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Abstract In everyday live we often encounter situations in
which we can expect a visual stimulus before we actually see
it. Here we study the impact of such stimulus anticipation on
the actual response to a visual stimulus. Participants were to
indicate the sex of deer and cattle on photographs of the re-
spective animals. On some trials, participants were cued on
the species of the upcoming animal whereas on other trials
this was not the case. Time frequency analysis of the simul-
taneously recorded EEG revealed modulations by this cue
stimulus in two time windows. Early (≈ 100 ms) spectral re-
sponses (≈ 20 Hz) displayed strongest stimulus-locking for
stimuli that were preceeded by a cue if they were sufficiently
large. Late (≈ 300 ms,40 Hz) responses displayed enhanced
amplitudes in response to large stimuli and to stimuli that
were preceeded by a cue. For late responses however, no
interaction between cue and stimulus size was observed. We
were able to explain these results in a simulation by prestim-
ulus gain modulations (early response) and by decreased re-
sponse thresholds (late response). Thus, it seems plausible,
that stimulus anticipation results in a pretuning of local neu-
ral populations.
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1 Introduction

Our environment is constantly changing. However, in most
cases these changes do not come as a surprise. We usually
make predictions to know in advance what might happen in
the next moment (Bar 2007). How is such anticipatory ac-
tivity integrated with the upcoming stimuli? Can we identify
different modes of such integration processes?

As a plausible correlate for such integration between sen-
sory information and information stored in memory, high
frequency (20-90 Hz) brain activity has been suggested (Herr-
mann et al 2004b). These authors have argued, that high fre-
quency oscillatory brain activity is enhanced if sensory in-
put matches with stored object templates. In such a case,
it is assumed that feedback from the locus of the match to
earlier stages of visual processing results in activity rever-
berating within the visual system. Current findings suggest
that such reverberating activity can be measured from the
scalp (Herrmann et al 2004a; Morup et al 2006) as stimulus-
locked, so called evoked γ responses (usually ≈ 30−90 Hz
at a latency around ≈ 90 ms). Several authors also reported
later amplitude modulations of high frequency brain activity
(Tallon-Baudry et al 1996, 1998; Lachaux et al 2005; Gru-
ber et al 2002; Gruber and Müller 2005; Keil et al 2001;
Busch et al 2006a; Hoogenboom et al 2006; Sederberg et al
2003). These later, so called induced γ responses have been
interpreted as being related to later stages of perceptual pro-
cessing (Herrmann et al 2004b) in which more abstract, high
level object representations are available (Tallon-Baudry and
Bertrand 1999).

Evoked γ responses are usually regarded as being dom-
inated by low level sensory processes (Basar et al 2001;
Karakaş and Başar 1998) that can be modulated by atten-
tion (Busch et al 2006b; Tiitinen et al 1993; Debener et al
2003). Consequently, modulations of evoked γ responses by
several physical characteristics of a stimulus have been re-
ported (Busch et al 2004; Fründ et al 2007a; Schadow et al
2007). In these studies, evoked γ responses could mainly
be characterized as a transient period during which ongoing
activity was locked to the onset of the stimulus. How can
such early responses be modulated by the anticipation of the
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identity of a stimulus? Obviously these responses can not
start to lock to the stimulus before it is actually being pre-
sented. An alternative could be to silently pretune the neural
populations involved in processing the stimulus by changing
their response gain (Salinas and Sejnowski 2001; Chance
et al 2002). In this case, the impact of a stimulus on these
populations should be enhanced, leading to an interaction of
stimulus parameters and stimulus anticipation.

Due to their longer latency to the stimulus, induced γ

responses could be shaped by feedback to a much larger ex-
tend than evoked γ responses. If such feedback were purely
excitatory, it would usually result in a decrease of the re-
sponse threshold in the target neural populations. In con-
trast, if the (excitatory) feedback were balanced by inhibi-
tion this would result in a modulation of response gain in
the target population (Chance et al 2002). Both these effects
have been observed in animal experiments (Reynolds and
Chelazzi 2004). Furthermore, signals at high-level visual ar-
eas display invariance to size and translation (e.g. Desimone
et al 1984). Thus, one might expect that the effects of feed-
back from high level visual areas are relatively independent
of the size of a stimulus.

