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Abstract Consciousness is a key feature of mammalian

cognition and revealing its underlying mechanisms is one

of the most important scientific challenges for the 21st

century. In this article I review how computational and

theoretical approaches can facilitate a transition from cor-

relation to explanation in consciousness science. I describe

progress towards identifying ‘explanatory correlates’

underlying four fundamental properties characterizing most

if not all conscious experiences: (i) the co-existence of

segregation and integration in conscious scenes, (ii) the

emergence of a subjective first-person perspective, (iii) the

presence of affective conscious contents, either transiently

(emotion) or as a background (mood) and (iv) experiences

of intention and agency that are characteristic of voluntary

action. I also discuss how synthetic approaches can shed

additional light on possible functions of consciousness, the

role of embodiment in consciousness, and the plausibility

of constructing a conscious artefact.
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Introduction

Over the past 20 years experimental work addressing

consciousness has shaped a new empirical science of

consciousness integrating findings from psychology, neu-

roscience, psychiatry, neurology and cognitive science

(e.g. [3, 27, 95]). Each new experimental result both

enriches and constrains possible theories of consciousness

and motivates further studies. At the same time, the history

of science makes clear that progress is best achieved when

experimental programmes are accompanied by synthetic

methods which exemplify Braitenberg’s law of ‘uphill

analysis versus downhill synthesis’, the idea that complex

phenomena that resist direct analysis can be better under-

stood by analysis of less complex alternatives instantiated

in simulation [9]. ‘Cognitive computation’ describes a class

of synthetic methods highly suited for advancing the sci-

ence of consciousness. The remit of cognitive computation

is broad, covering biologically inspired computational

accounts and models of all aspects of natural and artificial

cognitive systems (Hussain, this volume). Importantly,

adopting such an approach does not necessitate the

assumption that cognitive/conscious systems are them-

selves computational systems; indeed, in this article no

such assumption is made.

I will review several aspects of the current and future

science of consciousness from the perspective of cognitive

computation. These aspects are united by the development

of ‘explanatory correlates of consciousness’: neural pro-

cesses that not only correlate with, but also account for

fundamental properties of conscious experience. I identify

four such properties for which synthetic approaches hold

particular promise: dynamical complexity, perspectival-

ness, emotion and mood, and volition. These properties are

fundamental inasmuch as they are common to most if not
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all conscious experiences. The analysis of such properties

constitutes a very different approach from isolating the

neural correlates of canonical experiences, such as the

experience comprising only the content of ‘pure red’ [18]. I

will conclude by discussing some wider issues raised by

synthetic approaches to consciousness science. These

include identifying possible functions for consciousness,

assessing the role of embodiment and environmental

interaction in the generation of conscious experience, and

the plausibility of constructing a conscious artefact.

Explanatory Correlates of Consciousness

Basic Definitions

Consciousness is that which is lost when we fall into a

dreamless sleep and returns when we wake up again. It is

not a unitary phenomenon [108]. One can distinguish

between conscious level, which is a position on a scale

from brain-death to alert wakefulness, and conscious con-

tent, which refers to the composition of a given conscious

scene at any non-zero conscious level. Conscious contents

typically consist of phenomenal aspects (qualia) such as

perceptual experiences (e.g. redness), bodily sensations

(e.g. itchiness), emotional reactions (e.g. regret) and moods

(e.g. boredom) [41]. Other conscious contents include

thoughts, inner speech and usually a sense of agency, self

and a subjective first-person perspective (1PP) on the world

(the ‘I’). Conscious level and content are related inasmuch

as the range of possible contents increases with increasing

conscious level.

One can also distinguish primary (sensory) conscious-

ness from higher-order (meta) consciousness [26]. Primary

consciousness reflects the presence of a ‘world’, of a

multimodal scene composed of sensory and motor events;

there is something it is like to be a primary conscious

organism [64]. Higher-order consciousness involves the

referral of primary consciousness to interpretative pro-

cesses including a sense of self and, in more advanced

forms, the ability to explicitly construct past and future

scenes.

Explanatory Correlates

Conventional approaches within consciousness science

have emphasized the search for the so-called ‘neural cor-

relates of consciousness’ (NCCs): activity within brain

regions or groups of neurons having privileged status in the

generation of conscious experience [73, 95]. The ultimate

aim of this approach is to discover the ‘minimal neuronal

mechanisms jointly sufficient for any one specific

conscious percept’ [50]. However, correlations by them-

selves cannot supply explanations, they can only constrain

them.

The transition from correlation to explanation requires

an understanding of why particular NCCs have a privileged

relationship with consciousness [27, 95]. This in turn

requires an understanding of key properties of conscious-

ness that require explanation, especially those properties

that are common to most or all conscious experiences.

Such properties can be called structural properties [15], and

the neural processes that account for these properties can

be called ‘explanatory correlates of consciousness’ (ECCs)

[81].

What are the structural properties of consciousness? A

full discussion is beyond the present scope (see instead [62,

81, 82]); here I focus on four selected properties of par-

ticular relevance to cognitive computation approaches:

• Every conscious scene is both integrated (i.e. it is

experienced ‘all of a piece’) and differentiated (i.e. it is

composed of many different parts and is therefore one

among a vast repertoire of possible experiences). This

general property can be called ‘complexity’ [94].

Conscious scenes are also metastable in the sense that

any given unified conscious scene shades naturally into

a successive scene over a relatively stable timescale

(*100 ms).

• Perspectivalness: The reference of conscious contents

to a subjective 1PP; the existence of a ‘point of view’

[62]. More specifically, conscious scenes have an

allocentric character, yet are shaped by egocentric

frameworks. The presence of a 1PP on the world is a

key component of most concepts of selfhood.

