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Navigation in a small world with local information
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It is commonly known that there exist short paths between vertices in a network showing the
small-world effect. Yet vertices, for example, the individuals living in society, usually are not able to
find the shortest paths, due to the very serious limit of information. To theoretically study this issue,
here the navigation process of launching messages toward designated targets is investigated on a
variant of the one-dimensional small-world network (SWN). In the network structure considered, the
probability of a shortcut falling between a pair of nodes is proportional to r−α, where r is the lattice
distance between the nodes. When α = 0, it reduces to the SWN model with random shortcuts. The
system shows the dynamic small-world (SW) effect, which is different from the well-studied static
SW effect. We study the effective network diameter, the path length as a function of the lattice
distance, and the dynamics. They are controlled by multiple parameters, and we use data collapse
to show that the parameters are correlated. The central finding is that, in the one-dimensional
network studied, the dynamic SW effect exists for 0 ≤ α ≤ 2. For each given value of α in this
region, the point that the dynamic SW effect arises is ML′

∼ 1, where M is the number of useful
shortcuts and L′ is the average reduced (effective) length of them.

PACS number(s): 89.75.Hc, 84.35.+i, 87.23.Ge, 89.20.Hh

I. INTRODUCTION

Stanley Milgram’s famous experiment of launching messages toward a target through acquaintances [1] showed that
we are living in a small world [2–6]. This experiment is a typical example of the various navigation processes taking
place on many social and natural network systems, which are known as small worlds. About this experiment, as well
as its replications on the larger scale [7], two issues are of special interest [6,8–10]: First, the existence of short paths
between apparently distant individuals in highly regular network systems, and second, as first noticed and studied by
Kleinberg [8], the efficiency of network navigators in finding such short paths.

The first issue has been extensively studied, especially with the Watts-and-Strogatz Small-World Network (SWN)
model [2] (see Ref. [3–6] and references therein for review). If a small portion of long range links are added to a regular
network, we now know that the network diameter, defined as the average shortest path length between vertices, will
grow as ln N , where N is the system size. Actually, this logarithmic scaling can be proved for a variety of network
models (for example, see Ref. [11,12]), and has also been observed in various real-world networks [13,14]. In some
networks, the diameter increases even slower than ln N . As far as our knowledge goes, most of the theoretical and
experimental works concern the first issue [3–6]. However, the existence of a short path itself does not guarantee
that a navigator will be able to easily locate it. With regards to the second issue, we still lack an equally complete
understanding, although the works of Kleinberg [8] and de Moura et al. [9], and the recent experiment by Dodds et

al. [7] have already revealed the interesting and rich phenomena underlying. In the following we briefly describe the
basic idea about the second issue, and its relationship with the first one. A more detailed review of what is currently
known is given in Sec. II.

Milgram’s experiment probed the structure of the social network by studying a typical example of the dynamic
navigation process. In order to analyze the second issue, we have to put more emphasis on the dynamics. We
can clearly see in the recent experiment by Dodds et al. [7] that the navigation process is an interplay between
the network structure and the individuals’ decisions based on their limited information. An individual is far from
knowing the whole network, and is therefore impossible to make an always right decision when forwarding a message
[8,10]. Actually, as the Dodds et al. experiment [7] shows, respondents channel the message through contacts who are
considered to be the nearest to the target. Thus the actual path length is very likely to be larger than the shortest
one.

In this article, the navigation process in a small world network is theoretically studied by considering both the
static structure and the dynamic decision-making process. We develop the idea of Kleinberg and provide a systematic
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treatment of the model navigation process. In the one-dimensional case, the path lengths are obtained. When time
is taken into consideration, the dynamics of the navigation process can also be obtained. The calculation presented
could be generalized to systems of higher dimensions.

This article is organized as the following: The model navigation process in a small world network is described in
Sec. II. Then the path lengths are calculated in Sec. III, and the navigation process is investigated from the dynamic
angle in Sec. IV. Section V is the summary with some discussions.