Some studies have investigated EEG correlates of cue
processing (Fan et al 2007; Lai and Mangels 2007; Luck
et al 1994; Martinez et al 2006; Yamaguchi et al 2000). How-
ever, these studies focussed on the effect of spatial cues and
the spread of the effects of spatial cues along spatially ex-
tended objects (Martinez et al 2006). In addition, only one
of these studies (Fan et al 2007) analyzed their data with re-
spect to spectral dynamics. Unfortunately, these authors did
not clearly differentiate between stimulus locked, evoked re-
sponses and amplitude modulated, induced responses. Thus,
the precise relation between high frequency electroencephalo-
graphic responses and cue directed attention can still be sharp-
ened.

In the current study, we investigated evoked and induced
electroencephalographic responses from human participants.
On some trials, the participants were cued about the cate-
gory of the stimulus before it appeared on the screen, on
other trials this was not the case. In addition, stimuli were
presented at different sizes. This enabled us to differentiate
stimulus-related from cue-related responses. We expected
early responses to show the signatures of gain modulation.
This should manifest in an enhanced modulation by the cue
for large stimuli. In contrast, we expected later responses to
show signatures of both the abovementioned types of feed-
back. As outlined above, such responses should show thresh-
old modulation (from purely excitatory feedback) as well as
gain modulation (due to balance by inhibition). Feedback
effects originate from areas which display more invariant re-
sponses with respect to physical stimulus features. Thus, we
expected later responses to be affected by the cue irrespec-
tive of the size of the stimuli. The data were compared to a
simple model of neural population responses.

2 Methods

2.1 Participants

Twelve healthy volunteers participated in the current study
after giving their written informed consent. All participants
had normal or corrected to normal vision and reported being
free of current or past neurologic or psychiatric disorders.
Participants received money or course credits for their par-
ticipation. The experiments were conducted in accordance
with the Declaration of Helsinki and the local ethics commi-
tee of the University of Magdeburg.

2.2 Experimental procedure

During the experiment, participants observed a set of pic-
tures of male and female cattle and deer. For every com-
bination of species and sex a total of 66 different color pho-
tographs were presented on a medium gray background. These
66 different photographs were scaled to either 545×470 pix-
els (≈ 13×11◦ visual arc) or 170×131 pixels (≈ 4×3◦ vi-
sual arc) to yield either large or small stimuli, respectively.
This resulted in a total of 528 different stimuli (2 species ×
2 sexes× 66 photographs× 2 sizes). Participants judged the
sex of the depicted animals under two different conditions.
In one block they were naive about the species of the up-
coming animal (uncued trials); in another block, participants
were cued on the species of the upcoming animal 500 ms be-
fore the onset of the animal’s photograph (cued trials). The
cue consisted of the name of the species and was presented
in bold letters at the center of the screen. On 80% of the cued
trials the cue was valid, meaning that the presented animal
was indeed the same as indicated by the cue. There were
only few invalid trials (20% of the cued trials). Thus, only
uncued and validly cued trials were analyzed.

Cueing the species of the animals rather than the sex al-
lowed us to induce preparation for the visual analyis of the
images rather than motor preparation. However, information
about the species of the animals is beneficial because it cues
the sex defining feature (antlers for deer, udder for cattle).

Stimuli were presented for 500 ms with an inter stimu-
lus interval varying randomly between 2000 and 3000 ms.
Participants responded by pressing a button with one hand
if the animal was male and pressing another button with
the other hand if the animal was female. Response hands
were counterbalanced across participants. Participants were
instructed to fixate a small black fixation cross at the cen-
ter of the screen during the whole experiment and to avoid
eye blinks. A schematic illustration of the paradigm can be
found in Figure 1.

2.3 Data acquisition

During data acquisition, participants sat in an electrically
shielded and sound attenuated room (IAC, Niederkrüchten,
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Fig. 1 Illustration of the experimental procedure. In cued trials (dashed box), participants received a written cue 500 ms before stimulus onset.
This was not the case for uncued trials (solid box).