• Conscious scenes incorporate and are shaped by

emotional and mood states which involve awareness

of bodily processes [19, 23].

• Consciousness is marked by experiences of intention,

agency, and an association with apparently voluntary

action [39].

This non-exhaustive list of structural properties

describes aspects or dimensions of the way the world is

presented to us through conscious experience, rather than

particular conscious contents per se. The current challenge

for theoretical and computational models is to account for

such structural properties in terms of neural system

dynamics. A future goal might be to show how such

properties are interdependent in the sense that accounting

for one might naturally, without further assumptions,

account for one or more of the others [15]. Eventually,

cognitive computation models might attempt to instantiate

these properties in the service of creating a conscious

artefact.
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Consciousness, Complexity and Causal Density

Consciousness and Complexity

The association of consciousness with complexity in the

form of the coexistence of integration and differentiation

represents a fundamental insight into conscious experience.

It is at the heart of two related theories of consciousness, the

‘dynamic core hypothesis’ [27] and the ‘information inte-

gration theory of consciousness’ [93], both of which

emphasize that the complex nature of consciousness is

highly informative for the organism, in the specific sense

that the occurrence of any particular conscious scene rules

out the occurrence of a very large repertoire of alternative

possibilities [94]. The structural association of conscious-

ness with complexity provides an attractive opportunity for

developing a corresponding explanatory correlate. Such a

correlate would consist in a description of neural dynamics

exhibiting high simultaneous integration and differentiation.

Measures of Dynamical Complexity

Several candidate descriptions have been proposed that

characterize quantitatively the co-existence of integration

and differentiation in multiple simultaneously recorded

time series. These include ‘neural complexity’ [97],

‘information integration’ [93] and ‘causal density’ [76, 77].

Detailed theoretical comparisons of these measures can be

found in [82, 83]; here I describe only their basic properties

and differences (Fig. 1).

• Neural complexity expresses the extent to which a

system is both dynamically segregated, so that small

subsets of the system tend to behave independently, and

dynamically integrated, so that large subsets tend to

behave coherently. Formally it is equal to the sum of

the average mutual information across all bipartitions

of a system [97], where mutual information measures

the uncertainty (entropy) about one system (or subset)

that is accounted for by observations of another.

• Information integration (U) has been proposed as a way

to quantify the total amount of information that a

conscious system can integrate [93]. It is defined as the

‘effective information’ across the informational ‘weak-

est link’ of a system, the so-called ‘minimum

information bipartition’. Effective information is cal-

culated as the mutual information across a partition in

the case where outputs from one subset have maximum

entropy, and the minimum information bipartition is

that partition of the system for which the effective

information is lowest.

• Causal density is a global measure of causal interactivity

that captures dynamical heterogeneity among elements

(differentiation) as well as their global dynamical

integration [76, 77]. It is calculated as the fraction of

interactions among elements that are causally signifi-

cant, according to a statistical interpretation of causality

introduced by Granger [36]. According to ‘Granger

causality’, a variable A ‘causes’ a variable B if past

observations of A help predict B with greater accuracy

than possible by past observations of B alone. Granger

A B

C

k=1 k=2 k=N/2

MIB

j =1 j =2 j=2N-2

EI

MI

Fig. 1 Measuring complexity for a neural system X composed of N
elements. a. Neural complexity (CN) is calculated as the sum of the

average mutual information (MI) over N/2 sets of bipartitions indexed

by k (e.g. for k = 1 an average MI is calculated over N bipartitions).

b. Information integration (U) is calculated as the effective informa-

tion across the ‘minimum information bipartition’ (MIB). To

calculate effective information for a given bipartition (indexed by

j), one subset is injected with maximally entropic activity (stars) and

MI across the partition is measured. c. Causal density is calculated as

the fraction of interactions that are causally significant according to

Granger causality. A weighted (and unbounded) version of causal

density can be calculated as the summed magnitudes of all significant

causal interactions (depicted by arrow width). Reprinted with

permission from [83] (Refer online version for colour figure)
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causality is easily extensible to multivariate situations

and is usually implemented through linear autoregres-

sive modelling, though non-linear extensions exist. High

causal density indicates that elements within a system

are both globally coordinated in their activity (in order to

be useful for predicting each other’s activity) and at the

same time dynamically distinct (so that different

elements contribute in different ways to these

predictions).

Having explicit measures of dynamic complexity can

transform a property of consciousness (integrated and

differentiated experience) into a criterion that can be

applied to empirical or simulation data. This transforma-

tion is at the heart of the strategy of developing ECCs [15].

In addition, different measures can operationalize subtly

different aspects of the same overarching property. For

example, unlike neural complexity and causal density, U is

explicitly cast as a measure of the capacity of a system to

generate complex dynamics, as opposed to a measure of

dynamics per se. This is a critical difference in view of the

corresponding ‘information integration theory of con-

sciousness’ [93] which proposes that consciousness is itself

a capacity rather than a process.

New measures can also correct perceived deficiencies in

previously proposed measures. For example, unlike neural

complexity, both causal density and U are sensitive to causal

interactions among elements of a system (mutual informa-

tion is a symmetric measure, whereas Granger causality and

effective information are directed). This is important inas-

much as neural dynamics implement causal interactions.

Causal density is also sensitive to dynamics that are smeared

out over time, depending on the number of ‘lags’ incorpo-

rated into the underlying autoregressive model (Fig. 2). In

contrast, both neural complexity and U are based on repre-

sentations of dynamics derived through zero-lag

correlations; these measures are therefore insensitive to

temporally smeared dynamics. Finally, both causal density

and neural complexity are calculable in practice for non-

trivial systems, whereas U can at present only be calculated

for simple models exclusively in simulation [82, 96].

