
Efficient event-drivensimulation of spiking neural networks

IOANA MARIAN
�

RONAN G. REILLY
�

DANA MACKEY
��

Departmentof ComputerScience,
�
Departmentof MathematicalPhysics

NationalUniversityof Ireland
Belfield,Dublin 4

IRELAND
Ioana.Marian@ucd.ie

Abstract: - Wepresentageneralevent-drivenalgorithmfor theefficientsimulationof spikingneuralnetworks.
We focus in this paperon its application to self-organizing maps. Standardevent-driven approachesto
simulationcansignificantlyreducecomputationaltime,but only whennetwork activity is relatively low. In this
article,we proposeseveral strategiesto manageefficiently, large numbersof spiking events. The simulation
scaleswell with theincreaseof theneuralactivity andis morebiologicallyplausiblethancompetingmethods.

Key-Words: - Event-drivensimulation,spikingneurons,self-organizingmaps.

1. Intr oduction
In recentyearstherehasbeenan increasingtrendin
computationalneurosciencetowardsmodelingrela-
tively large networks (e.g.,

�����
) of spiking neurons

[1, 2]. Consequently, the issueof simulationeffi-
ciency hasbecomean increasingproblem. Promis-
ing work hasbeendoneby creatingdedicatedhard-
warefor spike-processingnetworks [3] or mapping
thesimulationsonto parallelcomputers[2]. Perfor-
mancebenchmarkshavemainlybeenappliedto large
networks,with low activity, regularconnectionsand
simplelearningprocedures[3].

In thispaperwe addresstheissueof speedingup
spiking neuronsimulations,when theseentail high
frequenciesof neuralactivity, sparseconnectivity and
plastic spike-driven synapses.Specifically, we ad-
dressthe self-organizationprocessemerging into a
pulsedfeaturemap. Assumeoneimplementsa sim-
ulationof aself-organizingmap(SOM) thatexhibits
highneuralactivity patternsconcentratedwithin less
than 100 ms. Such a learning processentails the
managementof thousandsof events,andtogetherwith
theneedfor a largenumberof trainingsteps,thiscan
lead to very long simulationtimes. Therefore,one
canthink of the self-organizationprocesssimulated
into a neuralnetwork asa computationaltask with
particularefficiency issues,risenfrom thecharacter-
isticsof thelearningprocess.

Previousresearchconcernedwith efficient simu-
lationof largenetworksof spikingneuronsandplas-
tic spike-driven synapses,similar in somerespects

to our simulation task, has beenpublishedin [4].
Mattia & Del Giudice [4] emphasizethe additional
computationaleffort requiredwhenthesynapticdy-
namicsaretakeninto accountin large-scalenetworks
simulation.Theirmodalityto handlethehierarchyof
spikesgeneratedin sucha network is simply to dis-
cardthenoisinessof spiketransmission.Theresulted
algorithm is very efficient andmight be acceptable
whendealingwith modelswherea fixed numberof
synapticdelays(e.g.,up to 16) cancover the range
of simulationsaimed. But this methodis of no use
in thecaseof neurobiologicallyplausiblelarge-scale
simulationsthatinvolvedealingwith hugenumberof
noisy synapses.In the following we proposea sim-
plealgorithmthatassumesnotany simplificationsof
thesynapticor neuraldynamics,andstill scalesvery
well with thenetwork sizeandhighneuralactivities.

2. Simulating the Spike Response
Model
The nonlineardynamicsof a spiking neuroncanbe
accuratelycapturedby asinglevariablemodel,which
hasa hugecomputationaladvantageover compre-
hensive mathematicalmodels,suchastheHodgkin-
Huxley equations. In the formalism known as the
SpikeResponseMethod[1], thedynamicsof theneu-
ron areencodedin two setsof kernels,representing
theeffectson a unit of its own spikes(���) andthose
of the otherneurons(��
). The membranepotential� � of theneuron
 is computedat eachtime moment

�
asfollows:

� ��� �������

������

�
����� �! �#" !%$ �&
'	 �&
(� �*)+�-,/.'0
)213�*) ����� �4)+� � �

(1)
where 56� denotesthe set of neuronspresynapticto
 , 78
 is the set of all firing times of neuron 9 and
the $ ��
 accountfor synapticstrengthsbetweencells.
If the sumof all excitatory andinhibitory contribu-
tions reachesa thresholdvalue, an output spike is
generatedby thepresynapticneuronat time