Germany). The stimulation monitor was placed outside the
cabin behind an electrically shielded window. All devices in-
side the cabin were battery operated to avoid line frequency
interference (50 Hz in Germany). The electroencephalogram
(EEG) was measured from 62 scalp locations according to
an extended 10-20 system. The nose served as reference.
Electrooculographic activity was measured from one elec-
trode below the orbital rim and another electrode lateral from
the right eye in order to detect artifacts due to eye move-
ments. Activity was measured using sintered Ag/AgCl elec-
trodes mounted in an elastic cap (Easycap, Falk Minow Ser-
vices, Munich, Germany) and amplified by means of a Brain
Amp amplifier (Brain Products, Munich, Germany). Elec-
trode impedances were kept below 5 kΩ. The EEG signals
were filtered between 0.02 and 500 Hz and stored on a com-
puter hard disk at a rate of 1 kHz for offline analysis. Dig-
itized EEG data were transferred to a computer outside the
recording cabin by means of a fiber optic cable. An addi-
tional digitial high-pass filter with a cutoff frequency of 0.5 Hz
was applied offline to reduce slow shifts in the baseline. An
automatic artifact rejection was computed which excluded
trials from further analysis if the standard deviation within a
moving 200 ms time window exceeded 40 µV in any chan-
nel. The automatic artifact rejection was supplemented by
visual inspection to ensure that only trials without artifacts
were included in the subsequent analysis.

2.4 Data analysis

A time frequency representation of the EEG signals was de-
rived using a complex valued wavelet transform (Herrmann
et al 2005). The wavelet transform was computed by con-
volving the raw EEG signal with a set of scaled and trans-

lated versions of a complex modulated gaussian. At 40 Hz
the wavelet had a time resolution of 2σt = 50 ms and a fre-
quency resolution of 2σ f = 13 Hz. The exact time frequency
resolution of the wavelet depended on the analyzed frequency.
The wavelets were normalized to have unit energy. From the
wavelet transformed data three quantities were derived: (i)
the amount of evoked activity, that is the absolute value of
the wavelet transform applied to the averaged evoked poten-
tial, (ii) the total activity, which is the average modulus of the
wavelet transform applied to the single trials, and (iii) the
strength of stimulus-locking. Stimulus-locking was quanti-
fied by a time frequency version of the so called mean re-
sultant length (Fisher 1993) as has been done before (e.g.
Tallon-Baudry et al 1996; Fründ et al 2007c). A stimulus-
locking value of 1 indicates perfect locking across trials,
while a stimulus-locking value of 0 indicates a constellation
in which the phases exactly cancel out each other, as it is the
case for a uniform distribution of phases across trials. This
resulted in a representation of the responses from every par-
ticipant in the plane spanned by time and frequency. These
planes were transformed to a dB-scale in case of evoked and
total responses indicating the change relative to a baseline
that extended from 200 to 100 ms before the onset of the
stimulus. Stimulus-locking was related to the same baseline
by simply subtracting the average stimulus-locking from this
time window.

As response frequencies vary considerably, but rather
consistently between individuals (Fründ et al 2007c), we de-
cided to analyze oscillatory activity at peak frequencies. For
the analysis of early activity, these individual response fre-
quencies were selected as the maximum in a time window
between 60 and 160 ms. For the analysis of late activity,
individual response frequencies were selected from a time
window between 200 and 300 ms after the onset of the stim-
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ulus. As we were looking for stimulus-locked and/or am-
plitude modulated responses in the gamma band, we ini-
tially determined response frequencies from a range of 25
to 90 Hz. In this frequency range, no stimulus-locked re-
sponses exceeded the noise level. However, very consistent
modulations of stimulus-locked activity could be observed
in the beta band. Therefore, evoked activity was analyzed
with individual response frequencies determined from a fre-
quency range between 15 and 25 Hz.

The impact of the two factors SIZE (large vs. small stim-
uli) and CUE (valid cue vs. no cue) on EEG measures was
tested by means of an analysis of variance (ANOVA) for re-
peated measurements. For the ANOVA, data were pooled
across channels from a posterior region of interest (channels
O1, O2, Oz, P3, P4, Pz, P7, P8, PO3, PO4, POz, P5, P6, P1,
P2).