II. THE MODEL OF THE NAVIGATION PROCESS

First we give the definition of the model. The SWN model presented in a simple way two intrinsic characteristics of
various natural and social networks in reality, i.e., a high clustering coefficient and a short diameter. An adding-type
one-dimensional SWN model [2] can be constructed as the following (see Fig. 1): We start from a closed ring of N
vertices with only nearest neighbor connections. The nodes are numbered sequentially from 0 to N−1. (For simplicity
we suppose that N is a multiple of 4.) Thus, the lattice distance between two nodes numbered i and j is

ri,j = N/2 − ||i − j| − N/2| . (1)

Then, with probability p (0 ≤ p ≤ 1) each vertex is additionally linked to one of the other nodes (excluding its original
nearest neighbors). If this other node is selected at random, then we shall create a small-world network with random
shortcuts. Here, following the idea of Kleinberg [8], we shall also study the case when the shortcuts are added in a
biased manner: With node i being one end of the shortcut, the probability that node j is selected as the other end is
a function of the lattice distance between them,

r−α
i,j

∑

j 6=i,i±1 r−α
i,j

=
1

A
r−α
i,j ,

where α is a positive exponent and 1/A is the normalization factor. Obviously, the probability that node i and node
j are connected is

1 −
(

1 − 1

A
r−α
i,j

)2

.

Previous studies on this variant of the SWN model cover topics such as the static properties [15,16], random walkers
[17], and also the navigation process [8]. As is shown in Kleinberg’s work [8] and below, such a structure bears
significant meaning to the navigation process, and the proper selection of α could greatly enhance the efficiency.

The navigation process could be simulated with the so-called greedy algorithm (Fig. 1). Considering the limitation
of knowledge, we suppose that each node has a small range of eyeshot, v, i.e., each vertex only has the information of
those vertices that can be reached within v steps. When v = 1, for example, vertex A sending a message to vertex B
first forwards the message to one of its nearest neighbors, A1, which has the least lattice distance from B (we suppose
that A has only knowledge of the position of A1). Then A1 forwards the message to A2, ..., until the message reaches
B. Obviously, the expected value of the path length depends on the whole set of parameters: system size N , system
dimensionality D, the fraction of shortcuts p, the range of eyeshot v, the exponent α, and the lattice distance n.

The previous theoretical works consider v = 1, although currently we still need more information to judge whether
this can correctly represent the realistic situation. In the study on a square lattice with p = 1 [8], Kleinberg proves a

lower bound on the average actual path length 〈lα〉 taken by the greedy algorithm to find a randomly chosen target.

The bound is 〈lα〉 ≥ cNβ(α), where c is a constant, N is the total number of vertices, and1

β (α) =

{

(2 − α) /6, 0 ≤ α < 2
(α − 2) /2 (α − 1) , α > 2

.

When the shortcuts are added at random, 〈lα=0〉 ≥ cN1/3. α = D = 2 is a special point, at which the lower

bound of 〈lα=2〉 grows as (ln N)2. The most striking conclusion of Kleinberg might be that the navigation process

1This appears different from Kleinberg’s original expression [8], because we have changed the meaning of N from the linear
length of the two-dimensinoal system to the total number of vertices.
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has the highest efficiency only in some of the small-world network structures. This result could be generalized to
D-dimensional lattice (D ≥ 1), with the special value of the exponent2 α = D. In the more recent work of de Moura
et al. [9], the authors directly study the average actual path length itself on a Watts-Strogatz SWN model with
α = 0 and varying p, with some approximations. It is found that when the number of shortcuts is large, the average
actual path length grows with the system size as N1/D(D+1), i.e., N1/2 for the one-dimensional case and N1/6 for the

two-dimensional case. It also depends on the value of p, and 〈lα=0〉 ∼ (N/p)
1/2

is obtained by de Moura et al. for the
one-dimensional case.

