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Abstract— This paper presents an algorithm for
feature-based exploration of a priori unknown en-
vironments. We aim to build a robot that, unsu-
pervised, plans its motion such that it continually
increases both the spatial extent and detail of its
world model - its map. We present a method by
which the planned motion at any instant is moti-
vated by the geometric, spatial and stochastic char-
acteristics of the current map. In particular each
feature within the map is responsible for determin-
ing nearby unexplored areas that if visited are likely
to constitute exploration. We assume that the lo-
cation of the features is uncertain and represented
by a set of probability distribution functions (pdfs).
These distributions are used in conjunction with
the robot path history to determine a robot trajec-
tory suited to exploration. We show results that
demonstrate the algorithm providing real-time ex-
ploration of a mobile robot in an unknown environ-
ment.

I. MOTIVATION

This paper describes a method that enables a
robot using feature-based navigation techniques to au-
tonomously explore its environment. Recently, there
has been much written about feature based Simulta-
neous Localization and Mapping (SLAM) algorithms
[1], [2], [3], [4], [5]. Such algorithms attempt to answer
the question“where am I and what is around me ?”.
That answered the next obvious question is “where
should T go next?”. The exploration algorithm pre-
sented in this paper provides a sensible answer to this
question.

In [4] an indoor mobile robot was manually di-
rected around a populated indoor environment while
performing SLAM. Upon instruction it then au-
tonomously returned to its starting position to with
only a few cm of error. The work presented in this pa-
per removes the need for manually guided exploration
producing truly autonomous operation.

We address the explore problem not from an ideal-
ized theoretic perspective [6] but rather from within
the context of real-time navigation with noisy sensors
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in an unknown and uncertain environment.

The underlying philosophy we adopt is that the
observed features themselves should inspire the ex-
ploration process. Collectively the features form a
map of the known environment. Intuitively, examin-
ing an existing map should inspire a plan to expand
its coverage and refine its detail. Walls, for exam-
ple, (line features) tend to collate into long connected
paths through the environment, defining free space
boundaries. It makes sense then for mapped lines to
entice excursions to their end points, where mapping
of a new adjacent segment is most likely to occur.
Similarly we would benefit from having point-like tar-
gets (door frames and corners) advocate driving an
arc around them.

The benefits of our feature-based approach to ex-
ploration can be enumerated as follows:

e The goal of exploration is to discover and enable
mapping of a novel area. It is predicated on good nav-
igation. Good navigation is itself reliant upon trust-
worthy observations of the environment. In feature-
based SLAM this requires remaining in sight of real-
world features. This can be achieved if exploration
paths are dictated by mapped features.

o If the focus of exploration is derived from the loca-
tion and geometry of features they can serve to vector
the robot efficiently to places of interest outside the
immediate vicinity of the robot.

« If only nearby features are considered then the com-
putational complexity and memory requirements of
the algorithm are constant and independent of map
size and mission length. If however, all mapped fea-
tures are considered then the complexity is still only
proportional to the number of mapped features.

o Feature-based exploration is independent of the
kind of sensing employed. Any suitable propriocep-
tive sensor data can be fused to form a feature-based
representation. The evidence for the existence of a
feature can be accrued over multiple time steps and
robot locations [5].

Several successful contemporary techniques [7] [§]
take an opposite approach and use free space analysis
such as Voronoi diagrams to decide where to go next
and model free-space. This however is counter to the
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Fig. 1. A visualization of the explore algorithm.

needs of sensor-based navigation techniques which de-
pend on proximity (visibility) of features to produce
useful output. Other techniques use evidence grids [9]
to motivate exploration. For example in [10] a “fron-
tier boundary” between explored and unexplored grid
cells is defined. It is well known that grid-based ap-
proaches do not lend themselves to good, long-term
CML/SLAM navigation and mapping performance.
Cell-based techniques also suffer from grid to world
alignment complications. Furthermore the memory
costs of exploration using grid based approaches scales
poorly with time. Bauer and Rencken [11] use feature
based mapping but retain a grid-based exploration
strategy. Exploration is more motivated by the tra-
jectory history of the robot (a visitation count in each
cell) than by it’s perception of its environment.

II. THE EXPLORATION ALGORITHM

We want to produce a means by which an au-
tonomous robot in possession of a feature-based rep-
resentation of its surroundings can decide where to
move so as to best explore it environment. This is an
action selection problem. There is a large literature
on action literature [12], [13], [14] but little written
from the perspective of map building in the presence
of uncertainty - the issue this paper addresses.

