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ABSTRACT

This PhD was carried out as part of the CRONOS project and atgeeroéin achievements was
the development of a method for predicting and describing the conscites staartificial
systems. This could help machine consciousness to become mordis@endtit could also be
used to make predictions about the consciousness of biological systems.

To demonstrate this methodology, a spiking neural network was devetopedttol the
eye movements of the SIMNOS virtual robot. This network learns seecmtion between
sensory input and motor output and uses this knowledge to ‘imagine’ theqaeenses of
different eye movements and avoid stimuli that negatively aftecemotions’. This network
exhibits a limited form of conscious behaviour, has some of thaitoag characteristics
associated with consciousness, and Tononi's, Aleksander's and Metzirnteories of
consciousness were used to make detailed predictions about its phenomenal states.

The spiking neural network was modelled using the SpikeStream samuwidich was
developed as part of this PhD and can simulate up to 100,000 neurons. r8pikelsis good
performance, a comprehensive graphical interface and it can senecane spikes to and from
real and virtual robots across a network.

This thesis makes a number of theoretical contributions to tttdy ©f natural and
artificial consciousness, which include a discussion of the relatphgtween the phenomenal
and the physical, a distinction between type | and type |l patestrrelates of consciousness,
and an analysis of conscious will and conscious control. The differe@s of machine
consciousness research are also classified and some of thagdsfi@cing work in this area are

covered in detail.



A flash, a mantling, and the ferment rises,

Thus, in this moment, hope materializes,

A mighty project may at first seem mad,

But now we laugh, the ways of chance forseeing:
A thinker then, in mind’s deep wonder clad,

May give at last a thinking brain its being.

Now chimes the glass, a note of sweetest strength,
It clouds, it clears, my utmost hope it proves,

For there my longing eyes behold at length

A dapper form, that lives and breathes and moves.
My mannikin! What can the world ask more?

The mystery is brought to light of day.

Now comes the whisper we are waiting for:

He forms his speech, has clear-cut words to say.

GoetheFaust, Part Twop. 101.
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1 | NTRODUCTION

The interdisciplinary project of consciousness research, now experiencing such an impressive renaissance with
the turn of the century, faces two fundamental problems. First, there is yet no single, unified and paradigmatic
theory of consciousness in existence which could serve as an object for constructive criticism and as a
backdrop against which new attempts could be formulated. Consciousness research is still in a preparadigmatic
stage. Second, there is no systematic and comprehensive catalogue of explananda. Although philosophers have
done considerable work on the analysanda, the interdisciplinary community has nothing remotely resembling
an agenda for research. We do not as yet have a precisely formulated list of explanatory targets which could be
used in the construction of systematic research programs.

(Metzinger 2003, pp. 116-7)

1.1 Overview

This PhD was carried out as part of Owen Holland’s and Tom Troscianko’s EPSRC-funded
CRONOS project to build a conscious robot (GR/S47946/01), which took place at the
Department of Computing and Electronic Systems, University of Essex and at the Department of
Experimental Psychology, University of Bristol. One of the main contributions at Essex was the
development of the CRONOS and SIMNOS robots, which are described in Section 1.2. This
thesis documents my contribution to this project, which includes the construction of a spiking
neural network to control SIMNOS’s eye movements and the development of a new way of
analyzing systems for consciousness that was used to make predictions about this network’s
phenomenal states. A summary of the thesis given in Section 1.3 and Section 1.4 describes the

supplementary data files and other supporting materials.
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1.2 The CRONOS Project’

1.2.1 Introduction

CRONOS is one of the few large projects that has been explicitly funded to work on machine
consciousness. One of the motivations behind this project was the belief that embodied human-
like systems carrying out tasks in the real world (or a reasonably realistic copy) are the best
starting point for understanding how our brains operate and how consciousness emerges in the
brain. Guided by this approach, Owen Holland, Rob Knight and Richard Newcombe developed
CRONOS, a hardware robot closely based on the human musculoskeletal system (see Figure
1.1), and a soft real time physics-based simulation of this robot in its environment, known as
SIMNOS (see Figure 1.2). More information about the CRONOS project is available at

WWWw.cronosproject.net.

1.2.2 CRONOS Robot

Most humanoid robots are essentially conventional robots that fit within the morphological
envelope of a human. However, robots that can help us to understand human cognition and
action might need to have a much higher level of biological inspiration, which imitates biological
structures and functions as well as the human form. The CRONOS robot was developed to
address this challenge and it has a body based on the human musculoskeletal system and senses
that are as biologically inspired as possible.2 This level of biological realism is important to
machine consciousness because a more biological body is more likely to develop a human style
of consciousness, and it also provides more realistic training data for biologically inspired neural

networks.

" All of the work described in this section was carried out by Owen Holland, Rob Knight and Richard Newcombe at
the University of Essex.

? Holland and Knight (2006) have proposed the term “anthropomimetic” as a label for humanoid robots that attempt
to copy the physical structure of a human.
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Figure 1.1. CRONOS Robot

To create the skeleton of CRONOS, the human skeleton was copied as accurately as
possible at life size.” The bones were constructed from a new type of thermoplastic known in the
UK as Polymorph and in the US as Friendly Plastic, which softens and fuses at 60 degrees and
can be freely hand moulded until it resets at 30 degrees. This enabled bone like elements to be
created and fitted together by hand and other materials can be embedded, such as a metal sphere
mounted on a rod to make a ball and socket joint. The muscles of CRONOS were constructed
using a motor and marine grade shock cord terminated at each end by 3mm braided Dyneema
kite line. This cord was wound around the motor spindle, so that the rotation of the motor
increased or decreased the tension in the elastic shock cord, mimicking the contraction and

relaxation of a biological muscle.*

? To compensate for anticipated difficulties with the fine manual manipulation of grasped objects, the neck vertebrae
were extended to allow a greater range of head movements during visual inspection of such objects.

* Videos of CRONOS are available at www.cronosproject.net.
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This combination of bone-like elements and partially elastic ‘muscles’ gives the body of
CRONOS a multi-degree-of-freedom structure that responds as a whole and transmits force and
movement well beyond the point of contact. For example, when the arm is pushed down, the
elbow flexes, the complex shoulder moves and the spine bends and twists. The disturbances due
to the robot’s own movements are also propagated through the structure, producing what
Holland et al. (2007) have called 'passive coordination'. Since different trajectories and finishing
points are obtained with different loadings, any controllers that are developed for this robot will
need feedforward compensation to anticipate and predictively cancel the effects of the load for
any movement. This is interesting from the point of view of consciousness because feedforward
control depends on the possession of forward models and the use of such models by the nervous
system has been advanced by Grush (2004) and Cruse (1999) as one of the key factors
underpinning consciousness.

CRONOS differs from humans in having only a single central eye. This approach was
chosen because of the enormous simplification of visual processing that it brings about and it is
justified by the observation that 2-4% of humans do not perform stereo fusion and their
performance on other visual tasks is still within the normal range (Julesz, 1971). The high
resolution colour camera has a 90 degree field of view and it can perform rapid saccades under
the control of three servo motors that rotate, pan and tilt the eye. Each of the muscle motors has a
potentiometer and touch sensors are being developed for the hands and stretch receptors for the
tendons to give more realistic proprioceptive information An interface is also being developed
that will allow CRONOS to stream its sensory data as spikes over the network and receive
muscle commands as spikes from the network. This will be similar to the spike streaming

between SIMNOS and SpikeStream that is described in Section 1.2.5.
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1.2.3 SIMNOS Virtual Robot

SIMNOS is a model of CRONOS that was created to test Holland’s (2007) theories about the
link between consciousness and internal modeling and to accelerate the development of
controllers for CRONOS. This model was created using physics-based rigid body modeling,
implemented in Ageia PhysX,’ in which the components of objects and surfaces are described in
3D by mathematical expressions in terms of their underlying physics, and the expressions are
solved using extremely fast and efficient numerical techniques. This reliance on physics
guarantees accuracy at all scales, and the efficiency of the computations allows thousands of

complex objects interacting in real time to be modeled on a standard personal computer.

Figure 1.2. SIMNOS virtual robot. The red lines are the virtual muscles; the outlines of spheres with arrows are the
joints. The length of the virtual muscles and the angles of the joints are encoded into spikes and sent to the

SpikeStream neural simulator.

> Ageia PhysX: http://www.ageia.com/developers/api.html.
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The individual components of CRONOS are modeled in SIMNOS using appropriate
sizes and masses, but the shapes were simplified where possible — for example, detailed bone
shapes were approximated by cylinders with the same dimensions and distribution of mass. The
elastic actuators were created using springs of appropriate lengths connected to matching points
on the modeled skeleton, and sufficient damping was added to produce the slight degree of
under-damping seen on CRONOS. The virtual robot’s environment contains rigid bodies that are
either simple geometrical shapes or triangular meshes and new objects can be created using 3D
simulation packages, such as Maya or Blender, and imported into SIMNOS using the
COLLADA format.® In the future it will be possible to add cloth- and fluid-based objects to
SIMNOS’s virtual environment.

The SIMNOS model of CRONOS is convincing at the physical level and displays a
similar quality of movement. The fluidity, load sharing and passive coordination in CRONOS

are also seen in SIMNOS, which presents comparable control problems.

1.2.4 SIMNOS Performance

A simple virtual world was developed to test SIMNOS’s computation time. The simulated scene
was started with random parameters for every muscle and all of the sensory and motor data was
calculated to ensure the maximum computational load. The simulator was then run for 3000 time
steps and at each step a newly created sphere was dropped onto the surface of the table where
the robot was fixed. As the objects fell onto the table and floor they interacted with the robot, the
environment and each other.

The computation times for this virtual world were recorded for a number of different
time step values and plotted in Figure 1.3. These results show that soft real time simulation of

the robot in an environment with 300 objects, with full scene rendering for user output, is

® COLLADA format: www.collada.org.
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possible for time step values greater than 1/50" second and this performance will improve
substantially as more cheap physics processing hardware for the PhysX engine becomes

available.

=
~~
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(>3
251
&
= 3
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8 =
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Figure 1.3. Performance of SIMNOS

1.2.5 Sensory Data and Spike Encoding

The sensory data generated by SIMNOS includes 25 Euler angle values that monitor the relative
rotations of thorax-pelvis and head-thorax and every degree of freedom in each hand, arm and
shoulder complex.7 The robot is equipped with 41 muscles and the current length is available for
each muscle, together with the control values that were issued to it: a total of 164 values per time
step.8 The virtual robot is configurable to have either one or two eyes, which provide a

continuous visual stream from the virtual environment.

7 These angles are indicated in Figure 1.2 by the positions of the arrows within the outlined spheres.

¥ The muscles are shown as red lines in Figure 1.2.
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To interact with the SpikeStream simulator Richard Newcombe developed a simple
model to convert the real valued sensor data into a time varying spike train. Current theories of
neural coding fall under either rate or temporal encoding schemes (Bialek et al. 1991, Shadlen
and Newsome 1994) and this model utilizes a hybrid, spatially distributed, average rate encoding
method. This spans the range of a real valued variable with a set of N broadly tuned ‘receptors’.
Each receptor, n € {0..N}, is modelled with a normalised Gaussian with mean x, and variance
o.> (1.1) (1.2), with the values of i, computed to equally divide the variable range with a

receptor mean at the minimum and maximum of the range.

(1.1)

(1.2)

Given a real valued variable at time ¢, (v, € [0..1]), the spiking output of each receptor
(rn € {0,1}) 1s computed based on the probability, p(n, v,) of that receptor firing (equations 1.3
and 1.4), where c is a scaling factor used to control the maximum firing rate of a receptor and
rand is drawn from a uniform distribution. The variance of a receptor is chosen to ensure that

p(n, v;) = 1 when u, = v, with all other receptors having negligible probability.

rn(t)z{; i plnve)>k (1.3)
b (1.4)

p(n,vt) =e k = c - rand [0,1]

Given N spike trains the conversion back to a real value is performed by taking the

average normalised firing rate fr,(f) for the current time step ¢ within a given window of w
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previous simulation steps for each of the N spiking signals. The approximated real value at this

time, v, (1) , is then the sum of the receptor means weighted by the firing probability (equations

1.5 and 1.6).

2 (i)
fir (1= (1.5)
w

\7” (f):nezNﬂn‘f”n(t) (1.6)

Such a spatially distributed rate encoding provides resilience to noisy signals, with the
benefit that increased resolution in spiking representation can be achieved without altering the
rate of firing of an individual neuron. The same sensory data scheme is being applied to the
CRONOS hardware robot so that the two systems will have the same interface. Unfortunately
this was not completed in time for this thesis, and so only the SIMNOS robot was used in this

PhD.

1.3 Thesis Summary

The overall aim of this PhD was to develop a neural network to control the SIMNOS robot
(Chapter 5) and to analyze this network for consciousness (Chapter 7). This analysis required a
consistent interpretation of consciousness (Chapter 2) and I had to develop a way of analyzing
systems for phenomenal states (Chapter 4). A new spiking neural simulator called SpikeStream
was developed to model the neural network (Chapter 6) and a considerable amount of

background research was also carried out (Chapter 3).
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Chapter 2: Consciousness

Machine consciousness is a relatively new research area that is highly cross-disciplinary and
takes elements from computer science, philosophy, neuroscience and experimental psychology.
Although this thesis is primarily about computer science, a significant obstacle to progress in
research on consciousness is the large number of conflicting theories and there is a general lack
of consensus about what is meant by consciousness. These problems are highlighted by
Metzinger (2003), who claims that consciousness is in a pre-paradigmatic state,” and Coward and
Sun (2007, p. 947) argue that our understanding of consciousness suffers from “considerable
meta-theoretical confusion”. In order to develop a systematic way of analyzing machines for
consciousness, it was necessary to carry out some philosophical work to clarify the concept of
consciousness and outline a framework for its scientific study, which is used in the analysis work
in later chapters. This examination of consciousness uses the neurophenomenological approach
put forward by Varela (1996), in which phenomenological methods are used to shed light on
work in the physical sciences.

The first part of this chapter develops an interpretation of consciousness that
distinguishes between the phenomenal world of our experiences and the physical world
described by science. This distinction between the phenomenal and the physical leads to a
definition of consciousness that is compared with other definitions and linked to a correlates-
based approach, which is becoming increasingly popular through research on the neural
correlates of consciousness. The correlates of consciousness are examined in more detail and two
types of potential correlates of consciousness (PCCs) are identified. Type I PCCs are behaviour-
neutral, which makes it makes it impossible to prove their connection with consciousness
empirically, whereas type II PCCs do affect behaviour and it is possible to establish if they are

systematically linked to conscious states. This type I/ II distinction is used to classify different

? See the quotation at the beginning of this chapter.
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theories of consciousness and it plays an important role in the approach to synthetic
phenomenology that is developed in Chapter 4.

The last part of Chapter 2 sets out three theories of consciousness, which are used to
analyse the network in Chapter 7, and it concludes with a discussion of the relationship between

consciousness and action.

Chapter 3: Machine Consciousness
This chapter provides a context for the work in this thesis by summarizing some of the previous
research on machine consciousness. To provide a more systematic interpretation of this work, the

research on machine consciousness is divided into four different areas:
e MCI. Machines with the external behaviour associated with consciousness.
e MC2. Machines with the cognitive characteristics associated with consciousness.

e MC(C3. Machines with an architecture that is claimed to be a cause or correlate of human

consciousness.

® MC4. Phenomenally conscious machines.

In the first part of Chapter 3 this classification is used to examine the relationship between
machine consciousness and other disciplines, and to interpret some of the criticisms that have
been raised against work in this area. The central part of this chapter covers some of previous
work on machine consciousness and the final part discusses the ethical issues surrounding this

type of research and looks at the potential benefits.

Chapter 4: Synthetic Phenomenology
A systematic method for measuring the consciousness of an artificial system is essential if
researchers want to prove that they have created a conscious machine, and feedback about the

consciousness of a system is also useful if one wants to extend or enhance its consciousness.
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Whilst it is reasonably easy to see how the behaviour, cognitive characteristics and architecture
associated with consciousness can be identified using standard techniques, it is much harder to
see how phenomenal consciousness can be measured. With humans, the presence of phenomenal
states is generally established through verbal communication, but most of the systems that have
been developed as part of research on machine consciousness are only capable of non-verbal
behaviours. Since relatively little work had been carried out in this area, new techniques had to
be created to identify and describe the phenomenal states of the artificial neural network that was
developed by this thesis.

The correlates of consciousness can only be used to decide whether a machine is
conscious when scientific experiments have identified a list of the necessary and sufficient
correlates, and Chapter 2 argues that type I potential correlates of consciousness cannot be
empirically separated out. To address this problem, Chapter 4 outlines an ordinal machine
consciousness (OMC) scale that models the contribution that a system’s type I correlates make to
our belief that it is capable of phenomenal states. When a system’s type I correlates match those
of the human brain, it is given an OMC rating of one; when we believe that a system is unlikely
to be conscious, its OMC rating is close to zero.

