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Abstract. While much work has been done on unsupervised learning
in feedforward neural network architectures, its potential with (theoret-
ically more powerful) recurrent networks and time-varying inputs has
rarely been explored. Here we train Long Short-Term Memory (LSTM)
recurrent networks to maximize two information-theoretic objectives for
unsupervised learning: Binary Information Gain Optimization (BINGO)
and Nonparametric Entropy Optimization (NEO). LSTM learns to dis-
criminate different types of temporal sequences and group them accord-
ing to a variety of features.

1 Introduction

Unsupervised detection of input regularities is a major topic of research on feed-
forward neural networks (FFNs). Most of these methods derive from information-
theoretic objectives, such as maximizing the amount of preserved information
about the input data at the network’s output. Typical real-world inputs, how-
ever, are not static but sequential, full of temporally extended features, statistical
regularities, and redundancies. FFNs therefore necessarily ignore a large poten-
tial for compactly encoding data. This motivates our research on unsupervised
feature detection with recurrent neural networks (RNNs), whose computational
abilities in theory exceed those of FFNs by far.

Hitherto little work has been done, however, on this topic [1,2]. One of the
reasons for the conventional focus on FFNs may be the relative maturity of this
architecture, and the algorithms used to train it. Compared to FFNs, traditional
RNNs [3-5] are notoriously difficult to train, especially when the interval between
relevant events in the input sequence exceeds about 10 time steps [6-8]. Recent
progress in RNN research, however, has overcome some of these problems [8, 9],
and may pave the way for a fresh look at unsupervised sequence learning.



Here, for the first time, we will plug certain information-theoretic objectives
into a recent RNN architecture called Long Short-Term Memory (LSTM), which
dramatically outperforms other RNNs on a wide variety of supervised sequence
learning tasks. We will begin with a brief description of LSTM, then describe
two unsupervised learning methods: Binary Information Gain Optimization [10,
11] and Nonparametric Entropy Optimization [11,12]. We will then present ex-
amples of LSTM performance with each unsupervised objective function applied
to both artificial and real-world data sequences.

2 Unsupervised training of LSTM

Long Short-Term Memory (LSTM) is a novel efficient type of recurrent neural
network architecture [8] whose advantages over other RNN models have been
demonstrated in various areas: learning regular and context-free languages [13],
predicting continual time series [9], motor control and rhythm detection [14].
While previous work trained LSTM networks on explicitly defined targets,
here we will show that LSTM can also handle unsupervised problems. We used
two unsupervised learning algorithms, Binary Information Gain Optimization
(BINGO) and Nonparametric Entropy Optimization (NEO), to train the LSTM
network to discriminate between sets of temporal sequences, and cluster them
into groups. The network is expected to autonomously detect some relevant
aspect of the input sequences, according to the particular learning rule used. The
learning algorithm strongly determines which aspects of the input sequences the
network considers to be important; this can be formalized as a maximization of
relevant information about the input data at the network’s output [11].

2.1 LSTM architecture

The basic unit of an LSTM network is the memory block containing one or
more memory cells and three adaptive, multiplicative gating units shared by all
cells in the block (Fig. 1). Each memory cell has at its core a recurrently self-
connected linear unit (CEC) whose activation is called the cell state. The CECs
enforce constant error flow and overcome a fundamental problem plaguing pre-
vious RNNs: they prevent error signals from decaying quickly as they propagate
“back in time”. The adaptive gates control input and output to the cells and
learn to reset the cell’s state once its contents are out of date. Peephole connec-
tions connect the CEC to the gates. All errors are cut off once they leak out of
a memory cell or gate, although they do serve to change the incoming weights.
The effect is that the CECs are the only part of the system through which er-
rors can flow back forever, while the surrounding machinery learns the nonlinear
aspects of sequence processing. This permits LSTM to bridge huge time lags
(1000 steps and more) between relevant events, while traditional RNNs already
fail to learn in the presence of 10-step time lags, despite requiring more complex
update algorithms. See [14] for a detailed description.
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Fig. 1. LSTM memory block with one cell. From [14].

