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Spike timing–dependent synaptic plasticity (STDP) has emerged as
the preferred framework linking patterns of pre- and postsynaptic
activity to changes in synaptic strength. Although synaptic plasticity
is widely believed to be a major component of learning, it is unclear
how STDP itself could serve as a mechanism for general purpose
learning. On the other hand, algorithms for reinforcement learning
work on a wide variety of problems, but lack an experimentally
established neural implementation. Here, we combine these para-
digms in a novel model in which a modified version of STDP achieves
reinforcement learning. We build this model in stages, identifying a
minimal set of conditions needed to make it work. Using a perfor-
mance-modulated modification of STDP in a two-layer feedforward
network, we can train output neurons to generate arbitrarily selected
spike trains or population responses. Furthermore, a given network
can learn distinct responses to several different input patterns. We also
describe in detail how this model might be implemented biologically.
Thus our model offers a novel and biologically plausible implemen-
tation of reinforcement learning that is capable of training a neural
population to produce a very wide range of possible mappings
between synaptic input and spiking output.

I N T R O D U C T I O N

Synaptic plasticity is widely believed to be at least a com-
ponent of the neurobiological changes underlying learning, but
it is still far from clear exactly how the forms of synaptic
plasticity studied in vitro contribute to learning and memory.
An early problem was that many protocols used to induce
synaptic plasticity in vitro, such as tetanic stimulation
(Andersen et al. 1977), were difficult to translate into precise
plasticity rules. This left the modeler with a great deal of
freedom in formulating plasticity rules that were “consistent”
with experimental data, leaving considerable doubt as to which
rules might accurately represent processes occurring in vivo.
Over the last few years, new protocols for inducing synaptic
plasticity in vitro have been devised that more closely emulate
processes that might occur in the intact nervous system. Spike
timing–dependent plasticity (STDP) is a prominent example of
such a protocol. In STDP, synaptic changes are induced by
repeatedly pairing presynaptic and postsynaptic action poten-
tials (APs) with precisely controlled timing. At glutamatergic
synapses in the isocortex and hippocampus, postsynaptic APs
arriving after the onset of presynaptically evoked excitatory
postsynaptic potentials (EPSPs) induce long-term potentiation

(LTP) of that synapse (Fig. 1A), whereas APs arriving before
EPSPs induce long-term depression (LTD) (Bi and Poo 1998;
Debanne et al. 1998; Feldman 2000; Froemke and Dan 2002;
Markram et al. 1997). Although much remains to be discovered
about how arbitrary activity patterns change synaptic strength,
STDP can be relatively directly translated into a precise plas-
ticity rule suitable for computer modeling.

STDP-based plasticity rules have already been used in mod-
els describing certain kinds of learning, including predictive
learning (Abbott and Blum 1996; Blum and Abbott 1996; Rao
and Sejnowski 2001; Roberts 1999), learning to respond to
correlated inputs (Gerstner et al. 1996; Gütig et al. 2003; Song
and Abbott 2001; Song et al. 2000; van Rossum et al. 2000),
stabilization of postsynaptic firing rate (Kempter et al. 1999,
2001; Tegnér and Kepecs 2002), enhancement of synchronous
firing (Suri and Sejnowski 2002), and coordinate transforma-
tions (Davison and Frégnac 2006). These forms of learning and
self-organization, while interesting in their own right, cover
only a small fraction of the kinds of adaptive changes that
presumably must occur within the nervous system. More spe-
cifically, there may be occasions in which a neural population
must learn semiarbitrary mappings between spatiotemporal
patterns of input and evoked patterns of output. Vocal learning
in songbirds is probably example of this kind of task, where a
motor nucleus must translate patterned synaptic input from a
premotor nucleus into activity patterns that reproduce the tutor
song. In the DISCUSSION, we explain how our model could serve
as a model of song learning and how it could provide a starting
point for modeling basal ganglia–dependent learning in corti-
cal networks.

The general problem outlined above is not addressed by
most models of STDP-based learning, and it is not obvious
how STDP as it is currently understood could be directly
responsible for more general forms of learning. One flexible
approach to solving this problem is reinforcement learning,
where the solution space is often explored stochastically and
learning is driven by a simple scalar evaluation of perfor-
mance. Models of reinforcement learning typically are abstract
algorithms not based on explicit neural modeling (Sutton and
Barto 1998), although that is beginning to change (Izhikevich
2007; Pfister et al. 2006; Seung 2003; Xie and Seung 2004).
Here we present an implementation of reinforcement learning
by a biologically plausible neural network, using a simple and
novel modification of the SDTP rule. In the most basic version
of the approach pursued here, spiking patterns that are rela-
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tively similar to some “target pattern” of postsynaptic spikes
are accompanied by the normal operation of the STDP rule,
strengthening the synapses that contributed to the generation of
that pattern, while STDP-driven synaptic changes are sup-
pressed after spike trains that are dissimilar to the target
pattern. The stochastic exploration of solution space is driven
by variations in presynaptic activity. We evaluate this basic
idea in a simple yet reasonably biologically plausible feedfor-
ward network and identify the factors that are needed to make
it work.

M E T H O D S

Cellular model and network architecture

We consider a two layer feedforward network (Fig. 1B), where the
activity in the input layer is simply modeled as independent inhomo-
geneous Poisson processes. This input layer projects in an all-to-all
pattern to an output layer of explicitly modeled neurons. We sought a
model for these output neurons that is reasonably realistic yet “ge-
neric,” lacking characteristic physiological properties that vary dra-
matically depending on cell type. We chose a single compartment
conductance-based model whose membrane voltage is governed by

C
dV

dt
� gR�Erest � V� � ge�Esyn � V� � gAHP�EAHP � V�

where gR is the inverse of the input resistance R, ge is the total active
excitatory synaptic conductance, and gAHP is the total active conduc-
tance driving the afterhyperpolarization (AHP) that follows each

spike. Spike generation was not modeled explicitly; an AP occurred
when the membrane voltage crossed a voltage threshold T, and each
spike triggered an increment in gAHP by an amount �gAHP. A spike
fired by presynaptic unit i triggered an increment gij in the ge of each
postsynaptic neuron j, where gij is the strength of the synapse from
input unit i to output neuron j. ge and gAHP decayed exponentially with
time constants �syn and �AHP, respectively. Spike refractoriness was
ensured by the AHP conductance, which kept interspike intervals
above 5 ms over the entire range of synaptic strengths we considered.
The cellular parameters used in our simulations were R � 100 M�,
Erest � �70 mV, Esyn � 0 mV, EAHP � �90 mV, �gAHP � 10 nS,
�syn � 3 ms, �AHP � 10 ms, and T � �45 mV, with the capacitance
adjusted to yield a membrane time constant of 50 ms. This produces
a model neuron with nearly linear subthreshold responses and a
roughly linear spiking response to injected current and active synaptic
conductance with no spike rate accommodation (Fig. 1, C and D).

For the first part of this study, networks consisted of 1,000 input
units and a single output neuron. Initial synaptic strengths were
chosen from a gaussian distribution with a mean of 0.32 nS and an SD
of 0.05 nS. Simulations were divided into epochs (“trials”) lasting 1 s.
Throughout this paper, time t always denotes the time relative to the
onset of the current trial, and thus 0 � t � 1,000. One half of the input
units were governed by homogenous Poisson processes at a rate of 5
Hz, supplying random “background” synaptic input. The remaining
input units followed Poisson processes whose rate parameter varied
over the course of a trial. For the first 100 ms and final 100 ms of a
trial, these units remained largely silent, but for the remainder of the
trial, their time-dependent rate parameter consisted of gaussian peaks
that placed their spikes at particular times within a trial. The temporal
precision of the spiking was controlled by the width of the peaks, set
to a SD of 10 ms. Within a given simulation, these rate functions did
not change across trials. Thus these units were effectively following
the same “script” on each trial, with a different script for each unit.
We used two methods for creating rate functions in our simulations.
The first method, yielding what we call a “regular” script, generated
a random 800-ms spike train (homogeneous Poisson process at 5 Hz)
and placed a gaussian centered on each spike in the train. The height
of each gaussian was adjusted to give one spike per peak on average,
although the actual number of spikes did of course vary from trial to
trial. Note that gaussians with peaks centered near the 100- or 900-ms
boundaries would give these units a small chance to fire outside of
those bounds. An example of a regular script for an input unit is
shown in Fig. 2A. In the second method, each input unit was randomly
assigned a single “burst time” somewhere between 100 and 900 ms
into the trial (a different time for each unit), and a 10-ms-wide
gaussian was placed at that time. The height of this gaussian was
adjusted to yield five spikes on average. Thus the second method
yields scripts (called “1-burst” scripts) that cause each input unit to
fire a single high-frequency burst of spikes during each trial.

Implementation of baseline synaptic plasticity

For modeling synaptic plasticity, we used the STDP rule described
by Froemke and Dan (2002), based on recordings of layer 2/3
pyramidal cells in rat visual cortex. We chose this particular imple-
mentation of STDP because of its simplicity, its examination of the
effects of whole spike trains rather than just isolated spike pairs, and
because it is appropriate for plasticity at corticocortical synapses that
could plausibly be involved in the kind of learning that we are
interested in. However, studies of STDP at other synapses in the
isocortex and hippocampus have revealed substantial differences in
the factors controlling the induction of synaptic plasticity. For exam-
ple, induction of LTP at synapses connecting pairs of layer 5 pyra-
midal neurons requires higher frequency pairing (�10 Hz) in both
visual (Sjöström et al. 2001) and somatosensory (Markram et al.
1997) cortices of rats, whereas Froemke and Dan (2002) could induce
LTP with pairing at 0.2 Hz. In the hippocampus, induction of LTP

FIG. 1. A: spike timing–dependent synaptic plasticity (STDP) plasticity
rule. Change in synaptic strength is plotted as a function of timing of
postsynaptic action potential (AP) relative to the presynaptic AP: �t � time of
postsynaptic spike � time of presynaptic spike. Experimental studies usually
report resulting synaptic change as a fractional change after some standard
number of pairings (e.g., 60). In our model, we assume that changes induced
by spike pairing at a particular �t are absolute changes with units of conduc-
tance. B: structure of model. Network consists of a layer of input units
projecting in an all-to-all feedforward fashion to a layer of output units.
Synaptic strengths connecting input units i to output units j are represented by
the matrix gij. Activity in output units is compared with some desired “target”
output, and a reward signal is calculated from difference between target output
and actual output. This reward signal is used to modulate synaptic plasticity.
C: sample trace from an output layer neuron, injected with a 0.4-nA current
pulse. Spikes are marked in this figure by plotting voltages exceeding spike
threshold as �50 mV. D: firing rate of these neurons as a function of injected
current.
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requires both higher frequency pairing (	5 Hz) and burst firing in the
postsynaptic cell (Magee and Johnston 1997; Pike et al. 1999).
Because we could not choose one STDP model that incorporates and
consolidates these disparate findings, we simply selected one of them,
that of Froemke and Dan (2002), with the understanding that our
results may not apply to synapses where this specific formulation is
not accurate. On the other hand, our model does require that STDP be
modulated or gated, conditions that of course are not a part of the
Froemke and Dan (2002) formulation. As we argue in the DISCUSSION,
additional induction requirements, such as the need for postsynaptic
burst firing, may supply the mechanism for this modulation.