Usually the concept, small-world (SW) effect, refers to the significant decrease of the shortest path length (a static
property in a given network structure) by the introduction of a portion of shortcuts, and in this sense it can be
accepted as the static SW effect. In the following we define the decrease of the actual path length in the dynamic
navigation process as the dynamic SW effect. Here, in the one-dimensional v = 1 case, we take into consideration
the variation of both p and α, and provide a systematic study of the dynamic SW effect, and especially its threshold.
As we shall see below, the dynamic SW effect arises when total length (or effective length) of useful shortcuts is
comparable to the size of the network (or the segment under study).

III. THE PATH LENGTHS

We begin with deducing a series of quantities, 〈l (n)〉, i.e., the expected actual path length between two vertices
separated by n regular bonds. In a network consisting of N vertices, for n = 1, we simply have

〈lα (1)〉 = 1. (2)

For n = 2: With probability

W2→0 = 1 −
(

1 − p
2−α

A

)2

the original vertex is directly connected to the target via a shortcut. Obviously, it is with this probability that the
message is transferred directly to the target. Then, with probability

W2→1 = 1 − W2→0

the message would be forwarded along a regular bond, with the path length 1 + 〈l (2 − 1)〉. Thus,

〈lα (2)〉 = W2→0 + W2→1 [1 + 〈lα (1)〉] . (3)

Now we continue to study the general case. When the message is held by a node separated from the target by lattice
distance i (1 ≤ i ≤ N/2), Wi→j denotes the probability that, in the next step, the message is forwarded to a node
separated from the target by lattice distance j (0 ≤ j ≤ i − 1). Applying this set of probabilities, we obtain for
2 ≤ n ≤ N/2,

〈lα (n)〉 = Wn→0 +
n−1
∑

i=1

Wn→i [1 + 〈lα (i)〉] . (4)

Now we still have to give the explicit expression of Wi→j . We suppose the lattice distance between the current message
holder and the final target is i, and the next holder is separated from the target by lattice distance j. If j = 0,

Wi→0 = 1 −
(

1 − p
i−α

A

)2

. (5)

If j > 0, the occurrence of this event, i → j, requires two conditions to be both satisfied: (1) The current holder must
be linked with the next indicated holder and (2) the current holder cannot be linked with the other nodes that are
closer to the final target than the next holder. Thus,

2In a later study of a one-dimensional version concerning the static properties [16], P. Sen et al. further point out that the
system shows regularity with α > D + 1 = 2, indicating that α = D + 1 might be a second special point for any dimensionality
D. This issue will be addressed in the following discussions.
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Wi→j =





i+j−1
∏

k=i−j+1

(

1 − p
k−α

A

)





{

p
(i − j)

−α
+ (i + j)

−α

A

+

(

1 − p

∑i+j
k=i−j k−α

A

)

×
[

1 −
(

1 − p
(i − j)

−α

A

)(

1 − p
(i + j)

−α

A

)]}

(6)

for 0 ≤ j ≤ i − 2, and

Wi→i−1 = 1 −
i−2
∑

j=0

Wi→j . (7)

The exact expression of Wi→j will be applied in the next section where the dynamics of the navigation process
is studied. But here it will create technical difficulty for us to obtain the path lengths, due to the limit of our
computational facilities. Instead, we shall employ some approximations. We consider p/A a relatively small quantity,
and if we retain only the first order terms, Eq. (6) can be simplified to,

Wi→j = 2p
(i − j)

−α
+ (i + j)

−α

A
. (8)

A. The effective diameter

With Eqs. (2) and (4) we can obtain the path lengths 〈lα (n)〉 as a function of n, given any values of the parameters

N , p, and α. But first we do not differentiate among n and study the average actual path length, 〈lα〉 =
∑

n 〈lα (n)〉,
in comparison with the average shortest path length, 〈dα〉. As 〈dα〉 is commonly known as the system diameter, 〈lα〉
can be referred to as the effective diameter for the navigation process.