The second half of Chapter 4 develops a new and systematic way of describing artificial
conscious states. This approach formulates precise definitions of mental states and
representational mental states, and suggests how representational mental states can be identified
by exposing the system to different test stimuli and measuring its response. Problems with the
description of representational mental states in human language led to the use of a markup
language for the final phenomenological description, which makes less assumptions about the

common ground between the consciousness of humans and artificial systems.
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Chapter 5: Neural Network

Chapter 5 describes a spiking neural network with 17,544 neurons and 698,625 connections that
controls the eye movements of the SIMNOS virtual robot and uses its ‘imagination’ and
‘emotions’ to decide whether it looks at a red or blue cube. This network was designed to give
SIMNOS the external behaviour associated with consciousness (MC1) using the cognitive
characteristics associated with consciousness (MC2), and it was analyzed for phenomenal states
(MC4) using the methodology set out in Chapter 4. As part of the testing of the network some

visualizations of its ‘imagination’ were recorded and its behaviour was quantitatively measured.

Chapter 6: SpikeStream

Although it might have been easier to use an existing simulator to create the network described
in Chapter 5, none of the available simulators were suitable, either because of the scale of the
network, the type of modelling, or because they would have been difficult to modify to interface
with the SIMNOS virtual robot. This led me to develop a new spiking neural simulator called
SpikeStream, which is based on Delorme and Thorpe’s (2003) SpikeNET architecture. Chapter 6
gives a brief high level summary of the architecture, features and performance of SpikeStream;
much more detailed information is available in the SpikeStream manual, which is included as

Appendix 1 in this thesis.

Chapter 7: Analysis

The final chapter documents the work that was done to establish whether the neural network
created by this project was predicted to be conscious according to Tononi’s (2004), Aleksander’s
(2005) and Metzinger’s (2003) theories. The first stage in this process was the identification of
representational mental states in the network. This was done by injecting noise into the input and
output layers and mutual information was used to identify the parts of the system that responded

to information in the input or output layers. The network was then examined for information
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integration (Tononi and Sporns 2003), which was used to analyze the network according to
Tononi’s theory of consciousness, to support the analysis for Metzinger’s theory of
consciousness and to evaluate the integration between neurons in the network. This analysis for
information integration was a considerable challenge because of a factorial relationship between
the size of the network and the number of calculations that had to be carried out, and a number of
different approximation strategies were used to complete the analysis in a reasonable time. The
final part of the analysis was the generation of files containing a description of the predicted
phenomenology of the network at each time step, and the predicted distribution of consciousness
was plotted for Tononi’s, Aleksander’s and Metzinger’s theories. These results showed that
different parts of the network were predicted to be conscious according to the three theories, but
it was not possible to predict the absolute amount of consciousness because the measures had not

been calibrated on normal waking human subjects.

Appendix 1: SpikeStream
Appendix 1 is a manual documenting the installation and features of SpikeStream. This manual

was included with the SpikeStream 0.1 release.

Appendix 2: Network Analyzer
This appendix summarizes the main features of the Network Analyzer software, which was

developed for the analysis part of this thesis.

Appendix 3: Seed and Group Analyses
This appendix presents the detailed results from the seed and group information integration

analyses.

Appendix 4: Gamez Publications Related to Machine Consciousness

A list of publications by David Gamez that are connected to the work in this thesis.
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1.4 Supporting Materials

This thesis is accompanied by a number of supplementary materials, which are available on CD

and at www.davidgamez.eu/mc-thesis/. These include:
e A copy of the thesis in Adobe’s .pdf format.
e A website implementing the OMC scale.
e Java code for the OMC scale.
e SpikeStream code.
e SpikeStream source code documentation.
e Network Analyzer code.
e Results from the representational mental states analysis in XML format.
e Results from the validation on Tononi and Sporns’ test networks in XML format.
e Results from the information integration analysis in XML format.
¢ The neural network developed by the project in SpikeStream format.
e Recordings of the network in SpikeStream format.
e Videos of the network.

e The final XML description of the synthetic phenomenology of the network.

These supporting materials are constructed as a website, which can be launched by double

clicking the index.html file at the root directory of the CD.
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2 CONSCIOUSNESS

2.1 Introduction

This chapter outlines a theory of consciousness that will be usedftioat this thesis. A
general failure to analyse what we mean by the physicatlwmerception and consciousness has
been a central source of confusion in consciousness research amrrdttparfi of this chapter
spends a substantial amount of time clarifying basic concepts dmyhenomenal and the
physical and linking them to the sources of our knowledge about conscioudress
philosophical approach that is used for this work is influenced byopeenomenology (Varela
1996, Thompson et al. 2005), which combines cognitive science and neuroscidnce w
systematic analysis of human experience influenced by Contirgntatophy — for example,
the work of Husserl (1960). Although this approach might occasiosallynd naive, it is a
necessary first step if we want to get clearer about whatand cannot be scientifically
established about consciousness. Some of this material is alsodcov&a@amez (2007c, pp. 25-
87) and it maps onto Metzinger's (2000) distinction between phenomenathaacktical
knowledge.

The first section in this chapter is a phenomenological exammafi the relationship
between the phenomenal and the physical, which is used to develop @aefihdonsciousness
in Section 2.3. This is compared with some of the previous definitioishéhee been put
forward and Section 2.4 examines and rejects popular metaphysicatiesheabout
consciousness, such as dualism, epiphenomenalism and physicalism, inofasotorrelates-
based approach, which is explored in Section 2.5. A close reading lafaihechip replacement
experiment is used to show that we will never be able to depauh some of the potential

correlates of consciousness empirically, which leads to a distingetween type | and type I



[ 17 ]

correlates of consciousness. Section 2.6 then covers the three tigperiés of consciousness
that have been selected to design and analyze a neural netvibr& thesis. The final part of
this chapter develops a preliminary interpretation of the oglsiiip between consciousness and

action.

2.2 The Phenomenal and the Physical

A person who grew up and lives in a certain limiggt/ironment has time and again encountered badies
fairly constant size and shape, colour, taste,iyrand so on. Under the influence of his environtrend the
power of association he has become accustomedcdotlie same sensations combined in one place and
moment. Through habit and instinct, he presupptisigsconstant conjunction which becomes an importan
condition of his biological welfare. The constanhjunctions crowded into one place and time thastrhave
served for the idea of absolute constancy or sabstare not the only ones. An impelled body betgimaove,
impels another and starts it moving; the contehtmdnclined vessel flow out of it; a releasednstdalls; salt
dissolves in water; a burning body sets anothghglheats metal until it glows and melts, and isoHere too

we meet constant conjunctions, except that themei® scope for spatio-temporal variation.

Mach (1976, p. 203)

2.2.1 The Stream of Experience

Our theoretical studies and scientific experiments take placa colourful moving noisy
spatially and temporally extended stream of experience. Tleianstof experience is the most
real thing that there is: everything that we do is carried out within it.

Within waking life this stream of experience is highly stowed. Some of the most
characteristic structures are stable objects, which typibalve a reasonably consistent set of
properties that can be experienced on multiple occasions. For exarhple] am examining a
machine, | experience the front, turn it around to look at the back, aswl Mthrn it around so

that the front faces me again, | seem to experience thes#mé sensations from the machine

! See Dennett (1992) and Blackmore (2002) for é&isin of this notion of the stream of experience.
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as when | first looked at it. This stability of objects alse@er#s over time: | speak abousiagle
machine rusting because | can allow a subset of the macluraperties to change without
thinking that a completely different machine has appeared in &@bmbe. Whilst objects in
waking life typically exhibit this kind of stability, objects dreams or hallucinatory states are
much less stable, and it is harder to return to the same view of an object oeteepelnanges in
a single object over time.

The stability of objects leads us to speak about regsistencavhen they are not under
direct observation. Although I am not currently experiencing my mdteyldiis still out there in
the garage and | can experience it again by going into thgegaral taking off its cover. The
difference between objects that we are currently perceividgobjects that are not currently
being perceived by anyone is described by Lehar (2003) usingédtaphor of a ‘bubble’ of
perception that we ‘carry around’ with us, within which only a sub&é¢he world’s objects
appear. Although objects appess three-dimensional within this bubble of perception, | only
experience part of them at any one time. From one position, | erperithe outside of a
cardboard box, but not the whole box, and | have to move relative to the brgerience more
of its properties. Instead of simply saying that the box isethetalk aboutseeingthe box to
indicate that | ancurrently experiencing the box, that the boxaghin my bubble of perception.

This interpretation of perception can be further analysed aneibrdown. For example,
my visual perception is strongly linked to my eyes. In the stabkdvef waking life, the set of
objects within my bubble of visual perception can be altered byriogveny eyes or by
damaging them in some way. The same is true of my ears abdlsbie of auditory perception
and my body and my bubble of somatic perception. In general, alttengensory parts of my
body alters the contents of my bubble of perception; it changes thet shdisis ‘extracted’ from
the totality of possible perceptions. This is a purely empiteervation and in a different

world it could turn out that covering my big toe reduced the set ottsbyathin my bubble of
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visual perception. However, in this world, repeated experiments hawa ghat it is the eyes
that are important for this. An alternative interpretation wouldhae it is the world that is
changing when | cover my eyes, and not my bubble of perception. Howewven | turn my

head | continue to see the same objects with my other eye, anattsbute the change to my
perception and not to the world itself.

The states of my bubble of perception are also strongly codehatk the state of my
brain. When | hit my head, the waking world is overlaid with bright goaitlight, damaging
parts of my brain reduces my bubble of perception in different wayd my bubble of
perception can be altered by injecting or ingesting chemibat are circulated by my blood to
my brain? These can change the colours, sounds and sensations in my bubble ofoperegpt
they can even destroy the stability of my waking experieangeely and make them similar to a
dream. This correlation between perceptual changes and theioraih logically necessary in
any way — for example, it might have turned out that hitting aomay finger produced bright
points of light. However, in this world, the strong correlations batweg bubble of perception
and the states of my senses and brain suggest that without my aeddwain | would not have
a bubble of perception at &ll.

As | move around | come across other objects that look the same and have a
similar brain and body. These objects behave in a similar wayyself and speak about other
objects in a similar way. The verbal reports of these humastisbguggest that for most of the
time they perceive different parts of the world that is eepeed by me. When the senses or
brains of these other people are damaged or altered by chenhiealserbal reports change in
the same way that mine changed under similar circumstancese Thanges have no effect on

the objects within my own bubble of perception, which gives me fuahidence for my belief

2 Chemicals that do not reach my brain do not hayesdfect.

% The possession of senses and a brain might besssyefor a bubble of perception, but they are sufficient
because some states of my senses and brain, sdeb@sleep, are not associated with perceptiah. at
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that changes to my brain do not induce changes in other objects. Some'spbapbles of
perception contain objects or properties of objects that are notyeetdey anyone else. Under
these circumstances it becomes a matter of debate and conabostiswhich objects and

properties are artefacts of people’s bubbles of percebtion.

2.2.2 The Physical World

The stream of experience is structured in subtle ways #matooly be identified through

systematic investigations. These regularities are oftenaegal by hypothesizing invisible

physical entities that have effects on the stream of experience. AsnsgSic measurements
confirm the regularities, the physical theories gain acceptamdeheir hypothesized entities are
believed to be part of the world, even though they do not dirapiear within the stream of

experience. To make this point clearer | will give a couple of examples.

A classic example of a physical theory is the atomic pnétation of matter, which
claims that large scale changes in the stream of experiem@@ased by interactions between
tiny bodies. By hypothesising that gases consist of a large muafbmoving molecules,
Bernoulli (1738) developed the kinetic theory of gases, which desd¢rdvepressure is caused
by the impact of molecules on the sides of a container andHedisto the kinetic energy of the
molecules. Although molecules had not been observed when the thepputviorward, their
existence became accepted over time because of the theory’prgdadions. More recently we
have developed ways of visualising individual molecules, atoms andlgari for example, the
scanning tunnelling microscope and bubble chamber. These techniques use arness
elaborate apparatus to construct representations within thenstvéaexperience that are

interpreted as the effects of these patrticles.

“ Children, mystics and madmen all experience narsensual objects within their bubbles of perceptiee
Gamez (2007c, pp. 145-193) for a detailed discussio
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A second example of a physical theory is Newton’s interpogtaif gravity. To make
more accurate predictions about the movement of objects relatiihe Earth, Newton
hypothesized an invisible force that attracts remote bodiesmBigaitude of this gravitational
force is given by Newton’s equations, which can be used to cadhlatacceleration of objects
towards the Earth and to make reasonably accurate predictions laoub\tement of planetary
bodies. Newton’s theory of gravity was very controversial wherag put forward and Newton
himself had no idea how one body could exert a force on another ovearcdis‘l have not
been able to discover the cause of those properties from the phenomeéniaframe no
hypotheses” (quoted from Gjertsen (1986, p. 240)). Over time Newtbwe'sryt gained
acceptance because of the accuracy of its predictions and peaghlaltyr came to believe that
the physical world was permeated by an invisible gravitatiomaef More recently, general
relativity’s claims about the effect of matter on the curvatairour-dimensional spacetime are
no easier to imagine, and these counterintuitive claims aretakey seriously because of their
accurate predictions.

Almost every aspect of the stream of experience has beetterpreted by modern
science as forces, particles or waves that affect tharswéaxperience when they are within a
certain frequency range (sound and light), of a certain chenuogbasition (smell and taste) or
when they collide with the human body (touch). These appearances @dsemblehe original
forces, particles or waves in any way — light does not look ligbadon; sound does not sound
like a wave. Our scientific models of physical reality enaateurate predictions to be made
about the transformations of objects in the stream of experiencéheédibrces, particles and
waves that constitute these models are defined mathemataallyhave to be indirectly

measured from within the stream of experience using scientific apparatus.

®> Newton also introduced a notion of mass that ffeint from what we experience as weight in threash of
experience. If a pre-Newtonian person could haseelied to different planets, then they would havebably
said that they were gaining and losing weight,e@athan preserving a constant mass that was &itraget different
gravitational forces.
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2.2.3 The Phenomenal World

The representation of space in the brain does Im@ya use space-in-the-brain to represent spack than
representation of time in the brain does not alwesestime-in-the-brain.

Dennett (1992, p. 131)

When we first encountered the stream of experience, it was melifextive nor subjective: it
was just what was there as the world. However, the developmere ofdtion of a non-
experiential physical world forces us to re-interpret thigasn of experience asphenomenal
world that is different from the physical world. This phenomenal dvizlthe same stream of
experience that we started with, but reinterpretedraprasentatiorof the non-sensory physical
world.

Many people try to limit the phenomenal world to simple sexgeriences, such as red,
the smell of burnt plastic, and so on, and make the assumption thditeetty perceive the
spatial and temporal aspects of the physical woiltle problem with this position is that there
are no scientific or philosophical arguments fesemblancdetween our experiences of space,
time and movement and these qualities in the physical world. Injdat the opposite is
suggested by interpretations of perception put forward by Metzi(R§¥3), Lehar (2003),
Gamez (2007c), Dawkins(1998), Revonsuo (1995) and many others, who claithethma&in
generates a simulation of the physical world, in which spaceg timd colour areall
representations within a completely virtual environnfeAtthough our virtual representations

might have analogues in the physical world, there is no readweliéwe that they resemble the

® This old assumption goes back to Locke (1997), dftinguished between the primary qualities ofufigy
solidity, extension, motion-or-rest and number, chhare something like direct perceptions of quesitof the
physical world, and secondary qualities, such dsucmr smell, which are artefacts produced byseffect of the
primary qualities on the senses.

" This is also supported by Russell's (1927) cldiat pphysical matter is a source of events and owieghing that
we are directly acquainted with. Kant's (19@8jtique of Pure Reasois another version of this position.
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physical world, which has a completely non-sensory nétiiieis suggests that phenomenal
experiences cannot be reduced to simple sensory qualia thaupeemposed on a direct
experience of physical reality. If the phenomenal world igpnéted using a theory of qualia (a
highly debatable point — see Section 2.3.1), thearythingis qualia, including experiential
space, time, movement and size. Since there is no such thing asieapé&yperiencethe
phenomenal world is everything in the stream of experience, and tsécadhtheories of
particles, gravity, and so on, lead us to reinterpret this streaempefrience in relation to an

invisible physical world.

2.2.4 The Physical and Phenomenal Brain

Within the picture that | have presented so far, regularitiethe stream of experience are
explained using scientific theories based on the physical world, ahavauld expect that
scientific theories about consciousness would conform to this model amédsed on the
physical brain, and not on the brain as it appears in the streaxpefience. Before these
scientific explanations can be sought it is essential to get as cleasdsdeyabout the distinction
between the physical and phenomenal brain, which will help with gwskion of the hard

problem of consciousness in Section 24.5.

® This does not amount to scepticism about the physiorld because space in the brain is represenyeaiur
phenomenal image of space. It is just that we caimagine or picture to ourselves what real spacactually
like. This is also different from instrumentalismdaanti-realism because one can be completelystizalibout
scientific descriptions of forces, quarks, elecssoand so on, and yet claim that they can onlydseribed in an

abstract language, and not imagined by human beisgg the virtual phenomenal model associated wieh
brain.