2.2 Binary Information Gain Optimization

The BINGO algorithm clusters unlabeled data with linear adaptive discrimi-
nants stressing the gaps between clusters [10,11]. The method maximizes the
information gained from observing the output of a single-layer network of logis-
tic nodes, interpreting their activity as stochastic binary variables. The resulting
weight update formula (see [10,11] for complete derivation) for node i is given
by

Aw; o< f'(yi) x (yi — 9:) , (1)
where f'(y;) is the derivative of the logistic squashing function f, x the presy-
naptic input, and (y; — ;) the difference between actual and estimated network
output. We used a linear second-order estimator for multiple outputs:

¥ =y+(Qy-20(y~-y9), (2)

where y denotes the average of y over the data, and @), its autocorrelation. The
binary information gain is maximal (namely, 1 bit/node) when the network’s
outputs are uncorrelated, and approach ‘1’ (resp. ‘0’) for half the data points.
Thus BINGO seeks to identify independent dichotomies in the data.

2.3 Nonparametric Entropy Optimization

NEO, in contrast to parametric unsupervised learning techniques, is a differential
learning rule that optimizes signal entropy by way of kernel density estimation,
so no additional assumption about a density’s smoothness or functional form is
necessary [11,12]. The nonparametric Parzen window density estimate is

pY) = > K. (y—y,), (3)

T
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where T' is a sample of points y; and K, is a kernel function, in our case an



isotropic Gaussian with variance o2. The kernel width o that best regularizes
the density estimate can be found by maximizing the log-likelihood

L=> log > K, —|S|log|T|, (4)

Yi€S y; €T

whose derivative with respect to the kernel width is given by
0
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(5)

The maximum likelihood kernel makes a second sample S derived from p(y)
most likely under the estimated density p(y) computed from the sample 7.1 A
nonparametric estimate of the empirical entropy (given optimal kernel shape) of
a neural network’s output y can then be calculated as:

Y;ES y; €T
and minimized by gradient descent in the neural network’s weights w:

D iy =Ly Zyergukowi—y)
w S| Yoy,er Ko(yi —y;).

(7)
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Low H(y) is achieved by clustering the data. See [11,12] for further details.

3 Experimental Setup

The LSTM networks were applied to unsupervised discrimination of groups of
temporal sequences. Two types of data were used: artificial (random sequences)
and real (fragments of clarinet sounds). For each data type two experiments were
run, using the BINGO and NEO objective functions, respectively.

3.1 Training sets

Artificial data sequences were generated by independently drawing random val-
ues from a Gaussian distribution with mean and variance as shown in Table 1.
For each of four distributions a group of five 100-pattern long sequences was
generated, producing a training set of 20 sequences. The mean and variance
values were chosen such a way that the ranges of all four groups of sequences
overlapped one another. The means of two groups (symbols o and + in Table 1)
were set to the same value in order to force the network to distinguish between
them based only on variance information.

In the real data case we used sequences constructed of 100-sample fragments
of clarinet sounds at four different pitches, sampled at 44.1kHz (Table 2). As

! To make efficient use of avaliable training data, we let y; in the inner sums of
equations (5) and (7) range over T' = S\ {y;} for each y; € S in the outer sum [11].



Table 1. The artificial data (from left to right): symbol used in diagrams, mean and
variance of the random sequences, and range of outputs produced by the NEO network.

Sym.|Mean| Var.| Output range
0.4 | 0.3 |12.93 — 13.68 Sym.
0.4 {0.1]11.43 - 12.49
0.2 0.2 7.50 - 7.69
0.7 | 0.1]29.16 — 30.18

Pitch | # of | Output range
Note| [Hz]|cycles|  (x10°)
A3 | 440 1 |-3.57 —-3.54
A4 880 2 |-3.40--3.35
E5 (1320 3 |-3.47 —-3.43
F*5 |1480] 3.4 |-3.66 — -3.62

> % + o

> * + o

Table 2. The real data (from left to right): symbol used in diagrams, base frequency
of the clarinet sounds in musical notation and in Hertz, number of cycles in a sequence,
and range of outputs produced by the NEO network.

with the artificial data, the fragments of five different sounds were selected for
each of four pitches, for a training set of 20 sequences. In this case the network
should discover an entirely different feature of the training set: groups of sounds
are no longer distinguished by mean and variance, but by the number of cycles
in the sequence, corresponding to the sound’s pitch. Two groups (symbols * and
A in Table 2) have very similar pitch and are thus hard to distinguish from the
small number of samples we supplied.