The basic rule for STDP-based changes (Fig. 1A) is given by

F��t� � A�e � ��t�/�� if �t � 0; F��t� � A
�

e���t�/�� if �t � 0 (1)

where �t is the timing of the postsynaptic spike relative to the
presynaptic spike. If the pre- and postsynaptic spikes are perfectly
synchronous (�t � 0), we assume that the synaptic strength does not
change. To this basic formulation, Froemke and Dan (2002) added a
spike suppression model, where the effectiveness of a pre- or postsyn-
aptic spike at inducing synaptic changes is suppressed by preceding
spikes. Each spike is assigned an “efficacy” � � 1 � e�tspike/�s, where
tspike is the time to the preceding spike. The final change in synaptic
strength between units i and j induced by a single spike pair is given
by �gij � �i

pre�j
postF��tij�, where �pre and �post are the separate pre-

and postsynaptic efficacies, governed by distinct time constants �s
pre

and �j
post. Froemke and Dan (2002) fixed the values of these parameters

by fitting this model to their data. We adopt most of those values for
our model, and under their “additive model,” those values are
(rounded to the nearest millisecond, well within the SD for all
measurements) �� � 13 ms, �� � 35 ms, �i

pre � 28 ms, and
�i

post � 88 ms. We did not directly adopt their values for A� and A�,
because they are expressed as the percentage change in synaptic
strength after 60–80 pairings. It is not clear if synaptic changes
generally scale in that way (where stronger synapses experience larger
absolute changes in conductance), and because most models of STDP
to date have expressed the changes in absolute terms, we continue
that practice. Thus our A� and A� have units of conductance,
rather than dimensionless fractional changes as in Froemke and
Dan (2002). The values we selected for A� and A� were 32 and
�16 pS, respectively.

Although we do not implement synaptic changes as a percentage
of current strength, we do consider the possibility that the size of
changes scales in some way with the strength of the synapse. We
impose maximum and minimum strengths on the synapses, gmax

and gmin, equal to 10 times (3.2 nS) and 1/10th (0.032 nS) of the
average initial synaptic strength, respectively. Under our “addi-
tive” model, the gij are simply clipped to their maximum/minimum
value if the application of STDP would push them outside of that
range. However, some STDP modeling studies use a rescaling in
which the size of �gij is reduced as gij approaches its limits (Gütig
et al. 2003; Rubin et al. 2001; van Rossum et al. 2000). This kind
of rescaling is sometimes called a “multiplicative rule” (Gütig
et al. 2003; Rubin et al. 2001), although this does not correspond
to the additive/multiplicative terminology of Froemke and Dan
(2002), and the multiplicative rule given here differs from the one
described in Kepecs et al. (2002). We study the behavior of our
model under both the additive rule described above and a multipli-
cative rule that rescales potentiating changes by the factor
(gmax � gij)/(gmax � gmin) and depressing changes by the factor (gij �
gmin)/(gmax � gmin), which is simply a generalization of the method of
Rubin et al. (2001) to cases in which gmax 
 1 and gmin 
 0.

In most of our simulations, we incorporated activity-dependent
scaling of synaptic strength, modeling the phenomenon reported in
pyramidal neurons cultured from rat visual cortex (Turrigiano et al.
1998). Our model of activity-dependent scaling was based on the
approach of van Rossum et al. (2000), with some modifications.

Postsynaptic activity in each output neuron j was tracked using a
variable aj(t) obeying the equation

�a

daj

dt
� �aj � �

k

	�t � tkj�

where tij are the spike times in neuron j. van Rossum et al. (2000)
made changes in synaptic strength proportional to the difference
between aj(t) and some equilibrium activity level agoal, so that any
deviation from this particular activity level triggered synaptic
scaling. Rather than insist on the maintenance of a single activity
level, we allowed neurons to remain within a range of activity
levels without triggering synaptic scaling. If activity in output
neuron j wandered outside of that range, synapses were altered as
follows

�gij � 
gij�amin � aj�, if aj � amin;

�gij � 
gij�amax � aj�, if aj � amax � i

where amin and amax are the minimum and maximum equilibrium
activity levels, respectively, and 
 is a parameter controlling the
rate of activity-dependent scaling. The �gij were calculated at the
end of each trial. Because we were not trying to maintain activity
at one specific level agoal, we did not need to use the “integral
controller” correction used by van Rossum et al. (2000). In a few
simulations, we implemented activity-dependent changes in intrin-
sic excitability instead of synaptic scaling. We modeled that
process by driving changes in the AP threshold of a given output
neuron by the activity level as follows

�T � 
�a � amin�, if a � amin; �T � 
�a � amax�, if a � amax

In all simulations that used activity-dependent scaling, we used the
following parameter values: �a � 10 s, amax � 100 (because
�a� � �a � rate, this sets the maximum firing rate to roughly 10 Hz),
and 
 � 10�3 (synaptic scaling) or 
 � 10�2 mV (excitability
changes). In most simulations, amin � 9.5 (a minimum firing rate of
just under 1 Hz). However, for simulations in which output neurons
were trained to produce specific spike trains containing more than one
spike (i.e., the results shown in Fig. 5), amin � 9.5 � Nspikes, where
Nspikes is the number of spikes in the target spike train.

Reinforcement learning through modulation of
synaptic plasticity

Initially, reinforcement learning was implemented by choosing
“target” spike trains for each output unit (representing the goal of the
training), calculating the difference between those target spike trains
and the network’s actual output, and transforming that difference into
a reward signal that modulated synaptic plasticity. The difference �j(t)
between the actual and target spike trains for neuron j as a function of
time t in the current trial was determined by convolving the spike
trains (represented by a temporal series of 1s where spikes occur and
0s otherwise) with a gaussian of unit height and SD � (typically 10
ms) and subtracting one of the smoothed spike trains from the other.
The reward signal Rwd(�j) is

Rwd � �e�
��j�t��
 (2)

which maps ��� � [0, �) into the interval (0, 1], with Rwd(0) � 1. The
angled brackets denote an average over all output neurons j. We used

 � 3 for all simulations. One should note that if the interspike
intervals in the actual output and target output are substantially greater
than the smoothing parameter �, as they were for most of our
simulations, the maximum value � can take is 	1, and thus the
minimum possible reward is e�
. If one wanted the minimum reward
to be 0, one could redefine the reward as Rwd � �e�
��j(t)�� � e�
, but
because learning performance is not qualitatively improved by this
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definition, we did not adopt it for the simulations presented in this
paper. Initially, reward-dependent modulation of STDP was imple-
mented by setting the change in synaptic strength to the product of the
reward signal and the change that would be produced by unmodulated
STDP. Hence, for synaptic changes triggered by a postsynaptic spike
in output unit j occurring at time t, �gij � Rwd�t��i

pre�j
postF��tij�.

However, in most simulations we implemented an adaptation of the
temporal difference algorithm for reinforcement learning where adap-
tive changes are driven by the difference 	R between the reward
received and the reward expected (Sutton and Barto 1998). In the most
general implementation of this algorithm, the system’s task is to adopt
a policy that leads it to choose actions that will maximize its total
future reward given the current state of its environment, s(n), where n
is the trial number. It uses a “value function” V[s(n)] to estimate the
future reward given the current environment s(n): V[s(n)] �
E�Rwd�n� � �Rwd�n � 1� � �2Rwd�n � 2� � · · · �, where
E[Rwd(n)] is the expected reward resulting from the action triggered
by the current state s(n) under the system’s current policy, and � is a
“discount factor” (0 � � � 1) that assigns smaller weights to expected
rewards further in the future. The “temporal difference error” used to
improve the current policy is the sum of the actual reward and the
updated expected future reward resulting from the chosen action
minus the total future reward expected before that action was taken:
	R � Rwd�n� � �V�s�n � 1�� � V�s�n�� (Sutton and Barto 1998).

Translating our model into the language of the temporal difference algo-
rithm, the environmental state s(n) is the input pattern presented on trial n, the
“policy” is determined by the synaptic strengths, and the action chosen is the
set of output spike trains. Our model constitutes a special case in which future
states s are independent of the action chosen, so the only reward prediction
possible is the average reward given the network’s current “policy.” Thus
V �s�n�� � �Rwd
 � ��Rwd
 � �2�Rwd
 � · · · and 	R �

Rwd�n� � ��Rwd
¥m�0
� �m � �Rwd¥m�0

� �m � Rwd �n� �

�Rwd
. In our model, both the “environmental state” s (spike trains
provided by the input units) and the “action chosen” (spike trains
generated by the output units) are functions of time t in the trial. Thus
the reward, average reward, and temporal difference error are all
functions of time in the trial: 	R�t� � Rwd�t� � �Rwd�t�
. Ideally,
�Rwd(t)� would be the reward received under a fixed “policy” (fixed
synaptic strengths), averaged over many trials. Because the synaptic
strengths change on every trial, this ideal is unobtainable and �Rwd(t)�
is instead a running average of the reward recently received. At the
end of each trial, after 	R(t) has been calculated, �Rwd(t)� is updated as
follows

�Rwd�t�
new �
9

10
�Rwd�t�
old �

1

10
Rwd�t�

It is important to keep in mind that this averaging is conducted over
trial number n, not over trial time t, and hence the “average reward”
is still a function of time in trial.

To use the temporal difference error to drive learning in our model,
we simply multiply the synaptic changes of the unmodulated STDP
rule by 	R(t) instead of Rwd(t)

�gij � 	R�t��i
pre�j

post F��tij�, where 	R�t� � Rwd�t� � �Rwd�t�
 (3)

Because 	R(t) can be negative, this learning rule permits anti-Hebbian
synaptic plasticity, where pre–post pairings induce LTD and post–pre
pairings yield LTP. It is not difficult to envision circumstances under
which formerly LTP-triggering patterns of activity are made to induce
LTD instead (see RESULTS), but we feel that the conversion of LTD into
LTP is less plausible. For this reason, Eq. 3 is applied with the following
exception: if 	R � 0 and F(�tij) � 0, �gij � 0.

We quantified model performance using a modified version of the
reward signal. To obtain a performance metric that did not depend on
the number of spikes in the target spike train, we normalized the
difference �j(t) between the target spike train and the actual spike

train by the number of spikes in the target train, Nj
spikes, thus replacing

�j(t) in Eq. 2 with �*j �t� � �j�t�/Nj
spikes. To obtain a single number

characterizing the performance of the network over a trial, we aver-
aged this modified reward measure (denoted Rwd*) over the time in
trial. Unfortunately, this results in a performance measure that is
restricted to a relatively narrow range of values—performance in
random networks is already 	0.65, and networks that do not fire at all
get an average modified reward of 0.88–0.92, depending on the target
pattern. We therefore scaled the performance measure to range be-
tween 0 and 1: Rwd*: Performance � (�Rwd*� � 0.6) � 2.5. This
performance measure was used only to quantify the success at learn-
ing target patterns; it was never used to modulate plasticity or drive
the learning process.