° A more detailed version of this argument can hmébin Gamez (2007c, pp. 71-83).

1% This focus on the brain is not affected by Clanki £halmers’ (1998) suggestion that many cognipikecesses
might be carried out in the environment. Whilst goofi our cognitive processes and even beliefs neagnernal
to our brains, Clark and Chalmers (1998) are catefpoint out that both experiences and consciessare likely
to be determined by the processes inside our bréfielsnans’ (1990) interpretation of projection theds also
consistent with a strong link between the brain @oedsciousness because he claims that consciougess
generated inside the brain and projected out @ft@ the environment. The only people | am awarendb
question a strong link between the brain and consciess are Thompson and Varela (2001), who esgtiah
exclusive focus on theeural correlates of consciousness and claim that “tlegueses crucial for consciousness
cut across brain—body—world divisions, rather thaimg brain-bound neural events.” (Thompson ancha2001,
p. 418).
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The physical brain is part of physical reality: it is congle non-phenomenal and has
never directly appeared in the stream of experience. It comsigt® physical entities that are
deemed by physicists to constitute physical reality, suajuagks, wave-particles, forces, ten-
dimensional superstrings and so on. The physical brain is also defiretdr properties, such
as spatial extension, mass and velocity, which can be defined maditely and must be
carefully distinguished from their phenomenal representations.

The phenomenal brain is the totality of our possible and actual pheabexgreriences
of the brain, including its texture, colour, smell, shape, taste, soundand $he phenomenal
brain also includes phenomenal measurements of the physical braimsstiuh experience of
looking at an fMRI scan, or taking a reading from a thermonweité its bulb inside the brain.
We can remember our phenomenal experiences of the brain and itegmevhen the brain is

not physically present.

2.2.5 Concluding Remarks about the Phenomenal andt  he Physical

This interpretation of the phenomenal and physical gives equal impertarthe phenomenal
and physical worlds and suggests that it is too eaygsomehat the phenomenal world can be
reduced to the physical world - although it is not impossibletthatcould be established by
later work. This understanding of the phenomenal and the physicafitalso with Varela’'s
(1996, p. 347) claim that: “lived, first-hand experience is a prdgdd of phenomena
irreducible to anything else” and it has a lot in common witm&fjan’s (1992) constructive
naturalism and Searle’s (1992) defence of the irreducibility of constess. How this starting
point could be developed into a science of consciousness is discusigdiliim the rest of this
chapter.

A second aspect of the phenomenal and the physical that is worthngpuwn at this

stage is the ontological status of abstract properties, sutiheaslume of the brain or the
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number of red objects in my visual field. Whilst the volume of tlanbis not a physical entity
like a force or particle, it is also not part of my streameqerience in the same way as a yellow
flower or the smell of myrrh. This problem extends to the ontologittlis of language and
mathematics, which are also not straightforwardly phenomenal ysigah entities. Since this
guestion is not particularly relevant to this thesis, it willské aside here and | will use abstract
properties, mathematics and language to describe the phenomenal gpioysioal worlds

without taking a position about their ontological status.

2.3 What is Consciousness?

The distinction between the phenomenal and the physical will nawsdaeto set out a definition
of consciousness that will be employed throughout this thesis. #dtae clarifications of this
definition, it will be compared with some of the other interpretetiof consciousness that have

been put forward.

2.3.1 Definition of Consciousness
The distinction between an invisible physical world and a phenoméealrs of experience
suggests a simple definition of consciousness:

Consciousness is the presence of a phenomenal.world (2.1)

This definition is based on the distinction between phenomenal and phyesadiéy and it
suggests that phenomenal states and consciousness can be seatedclaangeable terms.

Some clarifications of this definition now follow.
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What is the best way speak about the consciousness of X?

There are many different ways of speaking about the conscesugima&t is associated with an

object or person X and since some of these are potentially chigled will endeavour to adhere

to the following general rules throughout this thesis:

Unspecific terms, such as “the red flower”, “the system”, ‘fileéwork”, etc., could
refer either to the phenomenal aspect of X, which | expersitbemy human senses,
or to its underlying physical reality. Most of the time it does matter whether the
physical or the phenomenal aspect of X is being referred to, ircassumed that
phenomenal X corresponds to an underlying physical X, and that patystal X

can affect our stream of experiertée.

Some conscious states might not include a subject or a perspesiveso it is
potentially misleading to claim that X is a phenomenal world. Difficult problems
with spatial perception also make the use of ‘in’ problematee-Gamez (2007c, pp.

25-87) for a discussion.

The approach to consciousness in this thesis is based around rnthécaden of
correlations between the phenomenal and physical worlds (seerS2di), which
may eventually lead to a causal theory of consciousness. Howexiérthis point is
reached it is inappropriate to use phrases like “The consciousnss ausedby

brain state Y” or “The brain state {ves rise td¢he consciousness of X.”

I will be using the word “associated” to express the link betwaonscious states and
X. The person or object X in front of me is an object in my phenonveoiddi and |

can measure the physical aspects of this object. If X makesiple claims about its

1t seems likely that all systems have both phenmhand physical aspects, but | am leaving thisnogitethis
stage. Although it might be thought that some systeould have a completely non-phenomenal characestark
matter machine for example, or perhaps a highlpedised gas — it would still be possible to constplenomenal
representations of these systems, such as a picture
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conscious states or if | make predictions about the conscious atateghen | will
express this by saying “there are conscious stadesciatedwith X” or “there are

phenomenal statessociatedvith X.”

* Once we have an association between phenomenal states and a phérumngsical
X, then we can start to look for correlations between them. phkeifEation of a
correlation between a conscious state and a state of X is edrridal than an
association, and | will use “the consciousnessrelated with X” to refer to a
mathematical or statistical relationship between the consciaissssciated with X

and phenomenal/ physical X.

» Although “The conscious statennectedwith X” might seem to be a plausible
alternative to “associated”, it implies a causal relatroone or both directions, which

assumes too much at this stage.

« “The consciousnesef X", “conscious X" or “X’'s consciousness” will be used as

convenient synonyms for “the consciousness associated with X.”

« “What X is conscious of” will be used as a synonym for “The austef the

consciousness associated with X.”

The only deliberate exception to these rules will be when | grtaieing or paraphrasing the

work of other people.

Definition 2.1 has nothing to do with language

Most of my conscious states have little to do with languageraatiee, although | use language
to reflect on them and communicate them to other people. It mighotrthat consciousness is
constantly correlated with language or self-reflexivity, Ihig ts not something that needs to be
incorporated into the most basic definition of the phenomena that vedtemgpting to study and

explain.
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Phenomenal worlds might be completely different

When | experience a person within my phenomenal world they are surrounded by bbjeats t
part of my phenomenal experience. However, the objects thatdiperaight not be included in
the other person’s world — they could be immersed in a uniform diekdackness or pain, for
example. When we look at a schizophrenic patient, such as Schrebay, thatshe is associated

with a phenomenal world, but this world might be very different from our’8wn.

There is nothing special about qualia

In Section 2.2.3 | argued that there is no fundamental distinction éetlassic qualia, such as
red, and our experience of space, time, movement and number. Thiststiggethe concept of
qualia is either redundant or should be used as a synonym for phenorpamaree in general.
Theories of consciousness apply to the whole phenomenal world, and niot flastcolourful
smelly parts of it. Critical discussions of qualia and th@ndgéard interpretation can be found in

Dennett (1988, 1992) and Churchland (1989).

The concept of consciousness is a new and modern phenomenon

This definition of consciousness helps us to understand why the cafospisciousness is a
relatively new phenomenon. In the discussion of the phenomenal and phgsicaled how the
modern concept of the phenomenal is strongly linked to the physiclal described by science,
which is a recent product of a great deal of conceptual, techcal@nd experimental effort.
Earlier societies lacked this notion of physical reality, smdt is not surprising that the concept
of consciousness is absent from Ancient Greek, Chinese and in thehHagtjuage prior to the
17" Century (Wilkes, 1984, 1988, 1995). Consciousness is a new and modern proldesebec

science is a new and modern phenomenon. The stream of experienceceasiderstood in

12 5ee Schreber (1988) for a description of this avarid Nagel (1974) for a more detailed discussfahis point.
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relation to an invisible world of gods and spirits; now it is integate&s aonsciougpphenomenal

representation of quarks, atoms, superstrings and fbtces.

A single concept of consciousness

Many people, such as Armstrong (1981) and Block (1995), have tried togdish several
different notions of consciousness, whereas Definition 2.1 is based ongla $ype of
consciousness that is present when there is a phenomenal world andwddesethere is not.
States that are claimed to be conscious according to Armstromigimal consciousness or

Block’s access consciousness, for example, are not conscious according titoDé&fifhi

Awareness

It is worth distinguishing the presence of a phenomenal world fronrefagéed concept of
awareness. Although many people link consciousness and awafeinésgossible to interpret
awareness as the presence of active representations in thethmaiare not necessarily
conscious. For example, when | am cycling along a canal and imagimewgnt concert, then |
might be said to have sensory awareness of the canal, althoughnbtaoonscious of it.

Likewise, | might be attributed awareness of the sound of thigeedtor in my kitchen, but |

only become conscious of it when the compressor cuts out. To avoid anesigdithis kind, |

will not use awareness in any technical sense in this thesis.

Consciousness and wakefulness
According to Laureys et. al. (2002, 2004) many patients in a wegetstate can be awake

without being conscious amtisplay a variety of responses to their environment:

13 Many people around today have a different integtien of the stream of experience that is oftersely aligned
with idealism (see Section 2.4.1) and rejects thensific interpretation of physical reality — Titae Buddhism is
one example. There is not space in this thesi®vtercthese other theories in detail and the prinfiacys will be
on the scientific study of consciousness, whiatiasely linked to the Western atheistic viewpoint.

4 For example, th©xford English Dictionaris (1989) third definition of conscious is: “Theas or fact of being
mentally conscious or awaod anything.” (Volume lll, p. 756).
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Patients in a vegetative state usually show reflespontaneous eye opening and breathing. At titne
seem to be awake with their eyes open, sometimesiisf) spontaneous roving eye movements and
occasionally moving trunk or limbs in meaninglessys: At other times they may keep their eyes shdt a
appear to be asleep. They may be aroused by painfubminent stimuli opening their eyes if theg atosed,
increasing their respiratory rate, heart rate atmbd pressure and occasionally grimacing or moving.
Pupillary, corneal, oculocephalic and gag reflexesoften preserved. Vegetative patients can makage of
spontaneous movements including chewing, teetldgmnand swallowing. More distressingly, they caere
show rage, cry, grunt, moan, scream or smile r@astspontaneously or to non-verbal sounds. Theid laad
eyes sometimes, inconsistently, turn fleetinglydode new sounds or sights.

Laureys et al. (2002, p. 178)

Vegetative patients ar@wvakewhen they have their eyes open and vocalise or grimace. These
patients areconsciouswhen they are experiencing a phenomenal world, and Laureys et al.

(2004) suggest some of the clinical signs that can be used to judge when this is.the cas

2.3.2 Comparison with Other Theories of Consciousne  ss

This section compares Definition 2.1 with some of the more inflalerttheories of

consciousness.

What it is like

According to Nagel (1974) an organism is conscious if there isteorgehat it is like tdoethat
organism. However, it is possible (although unlikely) that thezgpaenomenal worlds without
any stable correlation with phenomenal or physical things, and sundetonsciousness in
terms of this association with phenomenal and physical objects is adding too muctotocka

at this stage. Furthermore, Nagel’s claims aboustigectivecharacter of experience suggests a
necessary connection between consciousness and a perspectiVahgdstfsome kind of self is

undoubtedly important for higher organisms, it might not be an essece@lre of
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consciousness and there might be forms of minimal consciousnessethathaut subjectivity —
see, for example, Metzinger’'s minimal notion of consciousness in Section 2.6.4.

Nagel (1974) discusses how we are unable to describe the expsr@#@nmeatures that
are very different from ourselves — for example when wengitéo describe the phenomenology
of a bat. This problem also occurs when we attempt to describ@nisei@usness of artificial
systems, and it is covered in more detail in Section 4.4.2. Nagsistance to various
reductionist theories of consciousness is also very much in linle thi2 approach to

consciousness that is taken in this thesis.

Minimal, perceptual and introspective consciousness.
Armstrong (1981) distinguishes between three types of consciousiessst, called minimal
consciousness, is present when there is mental activity occunrithg imind. When we are in
deep sleep we might have knowledge and beliefs, but there are ne evecturrences going
on, and so we are not minimally conscious. However, a person solving arpriobhis or her
sleep is minimally conscious because thinking is a form of mantadity. Armstrong’s second
type of consciousness is perceptual consciousness, in which weaaieecd what is going on in
our body and environment. Dreaming is minimally conscious, but we only leegeroeptually
conscious when we wake up and perceive the world. Finally Armstrengfids a third type of
consciousness, called introspective consciousness, in which we havatipertike awareness
of the states and activities of our mind. This notion of introspectwsciousness was invoked
to handle cases like ‘unconscious’ driving, in which we are percép@iscious of the road,
but not fully conscious of it because we are thinking about other things.

An initial difficulty with Armstrong’s first two types ofconsciousness’ is that it makes
little sense to call something conscious that takes place whédstare in deep sleep or
‘unconsciously’ driving, and so | will set Armstrong’s notions of mmal and perceptual

consciousness aside in this thesis. A central problem with Arm&rdhgd notion of
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introspective consciousness is that it seems perfectly colieag¢nte could be aware of our own
mental states without any form of consciousness being presensuahdmeta awareness is
likely to be taking place all the time in the brain. For exampien we are driving
‘unconsciously’ and thinking about other things, low level sensory datang passed to the
parts of the brain that identify cars and plan motor actions, anddtieseparts could be said to

be introspectively aware of the lower level data without any consciousnagspbesent.

Higher order thought

Rosenthal (1986) starts by definingreentalstate as a conscious or unconscious state that has
sensory or intentional properties. These mental states areedl&nibe conscious when they are
accompanied by a higher-order thought and mental states without a dtnidbethought are said

to be unconscious. Rosenthal claims that this presence or absenaghef drider thoughts
explains the consciousness or unconsciousness of mental states.

The problem with this account is that it is little more than euge explanation that is
introspectively and empirically unfounded. Rosenthal admits that evareaware of our higher
order thoughts, but claims that this is a necessary featurs diduory. If higher order thoughts
were conscious, then an infinite chain of higher order thoughts would decheemake each of
the previous higher order thoughts conscious. To avoid this problem, Roséainal that the
higher order thoughts are unconscious and only become conscious wherethegampanied
by third order thoughts. Whilst the unconsciousness of higher ordegitsois necessary to
Rosenthal’s theory it does mean that their existence cannotdidistsed through introspection.
Since higher order thought theory can hardly be said to be groum@eadbpirical data about the
brain, it is left as something that ‘explains’ phenomenal conswemsson the basis of something
that is itself completely ungrounded and unexplained.

Rosenthal (1986) argues that one of the benefits of his theory i$ tfl@rs some kind

of explanation of consciousness and “If nothing were more basic tmusonsciousness, there
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would be nothing more basic in terms of which we could explain corseess. All we could do

then is try to make consciousness more comprehensible by eleisiegse of the phenomena in
a variety of different ways.” (p. 352). The position of this thesihat phenomenal experience is
one of the most basic ‘things’ that there is and we needdib @lsense of the phenomena in a

variety of different ways before it we can start to hypothesize about itestaus

Phenomenal and access consciousness.
Block (1995) claims that the word consciousness is used in twadlistiays, which he
identifies as phenomenal consciousness (P-consciousness) and eacss®usness (A-
consciousness). P-consciousness is experience and the experientidigsropa state are “what
it is like” to have that state - for example, we have P-consataies when we hear, see, smell,
taste and have pains. On the other hand, access-conscious statgwesentational and their
content is available as a premise in reasoning and for the tatmmteol of action. Since many
phenomenal contents are atepresentational, this distinction can be expressed by sayinig that
is in virtue of the phenomenal aspect of a state’s content tisaPitonscious, whereas it is in
virtue of a state’s representational content that it is A-consciBlock uses this distinction to
argue against the claim that P-consciousness carries ouiclparfunction, such as high level
reasoning - a hypothesis that is often put forward in connectidn cages of blindsight and
epileptic automatism. Whilst A-consciousness is a functional notiargnBeiousness is not,
although it might be systematically correlated with certain functions.

Block’s separation of phenomenal consciousness from functions at ylsecgihor
information-processing level is entirely in keeping with the dediniof consciousness in this

thesis, which is based on a primary notion of phenomenal expetfedoeever, Block’s notion

15 Other criticisms of higher-order thought theory ¢ found in Gennaro (2004), Aquila (1990), Byth@97) and
Rowlands (2001).