� .
 which
thentravels along the axonandreachesthe postsy-
napticneuronafter a delay

1
. The postsynapticre-

sponsekernel 	 evolvesasafunctionof thedifference: �;�*)+�<,=.'0
)>1
:

	 ��
(� : �?�A@CB3D �) :�E�FCG �IH � : �<J (2)

where
H

is theHeavisidestepfunctionand FCG rep-
resentsthe neuraltime constant.After emitting the
spike a nodeentersa refractoryperioddescribedby
the kernel � which, in our simulation,is simplified
anddependsonly on the lastspiking time

� � of neu-
ron
 :
���K� �4)+� � �4�;@CB3DML=) � �4)N� � �PORQTS U'HWV � �M)+� � �3XZY (3)

Here,
X

is the thresholdand [and
S

are constants
which give the decayrate of the refractoryperiod.
Stochasticbehavior wasaccountedfor in themodel
by addingnoisevaluesin thegenerationof thetrans-
missiondelaysandtherefractoryperiod.

A few attemptshavebeenmadeto implementthe
SRM model[3,5], mostof themusinga continuous
time framework, which guaranteesa detailedanaly-
sisof theneuronbehavior. In thefollowing, we pro-
poseanoptimalalgorithmbasedonanasynchronous,
efficient integrationmethodtunedto thedeterminis-
tic featuresof thethreshold-fireunits.

3. Special features of learning in a
self-organizingnetwork
Learningin aself-organizingmapis astochasticpro-
cess,wherethefinal mappingaccuracy dependsupon
thedimensionof thetrainingsampleandthenumber
of learningstepsperformed.Thesimulationtime of
a traditionalKohonennetwork scalespoorly. Same
observation appliesto a pulsedSOM, even whena
fastlearningmechanismis used,suchasproposedin
[6].

Let us considerthe complexity of an unsuper-
visedlearningprocedureappliedtoapulsednetwork.

In our scenario,the SOM winner is randomly se-
lectedamongtheunitswith thelowestfiring time in
a simulationstep. A temporalneighborhoodof the
winner is created,so thatonly theneuronsthatfired
until a referencetime \8]�^`_ are subjectto learning.
All afferentandlateralsynapsesof theseneuronsare
then modifiedaccordingto the learningrules. The
afferentweightsof the neuronsareadaptedin such
a way asto maximizethesimilarity betweenthe in-
put postsynapticpotential(PSP)andthe connection
weight. Thesynapticefficacy of a lateralinhibitory
or excitatory connectionis modified dependingon
the activity of the two connectedneuronsandupon
the arrival time of the presynapticspike. For a de-
taileddescriptionof the learningprocedurewe refer
thereaderto [7].

In the self-organizingprocess,the lateral feed-
backsystemis usedasa basicmechanismfor modi-
fying over timetheform of theemergentactivity pat-
tern. Given the untrainedmap, the neuralactivity
startout spreadingover a large part of the network,
that is in our caseup to 30a - 50a of thenetwork.
But in several iterationsof the learningprocedure,
the network responseto one stimulusconverges to
a stableactivity bubble,including a relatively small
subpopulationof units. If thenetwork activity is up-
datedjust within theseactive areasand only when
they becameactive, insteadof computingthewhole
network in a time-steppedfashion,thanarealspeed-
ing up of the simulationcanemerge. Groundedon
this simple idea, the event-driven approachprofits
from thefocalizationof thenetwork activity andpro-
videsasuitableimplementationfor aSOM.

4. Continuous versus time dri ven
protocols

4.1. Designconsiderations
During a basiccomputationalcycle performedin a
neural network one can depict three main phases:
1) apply the input patterns,2) propagatethe activ-
ity throughthenetwork, 3) apply the learningto the
plasticsynapses.Weillustrateverybriefly thesepha-
seswith a time-driven algorithmimplementation.
Generally, in a continuoustime approachthe simu-
lated time is increasedin stepsof constantsize b �
andwithin eachtime bin all neurons’activities are
computedandoccurringspikesarerecorded.Theal-
gorithmis sketchedin Figure1.