Simulation Models

Differences among measures can be tested using simula-

tion models. Recently, Shanahan [87] compared neural

complexity and causal density in a computational model of

spiking neurons arranged in loosely connected clusters. As

clusters became more strongly interconnected, causal

density showed a peak at an intermediate point character-

ized by sustained, desynchronized yet partly integrated

spiking activity. In contrast, neural complexity only began

to detect complexity when activity in clusters began to

synchronize, at exactly the point where the dynamical

complexity of the network started to diminish according to

causal density. As suggested above, the likely explanation

for this is that neural complexity is insensitive to integra-

tion or segregation that is smeared over time.

A related modelling approach involves developing

model neural systems that are tuned to show high values of

a given measure and then comparing their structure with

aspects of neuroanatomy thought to underlie conscious-

ness. For example, neural complexity has been shown to be

high for networks that show structural similarity to mam-

malian thalamocortical networks, in that both have small-

world network characteristics [89]. Small-world networks,

which consist of loosely coupled sets of highly intercon-

nected clusters, show many interesting dynamical

properties including high synchronizability, enhanced sig-

nal propagation speed, low overall ‘wiring length’ and high

Fig. 2 Incorporation of time by measures of dynamical complexity

for a neural system X. a Information integration is a static measure; it

can be measured by assuming Gaussian dynamics which allows

analytic calculation directly from the network anatomy [96]. b Neural

complexity can be either a static measure or a dynamic measure.

Analytic calculation of neural complexity can be accomplished in the

same way as for information integration, yielding a measure of

capacity. Alternatively, neural complexity can be calculated on the

basis of the recorded activity of a network, yielding a measure of

‘interactive complexity’. However, interactive complexity is sensitive

only to ‘thin’ dynamics, since it is calculated on the basis of zero-lag

temporal correlations. c Causal density is by definition a dynamic

measure, since it reflects Granger causality interactions that depend

on multivariate modelling of network dynamics. Causal density is

sensitive to temporally smeared dynamics because a given multivar-

iate model will reflect temporal interactions across a time period that

depends on the number of ‘lags’ incorporated into the model
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robustness to damage [102]. The Shanahan study described

above explored one particular method for implementing

small-world networks.

Synthetic models can also explore the functional utility

of high dynamical complexity in neural systems. For

example, both neural complexity and causal density have

been shown to increase as the behavioural flexibility of a

simple artificial agent increases [76, 80, 106]. Sporns and

Lungarella [88] showed that neural networks optimized for

high neural complexity behaved successfully in a target-

reaching task, despite the fact that target-reaching behav-

iour had not been explicitly selected for. These findings are

consistent with the idea that dynamical complexity (and

therefore perhaps consciousness) can provide adaptive

advantages during behaviour in virtue of facilitating

response flexibility.

Future Challenges

Looking ahead, there is a need for new measures and

models that capture ‘metastability’ in neural systems,

which refers to simultaneous integration and differentiation

in the time domain [10, 104]. Metastability is a deep

structural property of consciousness in that each conscious

moment is constituted by a rich interweaving of the pres-

ent, the immediate past (retension) and the predicted future

(protension) [26, 48, 92]. Such models and measures might

be most likely to arise through the tools of dynamical

systems theory which give special attention to non-linear

and transitory aspects of system dynamics [16]. In addition,

synthetic models can explore relations between complex-

ity-based accounts and approaches which tend to

emphasize the integrative nature of consciousness rather

more than its differentiated aspects. These include global

workspace theory [2, 24] and the notion that consciousness

is mediated by synchronized neural activity [30] or by local

and global patterns of reentry [53]. Synthetic approaches

can also analyse the dynamical complexity properties of

models incorporating detailed neuroanatomy thought to

underlie consciousness in mammals. Suitable points of

departure include large-scale models of thalamocortical

networks [47] and models of the ‘structural core’ within

mammalian cortex which comprises hubs of particularly

dense interconnectivity among certain medial, parietal,

temporal and frontal cortical modules [40].

Perspectivalness

First-Person Perspectives

Our conscious mental life generally has a point-of-view, a

subjective phenomenal 1PP located somewhere between

and behind the eyes and imparting an egocentric compo-

nent to conscious contents. 1PPs are not always like this;

they can shift spatial location in autoscopic and out-of-

body experiences and they may be absent entirely in deep

meditative states.1 A 1PP is an essential part of what in folk

psychological terms is a ‘self’. However, although there

may be no such things as selves in the world, the experi-

ence of being a self does exist [62]. The normal presence of

a 1PP—‘perspectivalness’—is therefore a structural prop-

erty of consciousness requiring explanation. It is worth

distinguishing basic perspectivalness from the ability of

some organisms (notably humans) to understand the world

from the point-of-view of another. This competence—

sometimes referred to as ‘theory of mind’—may require

perspectivalness, but the converse is unlikely to be true.

Thomas Metzinger’s influential ‘self-model theory of

subjectivity’ proposes that a 1PP originates through the

operation of a self-model, an ‘‘episodically active repre-

sentational entity whose content is determined by the

system’s very own properties’’ [63, p. 218], the purpose of

which is to regulate the system’s interactions with its

environment. The existence and causal efficacy of human

self-models in some form has been extensively demon-

strated empirically. For example, the experience of a

phantom limb that can follow amputation, and the allevi-

ation of the ‘phantom pain’ in this phantom limb by

providing false cross-modal feedback [72] indicate the

existence of a self-model and show its potential for recal-

ibration. Even more dramatic is somatoparaphrenia, a

syndrome characterized by delusions of disownership of

left-sided body parts [99]. Disturbances of 1PPs themselves

are also evident in out-of-body and autoscopic experiences.

Interestingly, such experiences can be induced experi-

mentally by a combination of virtual reality and

multimodal feedback [29, 55] again showing the rapid

adaptivity of aspects of biological self-models.