2.5 Simulation

The results from the EEG analysis were compared to a sim-
ple model of gain modulated cells. This model consisted of
an array of 100× 100 units – each of which was described
by an input-output mapping given by a Naka-Rushton func-
tion (Naka and Rushton 1966; Wilson 1999)– relating output
strength y and input strength x in the form

y =
([x−θ ]+)2

g2 +([x−θ ]+)2 , (1)

where θ is a threshold that determines the minimum value,
for which the unit will respond at all. Here, [ · ]+ denotes
rectification. The parameter g is inversely related to the gain
of the input/output relation. Smaller gs result in stronger in-
creases in output strength with increasing input. Naka-Rushton
functions are usually regarded as a good approximation to
the input/output behavior of neural processing elements (e.g.
Wilson 1999, p. 19). Note that there are no interconnections
between the different units. Therefore, this model can make
predictions about changes in the input/output behavior of
neural popultions but not about their interconnections.

To simulate the effects of different modes of process-
ing, the parameters g and θ in equation (1) were varied.
As a baseline condition reflecting the no cue condition of
the EEG experiment , these values were arbitrarily set to
θ = g = 0.5. We will refer to this condition as the baseline
condition (see Figure 2). The cue condition of the EEG ex-
periment could in principle be modeled by either increased
gain or decreased threshold. Our simulation was intended to
reveal which of the two mechanisms simulates the EEG data
more closely. To simulate increased gain due to stimulus an-
ticipation, we set g = 0.25 for a subset of units, keeping
θ constant (gain+ condition in Figure 2). The mechanism
of decreased threshold was simulated by setting θ = −0.1
while at the same time setting g = 1 to simulate balanced in-
put (Chance et al 2002) (threshold-,gain- condition in Figure
2). Both these modulations were performed on a subset of
30×30 cells in the total array of model neurons. The effect
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Fig. 2 Different types of input-output mappings used in the simula-
tion. “Baseline” refers to the simulation of the no cue condition of
the EEG experiment, “gain+” corresponds to the condition with in-
creased gain, and “threshold-,gain-” corresponds to the condition with
decreased gain and threshold, both reflecting different possible imple-
mentations of the cue condition of the EEG experiment.

of gain and threshold modulations on the response proper-
ties of the underlying populations is illustrated in Figure 3.
Stimuli could either be presented inside or outside the mod-
ified region.

For all 100×100 pixels, Gaussian white noise with stan-
dard deviation σ = 0.25 served as input data x. In order to
simulate the effect of a stimulus, a value of 1 was added to
the noise either for a square region of 20×20 (large stimu-
lus) or 10×10 pixels (small stimulus). This is illustrated in
Figure 4 for a large stimulus. Pixels that are set to 1 can be
thought of as matches between sensory input and the struc-
ture of the receptive field of the respective unit. Gaussian
white noise with standard deviation σ = 0.25 was added to
each pixel. The input and output strength can be though of
as spike counts of averaged local field potentials. More tech-
nical details of the simulation can be found in the appendix.

3 Results

Modulations of high frequency spectral EEG components
were observed in two time windows. An early modulation
was found between 15 and 25 Hz in a time interval between
60 and 160 ms, and a later modulation was found between
30 and 90 Hz in a later time window between 200 and 300 ms.
In the following we will describe these modulations in more
detail.

3.1 Early modulation

Although previous studies have reported stimulus related mod-
ulations in the γ frequency range (e.g. Busch et al 2004,
2006b; Tallon-Baudry et al 1996; Spencer et al 2004), the
current data did not contain any systematic responses at fre-
quencies above 30 Hz.

In contrast, modulations were observed in the β frequency
range (15-25Hz). In this frequency range, most participants
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Fig. 3 Effects of gain and threshold modulation. (a) Two different re-
sponse functions that differ in gain. The blue curve has a lower gain,
the red curve has a higher gain. (b) Example responses for a poisson
spike process with low gain response function. Gray box: weak input
corresponding to the gray vertical line in part (a). Black box: stronger
input corresponding to the black vertical line in part (a). On the right,
the corresponding spike counts are illustrated as bars. (c) Example re-
sponses for a poisson spike process with high gain. Remaining con-
ventions are like in (b). (d) Two different response functions that differ
in threshold. The blue curve has a lower threshold, the red curve has
a higher threshold. (e) Example responses for a poisson spike process
with low threshold. Gray box: weak input corresponding to the gray
vertical line in part (d). Black box: stronger input corresponding to the
black vertical line in part (d). (f) Example responses for a poisson spike
process with high threshold. Remaining conventions are like in (e).

