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Abstract: - We presentgenerakvent-drivenalgorithmfor the efficient simulationof spikingneuralnetworks.
We focus in this paperon its applicationto self-oiganizing maps. Standardevent-driven approacheso
simulationcansignificantlyreducecomputationatime, but only whennetwork actvity is relatively low. In this
article, we proposeseveral stratgiesto manageefficiently, large numbersof spiking events. The simulation
scaleswvell with theincreaseof the neuralactvity andis morebiologically plausiblethancompetingmethods.
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1. Intr oduction

In recentyearstherehasbeenanincreasingrendin
computationaheuroscienceéowardsmodelingrela-
tively large networks (e.g.,10°) of spiking neurons
[1, 2]. Consequentlythe issueof simulation effi-
cieng/ hasbecomean increasingproblem. Promis-
ing work hasbeendoneby creatingdedicatechard-
ware for spike-processingetworks [3] or mapping
the simulationsonto parallelcomputerg2]. Perfor
mancebenchmark$&iave mainlybeenappliedto large
networks, with low actvity, regularconnectionand
simplelearningprocedure$3].

In this paperwe addressheissueof speedingip
spiking neuronsimulations,when theseentail high
frequencie®f neuralactiity, sparseonnectiity and
plastic spike-driven synapses. Specifically we ad-
dressthe self-olganizationprocessemeging into a
pulsedfeaturemap. Assumeoneimplementsa sim-
ulationof a self-oganizingmap(SOM) thatexhibits
high neuralactvity patternsconcentrateavithin less
than 100 ms. Sucha learning processentails the
managemertdf thousandsf events,andtogethemith
theneedfor alarge numberof trainingstepsthis can
leadto very long simulationtimes. Therefore,one
canthink of the self-oganizationprocesssimulated
into a neuralnetwork asa computationakask with
particularefficiency issuesyisenfrom the character
istics of thelearningprocess.

Previousresearcttoncernedvith efficientsimu-
lation of large networks of spikingneuronsandplas-
tic spike-driven synapsessimilar in somerespects

to our simulation task, has beenpublishedin [4].
Mattia & Del Giudice [4] emphasizéhe additional
computationakffort requiredwhenthe synapticdy-
namicsaretakeninto accounin large-scalenetworks
simulation.Theimodality to handlethe hierarchyof
spikesgeneratedn sucha network is simply to dis-
cardthenoisines®f spike transmissionTheresulted
algorithmis very efficient and might be acceptable
whendealingwith modelswherea fixed numberof
synapticdelays(e.g.,up to 16) cancover the range
of simulationsaimed. But this methodis of no use
in the caseof neurobiologicallyplausiblelarge-scale
simulationghatinvolve dealingwith hugenumberof
noisy synapseslIn the following we proposea sim-
ple algorithmthatassumesotary simplificationsof
the synapticor neuraldynamicsandstill scalesvery
well with the network sizeandhigh neuralactvities.

2. Simulating the Spike Response
Model

The nonlineardynamicsof a spiking neuroncanbe
accuratelycapturedy asinglevariablemodel,which
has a huge computationaladvantageover compre-
hensve mathematicamodels,suchasthe Hodgkin-
Huxley equations. In the formalism known asthe
Spike Responsélethod[1], thedynamicsof theneu-
ron areencodedn two setsof kernels,representing
the effectson a unit of its own spikes(»;) andthose
of the otherneurons(e;;). The membrangotential
V; of theneuroni is computedat eachtime moment



t asfollows:
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whereT'; denoteghe setof neuronspresynaptido
i, F} is the setof all firing times of neuron; and
thew;; accounffor synapticstrengthdetweercells.
If the sumof all excitatory andinhibitory contriku-
tions reachesa thresholdvalue, an output spike is
generatedi)ythepresynapticneuronattimet;.c which
thentravels alongthe axon and reacheghe postsy-
naptic neuronafter a delayd. The postsynaptiae-
sponseernele evolvesasafunctionof thedifference

s=t—1) —q:
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where?{ is the Heaviside stepfunctionandr,, rep-
resentghe neuraltime constant. After emitting the
spike a nodeentersa refractoryperioddescribedoy
the kerneln which, in our simulation,is simplified
anddependnly on the lastspikingtime ¢; of neu-
rongi:

ni(t —t;) = exp[—(t — ;) + b H'(t — ;) 6. (3)