Simulation Models

The notion that 1PPs originate in the operation of self-

models invites synthetic modelling. Synthetic self-models

can be implicit in predictions of sensorimotor flow, or they

can be explicit. In the former category, Grush [38] has

described a framework based on forward modelling and

Kalman-filter signal processing in which neural circuits act

as models of body–environment interactions. These models

are driven by efference copies of motor commands and

provide expectations of sensory feedback, and they can be

run off-line in order to produce imagery and evaluate the

1 Autoscopy is the experience of seeing one’s own body in

extrapersonal space, whereas an out-of-body experience is character-

ized by a shift in perspective to a location outside the body [55].
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outcomes of different actions. Similarly, Revonsuo [74]

argues that consciousness involves a neural ‘virtual reality’

apparatus allowing off-line simulations of potential threats,

and Hesslow [42, 43] has also proposed a model of con-

sciousness in terms of simulation. A minimal robotic

implementation of implicit self-modelling has been

described by [110].

Perhaps the most explicit example of the development of

an artificial self-model is provided by Bongard et al. [7],

who use artificial evolution techniques (genetic algorithms)

to enable a four-legged ‘starfish’ robot to generate auton-

omously a representation of its own body (Fig. 3a). This

robot is capable of re-adapting its self-model following

damage (e.g. removal of a leg) and can run its model as an

internal simulation in order to discover control strategies

leading to effective locomotion. This example shows that a

self-model need not be conscious, allowing that even in

humans unconscious self-models may shape perspectival-

ness in conscious contents. It also shows that self-

modelling, like consciousness itself, is a process and not a

‘thing’ [48]. Another example of explicit self-modelling is

Holland’s ‘Cronos’ robot, which consists of a complex

anatomically detailed humanoid torso and a correspond-

ingly complex simulation model of self and world (Fig. 3b;

[45]). Inspired by Metzinger’s theory, this study explores

the implications of the view that animals regarded as

intelligent (and perhaps conscious) tend to have complex

body morphologies and interact with their environment in

correspondingly rich ways.

Current challenges for consciousness science involve

building on the above work in a number of ways. Explicit

self-model development such as that described by Bongard

et al. [7] needs to be cashed out in terms of neural mech-

anisms rather than at the level of genetic algorithms and

physics-engines. This would generate predictions about the

underlying neurophysiology and could connect with the

extensive body of work dealing with forward and inverse

modelling for motor control in neuroscience [60, 105].

More fundamentally, the mechanisms by which a 1PP

emerges from self-modelling need further elaboration. This

will likely involve explaining the interaction between the

egocentric framework of a 1PP and the allocentric char-

acter of the perceived world. Although we perceive the

world from a particular point of view, the experienced

world consists of objects in relation to each other; in other

words our everyday conscious experience seems to be

intermediate between allocentric and egocentric frame-

works [57]. Such models may draw on experimental work

suggesting distinct neuroanatomical loci for egocentric and

allocentric maps and their interactions [11]. Synthetic self-

models also need to account for the various manipulations

and disturbances of perspective and self-representation that

can be induced experimentally or that occur following

brain damage, surgery or psychiatric disturbances. Finally,

there are opportunities to explore how off-line operation of

self-models can be used to guide behaviour by simulating

the consequences of different actions, providing insight

into the unconscious operation of self-models and into

conscious off-line modes such as dream states and imagery.

Future Challenges

In the long-term, synthetic models could elaborate the

hypothesis that self-models arose in evolution through the

need to control increasingly complex body morphologies

having progressively more degrees of freedom [20]. This

hypothesis is of particular relevance when considering the

possibility of consciousness in non-mammalian creatures

with large brains and rich morphology such as the octopus

[28]. The relation between self-modelling and perspectiv-

alness could also be expanded to include other aspects of

the concept of the self. In addition to perspectivalness,

Metzinger identifies two further target properties: ‘mine-

ness’, a non-conceptual sense of ownership of experiences,

thoughts, feelings, body parts, etc., and ‘selfhood’ or

‘continuity’, the experience of being a self and of being

Fig. 3 a Starfish, a physical

robot with eight motorized

joints, eight angle sensors and

two tilt sensors. b Cronos, an

anthropomimetic robot inspired

by human skeletal structure and

musculature. Permissions from

(a) Cornell University and Josh

Bongard, Victor Zykov, and

Hod Lipson, and (b) Owen

Holland and The Robot Studio
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more-or-less identical across time [63]. These are both

structural aspects of normal conscious experience which

may derive from interactions between self-modelling and

other neural systems including those responsible for

affective processing. Indeed, such interactions are promi-

nent in the study of Damasio [23], who hypothesizes the

existence of an ‘as-if body loop’ as a variety of self-

modelling in which the brain internally simulates emo-

tional body states, as discussed below.

Emotional Consciousness

Emotion, Cognition and Consciousness

Cognition and emotion are tightly coupled in the brain and

in behaviour, and their interactions are now beginning to be

unravelled in detail [68]. Performance on standard cogni-

tive tasks, especially those involving decision making, can

be severely impaired after the loss of emotional responses

[22] and brain regions viewed as ‘cognitive’ and ‘emo-

tional’ are highly integrated within the brain [68]. The

relation between emotion and consciousness is less well

understood. Conscious experiences generally involve

emotional (affective) components, both transiently (e.g.

experiences of rage, of delight) and as a temporally

extended background or mood (e.g. sadness). These com-

ponents, or ‘feelings’, can interact with other conscious

contents (perceptions, thoughts), and brain structures

important for emotion (e.g. brainstem nuclei and certain

midline cortices) overlap with structures that regulate

conscious level [98]. However, it is not known whether

basic emotional processing is necessary for conscious

experience, and experimental methods for dissociating

emotional conscious contents from inducing stimuli are

poorly developed in comparison to visual neuroscience

methods.