In Sec. II, we have presented the concepts of static SW effect and dynamic SW effect, corresponding to the shortest
path length and the actual path length respectively. The static SW effect is illustrated in Fig. 2 (a N = 1000 network
with random shortcuts): the diameter is significantly decreased after a certain threshold region is reached. With
respect to the actual path length, here the result of the effective diameter from Eqs. (2) and (4) is compared with
direct numerical simulations in Fig. 2, and they are in good agreement. Similarly, we also observe the decrease of
the effective diameter in the dynamic navigation process, namely the dynamic SW effect. The details of this dynamic
SW effect, and especially its threshold, are discussed below.

A very important conclusion has been reached by Kleinberg [8] and de Moura et al. [9], in their studies of the
variance of the effective diameter with the system size. As is mentioned above, the static SW effect is commonly
represented in mathematics by a logarithm scaling, 〈d〉 ∼ lnN . At the same time, a regular D-dimensional lattice

has 〈d〉 = 〈lregular〉 ∼ N1/D. Kleinberg and de Moura et al. have found that the dynamic SW effect lies somewhere
between the well studied static SW effect and pure regularity, as is reviewed in the previous section.

As is mentioned above, the effective diameter is controlled by multiple factors, and in the following we shall try
to include into our discussion varying N , p, and α, and find out how they are correlated. Given a network with an
arbitrary number of vertices N and an arbitrary value of p, we reduce the network to unit length. When α is fixed to
be 0, we suppose that the structure of the network would be determined by two values, (1) the number of shortcuts,

M = pN, (9)

and (2) the average reduced length of the shortcuts,

L′ ≡ L/N = (N/4) /N = 1/4,

where L is the average length of the shortcuts, and the length of a shortcut is the lattice distance between its two
ends, as defined in Eq. (1). Since the second factor is a constant, we can consider M = pN as the only factor that

determines the network structure. The reduced effective diameter 〈lα=0〉/N would be a function of pN . We use Eqs.
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(2) and (4) to prove this hypothesis. As is shown in Fig. 3 (a) (obtained from Eqs. (2) and (4)), the data collapse
shows,

〈l′α=0〉 ≡ 〈lα=0〉/N = fα=0 (pN) , (10)

where fα=0 (x) → 1/4 for x ≪ 1, and for large values of x,

fα=0 (x) ∝ 1/
√

x.

It means

〈lα=0〉 ∝
√

N/p,

and agrees with the result of de Moura et al [9]. Here we can see that pN ∼ 1 is approximately the point where the

dynamic SW effect arises. (In the following we shall see that actually this point is ML′ = pN/4 ∼ 1.)
We further generalize this hypothesis to arbitrary values of α (α > 0). In the reduced network of unit length, the

structure of the network would be determined by two factors, (1) the number of the shortcuts, M = pN , and (2) the
average reduced length of the shortcuts, which can be approximately written as

L′ =
L

N
=

1

N

∫ N/2

1
r × r−αdr

∫ N/2

1
r−αdr

=

{

1
N

α−1
2(α−2)

2αN2−α−4
2αN1−α−2 , (α 6= 1)

(

1
2 − 1

N

)

/ ln (N/2) , (α = 1)
. (11)

For large values of N , we have L′ → const (0 < α < 1), L′ ∼ 1/ lnN (α = 1), L′ ∼ N1−α (1 < α < 2), and L′ ∼ N−1

(α > 2). Now a question remains to be answered, how are these two factors related? We further suppose that, with a
fixed value of α, the network structure is determined by the direct product of M and L′. This hypothesis is supported
by our calculations with Eqs. (2) and (4), as is shown in Figs. 3 (a)-3 (d). For each value of α, the data collapse
indicates that

〈lα〉/N = fα (ML′) . (12)

When ML′ ≪ 1, we always have fα → 1/4. It means that in this region the network remains to be highly regular.
What is especially interesting is fα=1 (x). This is the point where the dynamic SW effect coincides with the static

SW effect. In the work [8] on the two-dimensional network with p = 1, Kleinberg obtained

〈l〉 ∝ (lnN)
2
. (13)

Here, from Eqs. (9) and (11) we obtain

ML′ ≈ pN/ lnN ,

and Fig. 3 (c) shows that

〈l′α=1〉 ∝ ln (ML′) / (ML′) .