After exploring the capabilities of networks containing a single output
neuron, we considered networks with multiple output neurons. At first,
multineuron reinforcement learning was implemented as described
above: each output neuron was assigned a distinct target spike train to
reproduce, but all output units received the same reinforcement signal,
which was simply derived from an average of the individual neuron
rewards. As shown in RESULTS, this was not particularly successful for
networks containing more than three or four output neurons. In subse-
quent multineuron training, the target output activity no longer took the
form of distinct spike trains assigned to specific output neurons; instead,
the target activity was expressed as the fraction of output neurons that
were to fire at different times in the trial. For example, if the target pattern
specifies that 25% of the output neurons be active at a particular time, the
network’s performance is evaluated without regard to which output
neurons are firing; only the number active is relevant. To implement this
idea, we define Oj(t) as the spike train generated by output neuron j
convolved with a gaussian waveform of � � 10 ms, and let G(t) denote
the goal of learning, the “target pattern” that specifies what fraction of the
output neural population should be active as a function of time in trial
(naturally, G�t� � �0,1� � t). The difference between the actual out-
put and the target output is given by �(t) � �Oj(t)� � G(t), where the
angled brackets denote an average over the output neurons j. Then the
reward is again Rwd(t) � e�
��(t)�, and the reinforcement signal used
to modulate synaptic plasticity is once again 	R(t) � Rwd(t) �
�Rwd(t)�.

This procedure for comparing the output of a neural population to a
desired population response G(t) and computing the reinforcement signal
	R(t) is fairly straightforward, but it introduces a new complication. The
magnitude of 	R(t) depends on the magnitude of fluctuations in Rwd(t)
across trials, and that in turn depends on the magnitude of fluctuations in
�Oj(t)�. As the number of output neurons increases, the variability in
individual output neurons remains the same, and hence the variability of
�Oj(t)� across trials should decrease as more neurons are included in the
average. That will cause 	R(t) to grow smaller in networks with more
output neurons, and because the amplitude of �gij is directly proportional
to 	R(t), synaptic plasticity will be suppressed in larger networks. The
obvious solution is to add a factor to Eq. 2 that compensates for the
shrinkage in 	R(t) caused by increasing the number of output neurons N.
If the Oj(t) varied independently from trial to trial, an approximate
solution to this problem would be obtained by multiplying the �gij

calculated from Eq. 2 by the factor �N . However, the Oj(t) generally
do not vary independently, because variation in Oj(t) is driven by
variation in input activity, and all output neurons are driven by the
same input units. The precise degree to which trial-to-trial fluctuations
in Oj(t) are correlated depends on the synaptic matrix gij, which makes
the appropriate choice of “correction factor” rather complicated.
Preliminary simulations indicated that the �N factor overcompensates
for diminished �gij in networks containing �25 output neurons for
most gij attained over the course of training, and that, on average,
��gij� was roughly one fifth of the mean magnitude occurring in
one-neuron networks for any N � 25. In view of these results, we
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adopted the effective, if inelegant, solution of multiplying the result of
Eq. 3 by five in these simulations

�gij � 5	R�t��i
pre�j

post F��tij� (4)

This overcompensates somewhat in networks containing 10 neurons, but
still worked well for all values of N considered here. Networks trained to
produce specific spike trains used Eq. 3 (Figs. 3–5, containing up to five
output neurons), whereas networks trained to produce a population
response G(t) used Eq. 4 (Figs. 6–8, containing 10–400 output
neurons).

In testing the ability of our model to learn to generate population
responses, we considered three kinds of target patterns. The first was
simply a broad gaussian centered on the middle of the trial (t � 500 ms)
with a peak height of 0.1 and � � 100 ms. This population response
yields an average firing rate among output neurons of 1 Hz. The second
type (bursty) consisted of four brief populations bursts (each described by
a gaussian of � � 10 ms) placed randomly in the central 800 ms of the
trial, but with a minimum interval of 50 ms between bursts to ensure that
the bursts remained distinct. The burst heights were drawn from a normal
distribution of mean 5 and variance 1, and the resulting G(t) was
normalized to yield an average firing rate of 1 Hz across output neurons.
The third type of target pattern was designed to assess our model’s ability
to learn an “arbitrary” waveform G(t). These “random” target patterns
were produced in three stages (Fig. 7B, left). First, we generated 1,000 ms
of zero-mean noise with a gaussian amplitude distribution of unit vari-
ance and a correlation time of 100 ms. Second, this noisy waveform was
converted into a “probability of spiking.” All negative portions of the
waveform were set to zero, and regions approaching the bounds of

temporally patterned synaptic input (at 100 and 900 ms) were rapidly—
but not instantly—forced to zero by multiplication with a sigmoidal
envelope E(t): E(t) � 1 � e125 ms � t)�1(1 � et � 875 ms)�1. The result
was normalized to give a probability distribution for “potential output
spike times.” In the third and final stage, N spike times (where N is the
number of output neurons) were drawn from this probability distribution,

and G(t) became the sum of N gaussians, each of height
1

N
, � � 10 ms,

and centered on the randomly selected spike times. Like the other two
types of target pattern, these G(t) correspond to an average firing rate
of 1 Hz among the output neurons. Because all G(t) considered in this
study specified an average rate of 1 Hz, we could directly adopt as our
performance measure in these simulations the value of Rwd(t) aver-
aged over time in trial, without correcting for the number of spikes
expected in the output.

All modeling was executed using MATLAB (MathWorks, Natick,
MA). All statistical tests were conducted with Prism (GraphPad
Software, San Diego, CA).

R E S U L T S

The synaptic input that neurons receive sometimes takes the
form of temporally patterned activity in which presynaptic
neurons fire spikes at specific times or vary their firing rate
over time in a characteristic way, relative to a sensory stimulus
or motor act. This patterned input can be completely stereo-
typed, as in the songbird vocal system where a premotor
nucleus provides a highly stereotypical pattern of activity to a
telencephalic vocal motor nucleus every time the bird sings
(Hahnloser et al. 2002). Alternatively, the specific pattern of
input can vary depending on the qualities of a sensory stimulus
but be stereotyped for a given stimulus, so that properties of the
stimulus are encoded in the temporal pattern of the input
activity (de Ruyter van Steveninck and Bialek 1988; Reinagel
and Reid 2000). Neurons receiving such input must reliably
generate an appropriate response. We model this situation by
having a postsynaptic neuron receive episodic input from
presynaptic units whose activity is governed by Poisson pro-
cesses with rates that can vary over the course of an episode or
“trial.” During each trial, a subset of the input units fire only
around certain times (but at different times for each unit) that
remain the same from trial to trial; an example of such a unit
is shown in Fig. 2A. For the remaining presynaptic units,
dubbed “background” units, the probability of spiking is uni-
form throughout a trial (Fig. 2A, dashed line).

Unmodulated STDP destabilizes established mappings
between spatiotemporal patterns of input and output activity

Our goal is to explore the possibility of using a modulated
version of STDP to train a postsynaptic neuron to produce a
desired spike train in response to a specific spatiotemporal
pattern of input activity. To help motivate this, we first show
the effect of the continuous, unmodulated application of STDP
on a neuron that already generates a specific response to its
patterned input. Figure 2 shows an example of a neuron that
fires a single spike 	600 ms into each trial, receiving input
from 500 units that fire in a stereotypical pattern (Fig. 2A
shows the probability of spiking for 1 such unit over the course
of a trial) and 500 background units that fire randomly at an
average rate of 5 Hz (uniform spike probability). The response
pattern exhibited by the postsynaptic neuron (Fig. 2B) was

FIG. 2. A: solid line, probability of spiking in a 1-ms time bin for 1 of the
input units used in simulations depicted in this figure. Functions like this were
generated for each temporally patterned input unit by randomly placing
gaussians with SD of 10 ms to give an average firing rate of 5 Hz (averaged
over all units; individual units could have mean firing rates above or below this
value) for an 800-ms period starting 100 ms after trial onset. Dashed line shows
uniform probability of spiking for “background” input units, corresponding to
an average firing rate of 5 Hz. B: peristimulus time histogram (PSTH) of output
neuron for network in its initial state, where synaptic weights have been
adjusted to make output neuron fire 	600 ms into each trial. This PSTH was
generated from 500 repetitions of the stimulus, with synaptic plasticity turned
off. Bin size is 10 ms. C: raster showing how response of output neuron
changes under the influence of STDP. Over many trials, the neuron fires earlier
and earlier, until it reaches a limit determined by onset of temporally patterned
synaptic input. This simulation uses “additive” implementation of STDP, i.e.,
there is no rescaling of synaptic changes based on current synaptic strength.
This raster only shows activity of every 50th trial. D: raster showing how
response of the output neuron changes under influence of “multiplicative”
STDP, where synaptic changes are rescaled as synaptic strength approaches its
upper and lower bounds. This raster only shows activity of every 5th trial.
Initial network state is the same as for C.
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created by making the synapses of presynaptic units active
around 600 ms much stronger than all other synapses.

The operation of the normal STDP rule causes synapses active
before 600 ms to grow stronger, so that the postsynaptic neuron
eventually begins to fire shortly before the 600-ms mark. That, in
turn, causes the depression of the synapses originally responsible
for making the neuron fire at 600 ms and the potentiation of other
synapses that were active earlier in the trial. In this way, the
postsynaptic response occurs earlier and earlier, until it ap-
proaches the onset of the temporally patterned activity, 100 ms
after the start of the trial (Fig. 2C). This phenomenon is well
known in the STDP modeling literature and is typically presented
as a boon: it is “predictive learning,” whereby a neuron learns to
respond to synaptic inputs that provide the earliest reliable pre-
diction of its original response (Abbott and Blum 1996; Blum and
Abbott 1996; Rao and Sejnowski 2001; Roberts 1999). However,
there will inevitably be cases in which such “predictive learning”
is not appropriate, and it seems likely that such cases could occur
in cortical areas where STDP operates. It seems that some mod-
ulation of STDP is necessary simply to maintain stable mappings
from presynaptic activity to postsynaptic response.

The simulation described above and shown in Fig. 2C assumes
that changes in synaptic strength are made “additively,” i.e., the
magnitude of the change is independent of synaptic strength. This
results in a strongly bimodal distribution of synaptic strengths
(data not shown) that is characteristic of the additive implemen-
tation of STDP (Gütig et al. 2003; Kepecs et al. 2002; Rubin et al.
2001; Song et al. 2000; van Rossum et al. 2000). Some modeling
studies of STDP assume that synaptic changes depend on current
synaptic strength, with the magnitude of the changes biased
toward potentiation or depression as synaptic strength approaches
its lower or upper bounds, respectively (Gütig et al. 2003; Rubin
et al. 2001). This is sometimes called “multiplicative” STDP
(Gütig et al. 2003; Rubin et al. 2001), although that term is also
applied to cases in which the magnitudes of both LTP and LTD
increase with synaptic strength (Kepecs et al. 2002). Here, we
adopt the terminology of Rubin et al. (2001) and Gütig et al.
(2003). There is some experimental evidence for this phenome-
non, at least for depressing changes in cultured hippocampal
neurons (Bi and Poo 1998), and unlike additive STDP, it yields a
unimodal distribution of synaptic strengths that can resemble the
distribution of quantal amplitudes measured experimentally (Gü-
tig et al. 2003; Rubin et al. 2001; van Rossum et al. 2000). Testing
our model with multiplicative STDP, we found that there was still
bias toward firing earlier as the simulation proceeded, but re-
sponse changes were dominated by a large increase in firing rate
(Fig. 2D). Multiplicative STDP causes an overall increase in
synaptic strength, because the initial strengths of most synapses
were relatively close to the lower bound. Although the details
differ, the continuous application of either additive or multiplica-
tive STDP inevitably destroys any specific patterned response to
temporally patterned presynaptic activity.