16 However, Section 2.5 will argue that it does natken sense to speak about inaccessibleP-consciousness,
which cannot be established through scientific stigation.
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of accesconsciousness much less convincing and hinges on his careful definition of what
constitutes access to representational states, which enablés ¢ieam that cases of blindsight
and epileptic automatism are not A-conscious. It seems to madie more sense to separate the
notion of a representational state from consciousness altogethéos apdak about conscious
and unconscious representational states — instead of introducing oad seotion of
consciousness to speak about non-phenomenal representational states. ddgokthat A-
consciousness and P-consciousness have been historically confused is roudpbibt this is

not a reason to continue to speak about non-phenomgenatiousstates when unconscious

representational states are much more theoretically tractable.

2.4 Metaphysical Theories of Consciousness

One of the central questions in the philosophical study of consciousagdseen whether the
phenomenal and the physical are two separate realities or s@sstanavhether one can be
reduced to the other. To answer this question a number of metaphystcamies of

consciousness have been put forward.

2.4.1 ldealism and Phenomenology

Both idealism and phenomenology emphasise the phenomenal over phaalibal This type of
theory ranges from Berkeley’s (1988) claim that the conceptavémal substance is incoherent
and ideas are the only reality, to Husserl’s (1960) suggestion ¢hshhauld suspend belief in the
physical world and focus on the description of phenomenal experiencd might eventually
enable us to ground science in phenomenological data. Although thesestlaeriegically
consistent and cannot be disproved, they have not developed a frameworknthaatch
science’s success at prediction, and the hypothesis of a mataglyyreal physical world leads

to a much simpler interpretation of the phenomenal world. For exaihgenuch more useful
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to interpret a stone as a real physical object that can betigated in a variety of different
ways, instead of as a collection of ideas that were put into imaisrby God. For these reasons, |
will set aside idealism and phenomenology in this thesis and ttukeories that accept the

metaphysical reality of the physical world.

2.4.2 Interactionist Dualism

Interactionist dualism is the claim that the phenomenal world second thinking substance,
which is completely distinct from the substance of the physicaldwDescartes 1975, Eccles
1994). As our physical bodies move around in the physical world, ourcghysiains receive
data through the senses and pass it to the thinking substance, vidtee@mes conscious. When
our conscious phenomenal states decide upon an action, instructions sa@ Ipask to the
physical brain, which controls the muscles. Interactionist dualiss first put forward by
Descartes (1975), who suggested that data was passed betevé®o substances through the
pineal gland. The main advantage of interactionist dualism is ithatakes a very clear
distinction between conscious and unconscious representations.

One of the major problems with this theory is that it has gidfatulty explaining the
interaction between the two substances. The pineal gland is now kadwenctosely linked to
the maintenance of circadian rhythms, and no evidence has been fotmel fiypothesis that it
is the central channel of communication between the phenomenal mind aoinysh@l brain. In
fact it is unlikely that there is a single ‘seat of asveess’ anywhere in the brain (Crick and Koch
2003, Edelman and Tononi 2000), and so the dualist has to explain how a gafterg of
neural activation is passed on to a second substance and how the sectantesudasisally
influences the shifting pattern of activation in the brain. Naugtde or testable theory about

how this could take place has ever been put forward.
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A second problem with interactionist dualism is that our greaterrsiasheling of the
brain is making the thinking substance increasingly redundant. At meewe might have felt
that a second substance was needed to explain something as mysteioagination, whereas
we can now attempt to explain it as the offline activation of@gnsrocessing areas (Kossyln
1994, Kreiman et al. 2000). Similarly, we might have thought ttmaking needed a second
substance to explain it, whereas we can now see how this could lénedphs part of our
language-processing and imaginative abilities (Damasio 199%).aw¥ moving towards a
situation in which we will be able to explain all of thumctionsof the physical brain in terms of
neural processes, which will leave nothing for the thinking substamde. This turns the
thinking substance of interactionist dualism into a passive recipiatdta from the parts of the
brain that are the neural correlates of consciousness, witheafirocessing carried out by the
brain’s neural mechanisms. This is basically a version of epipheradisra, which will be

considered next.

2.4.3 Epiphenomenalism

Epiphenomenalism is often put forward as a way of solving the proldenmected with a two-
way interaction between the thinking and extended substance. Since yHieaphvorld is
thought to be causally closed, epiphenomenalism advocates a one wagtioiein which the
phenomenal world ‘sits on top’ of the physical world and recanfesmation from the physical
brain without having any causal influence on it.

This type of theory often emerges from some form of dualistnitatan be argued that
pantheism and Nagel's (1974) ‘something it is like to be somethang’also versions of
epiphenomenalism. Many examples of physicalism are also implicexplicit versions of
epiphenomenalism, since they generally look to the physical world hierirtfformation-

processing carried out by the mind and then seek some extra gudlityction of the brain that
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‘throws up’ passive phenomenal qualia, whose only function is the indicatioamderlying
physical state$” A physicalism that was not epiphenomenal would need to give phenomenal
states a causal role, but this is almost never the casep giysicalism almost always ends up
being epiphenomenal about consciousness.

The central and fatal problem with epiphenomenalism is that ipledely undermines
our ability to talk about phenomenal states. The descriptions of cons@sugreerated by the
physical brain are not causally connected with phenomenal statesoait is impossible for
them to beabout these states. To illustrate this point, consider a situation inhwhiam
consciously perceiving a green apple. In this case, there amadl of causal links from the
world to the activity in my visual cortex and epiphenomenalisnmddhat there are also causal
links from the activity in my visual cortex to a second substancehich the green apple
becomes conscious. However, since the causal links to the second sulostigngo in one
direction, when | say that | am conscious of the green applectiéyain my larynx muscles is
driven entirely by the physical activity in my visual corterdat is completely independent of
whether or not there is a conscious green apple in the second sebdthrsc situation is

illustrated in Figure 2.1.

7 Jackendoff's (1987) theory is close to this posifialthough he does not explicitly embrace theaptegsics of
epiphenomenalism: “The elements of conscious awaserare caused by/ supported by/ projected from
information and processes of the computational nivad (1) are active and (2) have other (as yepexified)
privileged properties.” (p. 23). As Jackendoff geimut, in this interpretation consciousness dagshave any
effect on the world: “Yet another way of looking®teory Il and its corollaries is as a claim thahgciousness is
causally inert This may seem harmless enough until we realizedty consequenc€onsciousness is not good
for anything The only way it can be good for anything is foto have effects, and such possibility has jusnbe
denied. Again, the only construal of ‘Consciousnessgood for purposeX’ within Theory Il is as ‘The
computational states that cause/support/projecsaionsness are good for purposg which does not exactly
have the same ring of victory to it.” (JackenddBZ, p. 26).
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Conscious image in
second substance

Unidirectional

. 520 nm electromagnetic waves
causal link :

Physical apple

"l am conscious
of the apple."

Larynx ""-__‘
Closed causal chain from perception

of apple to speech about it

Figure 2.1. Within epiphenomenalism there is only a one-waysal chain from physical reality to the second

substance, and so our statements about consciguamesompletely independent of our actual consciess

Since there is complete causal dissociation between the coofenis consciousness
and our speech about it, | will continue to state that “I am consoiote apple” regardless of
whether | am actually conscious of an apple, a banana or not condcadiuse@e Figure 2.2). If
conscious experience cannot affect physical reality, then ourgalhymdies have no evidence
for their claim to be conscious: there is simply no way in tvloiar physical bodies could ever

know that there is an epiphenomenal second substance.
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Conscious image in
second substance

Unidirectional
causal link

520 nm electromagnetic waves

Physical apple

"| am conscious
of the apple.”

Larynx

Closed causal chain from perception
of apple to speech about it

Figure 2.2. According to epiphenomenalism, the contents af @ansciousness have no effect on our speech.
Although the apple sense data is transformed intorescious image of a banana, my physical brain ey
continues to state that | am conscious of an ajgplen if | became conscious of this disparity, ludbbe unable to

talk about it because there is no causal infludrare my consciousness to the physical world.

2.4.4 Physicalism

One of the most popular theories about consciousness is that thelg e substance, the
material world described by physics, and consciousness has somébhidg with the

information, processes, functions or structures within this physidetance (Poland 1994, Kim
2005). This material substance is associated with phenomenal wta¢@ it is arranged into
working brains, and not conscious when it is arranged into rocks oschitie advantage of
dualism was that it could easily accommodate properties, suckdagss or the smell of
lavender, within a second substance. In rejecting this, physici@ésras itself with the problem

that phenomenal properties are absent from the world describegsigplHowever we arrange



[ 40 ]

the physical world we will never arrange it into rednessher smell of lavendéf These

difficulties with integrating the physical and phenomenal worlds are distusse

2.4.5 The Easy, Hard and Real Problems of Conscious ness

In 1989 the philosopher Colin McGinn asked thedwihg question: “How can technicolor phenomenology
arise from soggy gray matter?” (1989: 349). Sidentmany authors in the field of consciousnessareke
have quoted this question over and over, like @asiothat in a nutshell conveys a deep and important
theoretical problem. It seems that almost nondeifit discovered the subtle trap inherent in thistioe. The
brain is not grey. The brain is colorless.

Metzinger (2000, p. 1)

Chalmers (1996) put forward a distinction between the ‘easy’ problemptdining how we can
discriminate, integrate information, report mental states, fodest@an, etc., and the hard
problem of explaining how phenomenal experience could arise from physatter. Although
solving the ‘easy’ problem is far from easy, we do at lbase some idea how it can be done.
On the other hand, although many theories have been put forward abouttpeoh#m, it can
be argued that we have no real idea about how to sdfie it.

The hard problem of consciousness generally gains its intuitive flommean exercise in
which we imagine (or perceive) a grey brain, imagine (orgveed the colour red and then try to
think how the colour red could be generated by the grey brain. Shidard problem because
we cannotimagine how the information-processing functions of the brain, for example, could
lead to phenomenal red.

The problem with this attempt to imagine the hard problem of cons®esss that the

physical brain is completely non phenomenal in character and so tke phablem of

18 Although we have no problenorrelating redness with electromagnetic signals of 428,57@ @htl lavenderness
with molecules of Borneol, Geraniol, Linalool, Laniilyl acetate, Linalyl acetate and Cineol.

® There has been extensive discussion in the literain consciousness about whether Chalmers’ hattlgm is
in fact a genuine problem and the different waysvirich it can be tackled. Representative positionthis area
can be found in Goguen and Forman (1995, 1996 aiSi897) and Gray (2004).
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consciousness can only be imagined by smuggling in our phenomenakentgties of the
physical brain and then trying to connect this phenomenal brérawiaradigmatic phenomenal
red ‘quale’. When we think that we are imagining the physical wwddare actually imagining
our phenomenal representation of the physical world. erd problem of consciousness is a
puzzle about how phenomena can cause phenomena, whereza tireblem of consciousness
is about how the phenomenal world is connected with real physicabns which we can
describe scientifically and mathematically, but cannot perceivenagine in any way. This
difference between the hard problem of consciousness and whatallarg the real problem of
consciousness is illustrated in Figure 2.3.

The hard problem of
consciousness is the attempt to
reduce phenomenal experience
to the phenomenal brain. We try
to imagine how one part of the

phenomenal world can be
reduced to another.

s ? e
Phenomenal representation A.'s phenomenal
of A’s brain experience
o) The real problem of . 2
. consciousness is the connection .. H
................ between the colourless physical - {}
world described by science and
phenomenal experience. We -
Particles, forces cannot imagine the connection Particles, forces
between phenomenal and
Wave;s, etc. physical reality. Wav_es, etf:.
forming my forming A.’s
physical brain physical brain
described described
abstractly and abstractly and
mathematically. mathematically.

Figure 2.3. The relationship between the hard and the reallpnobf consciousness. The brain picture on thadeft
my phenomenal representation of person A’s bralive Jurgeon picture on the right is A’'s phenomeeality (the

operation is under local anaesthetic).



[ 42 ]

The hard problem of consciousness attempts to reduce one part of phenaaléggthe colour
red) to another part of phenomenal reality (the phenomenal bragoud3ions of consciousness
often get intuitively or imaginatively stuck on this hard problem cwiwill be never be solved
because intuition and imagination are simply not applicable.

Real scientific problems are solved by creating abstractrigésns of phenomenal
observations and hypothesising forces or other features of theghy®rld that link these
abstract descriptions with one other. In this respect, the reblepn of consciousness is no
different from any other scientific theory since we have phenonadsarvations of brains and
phenomenal observations of our experiences and science can look forittegudatween them,
which we may eventually be able to explain using a theory of mustess. It is relatively easy
to describe the brain because we can use mathematics, physhluslagyg to precisely specify
its physical aspects. Precise descriptions of phenomenal atatesuch more of a challenge
because up to this point we have relied on natural human languager fphenomenological
descriptions. Whilst statements like “I am experiencing a reld iol the left hand corner of my
visual field” might be adequate for our current research on muswess, there are good reasons
why a more precise language for phenomenology might be more appdpriaa science of
human consciousness, and a number of arguments are put forward in &dctidry a markup
language, such as XML, is already needed for the description phdm@menology of artificial
systems.

Once we have obtained precise descriptions of the physical and pmeh@tates we
can look for correlations between them and use theories about conscaiosmedke predictions
about the phenomenal states that are associated with the plyasiea and the physical states
that are associated with the phenomenal states. The accanacyfalsifiability of these

predictions (Popper 2002) will depend on the precision of the physicalpledomenal
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descriptions. This scientific approach to the real problem of conscesissellustrated in

Figure 2.4.

Phenomenal experiences
are associated with a
phenomenal brain

» 7
Ly N

Ny /

Phenomenal experiences

Phenomenal brain

Precise Precise
physical phenomenological
description Correlations between the description
- two descriptions lead to
Particles, forces, predictions according to a Phenomenal
neurons etc. in theory of consciousness experiences
the physical <:> described in a
brain described human or markup
abstractly and/ or For example: “Consciousness is language (see
mathematicall y. associated with neurons firing at 40 Hz in Section 4.4)

brain area X” might predict that whenever
there are neurons firing at 40 Hz in brain
area X, the system will have visual
experience P. It might also be possible to
make the reverse prediction that whenever
the system has visual experience P it will
have neurons firing at 40 Hz in area X.

Figure 2.4. First stage in a scientific solution to the rgabblem of consciousness. Precise descriptions are
formulated of the physical brain and the phenomerpkriences associated with the physical braid,thase are
used to identify correlations between the physical phenomenal worlds. The predictions that diffetbeories of

consciousness make about these correlations carbéhexperimentally tested.

If we can discover theories that make good and perhaps perfecattioresiiabout the
relationships between the physical and phenomenal worlds, then we staghto think about
how we couldexplain these predictions. A good example of this move from prediction to
explanation is given by the evolution of our theories about the exparisiases. A key stage in
this work was Boyle’s law, published in 1662, which predicts that tleespre,P, and the

volume,V, of a gas are related to a constant vétuaccording to Equation 2.1:
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PV =k (2.1)

This equation is an empirical observation about the relationship betthee pressure and
volume of a gas, which can be used to predict how a fixed quantitgsoivil respond to a

change in pressure or volume according to Equation 2.2:
P1Vi = PoVa, (2.2)

whereP; andV; are the pressure and volume before the chang®aaddV, are the pressure
and volume after the change. These predictions made by Bogte'svére laterexplainedby
Bernoulli (1738), who showed how Equation 2.1 could be derived by applying Newdws $0
the motion of large numbers of molecules.

In the case of consciousness, if we can establish predatgomships between the
phenomenal and physical descriptions, then we may eventually beocab@ve on to an
explanatiorf’ The form that such an explanation could take will probably only beadear
once we have done a lot more work on the identification of cowekbetween the phenomenal

and physical worlds, which will be covered né&xt.

% Since causal relationships are inherently tempitréd coherent to claim that a phenomenal evenses a later
physical event or a physical event causes a l&engmenal event, but it does not make sense to trge a causal
relationship to explain the co-occurrence of phesmoahand physical events at the same point in tiomdess the
common cause is something that is neither phendmema physical and occurs before the simultaneous
phenomenal and physical events.

2L coward and Sun (2007) put forward a general foom dcientific theories of consciousness. Whilstirthe
interpretation ignores the phenomenal/ physicadlrdison that has been argued to be essentialrfgrsaience of
consciousness, their suggestions about the hiecatatature of scientific theories fit in well withe approach to
synthetic phenomenology put forward in Chapter 4.
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2.5 Correlates of Consciousness

2.5.1 Introduction

The discussion of metaphysical theories of consciousness has shotvrsyttamatic
identification of the correlates of consciousness is an essirdiadtep in the development of a
scientific theory. Many people have started on this work and cumeestigations are mainly
focused on the correlation between consciousness and the human hihabredause people are
paradigmatic examples of conscious systems and because they are tipecek/that can make
verbal reports about their phenomenal states. Although a greaifdealk has been carried out
on the neural correlates of consciousness in recent years @8de98, Metzinger 2000), the
firing of real biological neurons is not sufficient for consciousnes&l might not even be
necessary, and so this section covers a broad spectrum of potem&kdtesrof consciousness
(PCCs)?