It means

〈lα=1〉 ∝
lnN

p
[ln p + lnN − ln (ln N)]

≈ lnN

p
(ln p + lnN) , (14)

which agrees with Eq. (13) for p = 1.
As is pointed out in the previous section, α = D + 1 = 2 might be the other special point. The above analysis can

not apply, since there are virtually no long range links. We have observed that

〈lα>2〉 ∝ N. (15)

It is exactly the property of a completely regular network, and agrees with the conclusion of P. Sen et al. [16]. This
issue will be revisited in the following subsection, where we show that with α > 2, 〈lα>2 (n)〉 ∝ n, another sign
of regularity. (Interestingly, a similar transformation can be found in a recent work on the aging effect of network
systems [18].)
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B. Path length as a function of lattice distance

We could have a better understanding of the navigation process by studying the whole function of 〈lα (n)〉, which
may help us clarify the relationship between path lengths and lattice distances. As is shown in Fig. 4, this relationship
is sensitive to the value of α.

(1) When α = 0, the shortcuts are added randomly. We can clearly identify two distinct regions. If the target
is not very far from the source node, the path length tends to increase linearly with the lattice distance. This is
because, with a small chance of finding a suitable shortcut, the message is likely to be forwarded solely along regular
bonds. However, the long range shortcuts will dominate the navigation when the target is located relatively far from
the source node. As a result, for most of the region, 〈lα=0 (n)〉 is highly independent of n. This could be understood
with the following qualitative consideration: Suppose A (or A1) is separated from B by N/2 (or N/2 − 1) bonds. If
no long range bonds exist, the path length from A1 to B is smaller than that from A to B by one step. However,
with long range bonds in the network, although A1 is closer to B in lattice distance, the chance of finding a suitable
shortcut is also reduced. Our calculation further shows that these two opposing factors almost counteract each other
completely, and thus 〈lα=0 (N/2)〉 ≈ 〈lα=0 (N/2 − 1)〉 ≈ · · ·. Obviously, 〈lα=0〉 approximately equals the height of the

plateau. In Sec. IV we shall see that the height of the plateau is just proportional to
√

N/p, and it directly leads

to 〈lα=0〉 ∝
√

N/p. (2) When α = 0.5, the curve of 〈lα=0.5 (n)〉 is similar to that of α = 0. There is still a range in
which 〈lα=0.5 (n)〉 ∝ n. But in the plateau that follows, 〈lα=0.5 (n)〉 grows at a very slow, yet detectable pace with n.
(3) When α = 1, the message holders are able to find suitable shortcuts even when the target is not far away. At the
same time, the shortcuts are not long enough to form a similar plateau as that observed in the curve of α = 0. We
can observe the following approximate relation,

〈lα=1 (n)〉 ∼ lnn, (16)

which means

d 〈lα=1 (n)〉
dn

∼ 1

n
.

(4) When α > 1,

〈lα>1 (n)〉 ∼ nγ ,

where the exponent γ ≈ 0.73 for α = 1.5 (given N = 2 × 105 and p = 0.01)3, and γ increases to 1 for α > 2 (given
any values of N and p). Since 〈lα>2 (n)〉 ∼ n is a property of regular networks, this once again proves the nature of
regularity in the networks generated with α > 2. The reason may be that the expected length of shortcuts is finite.
We can also approximately predict the value of 〈lα>2 (n)〉 /n in the following way. At each time step, with probability
p the message travels along a shortcut of length

R =

∑∞
r=2 r−α+1

∑∞
r=2 r−α

,

and with probability 1 − p the message is forwarded through a regular bond of unity length. Thus,

〈lα>2 (n)〉
n

=
1

(1 − p) + pR
. (17)

This prediction is confirmed by the results of Fig. 4(b).
If we reduce the network to unity length, and plot the reduced length 〈l′α (n)〉 ≡ 〈lα (n)〉 /N against n′ ≡ n/N , we

shall be able to observe that data collapse onto a curve, which is only controlled by ML′ for each given value of α.
This means that ML′ gives not only the effective diameter, but also the function of 〈lα (n)〉.