Here, 6 is the thresholdand ¢ and b are constants
which give the decayrate of the refractoryperiod.
Stochastidehaior wasaccountedor in the model
by addingnoisevaluesin thegeneratiorof thetrans-
missiondelaysandtherefractoryperiod.

A few attempthave beenmadeto implementhe
SRM model[3,5], mostof themusinga continuous
time framework, which guarantees detailedanaly-
sisof the neuronbehaior. In thefollowing, we pro-
poseanoptimalalgorithmbasednanasynchronous,
efficient integrationmethodtunedto the determinis-
tic featuresof thethreshold-fireunits.

3. Special features of learning in a
self-organizing network

Learningin aself-oganizingmapis a stochastigro-
cesswherethefinal mappingaccurag dependsipon
thedimensionof thetrainingsampleandthenumber
of learningstepsperformed.The simulationtime of
a traditional Kohonennetwork scalespoorly Same
obsenration appliesto a pulsedSOM, even whena
fastlearningmechanisnis used,suchasproposedn
[6].

Let us considerthe complity of an unsuper
visedlearningprocedureppliedto a pulsednetwork.

In our scenario,the SOM winner is randomly se-
lectedamongthe unitswith the lowestfiring time in
a simulationstep. A temporalneighborhoodf the
winneris createdsothatonly the neuronghatfired
until a referencetime Ty, are subjectto learning.
All afferentandlateralsynapsesf theseneuronsare
then modified accordingto the learningrules. The
afferentweightsof the neuronsare adaptedn such
away asto maximizethe similarity betweerthein-
put postsynaptigotential(PSP)andthe connection
weight. The synapticefficagy of a lateralinhibitory
or excitatory connectionis modified dependingon
the actvity of the two connectecheuronsand upon
the arrival time of the presynapticspike. For a de-
tailed descriptionof the learningprocedurewe refer
thereadetto [7].

In the self-oganizing process the lateral feed-
backsystemis usedasa basicmechanisnfor modi-
fying overtime theform of theemepgentactvity pat-
tern. Given the untrainedmap, the neuralactvity
startout spreadingover a large part of the network,
thatis in our caseup to 30% - 50% of the network.
But in several iterationsof the learningprocedure,
the network responseo one stimulus corvergesto
a stableactvity bubble,including a relatvely small
subpopulatiorof units. If thenetwork actwity is up-
datedjust within theseactive areasand only when
they becameactive, insteadof computingthe whole
network in atime-steppedashion thanarealspeed-
ing up of the simulationcanemepge. Groundedon
this simple idea, the event-driven approachprofits
from thefocalizationof the network actwvity andpro-
videsa suitableimplementatiorfor a SOM.

4. Continuousversus time driven
protocols

4.1. Designconsiderations
During a basiccomputationakycle performedin a
neural network one can depict three main phases:
1) apply the input patterns,2) propagatethe actv-
ity throughthe network, 3) applythelearningto the
plasticsynapsesWeillustratevery briefly thesepha-
seswith atime-driven algorithmimplementation.
Generally in a continuoustime approachthe simu-
latedtime is increasedn stepsof constantsize At
andwithin eachtime bin all neurons’actvities are
computedandoccurringspikesarerecorded Theal-
gorithmis sketchedn Figurel.

