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ABSTRACT

In this paper we present two sets of empirical data
evaluating the performance of a new Cleanup operator for
evolutionary approaches to the travelling salesman
problem (TSP). For raw data we have used standard road
mileage charts of the USA, Great Britain and Ireland,
which enable us to generate a reference table with
appropriate city to city distances. A wide variety of
standard genetic parameters (population size, epochs,
mutation rate and selection type) is explored, and results
allow the comparison of performance both with and
without our cleanup operator. The cleanup operator
improves the convergence speed by reducing the number
of epochs required to identify a near-optimal tour; in each
instance a significant reduction is convergence time was
observed.

Our empirical observations show that assisting the
evolutionary operators through the use of cleanup gives
better performance on this evolutionary encoding. The
implication of these findings run contrary to the apparent
consensus towards a reduction in the number of genetic
operators required [1] by a genetic system for the TSP
[2,3]. In these works Fogel concluded that mutation alone
was sufficient for this encoding of the TSP problem,
rejecting the crossover operator because of its tendency to
introduce invalid tours into the population. We have
shown that by using the cleanup operator in conjunction
with crossover we can effect a more efficient search than a
solely mutation-driven approach.
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INTRODUCTION

Evolutionary algorithms are search techniques based on
natural evolutionary systems, where the fittest individuals
survive longer than the rest and produce more offspring.
In a similar fashion, a population of solutions in an
evolutionary algorithm moves in the direction of fitter
solutions. In the case of the travelling salesman problem
this means that the shortest tours are given a greater
chance of being allowed to survive longer and produce
more tours thereby favouring shorter routes.

The Genetic Algorithm (GA) as originally proposed and
implemented by Holland [4] and also by Goldberg [5]
consists of a string of bits representing individuals, which
are then evolved by the application of successive actions
of crossover, inversion and mutation.

It has been used to solve a wide range of different
problems from vision systems for image classification to
gas pipeline flow control systems [5].

The travelling salesman problem is a well-known member
of the NP-Complete class of problems [6]. Over the last
number of years it has returned to prominence with
research conducted on providing near optimal solutions to
large TS problems by Fogel [7, 3] and Lawler [8].
Although these GA's have undergone some alterations, in
particular to the techniques of the crossover, selection [9]
and the mutation operators [7], they have been shown to
result in close to minimal distance TSP tour lengths.
These systems have relied on the use of fully connected
graphs as the method for deriving the distance between
cities, (nodes). They have also relied on the use of some
form of weighting to negate invalid city tours, or through
the use of the implementation of a single genetic operator,
such as repeated large-scale mutation, this of course
maintains tour structure.

As has been noted by others who have attempted to
provide solutions to the TSP using evolutionary means,
the usual genetic operators of crossover, reproduction and
mutation on binary strings are insufficient to solve the
TSP. As Mitchell [10] points out "some types of encoding
require specially defined crossover and mutation
operators for example the tree encoding used in the
genetic programming, or encoding for problems like the
Travelling Salesman Problem in which the task is to find a
correct ordering for a collection of objects. It is from here
that we began to explore the possibilities of developing
standard crossover and mutation operators that work well
with the encoding scheme that we have used.

We present a solution to real world travelling salesman
problems, that we have accomplished through the use of a
more restrictive method for calculating distance between
cities and through the introduction of a new genetic
operator. This new operator Cleanup has been specifically
designed for use in real world evolutionary TSP systems.
Using roulette wheel selection and a combination of
standard/normalised fitness together with varying
mutation rates, crossover rates and different numbers of
generations, it has been possible to significantly reduce
the length of TSP tours.



RELATED RESEARCH

A number of differing search techniques have been
applied to the travelling salesman problem, depth first
search, hill climbing and neural networks [8, 11] all with
varying degrees of success.

Fogel implemented a genetic solution that he called "An
evolutionary approach to the travelling salesman
problem". In this he proposed that as an alternative to all
of the genetic operators which Holland [4] proposed in
1979, the emphasis should be on the behavioural
appropriateness of the evolved trial solutions.