3The value may be different when N and p change. For example, with α = 1.5 and N = 2× 105 fixed, γ ≈ 0.73 with p = 0.01,
γ ≈ 0.55 with p = 0.1, and γ ≈ 0.48 with p = 1. Actually, as discussed below, the value of γ is given by ML′.
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IV. THE DYNAMICS OF THE NAVIGATION PROCESS

When a vertex is sending a message to a target located n bonds away, at each time step the message is forwarded
to a nearest neighbor selected based on limited information. In this section we shall turn to study the dynamics of
the navigation process, by calculating the position of the message as a function of time.

We suppose node 0 is sending a message to node n (0 < n ≤ N/2). We use a series of quantities Px (t) to denote
the probability that at time t (measured in discrete units) the message is separated from the target node by x regular
bonds. With the range of view v = 1, at t = 0, the message is held by the source node and we have

Pn (0) = 1; Px<n (0) = 0.

At t = 1, the message is forwarded to one of the nearest neighbors of the source node, and we obtain

Pn (1) = 0.

The probability that the message is forwarded to the node n − x or n + x (n − 1 ≥ x ≥ 0) can be written as,

Pn−1≥x≥0 (1) = Pn (0)Wn→x,

where Wn→x is the probability of the motion and is defined in Eqs. (6) and (7). Generally, at time t (0 < t < n),

Px>n−t (t) = 0,

P0<x≤n−t (t) =

n−t+1
∑

y=x+1

Py (t − 1)Wy→x,

and

P0 (t) = P0 (t − 1) + P1 (t − 1) +

n−t+1
∑

y=2

Py (t − 1)Wy→0.

Finally, at t = n, the message completely reaches the target, and

Px>0 (n) = 0; P0 (n) = 1.

The whole set of probabilities, P0 (t), P1 (t), ..., Pn (t) can be obtained, but in the present study we only use them to
calculate the expected position of the message, 〈x (t)〉 as a function of time t,

〈x (t)〉 =

n
∑

x=0

xPx (t) . (18)

In the following we try to find out how 〈x (t)〉 decreases with t, and what controls this function. With dimensionality
D = 1, and the range of view v = 1, this function still depends on four parameters: the exponent α, the network size
N , the fraction of shortcuts p, and the lattice distance n. In our study of the path lengths, we cope with this difficulty
by reducing each network of arbitrary size to unit length, and studying accordingly the reduced path lengths. Using
this method we can clearly identify the factors that determine the network diameter, i.e., the exponent α, and a direct
product of the total number of shortcuts and the average reduced bond length. A similar analysis can be applied to
the investigation of the dynamics.

First we take the networks with α = 0 as an example. Similarly, we reduce the segment of network to unit length,
and study the reduced function of 〈x (t)〉 /n. We find that with the value of α fixed, the function of 〈x (t)〉 /n is only
determined by the product of the following two factors: (1) The first one is the number of useful shortcuts Meff . Not
all shortcuts connected to the segment are useful. Only those that can lead the message to a node closer to the target
shall be considered. For example, with α = 0, the number of such useful links can be approximately given by

Meff ∼ pn
n

N
.

(2) The second factor is the average value of the reduced effective bond length L′
eff ≡ Leff/n. The effective length of

a bond equals the distance that it can carry the message closer to the target. For example, with node 0 as the source
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node and node n (0 < n < N/2)as the target, the effective length of the bond connecting node n − i (0 < i < n) and
node n− j (0 ≤ j < i) is i− j. At the same time, the effective length of the bond connecting node n− i and n + j is
also i − j. With α = 0, we have approximately

L′
eff = Leff/n ∼ const.