The ultimate aim of the search for correlates of conscioudmetss identify a list of
necessary and sufficient conditions that would predict with certathgn a physical system is
associated with phenomenal states and describe the contents oft#tesevhen they occur.
Although our scientific theories would be much simpler if we found ngleicorrelate of
consciousness, it is possible that consciousness is correlated mithi@licity of factors — for
example, a particular combination of temperature and neuraltaativght be necessary. It is
also possible that some factors will be partially correlatéiiclwwould only allow probabilistic
predictions to be made about whether a system is conscious and what it is conscious of.

Adequate knowledge about the correlates of consciousness will emahite predict
phenomenal states from physical states and physical stategpfrenomenal states, but it will

not prove that consciousness is causally dependent upon physicakstate®re than it will

22 Without a commonly agreed definition of consciassiit is impossible to say whether we have idedtiny
correlates of consciousness at this stage. Forghson, | will interpret all correlates of conssoess apotential
in this thesis.
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prove that physical states are causally dependent on consciousiess bpen question how
our theories about consciousness will evolve once we have mapped out ¢tetioos between

the phenomenal and physical worlds.

2.5.2 Potential Physical Correlates of Consciousnes s

The human brain is a paradigmatic example of a system agsbuwidgh consciousness, and so
any of its physical attributes are PCCs. None of these potential tesreddikely to be sufficient
for consciousness because it is generally assumed that no conssaggmesent when we are
in deep sleep or a coma when the physical attributes remain gectiarBome examples of

physical PCCs are as follows:

1. Volume of 1.4 litres.

2. Temperature of 310 K.

3. Weight of 1350 g.

4. Created after 1000 BCE.

5. Created through a process of natural selection.

6. Reflects light with a wavelength of 650 rifh.

7. Living neurons assembled from biological amino acids.
8. Haemoglobin.

9. Oxygen.

10. Rate of processing.

3 This assumption may not hold if Zeki's (2003) oatiof micro consciousnesses is correct. In thig s or
more consciousnesses could be associated withsamén deep sleep or coma, which would not be Vgrba
expressed because they are not integrated wittméimeory or vocal systems.

24| am using this as a convenient shorthand forfabethat the brain looks pinkish. In fact almoger non-black
object reflects light of 650 nm to some degree aude care would be needed to formulate an accpiatsical
description of this property of the brain.
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2.5.3 Potential Neural Correlates of Consciousness

Activity in biological neurons has been shown to be strongly cordelaith consciousness and a
large number of experiments have been carried out that have atetopdistinguish between
neural activity that takes place when we are not conscious — in deppsla coma, for example
— and neural activity that is correlated with conscious experience. The egieogisensus is that
the neural correlates of consciousness are likely to be distribuéednany different brain areas
- see, for example, Edelman and Tononi (2000), Crick and Koch (2003) DedraiNaccache
(2001) or Zeki et al. (1998, 2003) - and the coordination between theseragkd be achieved
by synchronization of neural firing (Singer, 2000), NMDA synapddohr, 2000), connections
to thalamic nuclei (Newman et. al.,, 1997) or some combination of timesdanisms. The
distributed neural correlates of the conscious model of our bodiedeaceibed in Melzack
(1992) and Damasio (1995, 1999). Further discussion of the neural corcélatassciousness

can be found in Chalmers (1998), Metzinger (2000) and Noé and Thompson (2004).

2.5.4 Potential Functional and Cognitive Correlates of Consciousness

The human brain can be analysed from the perspective of the lardggemafrfunctions that it
carries out, many of which might be correlated with consciousnésseTrange from the low
level input and output functions of ion channels and neurons, up to highefulesgbns, such
as perception, memory and cross-modal integration. The brain alsescaut a number of
cognitive functions that have been linked to consciousness, such as elmeteloation of a

situation, internal representations of the self, imagination and attention.
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2.5.5 Experimental Determination of the Correlates  of Consciousness

We will focus on the notion of consciousness ashdug contrasting pairs of similar events, where e
conscious but the other is not. The reader’s consdimage of this morning’s breakfast can be catechwith
the same information when it was still in memonyd ainconscious. What is the difference betweenaouns
and unconscious representations of the same tt#ng#arly, what is the difference between the reade
experience of his or her chair immediately aftéirgj down, and the current habituated represemtaif the
feeling of the chair? ... All these cases involve casts between closely comparable conscious and
unconscious events.

These contrasts are like experiments, in the stregewe vary one thing while holding everythingeel
constant, and assess the effect on conscious ameg&xperience.

Baars (1988, pp. 18-19)

To decide which PCCs aextually correlated with consciousness we need to measure the level

of consciousness when the potential correlates are present indivicaral in different
combinations, until we find the set that is systematically tatee with consciousne$s.For
example, if the human brain has attributes W, X, Y and Z, and remgvamgl W has no effect
on the consciousness of the system, but removing either X or Y indiyiduafl and Y together
leaves the system unconscious, then we can conclude that X an@ Yieeessary for
consciousness. However, we can only conclude that X and Su#reientfor consciousness if
the human brain has no other attributes in addition to W, X, Y and Z4night be correlated
with consciousness. For example, if the attribute C was left unetathging the experiments,
then it is possible that X + Y is not sufficient for consciousiaessC has to be included as well.
Some of the problems connected with this experimental processomillbe covered in more

detall.

%It is possible that there is more than one sebafelates of consciousness. For example, neummstreicted with
silicon chemistry and neurons constructed usingarachemistry may both be correlated with consciess.
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Selection of potential correlates

The first step in establishing the correlates of consciousa¢ssEhoose an initial set of potential
correlates for experimentation. Since we know almost nothing aboulinthédetween the
phenomenal and physical worlds, we cannot exclude anything withntertaut we are likely to
make more rapid progress if we start with a list of candglthat are broadly compatible with
the Western scientific outlodR.To begin with, we can exclude potential correlates that ate har
or impossible to test, such as the property of being createdl8fi®@ BCE. However, this still
leaves a potentially infinite number of testable PCCs, whichameonly narrow down using our
intuition about their potential link with consciousness.

A first problem with the use of intuition for this task is that omtuitions about
consciousness are all taken from our phenomenal experiences andeweeter experienced a
direct link between phenomenal and physical reality. However, wawd® a lot of experience of
correlations between our phenomenal experiences and our phenomasakemeents of the
physical world, which can be imagined and intuited. The intuitive exciud factors will have
to be limited to human cases because we have never directlyeexeer animal or machine
consciousness and any ‘observations’ of animal or machine consciousnedsxta extremely
indirect, inferential and based on what we believe about human consciouslliessgh we
cannot reliably intuit whether a stone, for example, is capaliersicious states, we can discard
many of the unique attributes of stones from our initial list oépixdl correlates because it is
likely to be more profitable to start with attributes of humawisich we know to be conscious
already.

A second problem with the use of intuition is that it can vary wiletween people. For
example, some people have an intuition that size is relevant tomasrsess because all of the

conscious systems that they have encountered have been withiaia carge of sizes. This

% 5ee Footnote 13.
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leads to clashes of intuition in which some people are unwilling teveethat a system the size
of the population of China could be conscious, whereas others do attributdéoasnsss to
larger or smaller systems. When clashes of intuition do odcisrgenerally better to leave the
attribute as a PCC so that its validity can be establistiedtsically. In the longer term it is
hoped that our intuitions about consciousness can be grounded by idenhyirggtlarities in

experience that gave rise to them.

Measurement of the physical system

To identify correlations between the physical and phenomenal svaréd need to measure
changes in the physical system. Most of the potential physicetlates can be gauged using
standard weight, volume and chemical measures and we have aramige of ways of
monitoring neural activity in the brain, such as EEG, fMRITRE implanted electrodéd.The
functional and cognitive correlates of consciousness can be méasing psychological tests,
and the functions of particular brain areas can be probed using patiémtbrain damage,
animal models or by applying transcranial magnetic stimula#dh.of these measurement

techniques produce phenomenal representations of different aspects of the phgisith

Measurement of consciousness
Experiments on the PCCs also have to measure whether consciogsasssciated with the
system and, if consciousness is a graded phenomenomyibent of consciousness that is

present. Since consciousness cannot be detected with scientifiomi@sts, its presence is

%" These technologies are in the early stages oflalevent and their low temporal and/ or spatial hetsan limits
the precision with which the neural correlatesarisciousness can be identified.

%8 One potential measurement issue is that we migheé lto measure the systenaapacityfor some functions as
well as the actual exercise of them within the exystFor example, if it is possible to have consgiexperiences
that do not involve imagination, then it could begwed that imagination is not a necessary corretdte
consciousness. However, this does not rule outpthesibility that acapacity for imagination is a necessary
correlate. The latter can only be ruled in or outskeing if there are any conscious (probably bdamaged)
people who lack all capacity for imagination. Araeple might be the amnesiac patients studied bgatés et al.
(2007), who are not only bad at remembering thé pas at imagining new experiences as well.
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established through first person reports in language, first personvaiizes that are
remembered and reported later, or through behaviour that is etestgs the result of conscious
experience — this is the only technique that can be used with angualsas monkeys, which
are trained to respond to a stimulus that is assumed to be corfSdiowsl of these cases, the
presence of consciousness is established thrbelghviour- our own behaviour when we write
down our introspective observations, the verbal behaviour of a reporting sobjeah-verbal
animal or human behaviour.

A first problem with behavioural measures is that they amnaftaccurate, especially
when some form of brain damage is involved. This can occur when peoplepaning
everything in good faith with no intention of deceiving the experimeRiar example patients
with Anton’s syndrome claim to be able to see perfectly whemdhthey are clinically blind
and anosognosia patients will make claims about being able to uselgzga limb, for
example, and confabulate wildly to explain its lack of movemeram@handran and
Blakeslee 1998).

A second issue with the measurement of consciousness through imnwedigtierred
behaviour is that certain types of behaviour could themselves beatesrelf consciousness.
Since some behaviours, such as the statement “I am conscious rightar@wore correlated
with consciousness than anything else that can be varied irpanre&nt, this possibility cannot
be completely ruled out. However, it does seem reasonable to suppas@dhadl report of my
dream was not necessary for the occurrence of the dreanh) Whwvould have experienced
independently of any external behaviour.

A third problem is that the probing of the conscious states migattattie conscious

states themselves, either by distorting our memories of theioassstates or by priming us to

2 See, for example, Logothetis’ (1998) work on theunal correlates of consciousness. In these expatin
macaque monkeys were trained to pull different igve response to different images and Logothett®nmded
from a variety of visual cortical areas in the aaakonkey whilst it performed a binocular rivalrgka
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interpret the situation in a particular way. Furthermore, as Depoiats out in his discussion of
Orwellian and Stalinesque revisions (Dennett, 1992: pp. 101-38), the ordeengrd$ can be
ambiguous at small time scales, and so when we report our consgpargerce of a visual
illusion, for example, there is an ambiguity between a falsmang of something that did not
consciously take place and a correct memory of a false congsiens Dennett (1992) uses this
ambiguity to argue that there is no single Cartesian Theatnich a determinate stream of
consciousness takes place and there are just multiple dratisrafive fragments under constant
revision by multiple brain processes. These multiple drafts egordbed at different times and
places to precipitate different narratives from the subject,Heue tis no single canonical stream
of consciousness.

The most serious problem with a behavioural measure of conscioustieststisimits us
to experiments that change the behaviour of the system. Ik@eriment does not alter the
system’s behaviour between the time of the experiment and theméystleath, then it is
impossible to tell if it has changed the system’s phenomenasst@ihe behaviour-neutral
experiment might have changed the consciousness of the systehis(icase, the attributes
under investigation are necessary and perhaps even sufficiemtrfeciausness), or it might
have had no effect at all on the system’s consciousness (ibatatirare extraneous factors that
should be eliminated from the list of potential correlates), and we have no wedyngf which is
the case. The physical aspects of a system that wereedowerSection 2.5.2 are the most
behaviour-neutral, since size, temperature and material can all beedhahnidst the behaviour is
held constant, which makes it impossible to measure the corrdba&tiween any of these factors
and consciousness. To make this point clearer | will look at anmienqd that is often discussed

in the literature in which part of the brain is replaced by a functionally eqotvaie.
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2.5.6 Brain Chip Replacement

To identify the necessary and sufficient correlates of consciausaet PCC needs to be tested
independently. Consciousness might be correlated with some of th@fisncarried out by the
physical brain and/or with the biological material of the brain, smdie need experiments that
change the material of the brain whilst holding the functions constadt experiments that
change the functions of the brain whilst holding the material aotnsbme way of holding the
functions constant and changing the material is to replace panedsrain by a functionally
equivalent silicon chip. For example, if the replacement of patefateral temporo-occipital
cortex with a functionally equivalent chip caused a person to lmsecousness of movement
information® then we could conclude that the brain’s biological substratetarutidns aréoth
necessary for consciousness. Although this is currently only ahlhexgeriment, people are
working on the development of a silicon hippocampend so it might be possible to carry out
this experiment in the future.

The central problem with this experiment is that the chip caoig exactly the same
functions as the brain area that it is replacing, and so thalbfterctioning of the brain — and
the behaviour of the person - is not altered by the operation. As M888) and Prinz (2003)
point out, neither an external observer nor the person who receivetipheould observe any
effect of the implant on consciousness. An outside observer would tect tiee replaced part
because the function of the lateral temporal-occipital cortexdvstill be carried out by the
chip. The person would continue to report and describe the movement itvdorm@cessed by

affected area, even though there might not be any consciousness ofenbpeasent. From an

% This example is based on a patient studied by &ihlal. (1983, p. 315), who completely lost heiligbto
perceive motion after bilateral cerebral lesiongha lateral temporo-occipital cortex: “She hadfidifity, for
example, in pouring tea or coffee into a cup beedhs fluid appeared to be frozen, like a gladieraddition, she
could not stop pouring at the right time since wlas unable to perceive the movement in the cup (@ut) when
the fluid rose. Furthermore the patient complaiogdifficulties in following a dialogue because stwmuld not see
the movements of the face and, especially, the Imoiuthe speaker.”

31 See http://www.newscientist.com/article.ns?id=B&4
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outside point of view, this would not even seem like a confabulatiomubecdhe visual system
would be working perfectly.

A first-person perspective does not help matters either. Simcehtip is functionally
connected to the rest of the brain in the same way that tmal lEmporal-occipital cortex was
before the operation, the person’s language centres should report phenomesralent in the
same way that they did before, and so they will continue to thinkthlegt are experiencing
movement, even if they have no consciousness of movement. Sealedf966-7) thinks that
the person might fedbrced to say that they are experiencing movement whilst they remain
conscious of the fact that there is no phenomenal movement presentdraiine person was
conscious of this compulsive language behaviour, then they would be ablmdmber and
report it at a later time, which would be a functional changedrsystem that has been excluded
by this experiment. It seems that even a first-person pergpecdinnot be used to decide
whether consciousness is affected by the replacement of biologicedns with a functionally
equivalent chip.

Against this Chalmers (1996) argues that verbal behaviour and conse®usndd be
very tenuously connected if we could lose our conscious experience ofmemvend yet
continue to describe movement using language. The problem with thidiabjés that the
implantation of a chip involves invasive surgery and it is not uncommopefgple with brain
damage to be systematically mistaken about their experieands confabulate to an
extraordinary extent to cover up their deficiency. As was poiatédn the previous section,
people with Anton’s syndrome are blind and yet insist that they sesn perfectly and
hemineglect patients will bluntly assert that a paralysedisrfunctionally normal. Faced with
these cases, it cannot be assumed that it is impossible fobesystematically mistaken about
our phenomenal states. Further criticisms of Chalmers’ arguraanbes found in Van Heuveln

et. al (1998) and Prinz (2003).
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The brain-chip experiment can be applied to part of the brain or nthe brain and in
all cases the system’s behaviour will remain constant. The sagwement applies to other
experiments on the brain’s material, such as a change in teorpeca the use of synthetic
blood to probe the link between haemoglobin and consciou¥nBsgh a change in temperature
and the exchange of real for artificial blood would leave thewhetaof the patient untouched,
and we would be left wondering whether it removed the consciousnessftatiek Ibehaviour
intact or had no effect on consciousness. As Harnad (2003) points oomtr attributions of
consciousness to a system are based on its behaviour, and so sorhathldngd not change the

behaviour cannot be separated out as a correlate of consciousness:

The only way to sort out the relevant and irreléy@operties of the biological brain, insofar asiggousness
is concerned, is by looking at the brain’s beharidinat is the only non-telepathic methodology kalde to
us, because of the other-minds problem. The teiopté to think that ‘correlations’ will somehow ige us:
Use brain scanning to find the areas and activitias covary with conscious states, and those lyélithe
necessary and sufficient conditions of consciousrnBat how did we identify those correlates? Beedhgsy
were correlates of behaviour. To put it another:vien we ask a human being (or a reverse-bioeaggde
robot) ‘do you feel this?’ we believe him when lays (or acts as if) he feels something — not therotvay
round: It is not that we conclude that his behawiguconscious because of the pattern of brairviagtive
conclude that the brain activity is conscious bseaaf the behaviour.