Tours were constructed as strings of cities, and the initial
population was set at fifty. Evolution was driven by a
single mutation operation. This mutation operation was
loosely modelled on L. Fogel's "Evolutionary
Programming restricted to single state machines"[7]. A
small alteration of the existing tour was accomplished by
selecting a city along the tour and then swapping this city
with another city that had also been randomly chosen. By
use of multiple mutation operations on the population
Fogel was led to believe that there was no difference
between widespread mutation and the use of a crossover
operation. Fogel concluded that his approach, making use
of mutation solely, created a random search for new
offspring in the vicinity of the parents. This was in partial
contradiction to the hypothesis of Holland which stated
that "if successive populations are produced by mutation
alone, the result is a random sequence of structures drawn
from (all possible structures)"[4].

Fogel introduced population reduction to simulate the
scarcity of resources as time proceeds. This was
implemented by reducing the population size by 1 every
5000 offspring evaluations, that is, equivalent to every
100 generations.

Fogel concluded that simple mutation provided a better
end result, since if a dramatic difference in the link
between parent and offspring were permitted, the result
may well be worse than a random search of all the coding
structures.

Fogel later implemented another genetic solution in which
he introduced a different approach to mutation and
enhanced his simulation of behavioural methods. The tour
was generated in the same manner as before. The
population was set at one hundred tours, double the
previous population. Each of the tours in the population
produced a new offspring through mutation. The best one
hundred individuals from each generation were selected
for the next generation.

Here Fogel used a mutation strategy based on inversion.
Two points are selected at random along a tour and the
sub-string between the points is reversed. To make the
evolutionary algorithm simulate natural systems even
more closely Fogel designed a new technique of reducing
the length of the inversion string in the mutation
operation, linearly over time to some minimum as the
number of generations reached their maximum. This he
claimed simulated the decrease in behavioural difference
across generations that is visible in natural systems, as
they become better predictors of their environment.

The results found by Fogel were that for 30, 50 and 75
city tours his genetic algorithm found solutions which
were better or at worst matched the previous best known
tour length. On a trial 1000 city tour the result was found

to be less than 5% to 7% worse than the previous best tour
length.

THE PROBLEM OF TOUR VALIDATION

It is important to note the distinction between
representational conventions of evolutionary algorithms
for the travelling salesman problem. In some approaches,
tours are directly related to the cities in a distance chart
and in others they are constructed from a random graph.
Regardless of the data, both approaches experience the
problem of invalid tours. A tour is invalid in the TSP
when a city is visited more than once.

One solution has been the PMX partially matched
crossover system [12]. This technique reduces the effect of
crossover by matching a section in each individual and
then performing a limited crossover. This technique is
restrictive and results have only been published for 10 and
33 city tours. It is for this reason that a new form of check
is required so as to manage the calculation of solutions for
more significantly size tours.

DATA

The evolutionary system used here makes use of real
world distance data in the form of inter-city mileage
charts. The charts in these experiments were for the USA,
UK and Ireland. The coding for each tour was constructed
as a list of cities represented by an integer value. The city-
city routing distance was simply calculated by selecting
the two appropriate cities and then cross-referencing to
determine the distance, this then was used in the
calculation of the raw fitness value for each individual
tour. The use of this data source also enables us to permit
travel between two cities in a particular direction but not
in the reverse direction, as in the airline industry and 1-
way streets. This differs significantly from the type of
routing data normally used in Travelling Salesman
solutions such the graph data used by Fogel [2,3].

CROSSOVER & CLEANUP

Firstly, the genetic operators operate in the classic genetic
method we can out line these as follows:

1. Generate the initial population P(0) at
random and set1=0;

2. Repeat until convergence or time up.

= Evaluate the fitness of each individual in
P(i);

= Select parents from P(i) based on their
fitness.

= Apply Crossover, followed by Cleanup
and then according to mutation rate,
apply mutation.

Examining the crossover mechanism in detail, we can see
in Figure 1 parent strings (i) and (ii) with their randomly
selected pivot points around which the crossover will be
applied. This produces the offspring depicted in (iii). This
new offspring of the two parent strings clearly is of the



correct length as that of its parent strings but does suffer
from the problem of replication of cities within the tour.
This occurs in the majority of tours generated from
crossover as implemented by our system and it is here
where the use of Cleanup is needed. Firstly cleanup pin
points the errors within the tour, that is those tours which
are in contravention of the TSP rules: tours must be of
equal length and cities can only be visited once.
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Figure 1. Standard Crossover mechanism
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Figure 2. Cleanup operator operation

A check of the tour length is firstly completed and if the
tour is found to be of insufficient length the cleanup
operator flags this and then continues to the next level of
checks. The replication of cities within the tour is tested
for by reference to template tour, this template tour is
constructed at the very initialisation of the program and
importantly is an ordered tour of the numerically
referenced cities.