The calculations using Eq. (18) support the hypothesis that, with α fixed to be zero, the function of 〈x (t)〉 /n is
solely determined by MeffL′

eff ,

〈x (t)〉
n

= Xα=0,Meff L′

eff

(

t

n

)

= Xα=0,pn2/N

(

t

n

)

.

When pn2/N ≪ 1, the network is highly regular and obviously 〈x (t)〉 will decrease linearly with t. As pn2/N increases
beyond 1, the dynamic SW effect arises and we can observe a faster decay. In Fig. 5, we can see that the initial
exponential decay of 〈x (t)〉 is followed by a Gaussian cutoff.

This analysis also helps us to understand better the function of 〈lα=0 (n)〉, which is studied in Sec. III B. With
α = 0, the curve is divided into a region of linear growth and a plateau, and we can see that the boundary is just
pn2/N ∼ 1.

With other values of the exponent α, we can also obtain conveniently an approximate expression of Meff and
L′

eff . In the preceding paragraphs we have discussed the case of α = 0. The other limit case is α > 2. Obviously,
in this case the expected length of the additional long range bonds is finite, and the network is virtually a regular
one-dimensional ring. If we plot 〈x (t)〉 /n as a function of t/n, we shall observe a linear decay with the slope larger
than one, followed by a plateau where 〈x (t)〉 /n is almost zero. This is not difficult to understand, since the effective
bond length is larger than unity.

In the region between α = 0 and α > 2, it seems difficult to give a simple characterization of the function of
〈x (t)〉 /n. In this region, the case of α = 1 is of special interest. To obtain the exact forms of Meff and L′

eff we will
have to calculate a number of summations, but here we can conveniently use the following approximate expressions
instead of the exact ones,

Meff ∼ pn

∫ n

1
1
r dr

∫ N/2

1
1
r dr

= pn
lnn

lnN/2
,

L′
eff ≡

L′
eff

n
∼ 1

n

∫ n

1 r 1
r dr

∫ n

1
1
r dr

≈ 1

lnn
,

and

Meff × L′
eff ∼ pn

ln (N/2)
.

These expressions are not exact, but they are already able give satisfactory data collapse. When the dynamic SW
effect arises, a typical function is shown in Fig. 5 (b).

V. SUMMARY AND DISCUSSIONS

To summarize, in this article the navigation process is investigated on a variant of the one-dimensional small-
world network (SWN). In the network structure considered, the long range links are added in a biased way, i.e., the
probability of a shortcut falling between a pair of nodes goes as r−α, where r is the lattice distance between the
nodes. This structure reduces to a SWN with random shortcuts when α = 0. On this network, messages are passed
to designated target nodes through acquaintances. Each message holder forwards the message to one of its nearest
neighbors selected based on its limited information. The system presents the dynamic small-world (SW) effect, which
is defined as the decrease of the actual path length in the dynamic navigation process by a portion of shortcuts. This
dynamic SW effect is different from the well studied static SW effect, which refers to the decrease of the shortest path
length. The topics of the present work cover the effective diameter, the relationship between the path length and the
lattice distance, and the dynamics.