For a network with c neurons,eachhaving d
synapseswith onefilter 	 and 7
 non–negligible fir-
ing times, the algorithmcomplexity estimatedfor a

1 CT = StartTime;
2 while CT e TimeOutdo
3 for all ActiveInputs

L fgU
do

4 propagatepattern(
f
);

5 for all Neurons
L
 U do

6 for all InputSynapses
L 9 U do

7 checkactivity(9) & set delay(9);
8 for all FiringTimes[h] do
9 addPSP(h) to V(
);
10 if Neuron

L
 U fire then
11 recordfiring time(
);
12 CT += TimeStep;
13 od while
14 for all SelectedNeurons

L
 U do
15 apply unsupervisedlearning(
);

Figure1: Continuoustime algorithmwith b �
= 0.1

msandreceiver-orientedconnectivity.

time bin is i � ��c�jkdljm78
 � . If we work at time res-
olution b �

, thancomputingthe whole network in a
time interval \ entailsa complexity of i � jm\ E b �

.
This basicline complexity canbe decreasedin two
ways.We begin with reducingthecomputationtime
of asingleunit by carefullychoosingtheneuroncon-
nectivity schemeand using an efficient integration
method. If this condition is fulfilled, then we aim
to reducethenumberof neuronstatesthatarecom-
putedduringa simulationstep. This goal is usually
achieved using an event-driven approach[8] and is
discussedin thenext sectionof thepaper.

The local connectivity of thenetwork hasa sig-
nificant effect on the unit integration time. We im-
plemented10a probabilisticconnectivity, with short
rangeexcitatory connectionsandlong rangeinhibi-
tion. Using sucha sparsescheme,we needa dedi-
catedstructureto specifythelist of connections.As
hasbeenpointedout in [2,3], for pulsednetworks
thesender-orientedmethod,holdingthevaluesof the
neuronoutputsynapses,e.g.,weightsanddelays,proves
to bemostefficient.

Furthermore,the integrationmethodcanbe op-
timizedby exploiting thedeterministicnatureof the
neuralmodel.Betweenany two firing moments,the
neuron’sdepolarizationhasadeterministicevolution.
Therefore,ratherthancomputingthesumoverall the
presynapticinputsat eachtime step,the sumof the
pastspikes is stored,anddecayedevery time when
thecurrentPSPcontribution hasto beadded.

1 CT = StartTime;SL = nul;
2 while CT e TimeOutdo
3 if new patternneeded(CT, SL) then
4 for all Inputs

L fgU
do apply pattern(

f
);

5 if e= first event(SL)then
6 if first integration(e.unit)then
7 apply first algorithm(e.unit);
8 else
9 computedecayedV(e.unit);
10 addPSP(e)to V(e.unit);
11 if e.unitfire then
12 for all OutputSynapses[h] do
13 insert spike order(SL);
14 CT = e.time;
15 od while
16 for all SelectedNeurons[
] do
17 apply unsupervisedlearning(
);

Figure2: Basic event-driven algorithm implement-
ing asender-orientedstrategy.

4.2. A basicevent-driven algorithm
Themain lines of thealgorithmareoutlinedin Fig-
ure 2. In the event-driven approachthe integration
of a unit activity is performedin an asynchronous
way, triggeredby thereceival of oneor severalspike-
events (seeline 5 Fig. 2). The core of the algo-
rithm consistsof processingthespikingeventsfrom
a chronologicallyorderedlist d*n (lines 5, 13 Fig.
2). Eachnew spike is fully characterizedby a time
stamprepresentingthe delivery momentandthe in-
dex of thetargetunit. Theinput patternsareapplied
whentheevent list becomesemptyor whenthecur-
rent time of the simulationexceedsthe next pattern
time stamp(lines3, 4 Fig. 2).

The SOM network is presentedwith the input
patternsin sucha way that it favors an accumula-
tion of noisy input signalsat the beginning of each
training pattern. Thesespikes accumulateand are
computedduring a first integration step(lines 6, 7
Fig. 2) using equations(1) & (2). The membrane
potentialfrom time

� � is storedandon thearrival of
a new spike, this value is decayedby the formula� ��� � �R� � ��� � � � j�o'pmq L=) � �*)+� � � E�FCG U

andaddedto the
postsynapticspike contribution. Apart from decreas-
ing the computationaltime, this methodhasthe ad-
vantageof minimizing thememoryload. Insteadof
storing the last 78
 firing timesfor all 9 presynaptic
nodesandthecorrespondingtransmissiondelays,we
only keepfour values:thetargetunit andthedelivery
time

�
storedin the spike structure,andthe last de-

cayedsum
� ��� � � � togetherwith thecorrespondingin-

tegrationmoment
� � , valueskeptby eachactive unit.

Figure 3: Computationaltimes per cycle, for the
event andtime driven algorithms,for N = 256, 576
units.