We assume the vehicle is equipped with a SLAM
algorithm that is capable of consistent mapping and
localization. No restrictions whatsoever are placed on
the form of this algorithm. It could use a single large
map or multiple small maps.
map and vehicle estimates could be manipulated with
EKF or particle filter techniques. All that is required
is an output stream of feature and vehicle descriptions
(type, location, orientation and uncertainty).

For the purposes of this paper we need to define

The uncertainties in

what constitutes exploration. We propose the follow-
ing properties:

(a) Try to visit areas that are ‘open’ and sparsely pop-
ulated with features.

(b) Try to stay away from areas that have already
been visited.

(c) Preferentially explore locally — try to visit areas
that are close to and reachable from the current posi-
tion.

(d) Only when the local area appears to be explored
consider traversing to a distant ‘un-explored region’.
An good example of this behavior is backing out of a
dead-end corridor. We call this global traversal.

(e) Be able to preempt a global traversal when the
local area appears to be substantially more interest-
ing. For example, if a door that had previously been
closed was now open, we would like to investigate the
newly exposed room.

(f) Try to explore with increasing resolution. Initially
try to determine the broad characteristics and shape
of the environment. Then revisit areas to obtain a
finer grain model of the world.

The action selection is performed by evaluating the
utility of visiting any one of a set of locations. Each
possible location is generated by a parent feature and
shall be referred to from now on as as a goal. Our
policy is simple — having selected the most promising
goal steer towards it. If no direct line of sight path
exists then plan one using a “free-space highway” that
is built incrementally during exploration. Of course
our exploration plan may have to be influenced by
obstacle avoidance tactics but this does not impinge
on the action selection process.

III. ACTION SELECTION

This section details the goal generation and evalu-
ation steps involved in selecting the most profitable
(in terms of explorations) location to visit. Figure 1
provides a visualization of the following algorithm.

A. Goal Generation

The n'" feature f,, is defined by a location vector fy,.
Each feature generates a set of m goals g7',,, with re-
spect to its own local coordinate frame n. These goals
may be expressed in the map frame by composition
with the features location vector f,,.



Fig. 2. Sampling the sparsity and openness of line seg-
ments

In this way the course vector u to any goal i from the
current robot pose x, is simply

u=0o6x,og;

where © is the inverse composition operator. The
generation of the goals around the feature is a function
of both feature type and geometry. It should produce
goals that if selected would fulfill or at least contribute
to the exploration qualities we defined in section II.

B. Goal Evaluation

For each generated goal gf.,,, a set S of sg sample
points are regularly distributed around it at radius
(3. The aim is to assign each goal a score n € [0 —
1] which is an indication of the utility in terms of
exploration of visiting it. A score of one implies a
strong return while zero infers no expected gain in
visiting the goal.

We shall evaluate 1 by operating on the set of sam-
ple points S. We sequentially remove elements from
S during a two-part selection process. At termination
n is calculated as the ratio of the final size of S to
its initial size sp. Thus the fewer removals (or larger
the size of S) the more utility we assign to the goal in
question. The motivation for and details of each stage
will now be discussed.

e Step 1 : Sparsity Evaluation Using a method
that will be discussed in III-C, each sample point is
tested for a clear path between itself and the goal
performing the sampling.

Sample points which have no clear path back to the
goal are removed from S. For example in an area
richly populated by mapped features, sample points
are more likely to be occluded by features and hence
removed from S. Conversely, goals generated by fea-
tures in sparse areas are likely to have more un-
occluded samples and preserve the size of S. This
behavior then fits with the first of our definitions of
exploration: investigation of sparse regions. The sam-
ple points enable a local measure of feature sparsity

around the goal location. Recall that the actual lo-
cation of the goal is determined by the feature’s goal
generation function. In this way different feature ge-
ometries can cause sparsity or ‘openness’ to be evalu-
ated at relevant locations. Take for example the case
of a line segment shown in Figure III-B. By generat-
ing goals near its end points we can use the size of S
to measure the openness of the line at both ends.

o Step 2 : Novelty Evaluation For each of the re-
maining samples in S, a list of nearby trajectory mark-
ers is built. We define ‘near’ to be within a distance «
of that sample. Typically we set a = 75 Once again
the visibility criterion is invoked — this time between
the sample point and each of the nearby trajectory
markers. If any of the tested trajectory markers are
visible, then the current sample is removed from S

e Scoring A score 7 ranging from 0 to 1 is assigned
to the goal. It is calculated as the ratio of the final
and initial size of S. The final size of S is the number
of samples points for the considered goal that:

— a) have a clear line of sight to the goal

— b) have no line of sight to any nearby trajectory
marker

C. Visibility Evaluation

The action selection process requires the determi-
nation of the existence of a clear path between differ-
ent entities. If as is the case with feature-based CML
techniques each feature has an associated estimated
uncertainty in location and orientation then it is de-
sirable to use this information in deciding if a clear
path exists.