Simplest implementation of STDP-driven reinforcement
learning is only partially successful

We begin with an extremely simple implementation of
STDP-driven reinforcement learning. The spike trains gener-
ated by the output neurons are compared with some desired
“target” output, and from the difference, a reward signal is
computed. We calculated the difference �(t) between the target

output and the actual output by subtracting smoothed versions
of their respective spike trains, generated by convolving the
spike trains with a gaussian of an SD of � (10 ms, in most
cases). In choosing a specific form for the reward signal, we
required that it depend only on the absolute difference between
the target output and the actual output, i.e., it could not convey
any “instructive” information about the kinds of changes
needed such as whether the probability of firing at a particular
time should be raised or lowered. We also wanted the reward
function to map differences �(t) onto the interval (0, 1], with
� � 0 generating a reward signal Rwd � 1 and Rwd3 0 as �
increases. For networks containing a single output neuron, we
chose to define the reward signal as Rwd(t) � e�
��(t)�.

The reward signal was used to modulate synaptic plasticity
simply by multiplying the synaptic changes triggered by a
postsynaptic spike at time t according to the standard STDP
rule by the value of the reward signal at time t. Thus STDP-
driven changes are largest during times when the actual output
matches the target output, and grow smaller as the difference
between them increases. This modulation of STDP could be
implemented biologically, for example, by modulation of

FIG. 3. A: top: raster showing how the response of an output neuron
changes during training. Raster only shows activity of every 25th trial. Bottom:
target output spike train used in this simulation, convolved with a gaussian
with SD of 10 ms. B: top: raster showing learning when activity-dependent
scaling and anti-Hebbian plasticity are included. Initial synaptic strengths, rate
functions for input units, and target output are all the same as in A. Raster
shows every 50th trial. Bottom: target output spike train used in this simulation.
C: after 5,000 trials of training shown in B, target output is switched to a single
spike at 700 ms. Top: output over 5,000 trials with this new target. Bottom:
original target output (dashed line) and new target (solid line), smoothed with
� � 10 ms. D: as in C, but with activity-dependent changes in excitability
rather than synaptic scaling. All simulations shown in this figure use additive
STDP.
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N-methyl-D-aspartate (NMDA)-type glutamate receptors
(NMDARs); many neuromodulators are known to affect
NMDARs (Köles et al. 2001; MacDonald et al. 1998). One
should note that this implementation of STDP-driven rein-
forcement learning requires that the appropriate modulatory
signal be present at the same time the output spike train is
being generated. That in turn implies that the system providing
the modulatory signal must somehow predict how closely the
spike train will match the target output before they can be
compared directly. This is an onerous task, but it is not
impossible. Because variations in the output are driven by
variations in the input activity, a modulatory system that
monitored activity in the input layer could in principle use that
information to predict how well the resulting output will match
the target, although such a system would have to constantly
adapt as synaptic plasticity changes the mapping between input
activity and output activity. Arguments about the plausibility
of such a system are reserved for the Discussion.

An example of the performance of this kind of model is
shown in Fig. 3A, using the “additive” form of STDP. With the
network in its initial state, the output neuron fired at a mean
rate of 5.13 Hz (averaged over the entire 1-s trial), firing at
fairly regular intervals starting shortly after the onset of tem-
porally patterned input. The target spike train was a single
spike fired 500 ms into the trial (Fig. 3A, bottom). Under
training, the output neuron came to reliably fire an AP shortly
before the 500-ms mark and stopped firing during most other
times (Fig. 3A, top). However, it also fired consistently 	800
ms after trial onset.

This example highlights a fundamental problem with the
model in its current form: it has no mechanism to remove
“unwanted” spikes, e.g., the second spike fired in many trials
shown in Fig. 3A. This spike arose because the network in its
initial state had a high probability of firing at that time (800
ms), enough to potentiate synapses active just before that time
even with minimal reward (see METHODS). If the network
already reliably fires a spike at a certain time, there is no
guarantee that it will cease to do so under training, even if the
reward signal at that time is strictly zero. There is another
problem that is not shown in Fig. 3A, but which is readily
apparent. If the network begins in a state in which it never fires
a spike at a particular time, it can never learn to fire at that time
no matter how large the “reward”—in STDP, no plastic
changes occur in the absence of postsynaptic spikes.

Inclusion of activity-dependent synaptic scaling and
anti-Hebbian STDP enables accurate reinforcement learning

There are forms of synaptic plasticity that do not depend on
correlations between pre- and postsynaptic activity, such as the
activity-dependent scaling of synaptic strength reported in
isocortical neurons (Turrigiano et al. 1998). This form of
plasticity causes synaptic strength, as measured by the ampli-
tude distribution of miniature excitatory postsynaptic currents,
to increase if postsynaptic activity is suppressed by application
of tetrodotoxin. Activity-dependent synaptic scaling or other
homeostatic mechanisms for maintaining postsynaptic activity
could solve one of the problems our current model faces—the
inability to learn to fire at times when the starting network
never fires. We incorporated activity-dependent scaling of
synaptic strength into our model to test this hypothesis. The

other major problem with our current model, difficulty in
removing unwanted spikes in the output train, might be solved
by allowing some form of “anti-Hebbian” STDP to occur under
certain conditions. Examples of anti-Hebbian STDP, in which
postsynaptic APs following EPSPs induce LTD rather than
LTP, has been reported in a cerebellum-like structure in the
electric fish (Bell et al. 1997) and at some synapses in the
mouse dorsal cochlear nucleus (Tzounopoulos et al. 2004).

If anti-Hebbian STDP is to be used in our model, we must
carefully consider how to apply it in a way that supports
reinforcement learning. Guidance on this question can be
found in the literature on an important algorithm for reinforce-
ment learning known as temporal difference learning (Sutton
and Barto 1998). In temporal difference learning, adaptive
changes are not directly driven by the reward; rather, they are
driven by the difference between the future expected reward at
one trial and the actual reward (plus an updated future expected
reward) received on the next trial. In our model, this difference,
denoted 	R(t), is the difference between reward as a function of
time in trial (the actual reward) and the average reward re-
ceived over the last few trials (the expected reward): 	R(t) �
Rwd(t) � �Rwd(t)�. This temporal difference signal is used to
modulate synaptic plasticity by multiplying the synaptic
changes triggered by a postsynaptic spike at time t according to
the standard STDP rule by 	R(t). Whenever 	R(t) � 0, i.e.,
whenever network performance is worse than its average
performance over the last few trials, synaptic plasticity is
anti-Hebbian, with one wrinkle noted below.

Although one of the first experimental studies of STDP
observed anti-Hebbian STDP in the brain stem (Bell et al.
1997), until recently, cortical STDP studies uniformly reported
Hebbian plasticity. This raises the question of whether it is
plausible enough to be included in a model aiming at a
moderate degree of biological realism—could anti-Hebbian
STDP be implemented by forms of neuromodulation that have
already been observed in the isocortex? The fact that both LTP
and LTD are triggered by increases in postsynaptic [Ca2�]
suggests that it could. Because LTD is triggered by small
increases in [Ca2�], whereas LTP appears with larger Ca2�

transients (Cho et al. 2001; Cormier et al. 2001; Ismailov et al.
2004; Yang et al. 1999), reducing the amount of Ca2� influx
resulting from pairing EPSPs with postsynaptic APs could
make normally potentiating patterns of activity induce LTD
instead. Indeed, partial blockade of NMDARs does exactly that
(Cummings et al. 1996; Froemke et al. 2005; Nishiyama et al.
2000), indicating that simple modulation of NMDARs, already
proposed above, could suffice to implement our STDP-based
version of temporal difference learning. However, such a
simple mechanism could not support fully anti-Hebbian plas-
ticity—although formerly LTP-inducing pairings would yield
LTD, it is hard to see how formerly LTD-inducing pairings
could cause potentiation. Furthermore, most recent studies that
have found anti-Hebbian STDP in the isocortex report mainly
pre–post LTD (Sjöström and Häusser 2006), although some
post–pre LTP has been reported at distal synapses, attributed to
the delay between the first postsynaptic spike and the time of
maximal dendritic depolarization (Letzkus et al. 2006). Con-
sequently, we do not incorporate fully anti-Hebbian plasticity
into our model; if 	R(t) � 0, pairings that would normally
trigger synaptic depression do not change synaptic strength
at all.
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Figure 3B shows the performance of our model with
activity-dependent synaptic scaling and anti-Hebbian STDP
included, where the initial synaptic weights, patterns of input
activity, and target output are the same as in Fig. 3A. As
training progresses, the network now learns to produce the
target output, using either additive (Fig. 3B) or multiplicative
(data not shown) STDP, with quite accurate performance after
fewer than 1,000 trials of training. Figure 3C shows how
activity-dependent synaptic scaling permits the output neuron
to learn to generate spikes at times when it originally never
fired. The simulation starts after 5,000 trials of training to fire
at 500 ms (the point reached at the end of the raster in Fig. 3B),
but now the target output is switched to a single spike at 700
ms (Fig. 3C, bottom). Anti-Hebbian STDP causes the neuron to
stop firing at 500 ms, at which point synaptic scaling increases
overall synaptic strength until new spikes appear, including
spikes near 700 ms (Fig. 3C, left). In addition to synaptic
scaling, cortical neurons can also adjust their intrinsic excit-
ability in response to lasting changes in activity level (Desai
et al. 1999). We wanted to know if alternative forms of activity
homeostasis like this could substitute for synaptic scaling in
our model. We modeled excitability homeostasis by having the
AP threshold adapt if postsynaptic activity levels remained too
low or too high. We found that excitability homeostasis could
substitute for synaptic scaling (Fig. 3C, right); our model
requires some form of activity homeostasis, but is not espe-
cially sensitive to the specific form it takes. However, excit-
ability homeostasis would ultimately have to be supplemented
by some other process, because the AP threshold drops every
time the target output is changed and no circumstances nor-
mally arise to bring it back up. For this reason, we used
synaptic scaling for all subsequent simulations.

Model performance is sensitive to the width of gaussians
used to smooth spike trains

As explained above, the reward signal that drives learning is
calculated from the difference between a target spike train and
the actual spike train generated by the output neuron. To
compute that difference, the spike trains are convolved with a
Gaussian whose width specifies the temporal precision de-
manded of the model. Thus far, we have used a gaussian with
a SD (�) of 10 ms. This choice is arbitrary; therefore we
examined model performance under different values of �. One
might expect that if � is too small (if the level of temporal
precision demanded is too high), the model will be unable to
learn to produce the target spike train. That is indeed the case:
performance is substantially degraded if � is just 5 ms, as
shown in Fig. 4A. On the other hand, one might expect that
model performance would improve—or at least remain un-
changed—with larger �. That is not the case. The “predictive”
aspect of the STDP rule shown in Fig. 2 manifests itself as �
increases: rather than firing spikes near the peak of the gaus-
sian, at 500 ms, output neurons learn to fire earlier in the trial
with larger �. If � is large enough, the network will sometimes
come to fire two spikes, neither of which occurs at the target
time of 500 ms (Fig. 4B). The final average reward achieved
after training, our chosen measure of overall performance, is
plotted in Fig. 4C for different values of � (see Supplemen-
tal Fig. 1 to see how this performance measure is related to

the activity generated by the network)1. To maintain a
consistent measure of model performance, the final rewards
plotted in Fig. 4C were computed using a 10-ms gaussian,
although the reward signal used to drive learning was
computed using the specified � (5–100 ms). Figure 4D
shows PSTHs showing the output activity of the model after
training with different values of �.