elicited a response peak in the time frequency planes that
was concentrated in time as well as in frequency (see Figure
5). Averaging across different participants smeared these rel-
atively concentrated peaks across multiple frequencies (Fig-
ure 6 (A)). As these responses were mainly defined by lock-
ing to the stimulus, we will here focus on effects on stimulus-
locking. Stimulus-locking in the β frequency range was strongly
enhanced in response to large stimuli as compared to small
stimuli (F1,9 = 32.79, p < 0.001, see Figure 6). In addition,
stimulus-locking was stronger in cued trials as compared to
uncued trials (F1,9 = 18.87, p < 0.01, cued vs. uncued for
large stimuli: t10 = 4.38, p < 0.001, cued vs. uncued for
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Fig. 4 An example of an input stimulus to the simulation. The large
(20×20 pixels) stimulus is presented in white noise.
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Fig. 5 Early stimulus related spectral modulations in the β band in two
single participants. Top: A participant with a relatively high response
frequency. Bottom: A participant with a relatively low response fre-
quency. Note that averaging these responses results in a smeared broad
band response like in Figure 6 (A)

small stimuli: t10 = 3.43, p < 0.01). This effect was par-
ticularly salient for large stimuli (SIZE × CUE interaction,
F2,9 = 7.01, p < 0.01). We also compared at what time af-
ter stimulus’ onset stimulus-locking was most pronounced
between the different conditions. These response latencies
were strongly modulated by the size of the presented stim-
ulus, with shorter latencies for large stimuli (large stimuli:
77± 12 ms, small stimuli: 110± 21 ms, F1,9 = 30.69, p <
0.001, see also Figure 6 (B)). As can be inferred from the
topographic maps displayed in 6 (B), stimulus-locking was
constrained to electrodes over the occipital region.
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3.2 Late modulation

A clear response in total γ activity was observed about 200 to
300 ms after stimulus onset. As Figure 7 (A) shows, this re-
sponse was clearly separated from lower frequency activity.
However, the amplitude increase that was captured by the to-
tal activity extended over a fairly broad range of frequencies
in all but one participant (similar to Figure 7 (A)). This late
response was significantly stronger in response to large stim-
uli as compared to small stimuli (F1,9 = 28.46, p < 0.01).
In addition to this strong modulation, a small but consistent
modulation of total γ activity by the presence or absence of
the cue was observed (F1,9 = 8.01, p < 0.05, cued vs un-
cued for large stimuli: t10 = 3.6, p < 0.01, cued vs uncued
for small stimuli: t10 = 6.30, p < 0.001). In contrast to the
early response, this cue effect was relatively independent of
the size of the stimuli (no significant SIZE× CUE interaction,
F2,9 = 2.11, n.s.). This late spectral response was relatively
similar across a wide region of the scalp (see Figure 7 (B)).

3.3 Simulation results

Neural responses can be modulated with respect to their thresh-
old (i.e. at which level of input does a neuron start to fire)
and their gain (i.e. how fast does the output rate increase
with increasing input). We simulated a population of 100 ×
100 neural units in order to find out which of the two mech-
anisms is more likely involved in the generation of our EEG
effects. In a subset of this population, threshold and/or gain
were modified. In addition, a subset of the simulated pop-
ulations (not necessarily overlapping) received input, sim-
ulating that a stimulus excited the receptive fields of the
cells. In Figure 4 such an input pattern is shown. Figure 2
displays input-output relations of the simulated populations
for different threshold-gain constellations. The solid line la-
beled “baseline” represents a baseline condition reflecting
the no cue condition of the EEG experiment. To simulate
pretuning of neural populations, we increased the gain of
the input-output relation. Thus, without a sufficiently strong
stimulus this should not change the behavior of the popul-
tions. However, if a stimulus is presented the responses of
this population should increase much faster. This is evident
from the increased slope of the dashed curve in Figure 2 la-
beled “gain+”. Finally, we added a third condition which is
mainly characterized by a shift in the response threshold to-
wards weaker inputs. This is labeled “threshold-,gain-” in
Figure 2. In addition, and to match the experimental results,
the gain of the input-output relation for this condition had to
be reduced.