We define a visibility function V which evaluates to
a non-zero value vj; if a clear path of width r exists
between any two entities e; and e; given all other
entities. In this paper, without prejudice, we limit the
entities e; and e; to be lines or points but in general
more complex objects can be used.

Vi,j = V(ei, ej, T)

(1)

Figure 3 illustrates the action of V. The figure
shows the pdfs of two orthogonal line features and
two point-like entities - for example current vehicle
location and a point on the vehicle’s past trajectory.

We can define the 'probable boundary’ of the 7"
feature by the locus of the n** sigma bound L/, of its
pdf and truncate the distribution along this boundary.
Typically n is set to 2 or 3.

The evaluation of the visibility function V now re-
quires finding intersections of the hatched region in



Fig. 3. Visibility testing between entities

Figure 3 joining the n-sigma bounds of el and e2 and
the regions enclosed by L¢.

The form of £, is a function of the kind entity
under consideration. That of a point-like feature is
simply a scaled version of the 1o covariance ellipse.

The pdf of a line segment is more interesting. The
parabolic shape of the line pdf in Figure 3 stems from
the combination of lateral and angular uncertainty in
the line location. The covariance of a line is given by

P— |:pyy pye]
Poy  Poo

where py, is the lateral variance, pgg is the angular
variance and p,¢ is the covariance between angular
and lateral uncertainties with respect to the center of
the line. Transforming this uncertainty to a reference
frame at a distance p along the line results in

P'=J,PJ

where J, is the Jacobian of the translation along the
line. This allows the lateral uncertainty p’yy to be
expressed as a function of distance along the line.

Py (1) = 1% + 21 pyg + pyy

The locus of \/]3;y can be used to describe the prob-
able boundary of a line feature along its length. The
ends of the pdf are formed by a symmetric normal dis-
tributions with o = p;, (+L/2) where L is the total
length of the line.

Depending on the computational resources avail-
able and the form of the pdf boundaries it may be
necessary to reduce the complexity of evaluating V' by
approximating the probable feature boundaries with
a set of line segments. For example in the results we
present a scaled convex hull was used to represent line
pdfs. The determination of a clear path is then simply
a matter of finding line intersections.

D. Contexts and Free Space

An explore algorithm needs to operate in both lo-
cal and global contexts. When operating locally deci-
sions are made about what visible and nearby features
should be visited. For example when traversing down
a previously unvisited corridor there may be a local fo-
cus at the end of line segments describing the corridor
walls. The global mode is required to determine inter-
esting regions distant from the current robot location.
For example a corridor that was being explored under
local control is now determined to be a dead-end — the
local area is now explored and a new area, perhaps far
away, must be found that is ripe for exploration.

Upon determination of a new global focus the ve-
hicle needs to be able to plan and execute a path to
it. The path is built from a collection of free space
markers that is constructed as the robot moves about
its environment. The location of the vehicle marks
a region of free space. If we keep track of past lo-
cations we create a trajectory history which defines
a set of reachable points. We refer to these points
as free space markers. When a free space marker is
created (almost always at the current robot location)
its adjacency to other existing markers is calculated.
Marker adjacency is synonymous with co-visibility —
if there is an uninterrupted line of sight between two
markers they are considered adjacent. As the robot
moves through the environment we create a graph in
which nodes of markers locations and edges of adja-
cencies (Figure 5). This graph can be conceived of
as a highway of known free space [15] or a skeletal
representation of reachable locations [16][17].

Free space markers are only created when no other
visible markers are within a given distance of the cur-
rent robot location. Typically a threshold distance of
1m is chosen. Choosing too large a distance is more
likely to cause nodes in the graph with no adjacencies
— ie nodes that cannot be directly reached from any
other node. Figure 6 for example shows a pathologi-
cal case of the vehicle turning swiftly round a corner.
The markers dropped are not mutually visible and a
route cannot be found to marker k + 1 through the
obvious choice of marker k. In some ways this reflects
a desirable property in that routes are not planned
through mapped features. On the other hand it can
create an orphan region of the work domain — the
graph becomes disconnected. Omne obvious way to
overcome this problem is to drop markers regularly
S0 as to minimize the chances of this happening. A
more robust technique would involve keeping a short-
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Fig. 4. The Exploration Algorithm. Points of interest are labelled with numbers and discussed in Section III-E. Note
that one iteration may take two passes through the flow chart as the search for goals transitions from local to global

contexts.