This template, the new offspring and the genetically
repaired offspring are depicted in Figure 2. (i), (ii) and
(iii) respectively. By flagging those cities that have been
encountered in the offspring tour in a left to right manner,
cities that have been omitted in the new offspring can be
identified. Following this we enter the third phase of
cleanup, the reintroduction of those cities excluded in the
tour. The fourth and final phase of cleanup is a re-test of
the entire tour to finally guarantee the correctness of the
final offspring population.

EXPERIMENT 1

Experiments were carried out using two models; one with
cleanup, and one without. The data used was a set of TS
problems, principally 30, 50, 75, 100 and 150 city distance
charts. Throughout these experiments the mutation rate
was fixed at 3%, roulette-wheel selection was used,
crossover occurred on ever generation, and the initial
population of the system was set at 100.

From figure 3, it is clear how the operation of the system
varies depending on the inclusion of the clean up operator.
This chart compares the number of epochs required to
generate tours of (near) identical length. Overall, Cleanup
out-performs the standard GA by up to a factor of four,

and the smallest improvement reduced the required
number of generation evaluations by just under quarter.
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Figure 3: Effect of "Cleanup" operator
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Figure 4: Shortest tour comparison for 30-75 city
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Figure 5: Shortest tour comparison for 100-150 city

More convincingly, the shortest tour produced by Cleanup
in every instance, out-performed that of the standard
evolutionary algorithm mechanism (see Figures 4 and 5).
Thus, not only does Cleanup converge faster on all given
comparisons, but produces better results in every instance.

EXPERIMENT 2

In a separate comparison with Fogel [3] the initial
population was set at 20. This is the only alteration with
the previous experiments. A smaller population promoted
a faster convergence on the shortest tour, while not unduly
affecting the distance of the shortest tour. This is in
agreement with findings of Mitchell [10] and Grefenstette
[13], both of whom have also found that the use of small
population sizes can be advantageous for selected
optimisation problems.

We now compare the best results of our cleanup system
with the best results found by Fogel. We see that the use
of a combined cleanup and crossover operator reduces the
number of offspring required for convergence. These
figures are for the 30, 50 and 75 city TSP: for more direct
comparison with Fogel [2, 3]. Figure 6 displays the
number of offspring generated, before convergence was



achieved for both models. Again the cleanup operator
drives the search towards convergence more efficiently.
Comparison is made using the Number of Offspring metric
favoured by Fogel rather than the epochs and generations
metrics.
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Figure 6: Fogel. Vs. Cleanup (GAGM)

All these experiments indicate that the cleanup operator
has a very beneficial influence upon the operation of
evolutionary algorithms for the Travelling Salesman
Problem.

Perhaps the reasons for cleanup's success may lie in the
fact that "unfit" offspring undergo genetic repair before
being returned to the gene pool. Thus, our evolutionary
system combines evolutionary mechanisms with "genetic
engineering" to focus on useful solutions.

CONCLUSION

Evolutionary algorithms provide an efficient means of
discovering near-optimal solutions to the travelling
salesman problem, although some validation of tours is
necessary. In this paper we have introduced cleanup, a
new genetic operator for the TSP, and evaluated its
performance on a variety of tour sizes. The results indicate
that the use of the cleanup operator has a marked
influence on the number of generations necessary to
converge on a "shortest” tour. Furthermore, cleanup also
has a marked improvement on the final distance of the
shortest tour, in companion with standard GA solutions.
The cleanup only validates and repairs tours and thus the
underlying genetic structure remains largely intact. We
deliberately chose to use mileage charts rather than
artificial graph tours, to simulate real world situations
such as 1-way streets, diversions, or invalid connections.
When compared to previous work, our evolutionary
solution gives better tours faster, resulting in up to an 8%
reduction on the required number of offspring to be
evaluated.
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