Harnad (2003, p. 74)

If some PCCs cannot be ruled in or out, thenwill never be able to identify a list of
necessary and sufficient correlates of consciousness and we willogeable to tell forcertain
whether a system is associated with phenomenal stBites distinction between correlates of
consciousness that can and cannot be separated out will now be fedmadiza distinction

between type | and type Il correlates of consciousness. TYPE$ Are behaviour neutral and so

%2 The temperature change would have to be carriedmuhat it did not affect the functionality ofettbrain or
allowed the same functionality to take place owesger time scales. The synthetic blood would haveet one of
the varieties that was not based on haemoglobin.
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their link with consciousness cannot be experimentally tested; ItyP&€Cs do affect the
behaviour of the system and their impact on consciousness can be measured.ifdtisrdistll
now be discussed in more detail and it will used to address questiang the potential

consciousness of non-biological systems in Chapter 4.

2.5.7 Type | Potential Correlates of Consciousness

Type | PCCs are either behaviour-neutral or they cannot be ssp&n@h the behaviour that is
used to measure consciousness in a system. Their key chatiactertbat no experimental
measure of their connection with consciousness can be devised ortedgitemny PCCs are
type | because they can be changed independently of the fungiopatties of the system. The
brain-chip replacement experiment illustrates how this is wuehle material substance of the
brain and the rest of the physical PCCs in Section 2.5.2 argall s well. The second class of
type | PCCs is linked to our ability to remember and/or report phenal experiences. A
change to the system that eliminates its ability to exptreghenomenal experiences or prevents
it from remembering them for later expression cannot be usedstofdr correlations with
consciousness because it destroys the measuring instrumerst tleaded for the experiments.
Memory and vocalisation/ behaviour can be removed individually — for @eamm short term
memory loss patients or REM sleep - but if both are lost together, then we lceng@omeasure
consciousness in the system. For example, if Zeki's (2003) notion ob-coasciousness is
correct, there could be consciousness in deep sleep and coma, winchlmanemembered or
reported because key brain areas are inactive or damaged. @pestsuthat some forms of
global integration and binding might also be type | PCCs: if tleem® integration between the

visual cortex and other parts of the brain, then there will be no seporhemories of visual
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experience. The loss of integration could have eradicated visual @osisess from the system

or it could have eliminated the system’s ability to remember and report esprdiencé’

2.5.8 Type Il Potential Correlates of Consciousness

Type Il PCCs can be separated out using behaviour and there is rapavighl the parts of the
system that are used for measuring or reporting consciousness.ayyge 1|l PCC is removed
or altered, the system’s reports of conscious states canech@actgyity in particular brain areas
is a type Il correlate because we can vary this actikityuigh transcranial magnetic stimulation
or observe brain damaged patients and measure the change in conssitusgh verbal or
other behaviour. Functional correlates also fall into this catelgecause it is conceivable that
we could disable a person’s capacity for imagination or emotiorex@mple, and then probe

their conscious states.

2.6 Three Theories of Consciousness

2.6.1 Introduction
The distinction between type | and type Il PCCs can be applied to theories aboidusmess:

» Type | theories of consciousness cannot be experimentally validateer because they
are based on type | correlates or because they are metaphiaiements of belief about
the world that can never be tested. This type of theory is esbeatma priori statement
of belief about the world that sets out a framework for interpoetand is completely un-

or pre-scientific in character.

» Type Il theories of consciousnessn be empirically verified through experiments because

they are based on type Il PC¥s.

¥t is even conceivable that we are conscious vaeaml, but unable to produce any form of behavicaugiut.
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It would be an impossible task to examine all type Il theoniethis thesis, and | have
decided to focus on Tononi’'s (2004) information integration theory of conscesjsne
Aleksander’s (2005) axioms and Metzinger's (2003) constraints, whithb&viused to make
predictions about the consciousness of the neural network that isbedsari Chapter &
Tononi’s information integration theory of consciousness was chosen becaisenumerical
method that can be used to automatically make predictions about tr@oasnparts of an
artificial neural network. Aleksander’s (2005) axiomatic thewag selected because it has been
influential within the machine consciousness community and it provid@sealink between
cognitive mechanisms and phenomenal consciousness. Metzinger's (2088)aiots were
chosen because they are comprehensively worked out at the phenometiahdliaod neural
levels and three of his constraints can be used to define a minohah of consciousness.
Taken together, these three theories cover the cognitive chetizdeof consciousness and
some of its potential neural correlates, and it is fairlarcleow they could be used to analyse a
system for consciousness. Although | am focusing on these thregesheothis thesis, the
approach to machine consciousness that | am developing is quitelgamtrean easily be
extended to other type Il theories.

The rest of this section gives an overview of Tononi's, Aleksanderts Metzinger’s
theories of consciousness, which will be used to demonstrate howedgieedictions can be
made about the consciousness of a system using different thémi€sick and Koch (2000)
point out, a comparison between predictions and empirical measuremdéngventually

determine which theories are accepted and rejected by science:

3 All theories about consciousness operate withiftasnework of assumptions that & priori at some level.
However, type | theories of consciousness will melbe empirically verifiable within the current soiéic
paradigm, whereas it may be possible to test tiyffeebries.

% The most serious omission is global workspacerthé®aars 1988), which has been influential in agsk on
consciousness and machine consciousness. An oweo¥imachine consciousness work in this area cafoted
in Section 3.5.6.
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.. while gedanken-experiments are useful deviceggémerating new ideas or suggesting difficultieshwit
existing ideas, they do not lead, in general, tsttworthy conclusions. The problem is one that khde
approached scientifically, not logically. That &)y theoretical scheme should be pitted againktast one
alternative theory, aneal experiments should be designed to choose between th

Crick and Koch (2000, p. 103)

In this thesis, Tononi’'s, Aleksander’'s and Metzinger’'s theoriedbeisg used to demonstrate
how detailed predictions can be made about the consciousness of g aystemthe future it is

hoped that it will be possible to compare these detailed predictitms\wystem’s reports about
consciousness. For this purpose only minor improvements or criticismseaessary and no
attempt will be made to integrate the three theories togethter put forward a new theory of

consciousness.

2.6.2 Information Integration

The theory of information integration was developed by Tononi and Sporns @@d&)ements
of it are also covered in Edelman and Tononi (2000). Information intexgriat measured using
the valued, which is the amount of causally effective information that camtegrated across
the informational weakest link of a group of elements. The informatitegration theory of
consciousness is the claim that the capacity of a systentegrate information is correlated
with its amount of consciousness and the quality of consciousness in differsrafghe system
is determined by the informational relationships (Tononi 2004). To kestlihk between
information integration and consciousness Tononi and Sporns (2003) and Tononi (2004) evolve
neural networks with different values @fand showed how they are structured in a similar way
to the parts of the brain that are correlated with consciousness.

To measure the information integrated by a subset of elementse Subset is divided
into two parts, A and B. A is then put into a state of maximum en(EpP"*) and the entropy

of B is measured. In neural terms, this involves trying oupe@disible combinations of firing
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patterns as outputs from A, and measuring the differentiation dirihg patterns produced in
B. Theeffective informatior{El) between A and B is a measure of the entropy or infoomati

shared between them, which is given in Equation 2.3:
El(A—B) = MI(A"MAX; B), (2.3)
where MI(A; B) is given by:
MI(A; B) = H(A) + H(B) — H(AB). (2.4)

Since A has effectively been substituted by independent noise sdteresare no causal effects
of B on A, and so the entropy shared by A and B is due to the ceffisals of A on B.
EI(A—B) also measures all possible effects of A on B and -EIB) and EI(B~A) are in
general not symmetrical. The value of E¥/) will be high if the connections between A and
B are strong and specialized, so that different outputs from A praliffiesent firing patterns in
B. On the other hand, EIGAB) will be low if different outputs from A produce scarce ef$ear
if the effect is always the same.

The next stage in the measurement of effective informatiothesrepetition of the
procedure in the opposite direction by putting B into a state ofrmusmientropy and measuring
its effect on A, giving EI(B~A). For a given bipartition of the subset S into A and B, the

effective information between the two halves is indicated by Equation 2.5:
El(A=B) = EI(A—B) + EI(B—A). (2.5)

The amount of information that can be integrated by a subset isditmy the bipartition
in which EI(A= B) reaches a minimum, and to calculate thisimum information bipartition
the analysis is run on every possible bipartition. Since €l(A Bpimded by the maximum
information available to A or B, El B) has to be normalised BY*HA<B) when the

effective information of each bipartition is compared (Equation 2.6).
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HY** (A=B) = min{H"*(A); HM*(B)}, (2.6)

Theinformation integrationfor subset S, o®(S), is the non-normalised value of E4A B) for
the minimum information bipartition.

Tononi and Sporns (2003) define a complex as a part of the systei® tiot included in
a larger part with a high@p. To identify the complexes it is necessary to consider everybp®ss
subset S om elements out of the elements of the system starting witl+ 2 and finishing with
m=n. For each subse&® is calculated and the subsets that are included in a larget sutise
higher ® are discarded, leaving a list of complexes witk O that are not included within a
larger subset with greatdr. Themain complexs then defined as the one that has the maximum
value of®, and Tononi (2004) claims that this main complex is the conscious ghg system.

To substantiate his link betweeh and consciousness, Tononi (2004) compares different
network architectures with structures in the brain and shows howc¢heeatures associated
with high ® map onto circuits in the brain that are associated with conscisishee details of
the algorithm that was used to calculabe are given in Section 7.4.2 along with some
optimisations that were developed for large networks.

Information integration is a type Il theory because it mak&salée predictions about the
link between consciousness and h@yhFor example, subjects should only report that they are
conscious of information that is held in the main complex and it nbiglttossible to change the
amount of information integration in animals and measure the effieconsciousness. The main
weakness of Tononi’s approach is that it is based on extrema\ifsaoh networks consisting of
10-20 elements, which makes it a rather speculative interpretatianropits in the brain
consisting of hundreds of millions of neurons. The positive side of thi®agpiis that it links
up with other work on effective connectivity and binding and it is tkpendent on a subjective

interpretation of the system’s constituent parts than other methdds example, to apply
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Tononi and Sporns algorithm we do not have to decide whether a parteyrdarepresents

emotions:®

2.6.3 Aleksander’'s Axioms

Aleksander and Dunmall (2003), Aleksander (2005) and Aleksander and Morton (h@0O&c)
developed an approach to machine consciousness based around five axi@res ¢lzined to
be minimally necessary for consciousness. According to Aleksahders ta preliminary list of
mechanisms that could make a system conscious, which should bel @evisar knowledge of
consciousness develops — a useful starting point that can be usedidedssand develop the
field. These axioms were deduced by Aleksander using intraspeahd he also identifies
neural mechanisms that could implement them in the brain. Each eiibes will now be

covered in more detail.

1. Depiction

Depiction occurs when a system integrates sensory and musct®rpasformation into a
representation of an ‘out there’ world. The key characteristaepfction is that visual or other
perceptual information is integrated with proprioceptive informatmmgive the sensation of
something that isout there which is very different from a photographic representation.
Aleksander claims that this axiom is implemented in the bbgincells that respond to a
particular combination of sensory and muscle information, such asatteslacked neurons
discovered by Galletti and Battaglini (1989). These cells respmrsingall visual stimuli only
when the monkey’'s eyes are pointing in a particular directionhaf rhonkey changes its
direction of gaze, different cells respond to the same visuallsismOther senses exhibit

depiction as well, with touch being the next most depictive, follometearing and then smell

% See Section 7.4.7 for some other criticisms afrim@tion integration.
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and taste, which are hardly depictive at all. Depiction is theé imgrtant axiom and it is a key

mechanism for conscious representation.

2. Imagination.

Imagination occurs when the system recalls parts of the wWwatdare not physically present and
this ability can be used to plan actions by constructing sequerficpsssible sensations.
Imagination is linked to the sustained activation of depictivedipatterns, which is likely to
depend on feedback or re-entrant connections in the brain. Research dnimeegdsy suggests
that the parts of the brain that are used in sensation arsageattin imagination (Kossyln 1994,
Kreiman et al. 2000), with the difference that they can beeaati different combinations, so
that we can imagine things we have never encountered before.diff@ngnt theories have been
put forward about how information in the brain areas involved in perceptianagination is
bound together. Aleksander and Dunmall (2000) claim that this is doresdmciating the
different sensory areas with a single location in muscularespadch unifies them into a single
object that feels out there in the world. The vividness of imaginmatecreases in proportion to
the degree to which the senses are capable of depiction, and sosbwivid imagined sense is
vision, followed by touch and then audition. Smell and taste are almpsessible to imagine or

remember accurately.

3. Attention

Attention refers to the process of selecting what we esipesi in the world and what we think
about in our imagination. Our attention can be attracted automatit@ilgxample when we

hear a loud noise, or we can purposefully select the parts of the tivatlwe depict or imagine.

In the human brain, the superior colliculus is one of the areassthatolved in the selection of

the eye position as part of the process of visual attention.
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4. Volition

The terminology that is used to describe this axiom has shiftedtiove, with Aleksander and
Dunmall (2003) referring to it as “planning”, whereas AleksanddrMorton (2007c) refer to it
as “volition” to distinguish it from rule-based planning processés @xiom refers to the fact
that we are constantly thinking ahead, considering alternatives aigthdevhat to do next. The
neural machinery for this process is the same as that in @kimimce the re-entrant neural
connections that facilitate imagination also enable the networkadve through sequences of
states to plan actions. Volition is conscious when it involves dep@teas and the emotions are

used to select the plan that is to be executed.

5. Emotion

We have feelings, emotions and moods and use them to evaluate platinaed. &ome
emotions, such as pleasure and fear, are hardwired at birth,ashetlfeers develop over the
course of our lives — for example, the feeling of hurt that weeeance when we have been
rebuked. Aleksander expects that the neural firing patternsiatgsbevith emotions will have
distinctive characteristics, which enable them to be associateédperceived and imagined
depictive events. As planning proceeds, predicted states of the vgyler neural activity in the

emotion areas that determine which plan is selected for execution.

Aleksander’s axioms are a clear set of mechanisms tha aseful starting point for
work on machine consciousness. Although | am reluctant to follow Alekséz@s, pp. 33-4)
in claiming an identity between neural activity and conscionsa®ns, | am happy to interpret
the axioms as potential cognitive correlates of consciousness, amdetpret the neural
mechanisms behind the axioms as potential neural correlates aictmmess. Aleksander’s
axioms are a type Il theory because they have been estabiisbedh introspection and it

should be possible to test their correlation with consciousness xdorpée, by finding people
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who lack one or more of the axioms and asking them about their congsipesence. The
axiomatic theory also predicts that people without a link betweearrmsormation and sensory
input should be incapable of depiction, and it might be possible tehisstising lesions in a
monkey. Aleksander’s neural implementation of the axiomatic mechgnisch he calls the

kernel architecture, is summarized in Section 35.1.

2.6.4 Metzinger’'s Constraints

Metzinger (2003) sets out a detailed theory of consciousnesssthHased around eleven

constraints on conscious experience:
1. Global availability
2. Window of presence
3. Integration into a coherent global state
4. Convolved holism
5. Dynamicity
6. Perspectivalness
7. Transparency
8. Offline activation
9. Representation of intensities
10.“Ultrasmoothness”: the homogeneity of simple content

11. Adaptivity

37 A critical discussion of Aleksander’s axioms canfbund in Bringsjord (2007). One of the problerased by
Bringsjord is the lack of formalization of the aris, which is addressed to some extent by the defingiven in
Section 7.6.2.
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These constraints should be met by any fully conscious menta&segpation and Metzinger
(2003) gives detailed descriptions of their neural, functional andpetational correlates.
Metzinger's constraints are all based on type Il correlafesonsciousness because their
phenomenal, functional and neural aspects can be introspectively amoinexypaly measured

in a system. A brief summary of the constraints now foll&tws.

1. Global availability

Phenomenal information is globally available for deliberatelydedi attention, cognitive
reference and control of action. Our attention can be attracteddiyected to any part or aspect
of our conscious mental content and we can react to this content usmligtade of our mental
and bodily capacities. Globally available cognitive processingharacterized by flexibility,
selectivity of content, and a certain degree of autonomy. One ofutiiions of global
availability is to increase the behavioural flexibility of tegstem, enabling many different
modules to react to the same conscious information, and it also suppartiirected behaviour
and the selective control of action. The neural correlates of gésadlability are not clear at
present and form part of the general question about how differeat af the brain are
integrated together. One theory is that large scale integraionediated by the transient
formation of dynamic links through neural synchrony over multiple frequeaads (Varela,
Lachaux, Rodriguez, and Martinerie 2001) and Tononi and Sporns’ (2003) information
integration offers a way of measuring the degree of global integrésee Section 2.6.2). In
contrast to constraints 2-10, global availability is a functional cainstand it is described by

Metzinger as a third-person version of constraint 3.