term memory of the recent trajectory of the the ve-
hicle. When a marker is created for which no adja-
cencies can be found, an additional marker is added
half-way along the trajectory between the last good
marker and the current vehicle location. If this marker
is adjacent to both the previous and newly created
ones then the graph remains connected. If however
the graph remains disconnected the process contin-
ues — bisecting the vehicle trajectory, adding another
marker and calculating adjacencies — until graph con-
nectivity is restored. This process is guaranteed to

succeed given that markers lie on the path that robot
itself executed. When a region to explore has been
determined via global search it is unlikely that it is
directly visible from the robot’s current location. In
this case the free-space graph is used to find a route
to the desired location. The vehicle steers to the clos-
est marker and then uses a shortest path algorithm
to find the shortest route to a marker closest to the
desired point. The robot controls itself from marker
to marker until the last one is reached at which point
in leaves the free space highway and attempts to steer
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to the desired destination. The fact that a CML al-
gorithm instantiates features from observations taken
from current robot locations (or multiple robot loca-
tions [18] ) means that all features must be observable
by moving through and between past locations. Fur-
thermore as we advocate a feature-based exploration
in which the the focus of exploration is close to and
derived from mapped features, the robot will be able
to observe any location dictated by the exploration
algorithm.

E. Integration

Figure 4 is a flow chart of the entire explore algo-
rithm. It is designed to allow direct translation into
an implementation. At every iteration the algorithm
flows from Start to Fxit. The flow of the algorithm
is regulated by the state variables and constants de-
scribed in table ITII-E. The Start values correspond to
the assignment of named variables at the start of the
entire algorithm. If the variable has a ‘yes’ in the Re-
set column then at every iteration of the algorithm it
is reset to this value otherwise it remains unchanged.
The significance of some parts of the diagram war-

rant discussion. These regions have been numerically
labelled and are now discussed.

1 GOAL is set to a new, locally found goal.

2 The best local goal is not substantially better than
the already selected goal GOAL which was also found
locally. This hysteresis prevents unnecessary swap-
ping between goals that are by definition in the same
area.

8 While on a transit to a globally determined goal
(LastGoal=global) a more interesting local goal was
found. The transit to the global goal is preempted
with this new focus of exploration.

4 The last goal was found globally, no local goal looks
any better but 71" seconds have passed and the global
goal is re-evaluated to ensure that it is still the most
interesting place to visit.

5 No local goal was found that was more interesting
than the overall exploration index og4. The process
begins again but now sets Search to global. The al-
gorithm will next flow down the left hand side of the
chart.

6 A new global goal was found but it was not sub-
stantially better than the one already selected and in
transit to. Note that the hysteresis implies a cost of
switching global goals equal to twice that of switching
local ones. This reflects the fact that globally found
goals are likely to be substantially distance and take
an appreciable time to transit to. It would be bet-
ter to finish exploring the current focus region even
though it is not the absolute favorite and then move
on.

7 A new goal is set to a globally found one. This al-
ways happens if a global search has been undertaken



Name ‘ Range ‘ Start ‘ Reset ‘ Meaning
Qg 0:1 1 no the overall exploration index
GOAL location NULL no the best current exploration goal
LastGoal | global/local local no mode in which last goal was set
Search global/local local yes current search mode
H 0.1 (constant) | 0.1 no hysteresis for changes in GOAL
T any 4 no time between forced re-appraisal of a
global goal
n any 5 no The number of features considered in a
goal search
TABLE I

TABLE OF PARAMETERS

and the last found goal was found locally, ie we are
on the second pass of the algorithm as described by
label [5]. This is the only place that o, is set be-
cause it is the only place that a global appraisal of
the global state of exploration has occurred. Together
oy and GOAL represent the score and location of the
most promising areas for exploration in the mapped
environment.

F. Obstacle Avoidance and Local Path Planning

Obstacle avoidance is an important component of
autonomy. Lack of space permits only a broad expla-
nation of the techniques we employed in this work.
The motion commands are issued in terms as de-
sired poses (x,y,0) in odometry coordinates. A path
of polynomial curvature is found that leads to the
desired goal pose subject to constraints of minimum
path length and initial radius of curvature being equal
to that currently being driven. The platform’s angu-
lar and linear velocities are controlled to achieve the
desired instantaneous radius or curvature. Obstacle
avoidance is achieved by selecting a radius of curva-
ture as close to the desired one as possible but which
would not cause a collision with a detected obstacle
within the near future (in our case 2 seconds).

IV. RESULTS

The explore algorithm described in this paper has
been implemented in C++ and integrated with the
MIT Department of Ocean Engineering’s “MOOS”
vehicle software suite.