An influential idea, originated by William James, pro-

poses that emotional experiences are mediated by

interoceptive representations of changes in bodily state (as

opposed to exteroceptive perceptions of external stimuli).

In other words, feelings are constituted by perceptions of

internal processes such as heartbeat and vasomotor activity

[17, 19, 23, 67]. Extensions to this idea suggest that the

experience of a ‘core self’ originates via interoceptive

representations of the body, both in terms of its morpho-

logical properties as discussed above (see section

‘‘Perspectivalness’’) and in terms of its internal physio-

logical milieu [23]. Importantly, this ‘core self’ is distinct

from the concepts of a metacognitive, narrative or reflec-

tive self, and corresponds to the explanatory targets of

‘mineness’ and ‘continuity’ that constitute, along with

perspectivalness, a basic instantiation of selfhood.

Several general theories of consciousness emphasize a

Jamesian emotional component. Damasio’s ‘somatic mar-

ker hypothesis’ proposes that core (primary) consciousness

arises via non-verbal representations of how an organism’s

internal state is affected by the perception of an external

object, where this representational process helps to place

the perceived object in a salient spatiotemporal context

[23]. Damasio’s framework includes an ‘as-if body loop’

which involves simulation of interoceptive data, providing

a connection to the predictive self-modelling concepts

described above (see also [109]). In Edelman’s ‘theory of

neuronal group selection’, conscious experiences depend

on re-entrant interactions between brain regions supporting

current perceptual categorization and those responsible for

a ‘value-category’ memory, where ‘value’ reflects the

operation of pleasure, pain and other emotional salience

networks [26]. Other theoretical treatments of emotion and

consciousness are provided by Lambie and Marcel [52]

who emphasize distinct modes of attention to emotional

contents, and Panksepp [67] who argues that mechanisms

of basic emotional consciousness are likely to be strongly

conserved among all mammalian species.

Simulation Models

Synthetic models have both contributed to and exploited

our increasing understanding of the links between cog-

nition and emotion. For example, ‘affective robotics’

describes attempts to enhance adaptive behaviour through

emotional modulation of decision making, to facilitate

human–robot interactions by exploiting human receptivity

to emotional stimuli, as well as to enhance our under-

standing of the neuromodulatory interactions underlying

emotional processing per se [25, 31, 107]. Disembodied

simulation models of emotion have also become

increasingly prominent. Such models however have so

far focused mainly on fear and reward systems, model-

ling neural interactions involving the amygdala and

frontal cortices [37, 101]; for a more general approach

see [35].

The synthetic modelling work directly addressing

emotional consciousness is scarce. Thagard and Aubie [90]

describe a model involving multiple interacting brain

regions integrating perceptions of bodily state with cogni-

tive appraisals of current situations; Shanahan [86] has

augmented a ‘global workspace’ model with an affective

component in order to mediate action selection, and Bosse

et al. [8] formalize the aspects of Damasio’s somatic

marker hypothesis including the ‘as-if body loop’. But no

synthetic work to date describes an explanatory correlate of

emotional consciousness to the extent that has been pos-

sible with respect to the complexity of experience and, to a

lesser extent, the origin of a 1PP.
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Future Challenges

One avenue for further progress consists in developing

increasingly sophisticated models of neural systems and

processes thought to be involved in emotional conscious-

ness, shaped by the framework of interoceptive awareness.

Recent studies have highlighted the importance of right

insula cortex in interoceptive perception (e.g. [19]), with

anterior subregions possibly involved in explicit represen-

tations of feeling states that may underlie higher-order

representations of self, extending beyond the ‘core’.2 The

so-called ‘default network’ of the brain may also be impli-

cated in emotional and self-related processing [71]. Activity

in this network is correlated with stimulus-independent

thought and with interoceptive and self-related conscious

content [58], and is anticorrelated with sensitivity to external

somatosensory stimuli [6]. Moreover, posterior components

of this network are part of the ‘structural core’ described

earlier [40]. Further modelling exploring dynamical prop-

erties of these networks in the context of interoceptive

processing and self-modelling is likely to be very valuable.

A second and more challenging approach comprises a

continuing search for explanatory correlates of emotional

consciousness. This search could be guided by the notion

of selfhood. As mentioned above, core selfhood incorpo-

rates perspectivalness, mineness and continuity, with the

latter two properties also appearing as defining properties

within affectively grounded theories of the self [65]. Fur-

ther development of synthetic self-models may therefore

shed new light on emotional aspects of self. Empirical data

may also help identify proper explanatory targets for

emotional consciousness. For example, patients with

depersonalization disorder (DPD) show reduced activity in

insula cortex [69]. In contrast to autoscopic and out-of-

body experiences, DPD does not involve changes in point-

of-view, but instead involves a striking lack of subjective

validity for perceptions, thoughts, memories and self-con-

sciousness. Thus, affective components of consciousness

may be those that impart validity and perceived reality to

our experiences. The extent to which these components

overlap with ‘mineness’ and ‘continuity’ is not yet clear.

Volition and Downward Causality

Voluntary Action and ‘Free Will’

The idea that consciousness functions to initiate voluntary

action is prominent in folk concepts of consciousness, even

though it has been widely challenged both empirically [56]

and theoretically [103]. Nonetheless, as with the self, even

though ‘free will’ may not exist in the world, the experi-

ence of volition certainly does exist and therefore requires

explanation.