% Metzinger (2003) also gives an account of the phemal self model and intentional relation. Whitstse are
important aspects of human consciousness, thelesserelevant to this thesis and | will only coletzinger’s
constraints here.
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2. Window of presence

We experience conscious events in a single now within which éemwof things happen
simultaneously. In this now events can be represented as havingmuwatintegrated into
temporal figures, such as a musical tune. Events within the now drawgganisation and
vividness that is lacking from events outside it, and the window of qwess embedded in a
unidirectional flow of events, which join and leave it. This constraisupported by short term
memory, which keeps phenomenal contents active for some time th&estimuli have
disappeared from the receptive field. Functionally this constraudlvies the definition of
windows of simultaneity, so that all physical events regidtengthin each window are
temporally identical. By avoiding the definition of temporal relationthin each window the
fine structure of physical time becomes transparent to thens{sind temporal elements can be
ordered in a sequence. The neural correlates of this constranatavell known, although some
form of recursion will be necessary to sustain past eventzimdert cites P6ppel’'s (1972, 1978,
1985, 1994) theories about how oscillatory phenomena in the brain could proigjakiaternal

rhythm, which could generate the elementary integration units.

3. Integration into a coherent global state

Phenomenal events are bound into a global situational context withih wii@reone person
living in oneworld. Other situations are not phenomenally possible - the phenbwemé and

the phenomenal self amedivisible This constraint also refers to the fact that phenomenal events
are densely coupled: as we interact with the world, the statesge whilst the apparently
seamless integrated character of the overall picture is rpegiseOne function of global
availability is to reduce the ambiguity of the world down torgle compressed representation
and a single consciousness is also most appropriate for a singleMetdinger discusses how

this constraint functions as a stable background for imaginative planhatgcannot be

39 See constraint 7.
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transcended by the system, so that alternative simulated weoalusbe compared with a
representation that is tagged as the actual world and the sgisesmnot get lost in its own
simulations. A global conception of the whole is also necessaryder 6o understand other
objects and events as parts of the whole. The neural correlates of glolzddityaare similar to

those for constraint 1 and Metzinger mentions Flohr's (2000) hypothbsig the role of the
NMDA receptor complex in achieving large scale integration ofoorggactivity. Tononi and

Sporns’ (2003) information integration measure (see section 2.6.2) is also appleable

4. Convolved holism

Phenomenal wholes do not exist as isolated entities, but appeaxibtefhested patterns. We
experience phenomenal wholes — horse, house, person — that are gagsrofiholes — stables,
city, crowd - and can be broken down into smaller wholes that form ghes — legs, body,

head, walls, windows, roof, etc. This constraint functions to integnéormation together into a
unified superstructure and the binding of information at differersecould be achieved using

temporal coherence on different frequency bands, as discussed for constraint 1.

5. Dynamicity

Our conscious life emerges from a series of psychological mertteattare integrated over time
and represented as being in states of presence, duration and ctregare not a succession of
isolated events. Whilst constraint 2 refers to the single nowettists at any point in time, this
constraint refers to the integration of events over longer permmtitahe change in objects over
time - something like a temporal version of convolved holism. The fumaitimechanisms
behind dynamicity constitute and represent the transtemioleraity of objectdor the system,
making information about temporal properties of the world and thensygtsbally available for
the control of action, cognition and guided attention. Metzinger does notangveuggestions

about the neural correlates of this constraint.
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6. Perspectivalness

Phenomenal space is always tied to an individual perspective. Xp&rience things from
somewhereand it is impossible to imagine a way of seeing objectswatd encompass all of
their aspects at once. We are also phenomenologically awaeengfsomeonef being a self in
the act of experiencing the world. From a functional point of viewsgeativalness represents
the limits of the space that we can causally influence andemna system to become the object
of its own attention and self-directed actions. A phenomenal ssfasa necessary precondition
for the possession of a stroegistemicfirst-person perspective and for social cognition. The
neural correlates of this constraint include the networks involveteirrepresentation of our
bodies, the vestibular organ, visceral forms of self-representatttha nuclei involved in the
homeostatic regulation of the internal milieu. Damasio (1995, 1999) lendecond half of
Metzinger (2003) go into the neural correlates of this constnaidetfail. A substantial part of
Metzinger's work is dedicated to understanding more complex forntseophenomenal self

model, which are not covered in this thesis.

7. Transparency

When we look at the world we do not see a series of neural spilstieams of data from our

optic nerves. We simply see the objects around us and this transpaf@ucyepresentations is

due to the attentional unavailability of earlier processitages and our inability to introspect the
vehicle properties of a representation (we see a red flower, antlenoeurons generating the
representation of a red flower). This transparency of our mebntgkent forces us into naive
realism about the world: we see the world and not the means blg whigpresentation of the

world is constructed by our brains. A world cannot be present withaasgarency at some



[ 70 ]

point in the system, and so this constraint forms part of the mimoteon of phenomenal
experiencé?

One of the functions of transparency is to remove complex procdssinghe system
and present the final result in the form of naive realism, lwhicces the system to take it
seriously because it is no longer ‘just a representation’. Orieeofeasons why the brain is
transparent is because it has no senses in it that could presentself as an object — it is
notably without pain receptors, for example. However, this is not @if imough for the
emergence of transparency, since there is no reason whigoukl s10t perceive the incoming
data from the retina, for example, as spiking neuron activityadsté light. Transparency is
fundamental to phenomenal experience, but unfortunately, as Metzinger“abtesst nothing

is known today about the neural basis of phenomenal transparency.” (Metzinger 2003, p. 178).

8. Offline activation

Phenomenal mental content can be active without sensory input, whicksabbént objects to
be recollected or dreamt and it can also be used in planning. Gifiination also makes the
difference between possibility and reality available to tretesy, supports social cognition by
enabling us to simulate other people’s first person perspectives, amihisas the risks
associated with exploratory activity in the world. Offline phenoahstates are characterised by
the fact that they are constructed from sequences of non-sticurhedated states and this lack
of covariance with the environment is an essential feature iofcngsal role. In the human brain
the same neural areas are frequently used for perception asithtdating possible perceptual
and motor situations, and brain areas that reactivate percepgaal auch as the hippocampus,

are important for this constraint as well.

401t is also discussed in Haikonen (2003).



[ 71 ]

9. Representation of intensities

Phenomenal experience has a quantitative dimension: colours canmnvanghtness, some
sounds are louder than others and pain has a variety of differelst [€lies representation of
intensities has the function of guiding the attention of the orgarosstirnuli of maximum
interest and it also reflects the intensity of stimuli ineéhgironment. For example, pain directs
attention to a damaged area, and the higher the pain the morttemtiion is focused on that
area. The neural correlates of this constraint are likehetthe firing rates of the neurons and

the timing of their spikes.

10. “Ultrasmoothness”: the homogeneity of simple content

Unlike the real world, simple phenomenal experiences have ausalests density and are
homogenous at all levels of magnification. There is no internaltstajsio temporal texture and
the graininess of neuron firing is invisible at the phenomenal &, constraint is linked to

transparency because the homogenous atomic nature of simple seostemt could be

generating the transparency of sensory awareness. One ofunicgorial properties of

homogeneity is that it prevents us from introspectively pemgramto the processing stages
underlying the activation of sensory content, which is essentiathirproduction of an

untranscendable reality (constraint 3) and for reducing the congmatatoad. At the neural

level homogeneity might be related to our brains’ limited apaind temporal resolution: we
could only perceive the space between the grains of our neurakeepations if we had a
second, more fine grained, neural mechanism Without this, the dataetigt is just the data

that we get, and we have no access to the spaces or graininess within it.

11. Adaptivity
The adaptivity constraint states that phenomenal mental contehthauescome about through

natural selection. If we want to understand how consciousness caatgiiesdin the course of
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millions of years of biological evolution, we must assume that itsggses a true
teleofunctionalist description. Metzinger claims that this tpedson objective constraint could
affect the ability of artificial systems to experienceoions: “artificial systems as known today
do not possess genuinedynbodied goal representatigngecause they are not ‘evolutionarily
grounded’ — neither their hardware nor their software has developad d&n evolutionary
optimization process.”(Metzinger 2003, p. 199).

One of the ways in which Metzinger argues for this constrantding Davidson’s

Swampman thought experiment:

Lightning strikes a dead tree in a swamp while Baonh is standing nearby. His body is reduced to its
elements, while entirely by coincidence (and outifferent molecules) the tree is turned into hig/gical
replica. This replica, the Swampman, is a phys&al functional isomorph of Davidson; it moves thlink
talks, and argues just as the original Donald Dsoiddid. Obviously, it has precisely the same kirid
phenomenal experience as Donald Davidson, becauseomenal content locally supervenes on the brain
properties of the replica. On the other hand, titentional contents of Swampman’s mental statenatehe
same — for instance, it has many false memorieatat®oown history be they as conscious as they. ag
active phenomenal representations in Swampmania krauld be strongly conscious in terms of the whol
set of constraints listed so far, but they would satisfy the adaptivity constraint, because ttstates would
have the wrong kind of history ... It would enjoy ah; differentiated cognitive version of conscious
experience tied to a first person perspective,itowbuld still be consciousness in a weaker sebseause it
does not satisfy the adaptivity constraint holdiog ordinary biological consciousness. (Metzingé02, p.

206).

The relation of consciousness to its present and past environnusefus for understanding the
relationship between consciousness and action (see Section 2.7). Hdweveonstraint has a
number of serious problems. To begin with, very little of our bodies is the same as wlyenf man
our memories were generated, and so everyone has false diyptaisa memories about their
early history. Secondly, evolutionary arguments linking present sthtdge organism with a

past environment tend to rely on simplistic notions of evolution that egtioe complex
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feedback loops between the organism and its environment and the octmsifgphysics and
chemistry. Third, many parts of the human body and mind evolved fordvéeyent purposes
than they presently serve, and so it is senseless to atempttheir present meaning to their
present or past environment. Finally, I cannot see the benefit ings#yat without this
constraint the consciousness would be weaker, when the phenomenal expesaitéo be the

same in both cases.

Within the framework of his constraints, Metzinger defines ammahinotion of conscious

experience as follows:

The phenomenal presence of a world is the actiwatiba coherent global model of realitgofistraint 3
within a virtual window of presencedgnstraint 3, both of which are transparent in the senseipistduced
(constraint J. The conjunction of satisfiedonstraints 2, 3and 7 yields the most elementary form of
conscious experience conceivable: the presencevairi, of the content of a world-model that canbet
recognizedas a model by the system generating it within its&&ither a rich internal structure nor the
complex texture of subjective time or perspectigab exists at this point. All that such a systenuldio
experience would be the presence of one unifieddwblomogenous and frozen into an internal Nowit as

were. (Metzinger 2003, p. 169).

This suggests that a robot implementing constraints 2, 3 and 7 shoulieespea minimal
phenomenal state that is without the differentiation, subjectivity eognitive capacity of
biological consciousness. In general Metzinger stressesdahstiousness is a matter of degrees
and higher degrees of constraint satisfaction will lead to hidegrees of phenomenality in a

system*!

41 A critical discussion of Metzinger's work can beuhd in Legrand (2005). There is also a certain wamof
overlap between Metzinger’s constraints and Tagl{®2007) discussion of the components of conscersn
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2.7 Consciousness in Action

Suppose someone were thus to see through the baamglicity of this celebrated concept of “fredlivand
put it out of his head altogether, | beg of hinctory his “enlightenment” a step further, and gis out his
head the contrary of this monstrous conceptiorfreEe*will”: | mean “unfree will,” which amounts ta misuse
of cause and effect. ... The “unfree will” is mythojogn real life it is only a matter aftrongandweakwiills.

Nietzsche (1966, p. 29)

There is no question that consciousness is impoftanlanguage, for artistic, mathematical, andestific
reasoning, and for communicating information atmuselves to others.

Koch (2004, p. 234)

2.7.1 Introduction

In this chapter | have kept the physical and phenomenal apart and eaeghas search for
correlations between them. One consequence of this approach isdbas inot make sense to
speak about phenomenal objects carrying out physical functions or gdhylsjects carrying out
phenomenal functions - although phenomenal states might be correlttgzhysical functions.
At the current stage of consciousness research, it is only possitalkk about the relationship
between phenomenal events and phenomenal actions and between physisareVtiysical
actions - with the hope that we will eventually be able to iflersystematic correlations
between the two. This strict separation means that a phenomengl®iwch as the perception of
a red object, will never have to be invokecetplaina physical event, such as the nerve signals
sent to a muscl&

Although the exact mechanisms of physical action are poorly unddisive can
conceive how complete descriptions could be carried out at the phigsiebthat explain how

networks of neurons could control a human body driving a car or carysophisticated

“2 1t must be emphasised that this separation ofataimsins does not imply any separation of subssbetween
the phenomenal and the physical.
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processes of reasoning. Such descriptions would be framed solely thitHanguage of physics
and biology and they would be complete without any mention of consciousneds or
phenomenal aspects of imagination or emotion. These physicalpliessiwould completely
explain the transformations of the physical world, but they wouldeleait the phenomenal
aspect of reality, which has been argued to be at least as amipast the physical. In order to
understand the relationship between consciousness and action at the phelewslense need
to use concepts such as red, imagination and emotion to explain haamweke decisions that
change the stream of experience. This level of explanationgh tess well understood and the
final part of this chapter will take a brief look at some erogir observations about
consciousness and use them to comprehend how we consciously and uncgnsaioysbut
actions.

This section starts with some phenomenological and experimentavatises about
consciousness, which demonstrate that our naive preconceptions aboutitheshgiabetween
consciousness and action are often wrong. Section 2.7.3 then offeratavdetiaissification of
the different aspects of conscious and unconscious action, which is usdevelmp an
interpretation of conscious control and conscious will in sections 2.7.4 and 2.7.5. Finalbn Secti

2.7.6 takes a look at our experience of conscious will.

2.7.2 Observations about Consciousness and Action

This section offers some general observations about consciousresitha used to develop
and support an interpretation of the relationship between consciousness and aceamhisSisna
subsidiary theme in this thesis, | will not be examining thgelaamount of research that has

been carried out in detdfl.Instead, the aim of this section is to offer some broad suppohtefor t

43 Some of the other work in this area is covereé/éynans (1991).
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interpretations of conscious control and conscious will that are psarfdrin sections 2.7.4 and

2.7.5.

Almost all conscious mental statésan become unconscious, but not vice versa

When we are driving a car we can be conscious of the controls amdatthebut we can also
process this information unconsciously if we are thinking about othegstfii However, we
cannot make the processes that regulate our heart beat consciousyevean exert voluntary
control over them with appropriate feedback (Yellin 1986). When wey caut a task
unconsciously it is not clear whether its associated mentekstge structured in the same way

as when the task is carried out consciously.

Unconscious representational mental states can be used to guide action &ndtéar problem
solving

People who suffer from epileptic automatism can perform tasksraplex as diagnosing lung
patients without conscious awareness (Cooney 1979). In our everydayvévegsecute many
complex tasks unconsciously that were learnt when we wengngathem out consciously at an

earlier stage in our lives.

Most of the time we are zombies

This point follows from the last. Most of the time we are aciimgnd responding to the world
unconsciously whilst our consciousness is focussed on something comgiiééebnt. Detailed
discussions of the unconscious control of behaviour can be found in Crick and 208&), (

Koch (2004) and Milner and Goodale (1995).

4 See sections 4.3.2 and 4.3.3 for definitions ofemtal state and a representational mental statefiply to both
natural and artificial systems.

4> This point has been disputed by Searle (1992)ognidennett (1992, p.137), who claims that it issxample of
rolling consciousness with swift memory loss. Thacanscious processing of complex information is
demonstrated by the work on visual masking, whiak $hown that unconscious words or digits can beggsed
at the lexical and semantic levels (Kouider anddaeie 2007).
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Unconscious processing is not good at dealing with new situations

When we encounter a problem with a task that we are exeautswnsciously, we often turn
our attention to the problem and solve it consciously (Baars 1988, Koch 26dérwdod
1982). For example, suppose that an amateur carpenter is hammeaimgilnwhilst thinking
about his wife. If the nail bends, he will probably stop thinking aboutvtiesand consciously
decide either to extract the nail or to straighten it outtin $ihis observation should be qualified
with the fact that many complex problems can be solved unconscioaslgx&mple, part of my
mind is often working on a problem unconsciously and the solution pops into atdy he
spontaneously without any conscious processing. In my case this oplnisair fairly abstract
problems, but dancers, for example, might be capable of solving compu®t problems

unconsciously.

Consciousness and learning
There seems to be a strong link between conscious informatioaspnog and the learning of
new skills, which generally have to be carried out consciouslyrdehey can be initiated and

executed automatically. As Koch explains:

. a zombie agent can be trained to take over theiteed that used to require consciousness. Thaa is
sequence of sensory-motor actions can be stitcbgedther into elaborate motor programs by means of
constant repetition. This occurs when you learn twde a bicycle, sail a boat, dance to rock-esifjclimb
a steep wall, or play a musical instrument. Dutimg learning phase, you are exquisitely attentivthé way
you position and move your hands, fingers, and fe®i closely follow the teacher’s instructiongkedaccount
of the environment, and so on. With enough practicavever, these skills become effortless, the onotif
your body fluid and fast, with no wasted effort. Woarry out the action beyond ego, beyond awareness
without giving any thought as to what has to beedoext. It just comes naturally.