An approximationof this algorithmcomplexity
for thesimulationof onetimebin isgivenby i � ��[kcrjdsj L 1 + log� f o't8u ��v �wd*n �xUy�

, where [is the average
network activity in a time slice. The first term des-
ignatesthecomputationaleffort employedby thein-
tegrationof all units that receive spikesat a certain
momentof the simulation(lines 5-10 Fig. 2). The
secondtermof thesumrepresentstheadditionalef-
fort requiredto insert spikes in order in the event
list (lines 11, 13 Fig. 2). Simulationof the whole
network for a time period \ entailsthe complexityi � jz\ E#{ � . Here { � representsthetimeresolutionused
in thegenerationof noisydelaysandinput signals.

We canseeimmediatelythat thebasicline com-
plexity i � ��c�j(dlj�78
 � of thecontinuoustime algo-
rithm, hasbeendecreasedby computingtheactivity
of only apercent[3c of thewholenetwork,andelim-
inatingthecomplexity entailedby checkingfor each
synapseall firing times 78
 .

Figure3 illustratesacomparisonof thetwo algo-
rithms when usedto train self-organizingnetworks
with differentsizes.Relatively smallnetworkshave
beenusedmainly because,dueto thelow dimension
of the input patternsset, the self-organizationof a
largerSOMwouldfail. Moreover, anetwork with 0.6
k units, 10a connectivity andan activity [�}| � a
entailsacomputationaleffort equivalentto thesimu-
lationof a16k unitsnetwork with sameconnectivity
and

� Y�~ a activity. An input setof 12x20time-coded
patternswasusedto train the SOM to represent12
differentdirectionsof movement.For the detailsof
learningproceduresee[7].

Theresultsin Figure4 illustratethegoodscaling
of theevent-drivensimulationwith thechangeof the
activity patternin SOM. In contrastto this behavior,

Figure4: Illustrationof event-drivenalgorithmscal-
ing with thechangein thenetwork activity. Compu-
tational timesper cycle arepresentedfor first 1000
trainingsteps,whenactivity decreasesfrom 100HZ
to 33Hz (not shown in thepicture).

the time spentin the synchronoussimulation(first
two graphicsin Fig. 3) is proportionalonly to the
network dimensionandis independentof its activity.
Note that during the first learningcycles when the
network exhibits a high activity (e.g., 100 Hz) this
event-driven algorithmappliedto thelargernetwork
(576 units) scalesmorepoorly than the continuous
approach.This is due to the additionalcomplexityi�� log� f o�t8u �Kv �wd*n ���

entailedby themanagementof
the spike-event list. Theseobservationsareconsis-
tentwith thoseof otherauthors[3, 4], whichassume
that only spiking neuralnetworks with low activity
might be suitedto an event-driven simulation. De-
spite of thesetheoreticalpredictions,we presentin
thenext sectionanalgorithmwith a very goodscal-
ability in the caseof high neuralactivity andmore
importantwhich doesnot requireany simplification
of theneuralmodel.

5. How can we deal with high neural
activity patterns ?
Two strategiesareproposedto reachthegoalof effi-
cientsimulationof aneuralnetwork thatexhibitsfir-
ing ratesof 100HZ. Both of themaddressthemost
time- expensive processin the event-driven policy,
namelythemanagementof theeventlist.

Multiple spikes. A straight-forward asynchro-
noussimulationcangeneratea maximumnumberof[3c�j<d actionpotentialsin eachtimestep,where[kc
gives the numberof firing units and d the average
numberof synapsesperneuron. Insteadof creating
a specificevent to handleeachof thesespikes,sev-
eral PSPscan be accumulatedin a single structure

anddeliveredtogetherto the target unit, but only if
their timestampmatches.A similarconceptwaspre-
viously formulatedby Schoenauer[3] anddefinedas
weightcaching.Weutilize theconceptof a ��� fy�
/q f o: q�
PhZo , to storethelist of all � synapsesweightsthat
deliver a PSPto a certainneuron
 , at a given time
moment

�
. Therefore,the computationalload per

timestepis reducedto [kc�j�d E � . In themostfavor-
ablescenario,� canequal d andconsequentlythe
simulationscalesvery well whenthenetwork activ-
ity increases.On theotherhand,when � represents
just avery low percentageof d , this methodwill not
bring a significantperformanceimprovement. The
mainparametersaffectingthisvaluearethetopology
of local connectionsandthetime resolutionused.A
possibletrade-off might result from using a larger
time step (e.g., 1 ms), which would increase the
probabilityof aggregatingspikesandhence,decrease
thelengthof thelist.