The exploration algorithm was run live on a B21
at the AAAT Robotics Challenge in Alberta, Canada.
The combination of exploration, SLAM, and obstacle
avoidance enabled the vehicle to explore and build a
map of the conference area during a coffee break be-

tween conference sessions. However the path taken
to avoid the multitude of coffee drinkers obfuscated
the underlying actions of the exploration algorithm.
As an alternative, the results we present are taken
from an autonomous explore session running inside
the corridors of MIT. The explore module is unaware
of the source of feature descriptions — simply receiv-
ing them over a network connection. To date the ex-
plore module has been run successfully with both the
“CMLKernel” [4] and the Atlas framework [19] CML
frameworks. The results presented here were gener-
ated using a B21 mobile robot employing SICK laser
scanner and using the Atlas framework.

Figure 7 shows a plan view of the explore algo-
rithm in progress. The potential exploration goals are
marked with squares (locally visible) and circles (glob-
ally found goals). The exploration score attributed
to each goal the last time it was evaluated is writ-
ten above the relevant symbol. The currently selected
goal is filled with a solid triangle. Note how the 0.86
goal is not substantially better than the nearby and
locally visible 0.71 goal. The preference for local ex-
ploration wins out here and the robot heads in the di-
rection indicated by the solid line. Figure 8 shows the
vehicle returning from a completed exploratory excur-
sion into an area filled with lockers and carrying on
up a previously seen corridor. The tessellating trajec-
tory markers being dropped as the vehicle moves are
shown as hexagons. Figure IV depicts the situation
some time later. The explore algorithm is directing
the vehicle up a corridor. The end of the corridor has
been reliably observed but the walls only partially so,
creating intriguing openings at the corridor’s end. A
few moments later,see Figure 10, the side walls have
been mapped and the corridor has become closed off
before the robot has reached its previously intended



Fig. 7. The opening stages of the exploration. From its
starting location the vehicle maps four walls. Immedi-
ately the north-east wall is evaluated as the most open
and visible - a path is plotted towards it.
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Fig. 9. Fifteen minutes later the robot is exploring a long
corridor that appears to be open at its ends.

goal. At this point the local area is well explored and
a new exploration goal has been found back down the
corridor and to the left. The free-space graph has
found a route to the desired goal and is shown as a
sequence of lines connecting some of the free space
markers in the figure. This process of feature-inspired
exploration was allowed to continue for half an hour
until the vehicle completed a loop and returned to
its starting area. Figure 11 is a 3D-extruded view of
the map built by the CML algorithm under the guid-

Fig. 8. The initial are of interest (a set of lockers) has been
mapped. With the local area explored, a path is chosen
that takes the vehicle down a corridor that was initially
passed over for exploration.

/&

0.71

Fig. 10. A little further up the corridor more of the walls
have been mapped. The local environment now appears
to be closed off and the road map of free-space is used
to plan a route to new “promising” area for exploration
in the south-west corner.

ance of the exploration. Throughout the session the
low level obstacle avoidance task produced local path
planning and obstacle avoidance.

V. EXTENSIONS AND FURTHER WORK

The results presented are for a medium-scale indoor
environment. Extension to truly large scale problems
covering several kilometers is the subject of current re-
search. We intend to couple the explore algorithm to
the multiple-map “Atlas” frame work [19] using mul-
tiple local maps. Another useful property of an explo-



Fig. 11. A 3D extruded view of the map built under the direction of the explore algorithm. The robot is shown nearing
its start point having circum-navigated a loop of a building. Each side of the loop is around 25m long

ration algorithm that has not been discussed here is
that of planned motion and perception to aid not just
mapping but localization as well. With analysis of
the correlations between vehicle and locally observed
features and the uncertainty of the vehicle pose es-
timate it should be possible to mitigate some of the
conditions that lead to localization failure. For ex-
ample, after executing a sharp turn around a corner
in a corridor it is advantageous to briefly turn back
and observe the corridor walls to better estimate the
new vehicle heading. Finally, at the time of writing
the algorithm does not take the path length to goal
into account when deciding where to drive the vehicle.
This simple addition will prevent the robot undertak-
ing long traversal to visit a point only marginally more
interesting than that one much closer to its current lo-
cation.

In conclusion, the algorithm we have presented pro-
duces reliable and sensible autonomous exploration of
unknown environments. The approach uses a feature-
based world representation to deduce robot trajecto-

ries that are likely to expand and refine the map of the
robot’s environment. We have demonstrated truly au-
tonomous exploration and mapping running real-time
in an everyday indoor environment.
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