The responses of the model to the stimulus presented in
Figure 4 for two different conditions are displayed in Figure
8. It can be observed that responses are enhanced if the lo-
cus of pretuning matches that of the stimulus. No response
enhancement is observed, if gain+ pretuning is applied to
an area that does not match the stimulus. In order to allow
a more rigorous comparison we replotted average responses
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Fig. 8 Responses of the model under different conditions. Left: the
area of pretuning (gain+ condition) matches the input area, right: there
is no pretuning at all. The area of pretuning in marked by a thin black
line.
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accross the whole array in Figure 9. In the absence of a stim-
ulus, the anticipatory modulation does not seem to make any
difference in the large scale response (see the bars labeled
“no stimulus” in Figure 9). This is in accordance with the
situation observed before the stimulus was presented. With-
out any modulation, the model displays higher responses for
large stimuli as compared to small stimuli (“baseline” in Fig-
ure 9). For gain+ modulation, however, a strong enhance-
ment of the responses is observed, if the stimulus matches
the modulation of the populations. Similar to the stimulus-
locking data in the β band, this enhancement is particularly
salient for large stimuli. In the threshold-,gain- condition, an
enhancement of the responses can also be observed. How-
ever, now the response enhancement is rather similar for
large and small responses, resembling the total responses ob-
served in the γ band.
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4 Discussion

In the present study, we investigated high-frequency spectral
responses to natural images with respect to stimulus antici-
pation. We observed both, stimulus-locking and total am-
plitude responses in our data. Stimulus anticipation effects
were observed for the stimulus-locking of spectral responses
in the β band primarily for large stimuli. In contrast, total
γ responses were modulated by size and stimulus anticipa-
tion relatively independently. These results have qualitative
counterparts in a model of gain modulated population re-
sponses.

4.1 Spectral responses at high frequencies

In the current experiment, we observed stimulus-locked re-
sponses in the β range that depended on bottom-up and an-
ticipatory modulation resembling what had previously been
reported as an interaction of bottom-up and top-down pro-
cesses for stimulus-locked γ responses (Busch et al 2006b).
In contrast to these earlier results, the frequency of the stimulus-
locked responses was much lower – nearly half that of previ-
ous reports. The most obvious difference between these pre-
vious reports and the current report comes from the stimu-
lus material. Previous reports on stimulus-locked spectral re-
sponses often used rather simple stimulus configurations like
geometrical shapes (Busch et al 2004; Fründ et al 2007b)
or gratings (Bodis-Wollner et al 2001; Busch et al 2006b;
Fründ et al 2007a; Schadow et al 2007) and observed re-
sponse frequencies between 30 and < 90 Hz. Other stud-
ies that applied more complex stimuli (Busch et al 2006a;
Gruber and Müller 2005; Lachaux et al 2005; Tallon-Baudry
et al 1997; Vidal et al 2006), either did not observe stimulus-
locked γ responses at all, or did not find these responses to be
modulated by experimental manipulations. Our results are in
line with these findings in that we did not find any stimulus-
locked γ responses at all. The properties that would be ex-
pected for a stimulus-locked γ response, dependence on size
(Busch et al 2004; Fründ et al 2007c) and an interaction be-
tween size and attention (Busch et al 2006b), were found in
a somewhat lower frequency range in the β band. A possible
interpretation for this might be that the stimulus-locked re-
sponse has shifted its frequency. Such downward shifts with
increasing stimulus complexity have been proposed by sev-
eral authors (Chen and Herrmann 2001; Olufsen et al 2003;
von Stein and Sarntheim 2000). These authors argue that in
order to integrate information from remote cortical areas, the
information that is integrated needs to be carried by spec-
tral components of lower frequency. For instance Busch et al
(2004) observed a decrease in response frequency if the size
of the evoking stimulus increase, although this effect was
not significant. In a recent study, Fründ et al (2008) found
slightly lower response frequencies for stimuli with higher
pixel-wise entropy. It is thus conceivable that the frequency
of stimulus-locked oscillations is adapted to the demands of
a particular perceptual task. The determinants of such fre-

quency shifts are yet unclear. More experimental work is
needed to identify the determinants of such frequency shifts.