Daniel Wegner’s influential theory of ‘apparent mental

causation’ predicts when experiences of volition might

occur [103]. According to this theory, we experience

volition when conscious mental content is inferred, rightly

or wrongly, to have produced the corresponding physical

action. Such inferences are made only when the following

constraints are satisfied: (i) primacy (the mental content

immediately precedes the action), (ii) consistency (the

content corresponds to the action) and (iii) exclusivity

(there is no other plausible causal factor). Although there is

experimental evidence in support of this theory, no

explanation is given for the qualitative character of expe-

riences of volition; in other words the theory does not

propose a corresponding explanatory correlate.

Complementing psychological theories such as Weg-

ner’s are new data shedding light on the neural mechanisms

underlying voluntary action. Experiments on volition typ-

ically consider voluntary action to reflect a ‘freedom from

immediacy’ in terms of responses to environmental stimuli

[84]. In a recent review, Haggard [39] has described a

network of premotor, cingulate and frontal brain regions

that are distinctively implicated in voluntary action. One

area in particular, the pre-supplementary motor area

(preSMA) seems to be especially critical both for experi-

ences of volition and for expression of voluntary action.3

Haggard also offers a general model of human volition as a

sequence of decision processes of increasing specificity,

from early ‘whether’ decision that involve motivations to

late predictive checks generating possible vetoes (Fig. 4).

But again, correlations between activity in particular brain

regions and conscious contents do not by themselves

account for the qualitative nature of that content.

What might an explanatory correlate of voluntary

experience look like? Experiences of volition are charac-

terized both by intention (the ‘urge’ to perform an action)

and agency (the feeling that the intended action has caused

something in the body and/or world to take place). A naı̈ve

interpretation of these features is that conscious experi-

ences are distinct from their physical substrates and yet

cause physical events, in the brain or elsewhere. This

position assumes dualism and will not be discussed further.

More satisfactory is the proposal that voluntary actions lie

at one end of a continuum whose other extreme is defined

2 Intriguingly, the thalamocortical pathway conveying detailed

interoceptive signals to the right anterior insula appears to be unique

to primates [17].

3 As Haggard emphasizes, activity in preSMA is not to be interpreted

as the origin of ‘free will’ in the sense of an uncaused cause. Brain

circuits underlying volition likely consist of complex loops, and

indeed input to preSMA from basal ganglia is thought to play an

important role in the generation of voluntary action.
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by stimulus-driven simple reflexes; this is the ‘freedom

from immediacy’ noted above [39, 84]. Consistent with

this proposal, and in contrast to dualism, is the notion that

consciousness is entailed by certain brain activity patterns,

in the same way that the molecular structure of haemo-

globin entails a particular spectroscopic profile [27]. On

this view, certain physical events (in the brain and else-

where) could not occur without the corresponding

conscious experience even though the conscious experi-

ence itself is not changing the course of the underlying

physical events. It therefore remains legitimate to speak of

consciousness causing physical events (and successive

conscious experiences) for the simple reason that it could

not be otherwise; the physical event could not happen in

the absence of the corresponding conscious experience.

Putting these ideas together, we arrive at the notion that an

experience of volition consists in a conscious experience

with phenomenal features of intention and agency, entailed

by neural activity mediating action not directly determined

or very indirectly determined by external stimuli.

Simulation Models of Volition

Synthetic models of voluntary action are scarce, and

models elaborating explanatory correlates of volitional

experience are completely lacking. Among the former,

existing models have addressed different aspects of Hag-

gard’s conceptual scheme (Fig. 4). For example, Cisek [14]

has proposed that prefrontal signals reflecting task selec-

tion bias action selection processes mediated within

parietal-premotor circuits. A related model suggests that

frontopolar cortex enables the concurrent maintenance of

two competing tasks (goals), updating the value of each

task as reward expectations change [51]. A wealth of

models tackle the relatively constrained problem of action

selection; however, it is beyond the present scope to pro-

vide a review (see [70] for a selection). Further

development of computational models of volition—inde-

pendently of any association with consciousness—remains

an important challenge [39].

Towards an Explanatory Correlate of Volitional

Experience

A key challenge is to develop an explanatory correlate of

intention and or/agency that is consistent with the func-

tional aspects of voluntary action. I propose an approach

based on the notion of ‘emergence’. An emergent process

or property is a macroscopic property that is somehow

‘more than the sum’ of its component parts. For example, a

flock of starlings wheeling in the sky prior to roosting

seems ‘more than the sum’ of the trajectories of the indi-

vidual birds.4 According to the concept of ‘strong

emergence’, a macro-level property is in principle not

identifiable from micro-level observations. Furthermore,

strongly emergent macro-level properties are often

assumed to have ‘downwardly causal’ influences on micro-

level properties [49].

David Chalmers has made explicit the recurring idea

that there is only one example of strong emergence in

nature, and that is consciousness [12]. Two intuitions

appear to drive this idea. First is the suspicion that even

complete knowledge of the physical interactions sustained

by brains will not provide an understanding of what it is

like to have a conscious experience. This reflects the

infamous ‘hard problem’ of consciousness, and it is pre-

cisely to defuse the apparent intractability of this problem

that the concept of an ECC has been introduced, here and

in related terminology elsewhere. Second is the notion that

conscious experiences have causal efficacy in the world.

This maps cleanly onto the notion of downward causality

in strong emergence inasmuch as a conscious experience of

volition might be a strongly emergent property having

downwardly causal influences on its underlying neural

activity, with subsequent causal chains spreading out to the

body and the environment.