The properties yielded by our calculations are, at the first glance, too complex to be described by a single theory,
due to the multiple parameters, including α, the fraction of shortcuts p, the network size N , etc. We provide a
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unifying analysis, in which we reduce the whole network or the segment under investigation to unit length, and then
accordingly study the reduced diameter, path lengths, and dynamics. In this way, we use data collapse to show that
the parameters are correlated. This provides us with a relatively simple method to describe the different aspects of
the dynamic SW effect. The central finding is that, in the one-dimensional network studied, the dynamic SW effect
exists for 0 ≤ α ≤ 2. With α > 2, the system is dominated by regularity. For each given value of α between 0 and 2,
the point that the dynamic SW effect arises is ML′ ∼ 1. If the average actual path length in the whole network is
considered, then M is the total number of shortcuts and L′ is the average reduced length of them. If only a segment
of the network is considered, then M is the number of useful shortcuts and L′ is the average reduced effective length
of them (see Sec. IV for definition). When ML′ ≪ 1, the system is virtually regular and the navigation process keeps
to be slow. As ML′ exceeds the threshold of 1, the dynamic SW effect arises. The physical meaning of this threshold
is also clear: since L′ is obtained by dividing the average length (or effective length) by the size of the network (or
the segment under study), the threshold of the dynamic SW effect is that the total length (or effective length) of the
useful shortcuts is comparable to the network (or segment) size.

Presently our understanding of the navigation processes and the dynamic SW effect is far from complete. Related
theoretical works also include those on the scale-free networks and hierarchical structures [19–21]. The task is to
search for better theoretical characterization of the navigation processes, find out how they are influenced by the
static properties of the networks, and design network structures that enable faster navigation. We hope the study on
these problems shall continue to be fruitful.
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Figure captions

Fig.1. A schematic plot of the navigation process with local information. The information of a vertex is limited by
a finite range of view v. If v = ∞ (without any limit), the message will be sent through path I. If v = 1, however, it
will be sent through path II, which is longer.
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Fig.2. In a N = 1000 network with random shortcuts (α = 0), the diameter (v = ∞, squares) and the effective
diameter (v = 1, circles (simulation data) and solid curve (analytical result)) are plotted as a function of p.

Fig.3 With different values of α, (a)-(d) show the relationship between the reduced effective diameter 〈l′α〉 ≡ 〈lα〉/N ,
and ML′ (the expressions of which are taken from Eqs. (9) and (11)). The effective diameters are obtained from
Eqs. (2) and (4). The data collapse in each subplot consists of 10 curves with N = 1000, 2000, 4000, ..., 512000,
respectively. On each curve with a specific value of N , p = 1, 1.3−1, 1.3−2, ..., 1.3−61. Thus there are 10 × 62 data
points in each subplot. These data collapses strongly suggest Eq. (12), i.e., 〈l′α〉 = fα (ML′). (a) α = 0: 〈l′α=0〉 is

plotted as a function of ML′ = pN/4, and the solid line y ∼ √
x serves as a guide to the eye; (b) α = 0.5: 〈l′α=0.5〉 is

plotted as a function of ML′ ≈ pN/6, and the solid line represents y ∼ x−0.650; (c) α = 1: ML′ ≈ pN/ lnN . In the

plot of 〈l′α=1〉 × ML′ as a function of ln(ML′), the right part of the curve appears as a straight line, and this shows

that 〈l′α=1〉 ∼ ln (ML′) / (ML′). (d) α = 1.5: 〈l′α=1.5〉 is plotted as a function of ML′ ≈ p
(√

N −
√

2
)

/
√

2. The solid

line represents y ∼ x−0.982.
Fig.4. In a N = 200, 000 network with p = 0.01, the path length 〈lα (n)〉 obtained from Eq. (4) is plotted as a

function of n with different values of α. In (a), α = 0, 0.5, 1.0, and 1.5. In (b), the lines with α = 2.1, 2.4, and 2.7
are of slope 0.907, 0.958, and 0.972, respectively.

Fig.5. The relationship between 〈x (t)〉 /n and time t, as obtained from Eq. (18). With α = 0, MeffL′
eff ∼ pn2/N ,

and two sets of parameters leading to the same value of MeffL′
eff are chosen: n = 100, N = 400, p = 0.5 (squares)

and n = 500, N = 2000, p = 0.1 (circles). With α = 1, MeffL′
eff ∼ pn/ ln (N/2), similarly we choose:n = 100,

N = 400, p = 0.3835 (upward triangles), and n = 500, N = 2000, p = 0.1 (downward triangles).
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