Learning arbitrary spike trains

Thus far, we only examined the ability of the model to learn
to generate a “spike train” consisting of a single spike. The
model can learn to produce more arbitrary spike trains, but not
as consistently. Figure 5 shows two examples of the model
trained on target trains containing three spikes: one success-
fully (Fig. 5A) and one not (Fig. 5B). Figure 5C shows the final
performance of networks taught to produce randomly gener-
ated spike trains containing no more than five APs; each bar
represents the average final performance of 10 networks (each
with a different target spike train). Average performance de-

1 The online version of this article contains supplemental data.

FIG. 4. Effect of spike train smoothing on model performance. A: training
with target and output spike trains smoothed by a gaussian of � � 5 ms. Top:
raster of output spike trains generated during training; every 50th trial is
shown. Bottom: smoothed target spike train. B: same as A, but with spike trains
smoothed by a gaussian of � � 100 ms. C: average final performance after
5,000 trials of training with gaussians of different widths (�). In all cases, the
target spike train consisted of a single spike fired 500 ms into the trial. Bar
height represents the average performance of 10 repetitions (using a different
initial set of synaptic weights on every repetition) at each �; error bars denote
SD of final performance among the 10 repetitions. “Average final perfor-
mance” is defined as average reward achieved over the last 500 trials of
training. For this purpose, Rwd is calculated from spike trains smoothed with
� � 10 ms to provide a consistent measure of performance. D: PSTHs showing
examples of performance after training with different �. Each PSTH was
generated by simulating example networks for 500 trials with synaptic plas-
ticity turned off. PSTHs show only the middle 300 ms of trials; there was little
or no activity outside of this range after training. Numbers on left indicate
smoothing � used; average performance (Rwd calculated using � � 10 ms) is
shown on right. Bin size is 3 ms.
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clines as the number of spikes in the target train increases—the
means are significantly different (ANOVA, P � 0.004) and
there is a trend toward lower performance with more spikes
(P � 0.002, slope � �0.0035, r2 � 0.17). We suggest two
possible explanations for this trend. First, spike trains with
more APs are more likely to contain short interspike intervals
(ISIs), and these could pose a problem because 1) the AHP
makes it more difficult to reach spike threshold again shortly
after spiking and 2) synapses active shortly after the first AP
that could help trigger a second AP will be subjected to LTD
caused by the depressing portion of the STDP rule. Further-
more, target trains with more spikes may be more difficult to
learn as synaptic adjustments that drive spiking at one time
may interfere with the model’s ability to remain silent at other
times. This is because presynaptic units fire at several distinct
times throughout the trial, and thus strengthening the synapse

of a presynaptic unit because it is active at one time may also
increase synaptic drive during times when the output neuron
should not fire. As the number of spikes in the target train
increases, one might expect this problem to grow less manage-
able. This problem would be circumvented if each presynaptic
unit fired only a single burst during a trial. Indeed, if we use
networks receiving this kind of input, performance is improved
for all target spike trains (P � 0.0001 for all 5 groups,
Mann-Whitney test), with spike trains containing more spikes
showing the largest improvement (Fig. 5D). With this pattern
of presynaptic input, there are no longer any significant differ-
ences in average performance among target trains with differ-
ent numbers of spikes (ANOVA, P � 0.78). This suggests that
short ISIs may not pose any serious difficulty for this model,
but when the data in Fig. 5D are plotted as a function of the
minimum ISI occurring in the target spike train (Fig. 5E), one
sees that the worst performance occurs with target trains
containing shorter ISIs. We systematically explored the effect
of ISI on performance using two-spike target trains (Fig. 5F)
and found that average performance on shorter ISIs (�60 ms)
was significantly worse than on longer ISIs (80–100 ms;
ANOVA followed by Tukey’s multiple comparison test, using
P � 0.05 as the criterion for significance). Results using
multiplicative STDP were similar, except that networks trained
under multiplicative STDP systematically fired output spikes a
few milliseconds earlier in the trial than those trained with
additive STDP (Supplemental Fig. 2).

Learning in networks with multiple output neurons

We showed that our reward-modulated version of STDP is
capable of training a single output neuron to produce an
arbitrary spike train in response to temporally patterned syn-
aptic input and that performance is best when 1) the input units
fire only one burst per trial, 2) the target spike train does not
contain ISIs shorter than 80 ms, and 3) the additive implemen-
tation of STDP is used. However, realistic learning tasks will
entail training a population of output neurons to produce some
target pattern of activity. This target pattern might specify
distinct target spike trains for each output neuron, in a direct
extension of our single-neuron model. This task would be
trivial if each output neuron received its own individually
tailored reinforcement signal, but it proves to be quite difficult
if one global reinforcement signal is broadcast to all output
neurons, calculated from the average of the rewards that each
output neuron would have been assigned had they were being
trained individually (Supplemental Fig. 3).

Although the model fails to accurately learn target spike
trains with as few as five neurons in the output layer, demand-
ing that every output neuron in the network learn to produce a
specific spike train is probably unreasonable and unrealistic.
For most realistic tasks, the necessary pattern of output activity
can probably be realized by many different sets of specific
spike trains generated in the output population. To model this
situation, we defined the target output as a time-varying func-
tion specifying the fraction of output neurons that should be
active over the course of a trial, regardless of which specific
output neurons are active at any time. For example, the task
being learned could require that output neurons gradually
become more active over a trial, peaking in the middle of the
trial and declining as the trial concludes. Such a situation is

FIG. 5. Learning arbitrary spike trains under additive STDP. A: raster
showing a successful example of learning a target train containing 3 spikes.
Smoothed version of target spike train is show below. B: example of a failed
attempt to learn a 3-spike target train. C: average final performance in learning
arbitrary spike trains containing different numbers of spikes. As before, this is
the average reward obtained during the last 500 trials of training, normalized
for spike number (see METHODS). Each column shows mean and SD over 10
repetitions, where each repetition uses a different starting network and differ-
ent target spike train. D: as in C, but with presynaptic units firing just 1
high-frequency burst during each trial (“1-burst script”) rather than at multiple
times during a trial as in all previous simulations (“regular script”, example
shown in Fig. 2A). E: final performance during training with 1-burst scripts as
a function of the smallest interspike interval occurring in the target spike train.
Symbols indicate the total number of spikes in the target train as follows: filled
circles, 2 APs; filled triangles, 3 APs; open circles, 4 APs; open triangles, 5
APs. F: performance after training to produce spike pairs with interspike
intervals varied systematically between 40 and 100 ms in 10-ms increments.
Each point plots average of 10 repetitions (each a different starting network
and spike pair, but with the same interspike interval); error bars indicate SD.
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shown in Fig. 6, where the target pattern of activity is a
100-ms-wide gaussian centered at 500 ms into the trial, with a
peak value of 0.1. Network output is represented by smoothing
the individual spike trains with a 10-ms-wide gaussian and
averaging over all output neurons, yielding a single waveform
that gives the fraction of cells active over time in trial. The
reinforcement signal is then calculated in a manner directly
analogous to the single neuron case: we calculate Rwd(t) by
subtracting the “fraction active” waveform from the target
pattern, taking the absolute value, and exponentiating the
result, which is used to calculate the temporal difference
reinforcement signal, 	R(t).

In the example shown in Fig. 6, the output layer contains 100
neurons, input units fire only one burst per trial, and additive
STDP is used. After 5,000 trials of training, an aggregate
PSTH generated by adding together the PSTHs of all output
neurons (Fig. 6A, top, collected over 500 trials) reveals that the
output neurons collectively generate a reasonable copy of the
target pattern (Fig. 6A, middle). The ability to learn target
patterns like this requires that output neurons be trained to-

gether as a population. This is shown by examining the aggre-
gate behavior of an ensemble of 100 networks, each containing
one output neuron (Fig. 6A, bottom). Each of these networks
was separately trained on the broad gaussian target pattern, but
they could not reproduce this pattern individually (also shown
in Fig. 4) or collectively (Fig. 6A, bottom).

Although the activity of output neurons in this example
collectively approximates the target pattern, the individual
neurons within the population do not. The majority of output
neurons consistently fire at or near a particular, neuron-specific
time on every trial after training (“temporally specific” neu-
rons; example shown in Fig. 6B, top). Other output neurons can
fire at almost any time in a trial (Fig. 6B, middle), whereas a
third group combine these two response patterns (Fig. 6B,
bottom) or tends to fire at two or more discrete times during a
trial. If we define the “temporal specificity” of a neuron’s
response pattern as the percentage of spikes it fires within 15
ms of its most probable firing time, we find that there is a
bimodal distribution of temporal specificity among output
neurons trained on this target pattern (Supplemental Fig. 4B,
top). If we classify those neurons firing �60% of their spikes
within 15 ms of their most probable firing time as “temporally
specific,” we find that 64% of output neurons can be so
designated. The distribution of times at which these temporally
specific neurons are most likely to fire reproduces the central
part of the gaussian pattern that the network as a whole
generates (Supplemental Fig. 4B, bottom).

The top PSTH in Fig. 6A shows how well the output of this
network averaged over 500 trials reproduces the target pattern.
However, it does not tell us whether the network reproduces this
pattern on individual trials; it is possible that the output is highly
variable and that the gaussian shape of Fig. 6A emerges only after
summing the results of many trials, which would not constitute a
very successful example of learning. To show the activity on
individual trials, we instead plot the smoothed spike trains aver-
aged over all output neurons, i.e., the “fraction active” waveform
that is used to compare output activity to target activity. The top
graph of Fig. 6C plots three examples of output activity on
individual trials (thin black lines) along with the mean “fraction
active” waveform (thick black line) and the target pattern (thick
gray line). Although the average activity pattern does closely
resemble the target pattern, the activity on individual trials varies
considerably from trial to trial. The bottom graph of Fig. 6C
shows the range of activity exhibited on individual trials by
plotting the 95% CI bounds (thin black lines) for these wave-
forms; the thick black line is the median activity, which differs
somewhat from the mean activity.

Some trial-to-trial variability in output activity is driven by
variations in input activity, and indeed the model’s ability to
learn depends on this variability. We might also expect this
variability to decrease as the number of output neurons in-
creases, because variations in the activity of individual output
neurons would make smaller fractional contributions to the
overall activity pattern and would tend to average out. How-
ever, this is not true under the conditions pertaining to this
model (see METHODS). This is because the activity in the output
neurons does not vary independently; the all-to-all connectivity
pattern between the input and output layers causes correlations
in these variations in output neuron activity (to a degree that
depends on the synaptic matrix gij). Although the all-to-all
connectivity pattern was a practical choice for modeling pur-

FIG. 6. Learning a broad gaussian population response in a network with
multiple output neurons. A: top: “aggregate PSTH” showing output of this
network after training, generated by summing the PSTHs of all the individual
output neurons, collected from 500 trials. Middle: target pattern of activity
used to train this network. Bottom: aggregate PSTH showing output of 100
neurons separately trained on the template shown above, again collected from
500 trials of activity after 5,000 trials of training. B: example posttraining
PSTHs of individual neurons taken from network depicted in A (top), showing
the 3 basic kinds of responses observed. Top: example of a neuron that fires at
roughly the same time on every trial. The majority of output neurons conform
to this pattern. Middle: example of a neuron that is capable of firing at most
times within a trial. Bottom: example of a neuron that can fire at many different
times in a trial, but with a propensity to fire around a particular time. Scale of
the middle PSTH is the same as the bottom one. Bin size for all PSTHs in B
and C is 10 ms. C: graphs of the fraction of output neurons active over the
course of a trial, calculated by smoothing the spike trains with a 10-ms-wide
gaussian and averaging over all output neurons. Top: 3 examples of activity on
individual trials (thin black lines) plotted with mean activity over 500 trials
(thick black line) and target activity (thick gray line). Bottom: 95% CI for
activity over a trial (2.5 and 97.5% percentiles calculated from 500 trials; thin
black lines), median activity (thick black line), and target activity (thick gray
line). Scale in both graphs is the same. Numbers in top right corner give
performance (mean � SD) over the 500 trials used to generate this panel.
D: same as C, but with uncorrelated inputs driving output neurons.
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poses, it probably does not reflect a connection pattern com-
mon in the vertebrate CNS. Even if, for example, one cortical
area projects strongly to another, it is unlikely that all individ-
ual neurons in the recipient region receive input from exactly
the same set of presynaptic neurons. We tested whether the
high trial-to-trial variability of Fig. 6C is caused by correlated
fluctuations in synaptic drive received by output neurons by
“decorrelating” the synaptic input. We generated a separate set
of presynaptic spikes for each output unit, but where each set
is drawn from the same probability distribution (script). Thus
the output neurons receive the same average synaptic input as
before, but the trial-to-trial fluctuations in presynaptic activity
are now independent across output neurons. When the network
shown in Fig. 6C is driven by such “uncorrelated” input, the
trial-to-trial variability in output activity is greatly reduced and
the output more closely matches the target activity on individ-
ual trials (Fig. 6D).