The concept of strong emergence is however problem-

atic. The claim that the macro is in principle not

identifiable from the micro rejects mechanistic

Fig. 4 Haggard’s model of human volition. Volition is interpreted as

a set of decisions of increasing specificity. ‘Whether’ decisions are

made both early (motivation dependent) and late (final check), and

‘what’ decisions manage different levels of action specification. The

timing of voluntary action (‘when’ decisions) depends on both

environmental stimuli and internal motivational states. Adapted from

[39]

4 Strictly speaking this is a description of ‘property emergence’.

There is also the notion of ‘temporal emergence’ which refers to the

appearance of a qualitatively new phenomenon over time.
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explanations altogether, apparently calling a halt to scien-

tific advance in the absence of new fundamental principles

of nature [12]. The notion of downward causality is also

metaphysically awkward. It contravenes the plausible

doctrine that ‘the macro is the way it is in virtue of the way

things are at the micro’, an idea that has been expressed

variously as ‘causal fundamentalism’ or ‘supervenience’

[49]. It also raises the challenge of how to resolve conflicts

between competing micro- and macro-level causes [4].

A useful alternative to strong emergence is provided by

the notion of ‘weak emergence’, which proposes that

macro-level properties are derived from the interaction of

micro-level components but in complicated ways such that

the macro-level property has no simple micro-level

explanation [4]. It is possible to operationalize weak

emergence such that a macro-property is weakly emergent

to the extent that it is difficult to identify from micro-level

observations [78]. This definition requires an objective

measure of the non-triviality of micro-to-macro inferential

pathways, as well as a means of verifying micro-to-macro

causal dependence. I have recently described such a mea-

sure, ‘G-emergence’, which quantifies the extent to which a

macro-level property is simultaneously (i) autonomous

from and (ii) dependent upon its underlying causal factors

[78]. This measure is implemented using the statistical

framework of non-linear Granger causality and offers a

metaphysically innocent means of characterizing down-

ward causality simply as the Granger causality from

macro-variable(s) to micro-variable(s).

By considering conscious experiences as weakly emer-

gent—rather than strongly emergent—from their

underlying neural mechanisms, downward causality could

provide a useful explanatory correlate of experiences of

volition. Specifically, one can hypothesize that the extent to

which a conscious experience includes a volitional com-

ponent will correlate with measurable downward Granger-

causality from macro-level descriptions of brain dynamics

relevant to consciousness to micro-level brain descriptions.

A challenge for this approach is that it is not clear what

would constitute a relevant macro-level variable given the

impossibility of recording first-person experience except

through a behavioural report. Candidates might include

synchronized activity in neural implementations of a global

workspace, or in the ‘default network’, or in activity in all

or part of the structural or dynamic core. Alternatively, one

might look for causal influences extending from specific

neural structures implicated in volition such as the preS-

MA. In general, however, it should be possible to identify

relevant macro-level variables directly from micro-level

data. Beginning with Amari [1], various approaches under

the rubric of ‘statistical neurodynamics’ have addressed

this problem. Shalizi and Moore [85] define a macro-state

as one that has higher ‘predictive efficiency’ than the

micro-variables it derives from, in which predictive effi-

ciency is based on Crutchfield’s [21] concept of an epsilon-

machine. Bishop and Atmanspacher [5] introduce the

concept of ‘contextual emergence’, proposing that macro-

level properties consist in ‘stability criteria’ which con-

strain (or ‘enslave’) the interaction of micro-level

components; they give the example of Bénard convection

currents which appear to govern the role of individual

molecules in a liquid.

Despite the difficulties involved in identifying relevant

macrostates, it is likely that formal frameworks describing

consciousness as emergent from underlying neural

dynamics will be useful as a component within synthetic

and theoretical approaches. Rather than attempting to uti-

lize such frameworks to solve the (hard) problem of

consciousness tout courte, it may be more productive to

leverage multi-level theoretical constructs such as down-

ward causality to define explanatory correlates for specific

dimensions of conscious experience, in particular the

experience of volition.

Discussion

Summary of Contributions

‘Cognitive computation’ approaches can contribute to the

science of consciousness in at least two interacting ways.

First, the construction and analysis of synthetic models

(software and/or robotic) can help connect neural dynamics

to structural properties of conscious experience. Second,

theoretical approaches can define ECCs, whose properties

and experimental predictions can be explored through the

subsequent construction of synthetic models. Importantly,

these approaches do not assume that cognitive/conscious

systems are themselves computational; no such assump-

tions have been made in this article.

I have described four challenges for synthetic and theo-

retical approaches to consciousness science. The first

is the design of new quantitative measures reflecting

the dynamical complexity of conscious experience. The

importance of possessing such measures is hard to overes-

timate: the history of science has demonstrated repeatedly

that the ability to measure a phenomenon is an important

stage in the evolution of its scientific understanding [13].

Moreover, reliable measures will not only enhance basic

scientific understanding but will be useful in practical con-

texts including the assessment of conscious level in brain-

damaged patients and perhaps in non-human animals. The

second challenge involves developing models of the emer-

gence of 1PPs from internal predictive self-models.

Responses to this challenge, taken together with the devel-

opment of ECCs of emotional components of conscious
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experience (the third challenge), promise substantial new

insights into self-related components of normal human

consciousness and, more prospectively, into self-related

disorders such as schizophrenia and depersonalization. The

final challenge is also related to the self. Experiences of

volition are fundamental to selfhood, and explanatory cor-

relates of intentionality and agency may leverage both new

information about underlying neural mechanisms and new

theoretical entities such as operational definitions of weak

emergence and downward causality.

I will end by discussing briefly some wider issues raised

by computational approaches to modelling consciousness.

Functions of Consciousness

Specifying a plausible function (or functions) for con-

sciousness has proven remarkably difficult. The extreme

positions that consciousness plays no causal role (‘epi-

phenomenalism’) or that any cognitive/behavioural activity

can in principle be carried out without consciousness

(‘conscious inessentialism’) are counterintuitive but hard to

disprove [79]. ‘Cognitive computation’ approaches can

address possible functions by implementing underlying

mechanisms in concrete models. For example, existing

models have implemented varieties of global workspace

architectures in order to elaborate the hypothesis that

consciousness serves to integrate otherwise independent

cognitive and neural processes [2]. These models have

replicated certain experimental phenomena such as the

attentional blink [24], and have been extended to include

action selection and deliberation [32] and have incorpo-

rated simple internal simulation properties [86].