The observed late enhancement of spectral power in the
γ band (see Figure 7) is consistent with previous reports in
terms of frequency and latency (Busch et al 2006a; Gru-
ber and Müller 2005; Rodriguez et al 1999; Tallon-Baudry
et al 1997). Such responses that consist of a power enhance-
ment that is not accompanied by any stimulus-locking have
been termed induced γ responses (Basar-Eroglu et al 1996;
Tallon-Baudry and Bertrand 1999). They seem to play a piv-
otal role for a wide variety of cognitive phenomena such
as attention (Fries et al 2001), memory (Gruber and Müller
2005; Howard et al 2003; Sederberg et al 2003), object recog-
nition (Tallon-Baudry and Bertrand 1999), gestalt percep-
tion/binding (Uhlhaas and Singer 2006), multistable percep-
tion (Mathes et al 2006), and associative learning (Miltner
et al 1999). Models of visual perception have associated
such induced γ responses with the refinement of an initial
coarse categorization of sensory input (Herrmann et al 2004b;
Körner et al 1999) or with the activiation of an associative
network representing the semantic categorization of a stim-
ulus (Tallon-Baudry and Bertrand 1999). These interpreta-
tions would suggest induced γ responses to be relatively
independent of physical stimulus factors. Here we demon-
strate, that this is not the case. In contrast, induced γ re-
sponses highly depended on the size of the stimulus. How-
ever, in contrast to the evoked reponses (Busch et al 2006b)
the top-down effect imposed by the cue did not seem to in-
teract with this size modulation.

4.2 Gain and threshold modulation

We simulated two different types of modulations of the input-
output relation of neural processing units. In one condition,
the gain of the model units was modulated, while in another
condition, the threshold and the gain of the units was mod-
ulated. In the first case, global responses were dependent on
the size of the stimuli, while in the second case, global re-
sponses were independent of stimulus size. These findings
are remarkably similar to the EEG data. The anticipatory
modulation of the evoked spectral response depends on the
size of the stimulus, while this is not the case for the in-
duced spectral response. These simulation results seem to
suggest that the anticipation of a stimulus initially results in
an increase of the gain of neural populations. This is con-
sistent with the similarity between the evoked response and
the behavior of the simulation in the “gain+” condition with
increased input gain. The similarity between the induced re-
sponse and the “threshold-,gain-” condition of the simula-
tion seems to suggest that the induced response originated
from a combined decrease of both, input gain and firing
threshold.

In the current model, the gain and threshold modulations
were generated by changing the respective model parame-
ters. The biophysical mechanisms that could underlie these
modulations are still under debate. Threshold modulations
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can be explained rather straightforward; excitatory inputs
decrease the threshold, inhibitory inputs increase the thresh-
old (Chance et al 2002). The crucial point is about gain mod-
ulation which requires multiplicative interactions between
neurons. Shunting inhibition, which drives the membrane
potential closer to the cell’s resting potential rather than de-
polarizing or hyperpolarizing the cell, has been discussed as
a possible implementation of multiplication/division of neu-
ral responses (Carandini and Heeger 1994). It has however
been pointed out, that this mechanism can not account for
such effects in the context of spiking neurons (Koch 1999,
p. 23). Two alternative mechansims to implement gain mod-
ulation have been discussed. The first of these mechanisms is
based on the effects of background activity of a cell (Chance
et al 2002). If this background activity consists of strong ex-
citatory input which is balanced by strong inhibitory input,
the gain of the input-output relation of that cell is dimin-
ished (Chance et al 2002). These authors have derived an
equation for the input-output relation of a leaky integrate and
fire neuron (Abbott and Chance 2005). Using this equation
for our simulation yielded qualitatively similar results. The
noise that comes with such balanced input has recently been
shown to account for contrast normalization in the primary
visual cortex of cats (Finn et al 2007). A second mechanism
that could implement gain modulation is synchrony of in-
hibitory cells (Tiesinga et al 2004). Cells that receive highly
synchronous inhibitory input appear to have a higher input
gain than cells for which the inhibitory input is temporally
uncorrelated. This latter mechanism is in good accordance
with the fact that the signals described in the current report
show temporal structure – they are relatively concentrated in
the spectral domain. Thus, in conclusion, different mecha-
nisms exist that could implement a modulation of gain in a
neural system. Although we cannot decide which particular
mechanism implemented the gain modulation in the current
data, it seems plausible that the observed effects (at least for
evoked activity) can be explained as modulation of the input
gain of the underlying cells. In contrast, the increase in in-
duced high frequency activity seems to be consistent with a
general increase in feedback activity that is in part driving
the target cells closer to the threshold, in part reducing the
input gain of the neural populations.