For a network with N neurons,eachhaving S
synapsesvith onefilter e and F; non—ngjligible fir-
ing times, the algorithm compleity estimatedor a



1 CT = StartTime;
2 while CT < TimeOutdo
for all Activelnput$l] do
propagatepatterni);
for all Neurong] do
for all InputSynapség| do
checkactvity(j) & setdelay();
for all FiringTimesf] do
add PSPE) to V(i);

oo~NoOUh~w

10 if Neuror] fire then
11 recordfiring_time();

12 CT +=TimeStep;

13 od while

14 for all SelectedNeurofig do

15 apply.unsupervisedearningy);

Figurel: Continuoustime algorithmwith A¢ = 0.1
msandrecever-orientedconnectvity.

time binis O1(N - S - F}). If we work attime res-
olution At, thancomputingthe whole network in a
time intenal T' entailsa compleity of Oy - T'/At.
This basicline compleity canbe decreased two
ways. We begin with reducingthe computatiortime
of asingleunit by carefullychoosingheneuroncon-
nectvity schemeand using an efficient integration
method. If this conditionis fulfilled, thenwe aim
to reducethe numberof neuronstateshatare com-
putedduring a simulationstep. This goalis usually
achieved using an event-driven approach8] andis
discussedh thenext sectionof the paper

Thelocal connectiity of the network hasa sig-
nificant effect on the unit integrationtime. We im-
plementedL0% probabilisticconnectiity, with short
rangeexcitatory connectionsand long rangeinhibi-
tion. Using sucha sparseschemewe needa dedi-
catedstructureto specifythelist of connectionsAs
hasbeenpointedout in [2,3], for pulsednetworks
thesendeorientedmethod holdingthevaluesof the

neuronoutputsynapse<.g.,weightsanddelays proves

to bemostefficient.

Furthermore the integration methodcan be op-
timized by exploiting the deterministicnatureof the
neuralmodel. Betweenary two firing momentsthe
neuronsdepolarizatiorhasadeterministieevolution.
Thereforeratherthancomputingthesumoverall the
presynaptidnputs at eachtime step,the sumof the
pastspikesis stored,and decayedevery time when
the currentPSPcontrilution hasto beadded.

1 CT = StartTime; SL = nul,

2 while CT < TimeOutdo

3  if new_patternneeded(CTSL) then
4 for all Inputgl] do apply patterni);
5 if e=firstevent(SL)then

6 if first.integration(e.unitthen

7 applyfirst.algorithm(e.unit);
8 else

9 computedecayedV(e.unit);
10 add PSP(e}o V(e.unit);

11 if e.unitfire then

12 for all OutputSynapsek] do
13 insertspike_order(SL);

14 CT=e.time;

15 od while

16 for all SelectedNeurong[do

17  apply.unsupervisedearningf);

Figure 2: Basic event-driven algorithm implement-
ing asendeforientedstrategy.

4.2. A basicevent-drivenalgorithm
Themainlines of the algorithmareoutlinedin Fig-
ure 2. In the event-driven approachthe integration
of a unit actvity is performedin an asynchronous
way, triggeredby thereceval of oneor severalspike-
events (seeline 5 Fig. 2). The core of the algo-
rithm consistsof processinghe spiking eventsfrom
a chronologicallyorderedlist SL (lines 5, 13 Fig.
2). Eachnew spike is fully characterizedy a time
stamprepresentinghe delivery momentandthein-
dex of thetargetunit. Theinput patternsaareapplied
whenthe eventlist becomesmptyor whenthe cur
renttime of the simulationexceedsthe next pattern
time stamp(lines3, 4 Fig. 2).

The SOM network is presentedwith the input
patternsin sucha way that it favors an accumula-
tion of noisy input signalsat the beginning of each
training pattern. Thesespikes accumulateand are
computedduring a first integration step (lines 6, 7
Fig. 2) usingequations(1) & (2). The membrane
potentialfrom time ¢; is storedandon the arrival of
a new spike, this value is decayedby the formula
Vi(t) = Vi(t;) - exp|—(t — t;) /7] andaddedto the
postsynaptispike contritution. Apartfrom decreas-
ing the computationatime, this methodhasthe ad-
vantageof minimizing the memoryload. Insteadof
storingthe last F; firing timesfor all j; presynaptic
nodesandthecorrespondingransmissiordelayswe
only keepfour values:thetargetunit andthedelivery
time ¢ storedin the spike structure,andthe lastde-
cayedsumV;(t;) togethemwith the correspondingn-
tegrationmomentt;, valueskeptby eachactive unit.
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Figure 3: Computationaltimes per cycle, for the
eventandtime driven algorithms,for N = 256, 576
units.