Other models are starting to address possible functions

of highly complex (or causally dense) dynamics. For

example, networks with high neural complexity or causal

density show increases in behavioural flexibility in chal-

lenging environments (see section ‘‘Simulation models’’).

Future models might explore the more general hypothesis

that the complex neural dynamics underpinning con-

sciousness provide adaptive discriminations, in the sense

that the occurrence of any given conscious scene rules out

the simultaneous occurrence of a vast number of alternative

experiences [94]. Models of perspectivalness, emotion and

volitional experience also shed light on possible functions

of consciousness. The interplay between egocentric and

allocentric representations in the emergence of a 1PP may

supply a stable arena for actions [61], emotional aspects of

consciousness may provide adaptive biases in decision

making [22] and the mechanisms underpinning volitional

experiences may implement exploratory, goal-directed and

‘immediacy-free’ actions [39].

The success of current and future models of conscious

functions can be judged by the extent to which (i) the

modelled neural processes provide useful functionality that

is otherwise difficult to account for and (ii) the models

generate testable experimental predictions. Importantly,

most synthetic models address only so-called ‘causal role’

functions (i.e. what does consciousness do?) rather than

phylogenetic functions (i.e. why did consciousness

evolve?). Establishing phylogenetic functions is in general

harder than testing for causal role functions [34], but causal

role functions can at least suggest plausible hypotheses

with respect to the evolution of consciousness.

Embodiment

A useful avenue for exploring causal role functionality is to

build synthetic models in which the proposed ECCs are

embodied in simulated or robotic bodies that interact with

external environments. Opinions differ as to whether

embodied and environmentally embedded sensorimotor

interactions are necessary [66] or not necessary [95] for

conscious experience. Dream states (and ‘locked in’ states

[54]) show that conscious experiences are possible in the

absence of body–environment interaction; however, the

dreaming or locked-in brain still has a body and it is plausible

that a history of brain–body–environment interactions is

needed for conscious experience during waking or sleeping.

In any case, normal human consciousness is implicated in

guiding behaviour and its contents during waking are con-

tinually shaped by brain–body–environment interactions.

Embodied synthetic models are particularly salient with

respect to perspectivalness and the emergence of basic

selfhood. Although it is possible to envisage a disembodied

complex system having high dynamical complexity, it is

difficult to conceive that anything like a 1PP could exist in

the absence of the spatiotemporal context provided by a

body. Embodied synthetic models therefore provide ideal

grounds for elaborating both ECCs of perspectivalness and

for testing more general theories of consciousness that

emphasize predictive self-modelling [42]. An implication of

such theories is that perspectivalness and/or selfhood may

depend on a sufficiently rich morphology supporting com-

plex agent–environment interactions. Holland’s study [45]

shows such rich morphologies are now available, both in

hardware using novel engineering paradigms based on

human anatomy and in software using physics engines to

design arbitrarily realistic body shapes and interactions

(Fig. 3b).

More generally, it is possible that embodiment is sig-

nificant for consciousness inasmuch as conscious

organisms display a drive towards maintaining physiolog-

ical integrity. In other words, organisms ‘care’ about the

viability of their bodies and this ‘caring’ may be manifest

in consciousness through motivations, moods and other

emotional conscious content. This view points to a
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continuity between ‘life’ and ‘mind’ in terms of patterns of

organization, suggesting that a satisfactory theory of con-

sciousness will need to be grounded in metabolic and

physiological homeostatic and homeodynamic processes

[59, 91, 100, 109]. Finally, Thompson and Varela [92]

advocate an ‘enactive’ view according to which processes

crucial for consciousness cut across the brain–body–world

divisions, and are not brain-bound neural events.

Towards a Conscious Artefact

This article has described synthetic approaches for model-

ling key processes underlying consciousness, with the

objectives of gaining insight into these processes and their

consequences, and promoting conceptual clarification and

development. An alternative goal is that of instantiating

consciousness through the implementation of mechanisms

underlying its key properties. The distinction between these

two goals is captured by the notions of ‘weak’ versus ‘strong’

approaches to ‘artificial consciousness’, where the former

aims at simulation and the latter at instantiation [15, 44].

The weak/strong distinction is manifest in the other

sciences of the artificial, namely artificial life and its ori-

ginal context, artificial intelligence [75]. In both cases,

proposed examples of instantiation in the form of compu-

tational models or robotic devices have remained hotly

disputed. However, the possibility of instantiating full-

blown intelligence or life in an artefact is not mysterious in

principle. For example, although it is increasingly accepted

that computational models of life are indeed models in the

weak sense, there is now a new and overlapping field—

synthetic biology—in which researchers create new life

forms by the artificial synthesis of genetic material and the

subsequent implantation of this material into surrogate

embryos [33]. The consensus here is that these new

organisms are in fact alive and are not merely models.

Is it possible to envisage an artefact endowed with full-

blown consciousness? One possibility is that future pro-

gression in weak (simulation) artificial consciousness may

inevitably lead towards a strong version (instantiation)

[15]. As one successively builds in new constraints to

match objections that become apparent through the build-

ing of models, so the models in question may actually tend

towards the instantiation of systems that might genuinely

be considered conscious. It is not yet clear whether a model

of consciousness sufficiently rich to account for all its

structural properties will turn out to be implementable in

computers or robots. In line with synthetic biology it might

instead be that such ‘models’ will require implementation

in neural or some other materials.
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