Quick sorting an unordered pool. As we no-
ticed from our first experiments,the length of the
spike list cangrow tremendouslyin thecaseof high
network activity, even for a smallnetwork with N =
576units.Therefore,wehaveto dealwith anordered
insertionin the growing list, of complexity i�� log�f o't8u ��v �wd*n ���

multipliedby afactorof [kc�j-dWjP\ E#{ � .
Oneimmediateimprovement,resultingin aspeed-up
of up to 4 times,canbeachievedif wesearchthelist
selectively from thestartor from theend,depending
on thenew spike timestamp.

A solutionto this problemwasproposedin [4],
usingnotonly oneeventlist, but severalFIFOqueues
associatedwith a setof ordereddelays.Even if this
proposalgives rise to a very efficient algorithm, it
assumesan importantcomputationalsimplification,
namely the existenceof a limited set of fixed val-
uesfor the axonaldelays. In [7] we have pointed
out thatfine tuningof thespikingneuronsweightsto
the input stimuli featurescanbe achieved only with
a high randomnessandnoisy factors,including the
existenceof noisy delays.Thesolutionproposedin
[4] isacceptableonly for alimitedsetof applications,
wherenoisinesscanbediscarded,but webelieve that
majorityof biologicallyplausiblelarge-scalesimula-
tionscannotgetinto this frame.

Henceweconsiderthatanefficientalgorithmhas
to dealwith noisefactorsandweproposeheresucha
methodwith a very goodscalability. Insteadof in-
sertingeachnew event in the right position in the
list, with the correspondingcomplexity of i�� log�f o't8u ��v �wd*n ���

, we just addit to anunorderedpool of
spikes,entailingcomplexity i�� � � . Sincetheevents

have to beprocessedin chronologicalorder, at equal
intervals of length \������C�] � , the main processstops
from processingspikes,andselectsthoseeventsfrom
thepool thathave to becomputedin thenext period,
correspondingto

�MQ \������C�] � . The \������`�] � valueis
similar to the safewindow conceptusedin parallel
simulationsandguaranteesthetemporalcorrectness
of thealgorithm. Theselectionof thespikes is per-
formed using a quick sort algorithm. Most impor-
tantly, we run the sortingalgorithmonly on a small
percentage� of elementsin the pool, namelythose
who have the time mark within the next processing
interval. Thus,insteadof dealingwith the insertion
complexity of i���[3c�j3dRj log� f o't8u ��v �wd*n � j#\ E#{ � � ,
our quick sortingmethodreducesit to i����#c���j log��#c � � multipliedby \ E \������`�] � . The \������C�] � interval
canbesetat 1 or 2 mswhich means20 timesbigger
thanthetimeresolution{ � . Giventhelow valueof � ,
the sortingcomputationaleffort remainslow andis
almostindependentof thepool size c�� .

6. Evaluation of the algorithm
For an evaluationof the strategiesdiscussedabove,
we usea measureof thecomputationaleffort, given
by thetimerequiredto computec�� units,e.g.,1,000
neuronsin ourcase.

Figure5: Computationtimesfor updating1000units
vs. levels of network activity, with different event
handlingmethodsapplied. The network activity is
measuredastheaveragenumberof spikesin onems
dividedby thetotalnumberof neuronsfor N=576.

Ourfindings,presentedin Figure5, revealagrad-
ual increasein the performanceof up to 20 times,
when the above strategies areaddedoneby one to
theimplementation.Notethat,if themultiple spikes
strategy isappliedtoaseriesof eventsgeneratedwith
afinetimeresolution(0.1ms)theprobabilityof spikes

accumulatingis still low, leadingto an averageim-
provementof

| � a . Only whenwe increasethetime
stepto 1 ms doesthe methodstart to prove really
efficient. If oneneedsto maintainahightimeresolu-
tion, thanthismethodtogetherwith thequicksorting
of thepool is recommended.

Combiningthesetwostrategiesweobtainthemin-
imal time complexity

i��#��[3c�j d
� j \{ � Q �#c���j��/��� � �#c���j \

\������`�] �
�

with � taking valuesfrom ��a to � ~ a of the total
numberof events c�� in pool. Onecanseein Figure
5 (graphic4) that throughthis meansthesimulation
time scalesvery well with theincreasingof network
activity.