We now consider the model’s capabilities for learning a
wider range of target patterns. We begin with a class of target
patterns that is quite distinct from the single broad gaussian
used thus far: a series of large but brief population bursts.
These “bursty” patterns consist of four randomly placed 10-
ms-wide gaussians whose height specifies the fraction of neu-
rons that should participate in that burst. Figure 7A shows an
example of a network trained on such a target pattern, with the
two leftmost graphs directly paralleling Fig. 6C—the top left
graph plots activity from individual trials (thin black lines) and
the mean activity (thick black line), whereas the bottom left

graph shows the 95% CI for output activity (thin black lines)
and the median activity (thick black line); the target pattern is
shown on all graphs as a thick gray line. This bursty target
pattern is reproduced with considerably greater fidelity than the
broad hump of Fig. 6, so much so that it is difficult to
distinguish the individual lines on the leftmost graphs of Fig.
7A. The middle graphs of Fig. 7A zoom in on the two central
bursts, showing how both the height and timing of the bursts
are fairly well matched to the target pattern, with compara-
tively little trial-to-trial variation even with normal “corre-
lated” inputs. If the output neurons are driven by “uncorre-
lated” inputs as in Fig. 6D, the output variability drops further
(Fig. 7A, right).

Having considered target patterns with both widely and
narrowly temporally distributed patterns, we now examine our
model’s ability to reproduce “random” target patterns, shown
in the leftmost column of Fig. 7B. From a 1,000-ms waveform
drawn from a gaussian noise distribution with a correlation
time of 100 ms (Fig. 7B, top left), we generate a “probability of
spiking” by clipping the portions of the waveform that are
negative or that approach the limits of temporally patterned
input, 100 and 900 ms into the trial, and normalize the result
(Fig. 7B, middle left). We use this probability waveform to
randomly select locations for N 10-ms-wide gaussians, each of

FIG. 7. Learning arbitrary population responses. A: example of a network
of 100 output neurons trained to produce a series of 4 “population bursts” of
activity of varying intensity. Top left: 10 examples of activity on individual
trials (thin black lines) plotted with mean activity over 500 trials (thick black
line) and target activity (thick gray line). Bottom left: 95% CI for activity over
a trial (thin black lines), median activity (thick black line), and target activity
(thick gray line). Middle: central portion of the leftmost graphs on an expanded
time scale, with the 5% activity percentile (thin dashed line) added to the
bottom graph to show that failures to produce burst at 650 ms, while possible,
are rare. Right: as in the middle graphs, but with network driven by “uncor-
related” inputs and 5% activity percentile omitted. Vertical scale in all graphs
in this panel is the same. B: example of a network of 100 output neurons
trained to produce a “random” pattern of activity. Leftmost column of graphs
shows how these random target patterns are generated. A 1-s segment of
gaussian white noise is created (top; dashed line marks zero level) and
converted into a probability distribution (middle) by setting any negative parts
of the waveform to 0, as well as the 1st and last 100 ms of the waveform, and
normalizing. This probability distribution is used to select the peak times of N
10-ms-wide gaussian bumps that are added together to give a “random” target
pattern for a network containing N output neurons (bottom). Middle graphs
show how well a network can learn to generate this sample target pattern after
5,000 trials of training; top graph shows 3 examples of activity on individual
trials (thin black lines) plotted with mean activity over 500 trials (thick black
line) and target activity (thick gray line). Bottom graphs show 95% CI for
activity over a trial (thin black lines), median activity (thick black line), and
target activity (thick gray line). Right, as in the center graphs, but with the
network driven by “uncorrelated” inputs. Vertical scales in center and right
graphs are the same. Performance (mean � SD) attained over the 500 trials
used to generate A and B are shown on relevant graphs. C: final performance
as a function of number of neurons in output layer for the 3 types of target
pattern considered here: filled circles, 100-ms-wide gaussian of peak height 0.1
centered at 500 ms; filled triangles, “bursty” patterns of 4 10-ms-wide gaussian
peaks of varying heights; open circles, “random” patterns generated as shown
in B (left). Each symbol represents average final performance over 5 different
networks, each with a different target pattern (except for the filled circles,
where target pattern is always the same); error bars indicate SD. D: perfor-
mance in 100-neuron networks using multiplicative STDP. Left: average final
performance over 5 simulations for each of the 3 types of target pattern; error
bars indicate SD. Right: examples of simulations for each target type. Black
lines show mean activity over 50 trials; gray lines plot target patterns. Numbers
on right of each graph show final performance for each network; average firing
rate of neurons in output layer is shown to the left. In all cases, target patterns
represent an average firing rate of 1 Hz among output neurons.
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height
1

N
, where N is the number neurons in the output layer of

the network; the sum of these N gaussians gives us the target
pattern of activity (Fig. 7B, bottom left). This last part of the
procedure guarantees that the target pattern can actually be
generated by N output neurons whose spike trains are
smoothed with 10-ms-wide gaussians. Our model can learn to
reproduce such patterns on average, but with a substantial
amount of trial-to-trial variability (Fig. 7B, middle). With
“uncorrelated” inputs, variability is decreased and network
activity on individual trials now more closely resembles the
target pattern (Fig. 7B, right).

We assessed our model’s performance on these three types
of target pattern (100-ms-wide gaussian, bursty, random) as the
number of neurons in the output layer was varied (Fig. 7C). A
two-way ANOVA showed that both neuron number and pat-
tern type contribute to the variation in final performance and
that these two factors interact (P � 0.0001 in all cases). The
results of Fig. 7C suggest that the dependence of performance
on neuron number, and its interaction with pattern type, is
caused entirely by the fact that networks with fewer output
neurons do a relatively poor job of reproducing the broad
gaussian target pattern. This is confirmed by rerunning a
two-way ANOVA with the 100-ms-wide gaussian data omit-
ted; now only pattern type (P � 0.0001) and not neuron
number (P � 0.86) contributes to performance differences,
with no interaction between the two factors (P � 0.96). Unlike
the bursty and random pattern types, the broad gaussian cannot
be precisely mimicked by any network; it can only be approx-
imated, and the best achievable approximation improves as the
number of output neurons increases.

Thus far, networks trained to reproduce a “population re-
sponse” have used only additive STDP, with input units gov-
erned only by “one-burst” scripts, i.e., input units that each fire
just one short burst of spikes on each trial. When networks
using multiplicative STDP were tested on this task, we found
that they consistently failed to reproduce any of the target
pattern types we considered (Fig. 7D). The multiplicative
rule’s bias toward LTP was probably a factor, because these
networks always overshot the target activity pattern (examples
shown in Fig. 7D, right). Networks using “regular scripts,”
where a given input unit could fire at multiple distinct times
within a trial, were also unable to learn most types of popula-
tion reponses (Supplemental Fig. 5).

In the simulations described above, we trained each network
on just one target pattern, as might be the case in, for example,
song learning in birds whose repertoire is limited to one song.
However, more generally a neural population may learn to
produce different responses to different patterns of synaptic
input or to generate a continuous mapping between input and
output. Although we will not attempt a full exploration of our
model’s capacity for learning multiple input–output pairings,
we did establish that this model can learn to produce at least
eight distinct output patterns in response to distinct input
patterns (Supplemetal Fig. 6).

Model performance with simplified versions
of the STDP rule

The implementation of the STDP rule used in our model is
fairly complicated, incorporating not only the relative timing of

pre- and postsynaptic spikes, but also a dependence on the
firing history of the presynaptic and postsynaptic neurons. We
chose this implementation not because of its value for rein-
forcement learning but because experimental studies suggest
that these additional factors influence the synaptic changes
induced by STDP protocols (Froemke and Dan 2002; Froemke
et al. 2006; Wang et al. 2005; Wittenberg and Wang 2006).
Our results showed that this particular form of spike history
dependence is not fatal to our model. However, the history
dependence used, taken from Froemke and Dan (2002), is not
unique; Froemke and Dan themselves published a modified
version of this rule (Froemke et al. 2006) for the same kind of
synapses. Furthermore, different kinds of synapses could show
distinct forms of history dependence. We did not attempt to
investigate our model’s performance under all reasonable
forms of history dependence. Rather, we simply sought to
determine whether our model’s success depends on the specific
form used here. Thus we examined the performance of our
model in the absence of any history dependence.

FIG. 8. Learning with a simplified version of the STDP rule. A: learning
curves showing performance over time averaged over 5 simulations for each
curve, with each simulation using a different network and target pattern. Filled
circles, simulations lacking spike history dependence (spike suppression mech-
anism); open circles, control simulations using the full (history-dependent)
plasticity rule. Immediately to the left of these curves, and plotted on the same
vertical scale, are average final performances for each case with error bars
showing SD across simulations. These symbols have been nudged horizontally
to avoid error bar overlap. B: activity generated by an example network trained
without spike suppression at 2 stages of training. Top graph shows mean
network output (black line) over 50 trials using the network as it was after 500
trials of training; bottom graph shows mean activity after 5,000 trials. For both
graphs, 50 trials used to generate them were run with synaptic plasticity turned
off. Gray line shows target pattern, and numbers give mean performance over
50 trials shown. C: as in A, but filled circles now denote networks lacking both
spike suppression and post-before-pre long-term depression (LTD), and filled
triangles denote networks with spike suppression but without post-before-pre
LTD. Open circles are control networks, the same data as plotted in A. D: 2
examples of final output generated by networks trained with a plasticity rule
lacking both spike suppression and post-before-pre LTD. Black lines are mean
output over 50 trials, and gray lines are target patterns in each case. Numbers
give mean performance over 50 trials.
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The spike history dependence of the STDP rule of Froemke
and Dan (2002) is derived from their “spike suppression
model,” where the efficacy of a spike at inducing synaptic
changes is suppressed by the occurrence of preceding spikes in
the same neuron. To remove spike history dependence from the
STDP rule, we omit the “spike efficacy” factors �i

pre and �j
post

from the rule (Eq. 4). We tested this simplified STDP rule in
five networks containing 100 output neurons and trained on
“random” target patterns. As shown in Fig. 8A, these networks
(filled circles) initially learn faster than control networks that
include spike suppression (open circles), but this performance
peaks after 	500 trials and begins a slow decline, ending after
5,000 trials at a performance level that is lower on average than
the control networks. Although this difference is not quite
significant (P � 0.056, Mann-Whitney test), it is an alarming
trend for our model’s success. The example shown in Fig. 8B
illustrates the proximate cause of this steady decline in perfor-
mance. After 500 trials, this network, lacking the spike sup-
pression mechanism, generates an output pattern that is as good
a copy of the target pattern (Fig. 8B, top) as the full model
could generate after 10 times as much training. As training
proceeds, however, the network fails to maintain the sustained
elevation of activity appearing in the first half of the target
pattern; the activity plateau generated by the network gradually
shortens and by the end of training is reduced to a brief
population burst at the onset of the early activity plateau
demanded by the target pattern (Fig. 8B, bottom). Because this
loss of activity would cause many of the output neurons to fire
at average rates significantly �1 Hz, the homeostatic plasticity
mechanism is engaged and instigates a compensatory increase
in baseline firing rate (Fig. 8B, bottom). The process shown
here is repeated in the other simulations using the STDP rule
without spike suppression—sustained bouts of activity speci-
fied in the target patterns are gradually shortened, accompanied
by an increase in baseline firing.