An approximationof this algorithm compleity
for thesimulationof onetimebinis givenby Oz (aN -
S - [1 + logy length(SL)]), wherea is the average
network activity in atime slice. Thefirst term des-
ignatesthe computationakffort employed by thein-
tegrationof all units thatreceve spikesat a certain
momentof the simulation(lines 5-10 Fig. 2). The
seconderm of the sumrepresentshe additionalef-
fort requiredto insert spikes in order in the event
list (lines11, 13 Fig. 2). Simulationof the whole
network for a time periodT' entailsthe compleity
O,-T'/ét. Hereét representthetimeresolutionused
in the generatiorof noisy delaysandinput signals.

We canseeimmediatelythatthe basicline com-
plexity O1(N - S - F;) of the continuoustime algo-
rithm, hasbeendecreasetyy computingthe actiity
of only apercenuN of thewholenetwork, andelim-
inatingthe complity entailedby checkingfor each
synapsall firing times Fj.

Figure3illustratesa comparisorof thetwo algo-
rithms when usedto train self-olganizing networks
with differentsizes. Relatvely small networks have
beenusedmainly becausedueto thelow dimension
of the input patternsset, the self-oganizationof a
largerSOMwouldfail. Moreover, anetwork with 0.6
k units, 10% connectrity andan actiity a = 30%
entailsa computationakffort equivalentto the simu-
lation of a16 k unitsnetwork with sameconnectiity
and0.5% actwity. An input setof 12x20time-coded
patternswas usedto train the SOM to representl2
differentdirectionsof movement. For the detailsof
learningprocedureseg[7].

Theresultsin Figure4 illustratethe goodscaling
of the event-driven simulationwith the changeof the
actvity patternin SOM. In contrastto this behaior,
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Figure4: lllustration of event-driven algorithmscal-
ing with thechangen the network actiity. Compu-
tationaltimes per cycle are presentedor first 1000
training stepswhenactvity decreasefom 100HZ
to 33 Hz (notshawn in the picture).

the time spentin the synchronoussimulation (first
two graphicsin Fig. 3) is proportionalonly to the
network dimensiomandis independenof its actiity.
Note that during the first learning cycles when the
network exhibits a high actvity (e.g.,100 Hz) this
event-driven algorithmappliedto the larger network
(576 units) scalesmore poorly than the continuous
approach. This is dueto the additionalcompleity
O(log length(SL)) entailedby themanagemerf
the spike-event list. Theseobserationsare consis-
tentwith thoseof otherauthorq3, 4], whichassume
that only spiking neuralnetworks with low actwvity
might be suitedto an event-driven simulation. De-
spite of thesetheoreticalpredictions,we presentin
the next sectionan algorithmwith a very goodscal-
ability in the caseof high neuralactivity and more
importantwhich doesnot requireary simplification
of theneuralmodel.

5. How canwe deal with high neural
activity patterns?

Two stratgiesareproposedo reachthe goal of effi-
cientsimulationof a neuralnetwork thatexhibits fir-
ing ratesof 100 HZ. Both of themaddresshe most
time- expensve processin the event-driven policy,
namelythe managementf the eventlist.