3.2 Network architecture and training

The LSTM networks trained with the BINGO algorithm consisted of two single-
cell memory blocks and two output units with sigmoidal activation function.
For each sequence the values of the two outputs at the end of the sequence can
be interpreted as a point in the unit square. The networks were expected to
group these points (corresponding to the groups of sequences), and spread them
towards the four corners of the square, equivalent to assigning a unique two-bit
binary code to each group.

For the NEO algorithm LSTM networks with just one memory cell appeared
sufficient to learn both tasks. The single linear output unit produced just one real
value for each sequence and the networks were supposed to cluster the output
at the end of each sequence, according to the group it belonged to.

After training with the artificial data the network was expected to discrimi-
nate between groups of the sequences by detecting their mean and (especially in
case of groups with equal mean) variance. For the clarinet sounds, where mean
and variance were no longer informative, the networks had to discover the quite
different feature of varying pitch (number of cycles) between groups of sequences.

In both experiments the most recent LSTM network model with forget gates
and peephole-connections was used (Fig. 1) [8,9,14]. The network was trained
until the error dropped below an empirically chosen threshold, or until further
training did not noticeably improve the result. In order to make variance infor-
mation accessible to the network, a second input was added, whose value at any
given time was set to the square of the first (main) input [15].
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Fig. 2. Network output for artificial data and BINGO objective function. Left: begin-
ning of training, right: after 860 epochs.
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Fig. 3. Network output for artificial data and NEO objective function. Left: beginning
of training, right: after 14 epochs.

4 Results

For both real and artificial data, with application of either of the two previously
described unsupervised training algorithms, the LSTM networks were able to
distinguish between four groups of sequences. Figures 2, 3, 4, and 5 present
the results of BINGO and NEO training with artificial data and real clarinet
sounds, respectively. For each experiment two diagrams are presented, showing
the network output before and after training.

4.1 Training with the BINGO algorithm

Artificial data (Fig. 2). From the very beginning of training, points corre-
sponding to the group marked A are well separated. The other groups overlap
each other, and their correlation coefficient is high. After 860 training epochs all
four groups are clearly separated, and spread out across the unit square. The
two groups with identical mean remain close to each other, with one occupying
a more central location.

Clarinet sounds (Fig. 4). At the beginning of training all points are distributed
along a line, with a correlation coefficient near one, and do not form distinct
clusters. After 690 epochs, however, all four groups of points are well separated.

4.2 Training with the NEO algorithm

Artificial data (Fig. 3). Before training the outputs for the group marked o
are separated, though spread over a comparatively large range. The other three
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Fig. 4. Network output for clarinet sounds and BINGO objective function. Left: be-
ginning of training, right: after 690 epochs.
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Fig. 5. Network output for clarinet sounds and NEO objective function. Left: beginning
of training, right: after 6910 epochs.

groups overlap each other. After just 14 epochs of training all groups are well
clustered, with very small range compared to the gaps between them (Table 1).
Again the two groups with identical mean remain close to each other.

Clarinet sounds (Fig. 5). The initial distributions of outputs for all groups
overlap heavily. After training, however, the network’s outputs form four clearly
separated groups, though they are not as dense as in case of the artificial data
(Table 1). The result was obtained only after almost 7000 epochs, suggesting
that in this experiment the correct discriminants were harder to find than for
the artificial data set.

5 Conclusion

Previous work presented many successful applications of Long Short-Term Mem-
ory (LSTM) networks to various supervised tasks, where LSTM definitely out-
performs other recurrent neural network architectures. In this paper we showed
that in conjunction with appropriate objective functions, LSTM can also solve
unsupervised problems. We combined LSTM with two unsupervised learning
methods, Binary Information Gain Optimization and Nonparametric Entropy
Optimization, and showed that the resulting system performs unsupervised dis-
crimination and classification of temporal sequences. Our experiments with both
artificial and real data showed a remarkable ability of unsupervised LSTM to
cluster temporal sequences according to a variety of reasonable features.
Combining the advantages of the LSTM recurrent network model with var-
ious objective functions for unsupervised learning should result in promising



techniques for numerous real-world tasks involving unsupervised detection of
input sequence features spanning extended time periods.
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