4.3 Relation to neural population models

The current model does not explicitely simulate individual
spikes. Instead, it considers responses that are pooled across
a group of cells. Dynamics of such models have been dis-
cussed by several authors (David and Friston 2003; Freeman
1975; Jansen and Rit 1995; Jirsa and Haken 1997; Nunez
and Srinivasan 2006; Robinson et al 1997, 1998, 2001; Ren-
nie et al 2000). Although these models incorporate a non-
linear response function similar to the one in equation (1),
they typically emphasize dynamical aspects that arise if dif-
ferent populations of neurons interact. In the current paper
we completely disregarded any dynamical properties of the

neural populations. This enabled us to study the impact of
the response function in separation. Indeed, it was possi-
ble to explain certain aspects of the experimentally observed
responses simply by changes in the response function. In
this way, the current approach complements the above dy-
namical models. It remains to be investigated, how transient
changes of the response function change the dynamics of in-
teracting neural populations.

4.4 Relation of anticipatory effects to cueing

In the literature about cueing there is a controversy as to
wether the anticipatory effect of a cue triggers a change of
the perceptual efficiency (e.g. Luck et al 1994) or alters in-
formation selection at later stages of processing (Eckstein
et al 2002; Shimozaki et al 2003). The interpretation of the
cueing effect on stimulus-locking in the β frequency range
as gain modulation is compatible with the former idea. This
is in accordance with data that suggest effects of attention
as early as the C1 (Khoe et al 2005). However, the rela-
tively late effects on induced high frequency power seem
more consistent with the latter idea that (at least part of) the
perceptual process is completed when processing is altered
by the cue. Thus, it seems plausible that valid cueing facil-
itates the transmission of neural signals from early process-
ing stages to late processing stages (Lai and Mangels 2007).
These authors argue that this improved transmission results
in stronger signals at these later stages which result in possi-
ble behavioral benefits. In a spatial cueing experiment, Fan
et al (2007) observed increased γ band power after cueing
spatial locations. Our data suggest, that similar effects can
be observed in relation to more semantic cueing such as ob-
served in contextual cueing (Chun 2000).

4.5 Conclusion

We demonstrated that cueing triggers different aspects of
high frequency responses. An early stimulus-locked response
that was most pronounced in the β frequency band seemed
consistent with pretuning the gain of neural populations. In
addition, a later increase in induced γ activity was inter-
preted as an increase in feedback activity.

A. Implementation of the model

Local processing is modeled as a mapping F : R100×100 → R100×100,
that maps a stimulus X ∈R100×100 on a spatial pattern Y ∈R100×100 of
neural activity. Measurement of the EEG (data shown in Figure 9) is
modeled by a linear form M : R100×100 → R,M(X) = ∑

100
k,l=1 Xk,l/104.

Interactions between stimulus driven and internal processes were mod-
eled by either variing the stimulus X or the mapping F . The stimulus
consisted of a field of real values X = {Xk,l}, where Xk,l ∼N (1,1/4) if
ν ≤ k, l ≤ µ . Otherwise, Xk,l ∼N (0,1/4), where N (m,σ) indicates
a normal distribution with expectation value m and standard deviation
σ . For large stimuli we set ν = 35,µ = 55, for small stimuli, we set
ν = 40,µ = 50. The mapping F : x 7→ y as given by equation (1), was
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applied to every element of X in order to obtain the simulated neural
activity Y . The parameters g and θ in equation (1) were allowed to vary
with space, thus g,θ ∈R100×100. The baseline condition corresponds to
gk,l = θk,l = 1/2,k = 1, . . . ,100, l = 1, . . . ,100. In the gain+ condition,
we set gk,l = 1/4 for η ≤ k, l ≤ ξ . In the threshold-,gain- condition,
we set gk,l = 1,θk,l =−1/10 for η ≤ k, l ≤ ξ . If stimuli were modeled
to be presented inside the modified region, we set η = 30,ξ = 60. If
stimuli were modeled to be presented outside the modified region, we
set η = 60,ξ = 90.
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