Multiple spikes. A straight-forvard asynchro-
noussimulationcangenerate maximumnumberof
aN - S actionpotentialgn eachtime step,whereaN
gives the numberof firing units and S the average
numberof synapseger neuron. Insteadof creating
a specificeventto handleeachof thesespikes, sev-
eral PSPscan be accumulatedn a single structure



anddeliveredtogetherto the target unit, but only if
theirtime stampmatchesA similarconceptvaspre-
viously formulatedby Schoenau€3] anddefinedas
weightcaching.We utilize theconcepbof amultiple
spike, to storethelist of all m synapsesveightsthat
deliver a PSPto a certainneuroni, at a giventime
momentt. Therefore,the computationalload per
time stepis reducedo aN - S/m. In themostfavor-
ablescenario,n canequalS and consequentlyhe
simulationscalesvery well whenthe network acti-
ity increasesOn the otherhand,whenm represents
justavery low percentagef S, this methodwill not
bring a significantperformancamprovement. The
mainparameteraffectingthis valuearethetopology
of local connectionandthetime resolutionused.A
possibletrade-of might resultfrom using a larger
time step(e.g., 1 ms), which would increase the
probabilityof aggreatingspikesandhencedecrease
thelengthof thelist.

Quick sorting an unordered pool. As we no-
ticed from our first experiments,the length of the
spike list cangrow tremendouslyn the caseof high
network actvity, evenfor a small network with N =
576units. Thereforewe have to dealwith anordered
insertionin the growing list, of compleity O(loge
length(SL)) multiplied by afactorof aN - S - T'/ét.
Oneimmediatémprovementresultingin aspeed-up
of upto 4 times,canbeachieredif we searchthelist
selectvely from the startor from theend,depending
onthenew spike time stamp.

A solutionto this problemwas proposedn [4],
usingnotonly oneeventlist, but severalFIFO queues
associatedvith a setof ordereddelays. Evenif this
proposalgivesrise to a very efficient algorithm, it
assumesn importantcomputationakimplification,
namely the existenceof a limited set of fixed val-
uesfor the axonaldelays. In [7] we have pointed
outthatfine tuningof the spikingneuronswveightsto
the input stimuli featurescanbe achiezed only with
a high randomnesand noisy factors,including the
existenceof noisy delays. The solutionproposedn
[4] isacceptablenly for alimited setof applications,
wherenoisinessanbediscardedbut we believe that
majority of biologically plausiblelarge-scalesimula-
tions cannotgetinto this frame.

Hencewe considethatanefficientalgorithmhas
to dealwith noisefactorsandwe proposeheresucha
methodwith a very good scalability Insteadof in-
sertingeachnew eventin the right positionin the
list, with the correspondingcompleity of O(loge
length(SL)), wejustaddit to anunorderedgool of
spikes, entailingcompleity O(1). Sincethe events

have to be processedh chronologicalorder atequal
intenals of length Tindow, the main processstops
from processingpikes,andselectshoseeventsfrom
the pool thathave to be computedn the next period,
correspondindo t + Tyindow- 1h€Twindow Valueis
similar to the safewindow conceptusedin parallel
simulationsandguaranteeghe temporalcorrectness
of the algorithm. The selectionof the spikesis per
formed using a quick sort algorithm. Most impor-
tantly, we run the sortingalgorithmonly on a small
percentage of elementsn the pool, namelythose
who have the time mark within the next processing
intenal. Thus,insteadof dealingwith the insertion
compleity of O(aN - S-logy length(SL) - T'/ét),
our quick sortingmethodreducest to O(gNp-log,
gNp) multipliedby T’/ Tyindow. TheTyindow intenal
canbesetat 1 or 2 mswhich means20 timesbigger
thanthetimeresolutiondt. Giventhelow valueof g,
the sorting computationakffort remainslow andis
almostindependentf the pool size N,,.

6. Evaluation of the algorithm

For an evaluationof the stratgies discussedbove,
we usea measuref the computationakffort, given
by thetime requiredto computeN;, units,e.g.,1,000
neuronsn our case.
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Figure5: Computatiortimesfor updatingl000units
vs. levels of network actvity, with differentevent
handlingmethodsapplied. The network actwity is
measuredsthe averagenumberof spikesin onems
divided by thetotal numberof neurongor N=576.