The tablein Figure6 presentsa roughcompari-
sonof our resultswith thetimesreportedin [4]. For
similar networks, with respectto size, connectivity
andlearningcomplexity, we comparethe computa-
tional effort requiredto simulateall operationsen-
tailed by the firing, at different frequencies,of c .
neurons.

Figure6: Executiontimesperneuronvs. sizeof the
network N, whenN . neuronsfire. For the layered-
delaysalgorithmwereferthereaderto [4]. Notethat
the averagefiring ratein the layereddelayssimula-
tion is 3 Hz, whereastheexecutiontimesfor Quick
sortingalgorithmarerecordedwhenaneuralactivity
of 100Hz is present.

The main strengthof the Mattia & Del Giudice
algorithmresidesin the layeredstructure,with 4 to
16 transmissiondelay values,specificallydesigned
for computationalsimplicity, althoughthis wasdone
at the expenseof biological plausibility. The times
reportedin [4] are obtainedfor an averagespiking
frequency of 3 Hz. Thekey featuresthatdistinguish
our algorithmfrom theonereportedin [4] residein:
dealingwith noisysynaptictransmission,withoutany
reductionof thenoisinessin themodelandthesim-
ulation of high activity patternsup to 100 Hz. As
an exampleof thecomplexity entailed,for c ���

k
unitsaspikingfrequency of 100Hz generatesapool

of eventsin theorderof 220,000elements.Ouralgo-
rithm scaleslinearlywith �Zjzc andit managesto keep
thesimulationtime approximatelytwice asbig asin
[4], in theconditionsof a30 timeshigherfrequency.

7. Discussion
We have shown thatsignificantimprovementsin the
simulationof apulsedSOMnetwork canbeachieved
by usinganevent-drivenframework.

Theasynchronoussimulationscalesverywell with
thechangein activity level andbenefitsfrom thede-
creasein the firing frequency of the neurons. Our
findingsareconsistentwith otherevent-drivensimu-
lationsperformedfor spikingneurons[2,3].

Furthermorewe addressthespecificcaseof high
neuralactivity patternsoccurringin certainstagesof
the SOM simulation. We presentseveral strategies
(multiple spikes,spike integrationmethodandquick
sortingpool) that reducethe simulationtime by up
to 20 times. Is proposeda simplemethodto manage
andupdatetheeventsstructure,without incurringthe
normalinsertionoverhead.Unlike thealgorithmde-
scribedin [4], our methoddoesnot assumeany sim-
plificationsof thenetwork dynamicsandparameters.
The resultingalgorithmscaleslinearly with thenet-
work size,whenactivity increasesupto

|�| a . Webe-
lieve that thesefindingswill supportefficient event-
driven simulationof spiking neuralnetworks when
thegeneratedeventsarein therangeof

����
.

References:
[1] W. Gerstner, Spiking neurons,Pulsed Neural Networks, W.
Maas& C.M.Bishop(Ed.), Cambridge,MA: MIT Press,1999,
pp. 4-48.
[2] A. Jahnke, U. Roth & H. Klar, Towardsefficient hardware
for spike-processingneuralnetworks, Proceedings WCNN’ 95,
Washington,USA, 1995.
[3] T. Schoenauer, S.Atasoy, N. Mehrtash& H. Klar, MASPINN:
Novel Conceptsfor aNeuro-Acceleratorfor SpikingNeuralNet-
works,Proc. VIDYNN’ 98, Stockholm,June1998.
[4] M. Mattia& P. DelGiudice,Efficientevent-drivensimulation
of large networks of spiking neuronsanddynamicalsynapses,
Neural Comp., 12,2000,pp. 2305-2329.
[5] C. Fohlmeister, W. Gerstner, R. Ritz & J. van Hemmen,
Spontaneousexcitations in the visual cortex: stripes,spirals,
ringsandcollective bursts,Neural Comp., 7: 905-914,1995.
[6] B. Ruf & M. Schmitt,Self-organizationof spiking neurons
usingactionpotentialtiming, IEEE Transactions on Neural Net-
works 9:3,1998,pp. 575-578.
[7] I. Marian& R.G.Reilly, Self-organizationof neuronscoding
directionalselectivity in motorcortex, Proc. AICS 2001, NUIM,
Ireland,Sept.2001.
[8] A. Ferscha& S.Tripathi,Parallelanddistributedsimulation
of discreteeventsystems,Tech. Rep. CS-TR-3336, Universityof
Maryland,1994.

