porr, B. (2004). Temporal sequence learning, prediction, and control

- a review. Neural Computation, 17:1–75.

Xie, X. and Seung, H. S. (2004). Learning in neural networks by reinforcement of irregular

spiking. Physical Review E, 69:041909.

37