This effect is caused by the fact that our performance-
modulated version of the STDP rule is biased toward LTD
relative to the traditional unmodulated form of the rule because
its anti-Hebbian regimen (applied whenever 	R � 0) includes
only LTD, whereas both LTP and LTD are possible when 	R �
0. This issue becomes pertinent when the network generates a
sustained bout of activity. Most of the spikes in presynaptic
bursts that are responsible for maintaining this activity occur
before the postsynaptic spikes they trigger, but when the
presynaptic activity patterns consist of high-frequency bursts
(as in the 1-burst scripts used here), one or two of the later
spikes in the burst can occasionally occur after the postsynaptic
spike triggered by earlier spikes. If 	R � 0 at this time on a
given trial, these final presynaptic spikes will induce LTD at
the relevant synapse. On such trials, this LTD is more than
counterbalanced by LTP induced by the majority of spikes in
the burst occurring before the postsynaptic spike, but on trials
in which 	R � 0 (i.e., performance is worse than the recent
average performance), the presynaptic spikes occurring before
the postsynaptic spike trigger LTD without any compensatory
LTP induced by the few presynaptic spikes that may appear
after the postsynaptic spike. Thus once the network has
reached a plateau in performance when 	R is just as likely to be
negative as positive, the changes induced at these synapses
averaged over several trials will be slightly depressing, grad-

ually eroding the sustained bout of activity that the network is
supposed to generate. The inclusion of the spike suppression
mechanism avoids this by suppressing the contributions of later
spikes in presynaptic bursts, the only spikes that can trigger
LTD when 	R � 0, since the average ISI in these bursts (6.3
ms) is considerably shorter than the recovery time constant for
presynaptic spike suppression (28 ms). With the spike suppres-
sion mechanism in place, a plateau in performance (�	R� � 0)
now produces an approximate balance between LTP and LTD.

If the main advantage of spike suppression is to counter the
depressing portion of the basic STDP rule, networks lacking
both spike suppression and post-before-pre-LTD should per-
form at least as well as control networks incorporating both
features. We tested this by running simulations in which the
“spike efficacy” factors �i

pre and �j
post are omitted, as above, and

the parameter governing the size of post-before-pre LTD (A�,
Eq. 1) is set to zero. Now learning is quite rapid (Fig. 8C, filled
circles), and performance achieves an asymptotic level well
above the values attained by control networks (P � 0.008,
Mann-Whitney test; 2 examples shown in Fig. 8D). If spike
suppression is used while A� (Fig. 8C, filled triangles), per-
formance is significantly worse (P � 0.008, Mann-Whitney
test) and is not significantly different from control performance
(P � 0.22). In summary, one aspect of the spike history
dependence of the STDP rule of Froemke and Dan (2002),
presynaptic spike suppression, does in fact assist reinforcement
learning under the conditions prevailing here (postsynaptic
spike suppression is rarely engaged because the average firing
rate among output neurons is roughly 1 Hz). However, it does
so by mending an imbalance between LTP and LTD caused by
combining anti-Hebbian plasticity with a conjunction of post-
before-pre LTD and burst firing. The solution, to make only the
first spike in a high-frequency presynaptic burst “count” in the
induction of synaptic plasticity, is not specific to this particular
form of history dependence. In the absence of post-before-pre
LTD, this history dependence actually slightly impedes perfor-
mance. In that sense, the particular form of history dependence
used is not integral to the success of our model.

D I S C U S S I O N

Our model attempts to find a biologically plausible solution
to a fairly general learning problem—how to train a neural
population to generate arbitrary responses to patterned synaptic
input—that could be applicable to a wide range of specific
neural systems and functional tasks. In this endeavor, it largely
succeeds. Our approach can, with some moderate restrictions,
teach a neuron to convert temporally patterned synaptic input
into an arbitrarily selected spike train. Although it cannot
reliably get any but the smallest neural populations to produce
distinct spike trains specifically assigned to each neuron, it can
train a neural population to generate global response patterns,
where neurons spontaneously adopt distinct firing patterns that
collectively produce the target population response. Further-
more, these population responses, once trained, are evoked
only by input patterns very similar to the ones presented during
training, and networks can learn multiple input pattern-popu-
lation response pairs. These successes were achieved simply by
taking an “off the shelf” plasticity rule derived directly from
experimental studies and subjecting it to a simple and plausible
form of modulation.
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These accomplishments do come with a list of requirements
and restrictions. First, a form of activity-regulating homeosta-
sis is needed to guarantee the presence of postsynaptic spikes,
because STDP alone can do nothing without activity in both
the presynaptic and postsynaptic cells. This can be achieved
through the inclusion of known physiological processes: ho-
meostatic regulation of either intrinsic excitability or, the
choice we favored here, synaptic strength. Another relatively
minor requirement is the exclusion of the form of multiplica-
tive STDP examined here. Although this form of strength-
dependent synaptic modification is a staple of the STDP
modeling literature, it has relatively little experimental support,
and it poses a dilemma between two unrealistic alternatives:
either synaptic changes must be strongly biased toward LTP
(gij �� gmax) or the maximum achievable strength can be only
about twice the starting strength (gij � 1⁄2 gmax). In addition,
our model requires anti-Hebbian synaptic plasticity to ensure
that unwanted spikes fired by the postsynaptic cell can always
be removed. A more challenging requirement, the need for
reward prediction, is discussed in the context of possible
biological implementations of the model.

Although our mechanism for reinforcement learning works
using the full STDP rule, it is disconcerting that the LTD
portion of this rule contributes nothing to the model’s success;
indeed, it actually impedes performance and would do so
disastrously were it not for the spike suppression mechanism
built into the STDP rule we used. On the other hand, there is
no reason why the two halves of the STDP rule—pre–post LTP
and post–pre LTD—should serve the same functions. LTD
induced by the recurrence of postsynaptic spikes preceding
EPSPs may serve wholly distinct functions that are not repre-
sented in our model. There is growing evidence that the LTP
and LTD portions of STDP rule are mechanistically quite
distinct, at least at some cortical synapses, with post–pre LTD
using a different method for detecting coincident pre- and
postsynaptic activity (involving postsynaptic endocannabinoid
release and presynaptic NMDARs), possibly using different
calcium sources for induction (internal stores instead of extra-
cellular calcium admitted through postsynaptic NMDARs),
and perhaps with a different site of expression (Bender et al.
2006; Nevian and Sakmann 2006; Sjöström et al. 2003, 2004).
This makes it more likely that they can be regulated indepen-
dently, and a recent study of hippocampal STDP was able to
identify induction protocols that could engage these two forms
of synaptic plasticity separately (Wittenberg and Wang 2006).
We suggest that post–pre LTD might be suppressed in vivo
during reinforcement learning.

One of the strengths of our model is the fact that it is based
on an experimentally defined form of synaptic plasticity, but it
does require additional conjectures concerning the modulation
of that plasticity that are not experimentally established. A
more parsimonious model that avoided these conjectures while
retaining the ability to train a neural population to map its
synaptic inputs into a wide range of possible outputs would be
preferable. Legenstein et al. (2005) studied the learning capa-
bilities of the unmodulated STDP rule and describe a method
whereby a network using this rule can learn a wide range of
mappings from input patterns to output activity. A recently
published model by Davison and Frégnac (2006) implements a
version of this method to model the learning of coordinate
transformations between different frames of reference, where

the neural population being trained receives all-to-all inputs
from an input layer, encoding untransformed coordinates, and
topographic inputs from a “training layer” encoding the desired
output. Although this model offers a plausible way to learn a
coordinate transformation, it cannot supplant our model in the
full range of learning tasks we consider. The method Legen-
stein et al. (2005) describe for learning arbitrary mappings and
the Davison and Frégnac (2006) model are both effectively
“instructive,” since inputs from the training layer directly bias
the output layer toward generating the desired output, whereas
our training signal is based on merely the similarity between
desired output and actual output. Furthermore, the fact that the
projections from the training layer are topographic in the
Davison and Frégnac (2006) model means that the evaluation
signal is not global; local populations in their output layer
receive individually tailored training signals. These conditions
are reasonable for learning coordinate transformations, but are
probably too demanding for all forms of cortical learning.

Two other models have been published recently that are
concerned with the marriage of STDP and reinforcement learn-
ing. One, proposed by Izhikevich (2007), posits the modulation
of STDP by a reward signal mediated by dopamine. In this
model, the relative timing of pre- and postsynaptic spikes
generates a synaptic “eligibility trace” governed by the STDP
rule, but synaptic changes are implemented only if dopamine is
delivered before the eligibility trace decays. The Izhikevich
(2007) model offers a solution to the problem of delayed
reward, whereas we assume that this problem is solved else-
where by a system that provides a reward prediction to the
network in advance of the actual reward. On the other hand,
Izhikevich (2007) considers a much more limited set of poten-
tial input patterns and desired output patterns. Because
Izhikevich (2007) did not use input patterns with strong,
long-range temporal correlations, he did not encounter the
problems that required the use anti-Hebbian plasticity coupled
to a temporal difference learning signal. A second study, by
Pfister et al. (2006), calculates the synaptic changes that in-
crease the likelihood of obtaining a set of target output spike
trains given the set of input spike trains, thereby deriving
STDP-like learning rules. Pfister et al. (2006) note that if the
problem is instead cast in the form of maximizing reward, a
similar rule can be derived. However, the STDP rules derived
by Pfister et al. (2006) are functions of the “desired” spike
times of postsynaptic neurons, not their actual spike times.
Although Pfister et al. (2006) provided considerable insight
into why the STDP rule might take the form it does, they rely
on more abstracted (and more analytically tractable) neural
models than we do and do not explore the specific issue of
reinforcement learning in great detail. Both Izhikevich (2007)
and Pfister et al. (2006) offer valuable approaches to the
problem of STDP and reinforcement learning, yet are comple-
mentary to our model.

