Practical 7: Unsupervised Hebbian learning and
constraints

Neural Computation 2003-04
Mark van Rossum

11th February 2004

In this practical we discuss different normalisation methods used for Hebbian
learning and how they determine the final weights. We consider a single linear
output neuron.

Input correlations

First, we need to create input data. For simplicity we have just 2 inputs. The
inputs can be uncorrelated, positive correlated, or negatively correlated. The script
below shows a simple way to create correlated data.

In case of visual input, try to think of cases in which inputs which are uncorre-
lated, correlated or negatively correlated.

Unconstrained learning

First, we implement a plain Hebb rule. Pick an initial value for the synaptic
weights. Present the input data drawn from the correlated distribution (some 100
trials). Update with every presentation the weights according to the Hebb rule.
Try this for a variety of initial weights. You can make a vector field plot using
thequivercommand. In order to prevent run away learning, impose maximal and
minimal weights. For instance, 0 <w < 1lor -1 <w < 1.

Try for positively and negatively correlated inputs. What is the steady state
result of this plain Hebb rule?

Constrained learning

Next, we implement options to include multiplicative or subtractive scaling. Both
constraints modify the learning rule such that the sum of weights is constant. (see
script). Show that the sum of weights is indeed constant under these modified
learning rules.

Simulate this. How is this reflected in the vector field plots? How do the
constraints lead to competition? Which other constraints than keeping the sum
constant would be possible?

Consider the development of monocular dominance columns in V1. One can
assume that the input from both eyes is strongly correlated. Which type of con-
strained learning would explain such development? Consider a population of output
neurons, how would their fate be determined? Could lateral connectivity change
the conclusion about the required learning rule?



Oja’s rule

Implement Oja’s rule. What is the difference with the previous approaches?

Matlab script

Jhebb
close all;
negcor = 1; % {0,1} pos. or neg. input correlation
subnorm = 0; % {0,1} use subtractive normalisation ?
multnorm= 1; % {0,1} use multiplicative norm.?
wmax =1; % hard limits on weight
wmin =0;

ntr=100;

inmat = zeros(2,ntr);

ranx = randn(l,ntr); rany = randn(l,ntr); ranz = randn(l,ntr);

inmat (1, :)=(ranx+(1-2*negcor)*ranz) /sqrt(2);

inmat (2, :)=(rany+ranz)/sqrt(2);

plot(inmat(1,:),inmat(2,:),’x’)

cov(inmat’) %note matlab has function for coVARiance matrix, not for
correlation matrix

eta=0.01/ntr;’, learning rate
%vectorplot

ax=[1; qy=[01; qu=[1; qv=I[];

% pick starting values for weight
for wlinit=0:0.1:1

wl = wlinit;

for itr=1:ntr

x1 = inmat(1,itr);
x2 = inmat(2,itr);
y = wl*x1+w2*xx2;

dwl = dwl -y*(x1+x2)/2; ’ subtractive normalisation

dwl

dwl -y*(x1+x2)/(wi+w2)*wl; I multiplicative

wl = wil+ etaxdwl;
% impose hard limits to maximal weight wmin < w < wmax
w1l = max(wmin,min(wmax,wl));
end % itr-loop
gx = [gx wlinit];
qy = [qy w2init];
qu = [qu wil-wlinit];
qv = [qv w2-w2init];
end % wlinit-loop
figure
quiver(gx,qy,qu,qv)