Ourfindings,presenteéh Figureb, revealagrad-
ual increasein the performanceof up to 20 times,
whenthe above stratgiies are addedone by oneto
theimplementationNotethat,if the multiple spikes
stratgy is appliedto aserieof eventsgeneratedavith
afinetimeresolution(0.1 ms)theprobabilityof spikes



accumulatings still low, leadingto an averageim-
provementof 30%. Only whenwe increasehetime
stepto 1 ms doesthe methodstartto prove really
efficient. If oneneeddo maintainahightimeresolu-
tion, thanthis methodtogethemwith thequick sorting
of thepoolis recommended.

Combiningthesewo stratgieswe obtainthemin-
imal time compleity

Os3(aN - % . % +gN, - logy gN, - )
with ¢ taking valuesfrom 7% to 25% of the total
numberof events N, in pool. Onecanseein Figure
5 (graphic4) thatthroughthis meanghe simulation
time scalesvery well with theincreasingof network
actuity.

Thetablein Figure6 presentsa roughcompari-
sonof our resultswith thetimesreportedn [4]. For
similar networks, with respectto size, connectvity
and learningcompl«ity, we comparethe computa-
tional effort requiredto simulateall operationsen-
tailed by the firing, at differentfrequenciespf V;
neurons.

Twindow

N Ny Layered delays | QuickSort alg.
(1k units) | (1k units}) {ms) (ms)

0.6 1.0 0.4 1.0

1.1 2.4 0.9 2.6

2.2 5.0 1.7 3.3

3.0 7.0 2.1 4.3

4.0 9.5 2.8 5.2

5.0 12.0 3.5 6.3

Figure6: Executiontimesperneuronvs. sizeof the
network N, whenN neuronsfire. For the layered-
delaysalgorithmwe referthereaderto [4]. Notethat
the averagefiring ratein the layereddelayssimula-
tion is 3 Hz, whereaghe executiontimesfor Quick
sortingalgorithmarerecordedvhena neuralactivity
of 100Hz is present.

The main strengthof the Mattia & Del Giudice
algorithmresidesin the layeredstructure, with 4 to
16 transmissiordelay values, specifically designed
for computationakimplicity, althoughthis wasdone
at the expenseof biological plausibility The times
reportedin [4] are obtainedfor an averagespiking
frequenyg of 3 Hz. The key featureghatdistinguish
our algorithmfrom the onereportedin [4] residein:
dealingwith noisysynaptidransmissionyvithoutary
reductionof the noisinesdsn the modelandthe sim-
ulation of high actvity patternsup to 100 Hz. As
an exampleof the compl«ity entailed,for N = 4k
unitsaspikingfrequenyg of 100Hz generates pool

of eventsin theorderof 220,000elementsOur algo-
rithm scaledinearlywith 2- N andit manage$o keep
the simulationtime approximatelytwice asbig asin
[4], in the conditionsof a 30 timeshigherfrequeng.

7. Discussion

We have shavn thatsignificantimprovementsn the
simulationof a pulsedSOM network canbeachiered
by usinganevent-driven framework.

Theasynchronousimulationscalesrerywell with
thechangdn actvity level andbenefitsfrom thede-
creasein the firing frequeng of the neurons. Our
findingsareconsistentvith otherevent-driven simu-
lationsperformedfor spikingneurong2,3].

Furthermorave addresshe specificcaseof high
neuralactvity patternsoccurringin certainstagesof
the SOM simulation. We presentseveral stratgies
(multiple spikes, spike integrationmethodandquick
sorting pool) that reducethe simulationtime by up
to 20times. Is proposeda simplemethodto manage
andupdateheeventsstructurewithoutincurringthe
normalinsertionoverhead.Unlike the algorithmde-
scribedin [4], our methoddoesnotassumary sim-
plificationsof the network dynamicsandparameters.
The resultingalgorithmscaledinearly with the net-
work size,whenactiity increasesipto 33%. We be-
lieve thatthesefindingswill supportefficient event-
driven simulationof spiking neuralnetworks when
the generatedventsarein therangeof 10°.
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