Biological implementation of the model

The most challenging characteristic of our model with re-
gard to credible implementation is probably the need for
“reward prediction,” i.e., the reinforcement signal must arrive
at roughly the same time the activity it evaluates is being
generated. This problem is not unique to our model and can be
viewed as one specialized facet of the general “temporal credit

3661REINFORCEMENT LEARNING WITH STDP

J Neurophysiol • VOL 98 • DECEMBER 2007 • www.jn.org

 on M
arch 11, 2009 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


assignment problem” all models of reinforcement learning face
(Sutton and Barto 1998), but nonetheless is a major obstacle to
the implementation of our model by a real neural system. The
problem might be solved by giving the evaluation system that
calculates the reinforcement signal access to the input activity
that drives variations in output activity. The evaluation system
could, in principle, use the pattern of input activity generated
on a particular trial to predict whether the output activity on
that trial will be a better or worse match to the target pattern
than average, permitting the timely arrival of appropriate
reinforcement. This would be an extraordinary feat of neural
computation, but there is a neural population known to do
something rather like it: the midbrain dopaminergic neurons.
These neurons fire bursts in response to unexpected reward and
to stimuli that predict reward; these neurons can also signal the
absence of predicted reward through pauses in their spontane-
ous firing (reviewed in Schultz 1998). If these neurons predict
reward based on internal factors, like an efference copy of
noisy motor commands, as well as external stimuli, then they
could potentially provide the kind of reward prediction re-
quired by our model.

Dopamine released by midbrain neurons could provide the
reinforcement signal for our model, but dopaminergic inner-
vation of the telencephalon is quite heterogeneous, and is most
prominent outside of the isocortex, namely in the striatum, the
input structure of the basal ganglia. Within the striatum, dopa-
mine does modulate synaptic plasticity, and although the ef-
fects of dopamine are still poorly understood and vigorously
debated, it may do so in a way consistent with role of 	R in our
model, with increased dopamine promoting LTP at corticostriatal
synapses and decreased dopamine promoting LTD (Reynolds and
Wickens 2002). This might make our model plausible within the
striatum, but how could it apply to the isocortex, which receives
far less dopaminergic input? We begin by asking how midbrain
dopaminergic cells generate their reward-predicting responses.
It seems unlikely that this complex calculation could be per-
formed entirely by these neurons themselves, and of the vari-
ous potential sources for this information, one of the best
candidates is itself the major target of dopaminergic innerva-
tion: the basal ganglia. The basal ganglia receive input from
virtually the entire cortex, and thus have access to the primary
information needed to predict rewards. Many factors affect the
activity of basal ganglia neurons, including of course sensory
stimuli and motor plans, but these responses are often modu-
lated by reward expectation (Arkadir et al. 2004; Hikosaka et
al. 2006). It is not unreasonable to hypothesize that reward-
predicting information can be found not just in midbrain
dopaminergic neurons, but also in basal ganglia outputs that
are relayed to the isocortex. In this way, almost the entire
cortex could receive the reward-predicting information de-
manded by our model.

Basal ganglia output could conceivably reach the cortex via
the GABAergic and cholinergic projections of the basal fore-
brain (Gritti et al. 1997), and acetylcholine has been reported to
modulate cortical synaptic plasticity (Rasmusson 2000). How-
ever, the most obvious conduit of basal ganglia output to the
cortex is the thalamus. That raises the question of how a
glutamatergic thalamocortical projection could modulate cor-
ticocortical synaptic plasticity. In rats, the primary thalamic
relay from basal ganglia to cortex is the ventromedial nucleus
(Gerfen 1992; Gerfen et al. 1982; Kha et al. 2001), which

projects to almost the entire cortical mantle, but specifically to
layer 1 (Herkenham 1979). This is intriguing from the point of
view of our model because layer 1 inputs to the dendritic tufts
of pyramidal neurons can trigger dendritic calcium spikes,
accompanied by bursts of sodium spikes, when combined with
action potentials initiated in the soma (Larkum et al. 1999), and
such calcium spikes could influence plastic changes induced at
the corticocortical synapses that helped initiate the somatic
spike. As we noted in our Methods section, and as emphasized
in a recent review (Lisman and Spruston 2005), a number of
studies report that low frequency pairing of individual pre- and
postsynaptic spikes does not suffice to induce synaptic plastic-
ity. High-frequency pairing is evidently necessary to induce
LTP at some cortical synapses (Markram et al. 1997), and this
may reflect a requirement for sustained depolarization
(Sjöström et al. 2001). Dendritic spikes triggered by layer 1
excitation may help meet this requirement, and a recent report
indicates that the requirement for high-frequency pairing is
waived when the postsynaptic neuron fires bursts rather than
individual spikes (Nevian and Sakmann 2006). Another study
of layer 5 pyramidal neurons found that EPSPs followed by
single APs induced anti-Hebbian LTD, whereas EPSPs fol-
lowed by high-frequency bursts—triggering large dendritic
spikes—induced LTP (Letzkus et al. 2006). In our view,
reports that the induction of synaptic plasticity requires more
than is accounted for by the basic STDP rule does not neces-
sarily undermine the STDP concept per se; rather, they indicate
that STDP is modulated, that this modulation may even en-
compass the possibility of anti-Hebbian STDP, and that this
modulation may be accomplished by a system that is capable of
providing the reward-predicting reinforcement signal we re-
quire.

Reward-modulated STDP as a model for song learning
in oscine birds

This speculative hypothesis would be more plausible if we
could identify a specific example featuring a learned behavior
with a known neural substrate to which our model might be
applied. There is as yet no good example in mammals of a
learned behavior whose specific cortical and subpallial sub-
strates have been identified and characterized, but such an
example does exist in songbirds. These birds must learn the
songs they sing, and the neural substrate for this behavior
consists of two well-described forebrain pathways: a “motor
pathway” from HVC to the robust nucleus of the acropallium
(RA) required for singing per se, and an “anterior forebrain
pathway” (AFP) that is required for song learning (for reviews,
see Brainard 2004; Farries 2004; Fee et al. 2004). The AFP is
hypothesized to evaluate the bird’s vocal performance and
transmit information to RA that enables learning, and it con-
tains basal ganglia circuitry very similar to that of mammals
(Farries and Perkel 2002; Farries et al. 2005). Thus the AFP
could play the role of the “evaluation system” in our model,
while HVC and RA correspond to the input and output layers,
respectively. Furthermore, HVC projects to the AFP and sup-
plies both auditory and premotor information (e.g., Doupe
1997; Hessler and Doupe 1999), giving the AFP the informa-
tion it would need to predict performance from premotor
activity. HVC neurons projecting to RA even fire in the
one-burst pattern that works best for our model; these neurons
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fire a single high-frequency burst during a song motif (Hahn-
loser et al. 2002). For these reasons, the song system could be
an ideal testing ground for our STDP-based model of reinforce-
ment learning and its implementation via the basal ganglia.

Conversely, the song system does differ in certain critical
ways from the basal ganglia-thalamocortical system we pro-
pose for mammals. First, feedback from the AFP reaches the
motor pathway via a pallial (cortex-like) nucleus, the lateral
magnocellular nucleus of the medial nidopallium (LMAN),
rather than directly from the thalamus. Furthermore, the avian
pallium is not organized into laminae; thus there is no “layer 1”
to receive modulatory inputs. Even so, the LMAN-RA projec-
tion has an unusual property that could help it play the same
functional role as the one we propose for VM’s innervation of
layer 1: the postsynaptic receptors at LMAN-RA synapses are
almost exclusively NMDARs (Mooney and Konishi 1991;
Stark and Perkel 1999). This fact has long been touted as a
possible link between behavioral plasticity (dependent on
LMAN) and synaptic plasticity, which in other systems de-
pends on calcium influx through NMDARs. However,
NMDARs are not just conduits for calcium; they are also
dendritic voltage-gated ion channels whose availability is con-
trolled extrinsically, by glutamate. As voltage-gated channels,
NMDARs might help generate dendritic spikes in RA neurons,
as they are known to do in mammalian cortical neurons
(Schiller et al. 2000). We suggest that activity in LMAN,
controlled by basal ganglia circuitry upstream in the AFP,
could influence the occurrence of dendritic spikes in RA
neurons, and thereby control the magnitude and polarity of
plasticity induced at HVC-RA and intrinsic RA-RA synapses.

This perspective, wherein the AFP’s primary role is to
evaluate performance and modulate plasticity but not to
directly influence behavior, is an old one in the songbird
literature, supported by early lesion studies demonstrating
that while the AFP is required for song learning, it is not
required for singing in birds that have already learned their
song (Bottjer et al. 1984; Scharff and Nottebohm 1991;
Sohrabji et al. 1990). However, this view has been chal-
lenged recently by two observations. First, the AFP does in
fact influence behavior; specifically, activity in LMAN (the
output station of the AFP) contributes to song variability
(Kao et al. 2005; Ölveczky et al. 2005). Second, LMAN
activity recorded during singing does not appear to be
influenced by auditory feedback (Leonardo 2004), as it
should if LMAN is transmitting a signal derived from
comparing the actual song to an auditory representation of
the target song. But our model posits a reinforcement signal
that is derived from a prediction of performance based on
premotor activity—a direct auditory comparison of actual
song to target song would arrive too late to be of service in
our model. Thus our model is perfectly consistent with
Leonardo’s (2004) results. Of course, auditory feedback is
necessary in the long run to establish and maintain the
putative mapping between premotor activity and perfor-
mance prediction, consistent with the known effects of
deafening on the acquisition and maintenance of song (Kon-
ishi 1965; Nordeen and Nordeen 1992). As for the behav-
ioral variability, Ölveczky et al. (2005) note that this is just
as important for reinforcement learning as the evaluation of
the variants, and suggest that the generation of variability
may be the prime function of the AFP, with the evaluation

performed elsewhere. Although AFP output undeniably en-
hances behavioral variability, it is possible that this is
simply an epiphenomenon, a side effect that occurs as the
AFP performs its primary task of modulating plasticity. On
the other hand, there is no reason why the AFP could not
serve both functions, helping to generate variants and eval-
uating them. Indeed, if the AFP is able to “predict” which
variants will better match the tutor song, then it may well
bias variation in a way that accelerates learning, a possibil-
ity also raised by Ölveczky et al. (2005). This may prove to
be a line of convergence between the roles traditionally
ascribed to the songbird AFP (evaluation of behavior) and to
the mammalian basal ganglia (control of behavior).

Our model can claim two accomplishments hitherto rare
in the modeling literature: 1) it proposes a mechanism for
reinforcement learning employing known physiological
phenomena with relatively modest modifications, and 2) it
uses STDP, albeit in modified form, to achieve a general-
purpose form of learning. Along the way, we identified a
number of requirements which can also be regarded as
predictions, i.e., things that must be true of any system that
implements the model. The most prominent of these are 1)
STDP can be modulated, 2) this modulation includes the
possibility of anti-Hebbian STDP, 3) this modulation is
“predictive” in the sense discussed above, and 4) STDP is
not multiplicative in the sense of Rubin et al. (2001). This
list is necessarily incomplete; there are many things that
could impact this model’s performance that were not exam-
ined. Future studies will have to evaluate the effects of such
things as recurrent excitatory connections, nonrandom pat-
terns of connectivity, inhibitory networks, and intrinsic
physiological properties. Even with the model as it stands,
some important questions remain unanswered, including the
number of input-output pairs that can be “stored” in these
networks, the factors that control this capacity, and the
extent to which these networks can learn continuous map-
pings between input and output (as opposed to a list of
discrete input– output pattern pairs). Independent of partic-
ular details of implementation, we hope that this model can
serve as a starting point from which we can understand how
neural systems learn to generate appropriate responses to the
inputs they receive.
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