Koch (2004, p. 235)
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Although there is some evidence that we can learn unconsciouslyllaasveensciously - for
example Reber’s (1967) work on the learning of artificial grammahe information that is

acquired in these experiments is fairly basic (see Shanks (2005) for an ovemdiewticisms).

Consciousness is not an all or nothing phenomenon

Each individual has periods of full consciousness and periods of barelyotensgperience.
When | am late for work and waiting for a train | am extrgnoeinscious of the tension inside
me, the situation on the platform, the clock and the possibility timaght get fired. As | travel
back from work and drift in and out of sleep on the train, | am bamigcious at all. When we
are fully conscious we are maximally conscious of the objedtseatentre of our attention and
barely aware of objects at the periphery. For example, camently most conscious of my
laptop in front of me and barely conscious of the street scend®utsi window. It is likely that
minimally conscious brain-damaged patients experience considéeablgnd more intermittent
consciousness than normal people or patients with locked-in syndr@mesyk et al. 2004). It
also seems likely that some animals are phenomenally consciaugsdser degree than a fully
conscious human — see Crook (1983), Baars (2000) and Seth et al. (2005¢uesidis of

animal consciousness.

The time scale of consciousness

Libet's (1982) experiments measured the duration of neural activetainis necessary for
conscious experience. Using electrodes he stimulated the somatgseodex of conscious
subjects with trains of pulses of different frequency, duration arehsiy, and asked the
subjects to report whether they felt any sensations. Libet foundthitbet was a minimum
intensity below which no sensation was elicited, no matter howtlmmgulses were sustained.
Furthermore, when a stimulus was above this intensity threshoddld only elicit a conscious

sensation if it was continued for around 0.5 seconds - pulse trainsrghartehis did not enter
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conscious awareness. Libet concluded from these experiments thainaeadequacy’ for
conscious sensation is only achieved after half a second of contistioudation of the
somatosensory cortex. This suggests that it takes approxintagehguch time to integrate all of
our sensory information into a single coherent conscious experierticgathbe reported. These
timing experiments confirm the observation that we are mostiybzes. On time scales of less
than half a second we react and respond to stimuli unconsciously andchacatiyn Over longer

time scales we build up conscious models, which set the framework for our unconseomss act

Consciousnesses and voluntary action

Libet (1985) carried out an experiment to measure the timingtioeship between our
consciously experienced decisions and the start of the neural thedriesad to voluntary action.
In this experiment subjects were asked to hold out their hamdrihdf them and flex their wrist
whenever they wanted to. At the same time the subjects watebh&atiag spot of light and were
asked to report the location of the spot when they became conscitlusiroflecision to act.
Libet also recorded the readiness potential, which is a slow wegstift in electric potential
that precedes voluntary motor actions and can be detected usimmgdes®n the scalp. In these
experiments, Libet found that the readiness potential precededibtfexts’ experience of a
voluntary decision to act, which suggests that the action of flexiagwrist was initiated

unconsciously, rather than as the result of a conscious detision.

2.7.3 Conscious and Unconscious Action

These empirical observations about consciousness show that in manpstances we react
automatically to the world or unconsciously initiate actions tleahave not consciously decided

to do. To clarify the relationship between consciousness and actiorgnrense of events that

“8 |ibet's timing experiments have generated a gieat of controversy and there is not space to gothe details
here. Many criticisms of the voluntary action exp®mts can be found in the commentary followingdtifl985)
and a fairly comprehensive review can be found am@és (1998).



[ 80

]

constitutes an action has been broken down into the decision that Setemtsion, the initiation

of the action and the sensory feedback from our bodies and the wdnkl agion is carried out.

Each of these stages can be carried out consciously or unconsciously, as showa2nlTabl

Conscious Unconscious

Decision Using imagination and the emotions | reasdinconscious decisions are either hardwired
about the different courses of action andto our nervous system - for example, reflexes
select one. | might imagine eating at differentor reached through unconscious processes
hours of the day and decide that 1.00 is|ttiet are largely unknown at the present time|.
optimum time for lunch.

Initiation | The initiation of the action occursThe initiation of the action occurs
immediately after a conscious decision|tmconsciously. For example, | am lying in hed
start the action. For example, | decide to|gmd suddenly find myself in the act of getting
to the shop, and then | get up and go to|the.
shop.

Execution | We are conscious of the action as we carfy¥e are unconscious when the action is bging
out. For example, as | walk down the streetcérried out - for example, cases of epileptic
look around me at the people and daastomatism or sleep walking.
without entering into a state of imaginatipn
or memory.

Table 2.1. Different aspects of conscious and unconscious&ti

These conscious and unconscious aspects of an action can be combineckeint ditigs

- for example | might consciously decide to eat my lunch at 1:00,tleen make a second
conscious decision to carry out the action of eating my lunch.nalieely, | might have made a
conscious decision several years ago to eat my lunch at 1.00 whenesitepand start
preparing my lunch automatically when | glance at the clodkout a second conscious
decision. Other combinations are also possible — for example, actianse planned, initiated
and executed completely unconsciously. The only intuitively implausitaebination is the
conscious initiation of an unconsciously chosen action, since it is basdet how we could
decide to execute a decision that we are not aware of.

Two combinations from Table 2.1 will now be used to develop models of ocossci
control and conscious will. With conscious control, the action is de@desciously, initiated

consciously (because the action is immediately carried out) lengdrson is conscious of
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sensory feedback from their body and the world as the action ¢sitege With conscious will,
the action is decided consciously, initiated automaticallggponse to an environmental trigger

and executed with the person conscious that they are carrying it out.

2.7.4 Conscious Control

In conscious control actions are decided consciously, initiated imtegd@nd consciously
carried out. One of the most plausible models of conscious decision makofered by
Damasio’s (1995) somatic marker hypothesis, which gives a gaodigicof the way in which
the imagination and emotions work together to reach deciionsthin this framework we
make decisions by running through a number of imagined scenartdsigigar bodily feelings
associated with them, and eventually settle on the one that feel3 benake this process more
efficient there also has to be some mechanism for remembghioty scenarios have already

been evaluated. This process can be summarised as follows:

1. Generate imaginary scenario that has not been generatee@ lmefaevisit previous
scenario because all other options are exhausted.

2. Evaluate how scenario feels.

3. If scenario feels bad, remember that scenario felt bad and go back to 1.

4. Else if scenario feels right, carry out action immediately.

In discreteconscious control we carry out a single action and the consciogsahan
of the actiorprecedeghe action. Since the conscious decision making process is quitetisis
type of conscious control does not happen very often — we believe thatocensentrol is more
common than it is because in many cases the unconscious initiateom aftion generates a

conscious representation of the action just before it takes plam (985)*® However, there

4" The relationship between the emotions and judgeisetiscussed by Clore (1992).

“8 See Figure 2.5 for an illustration.
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might be circumstances in which we consciously decide to do somgetihd then immediately
execute our decision, and a neural model of discrete conscious duagrbeen developed as
part of this thesis.

In continuousconscious control an action takes place under the guidance of a consciou
model that determines the evolution of the action over time. Whilst the decision andidtienni
of the action might be automatic, the management of the actiodosely linked to
consciousness. For example, if my friend asks me what | dresimtiddt, then | will probably
start my answer automatically without making a conscious decebout whether to reply or
not. However, my narration is continuously guided by my conscious mewhoing dream, and
without this conscious recollection it is hard to see how the dremutd de described.
Although many of our day to day actions, such as driving or diagnosingpatrents, do not
need to be carried out under conscious control, there are numerousatagyons when we do
seem to be consciously controlling continuous actions. Continuous conscious isolitedy to
be more common than discrete conscious control, but it is often ignoradseeit is harder to

measure experimentally.

2.7.5 Conscious Will

The time scale of discrete conscious control make it implausibkethis is the main way in
which our conscious decisions influence our actions, and it is much rkelethat actions are
decided consciously and then initiated unconsciously in response to corsubusconscious
perceptions. In this thesis | will use the term “conscious \dltefer to the process whereby

actions are chosen consciously, initiated unconsciously and then consciauigd ouf® The

49 Without conscious control, the situation wouldzbikit like blindsight in which | might be able taegs accurately
about the contents of my dream, but would not be &boffer a fluid and natural description.

%0 «“Conscious will” could also plausibly be used &fer to actions that are consciously decided, uscionsly
initiated and unconsciously executed. Since thissdwt appear to be a common situation, it has beeaside in
this thesis because it would serve only to comp#itiae discussion.
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decision process in conscious will is carried out in the sameawaypnscious control, but in
conscious will, werememberthe decision and execute #@utomatically in response to
environmental or internal triggers (perhaps with the possibilityetd - see Libet (1985, 1999)).
For example, at midnight | decide to get up at eight tomorrow ngpamal set my alarm clock;
when the alarm goes off | lie in bed feeling reluctant and siueldenly find myself in the act of

getting up. The stages in this model of conscious will can be summarized as follows:

1. Generate imaginary scenario that has not been generate@ lmefoevisit previous
scenario because all other options are exhausted.

2. Evaluate how scenario feels.

3. If scenario feels bad, remember that scenario felt bad and go back to 1.

4. Else if scenario feels right, remember future action and aniassoal trigger that will
release the action.

5. Continue acting in world.

6. When associational trigger is reached, perform action unconsciously.

This distinction between conscious decisions and automatic executiodge@iay out
of the problems thrown up by Libet's (1985) timing experiments onwhle Within the
framework that | am presenting here, the subject's consciousiatet¢o flex their wrist was
taken when they decided to participate in the experiment minutesurs before the actual
action (a fact highlighted by some of the commentators followibgt's (1985) paper). As they
randomly flexed their wrist they were not making conscious decisibas automatically
executing a decision that had already been made, and so it isrposiag that the readiness
potential preceded the subjects’ awareness of their decision .tof@dest the timing of
consciousdecisions, the experiment would have to present a number of optionssiobjbets
that would require internal simulation to choose an appropriate actientiming relationships

would then be between the internal modelling of the situation, dtieaion or simulation of
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different body states, the memorization of the conscious decisiotharahset of the readiness
potential that precedes the execution of the action. It would lyesweprising if the readiness
potential preceded all of these events, which are likely to taleast one or two seconds. This

interpretation of Libet is similar to that put forward by Aleksander ep@D%)>*

2.7.6 The Experience of Conscious Will

Our feeling of having willed something could be interpreted adbésé evidence that we have
for a link between consciousness and action. However, Wegner and &Yyhg#@b9) and
Wegner (2002, 2003, 2004) claim that our experience of willing is agtaalhferencethat we
make about the relationship between a thought and a subsequent actiorg do not directly
experience an actual causal process. This claim is suppori&ednyer and Wheatley’'s (199B)
Spyexperiment in which two people used a board mounted on top of a nooos®/¢ a cursor
to point to one of fifty tiny toy pictures taken from &rspy book. One of the people was a
genuine participant who heard words on his or her headset and wasycmedib to bring the
mouse to a stop. After each trial this participant was askeateéoeach stop for the degree of
intentionality that they felt when they made it. The second persdhe experiment was a
confederate pretending to be a participant, who was given instrutbicgtep the mouse on a
particular picture or to allow the participant to stop the cundwrever he or she liked. On some
of the trials the participant heard words that matched the fotopda a particular picture — for
example, they might have heard the word ‘swan’ prior to the corafedbringing the cursor to

rest on the swan.

*L There was not space in this thesis to examinethisaconcept of will relates to freedom of the wilhe question
about the freedom of the will is a complex topiattbombines a number of conflicting intuitions (lderich 1993,
Double 1991). However, it is worth pointing out tthhis model of conscious will is broadly compatibhith
Hodgson'’s (2005) basic requirements for any accotifriee will and it is aligned with compatibilistcounts that
balance psychological freedom with metaphysicaémheinism, such as Gomes (1999) and Clark (1999lsti
largely agrees with Kane’s (1996) libertarian cquicef free will as the power of agents to be the ultimate
creators (or originators) and sustainers of thewmends or purposégp. 4).
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This experiment showed that being cued with a word did not lead thepearts to stop
more frequently on the associated pictures. However, the particgidnti&aim to have a higher
amount of intentionality when they were cued 5 or 1 seconds before foetegl to stop on a
particular picture, which did not occur when they were cued 30 secofmls be 1 second after
the forced stop. In other words, participants claimed that they harbled to stop on a picture
associated with a word that they had heard 5 or 1 seconds befanetheugh they had no
choice about where to stop and would not have stopped on the pictureaohtbderate had not
moved the cursor to this position. This suggests that the partigperperience of will
depended on an association between the cued words and actionsheattwer &ny actual causal
link between their thoughts and actions. According to Wegner and \&edi999), this
experiment shows that the participant’s experience of conseidiezises through an inferential
process in which they reason about their actions and conclude whether they did them or not.

Three of the most important factors in this inferential pro@ssthe priority of the
thought before the action, the consistency of the thought with tlea and the exclusivity of
the thought relative to the action. If we think of an action a shod before it happens, if our
thought matches the action, and if no other causes can be put forwapdaio éhe action, then
we experience a feeling of intentionality relative to théoactan experience that we willed the
action. Wegner (2003) supports his argument with other examples in thieiehis a disparity
between the feeling of conscious will and the actual volition, sudli&s hand syndrome, in
which the person chooses the actions of the hand, but does not believé tirheedelf to have
willed them (Geschwind et al., 1995), schizophrenics’ attribution of qikeple’s actions to
themselves (Daprati et al., 1997), and action projection in whichsamp@erforms a voluntary

action that they attribute to someone else (Wegner, 2602).

%2 Although Wegner and Wheatley (1999) and Wegneb42@&ite these as examples of wilful action, witkiie
framework presented in Section 2.7.3, these armpbes of unconscious decisions initiated unconstjguvhich
is quite different from the model of conscious waillt forward in Section 2.7.5.
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Although Wegner (2003) claims that the feeling of conscious svdhillusion because it
does not reflect the underlying causal mechanisms, this should nateh@reted as the claim
that there isno link between consciousness and action. Wegner's work convincingly
demonstrates that our inference about our causal powers is fddliblie does not show that it is

always incorrect - a point that is made explicitly by Wegner:

Does all this mean that conscious thought doescaonse action? It does not mean this at all. Thie ¢ds
determining the causal relations between consciepsesentations and actions is a matter of ingpecti
through scientific inquiry, and reliable connecsdpetween conscious thought and action can poligribie
discerned by this process. The point made heregaisthe mind’s own system for computing these iatat
provides the person with an experience of consaiglishat is no more than a rough-and-ready gua@such
causation, one that can be misled by any number@afmstances that render invalid inferences...

(Wegner, 2003, p. 68)

Some people, such as Claxton (1999), have attempted to use argumdatstsiiiegner’s to
virtually eliminate the relationship between conscious will aciiba. The problem with this
position is that a complete break between consciousness and acti@s monsciousness
epiphenomenal and eliminates any sense in which we can clapea&about consciousness - a
position that was discussed in detail in Section 2.4.3.

Wegner’s account of our experience of conscious will fits in alywvith the models of
conscious control and conscious will that were put forward in secigh and 2.7.5. In both
conscious control and conscious will, the imagination and emotion thatharkwed in the
decision making process have a completely different phenomenology tfrenfeeling of
intention, and it is perfectly plausible that our experience ofisvithe outcome of an inferential
process that takes place after the action has been executeds pharticularly apparent in the
model of conscious will, where there might be a delay of yedngeka a conscious decision and
the unconscious initiation of the action. In this case it is hardiysible to claim that we

experience the will in operation, and much more likely we find degseengaged in an action
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and then experience a feeling of conscious will when we remeitmeyarlier decision that led
us to act in this way.

Although a connection between consciousness and action is essentiglttee@ry of
consciousness that is not epiphenomenal, it is important to remembeuthaferences about
this link are fallible and get the connection wrong in many<asRis is particularly apparent
when the unconscious initiation of an action presents an image of the action in conscjogsness

before it is carried out, as shown in Figure 2.5.

Experience of conscious will

Thought ‘Appeirenfcaus§b> Action

7
/

Unconscious
cause of
thought

’ Unconscious
path

Unconscious
cause of
action

Figure 2.5. Unconscious cause of thought and action. Althothghthought appears just before the action, both

thought and action have the same unconscious cBepeoduced from Wegner (2003).

Although the appearance of a thought prior to the action might etreblerganism to veto the
action (Libet, 1999), Libet's (1985) experiments have shown that the thofightoccurs after

the action has been unconsciously initiated, when there is only areappausal link between
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the thought and the action. However, with conscious control and conscidus iwithe timing
of the decision about the action that is important and detailed sardieseeded to explore the
timing relationship between conscious decisions and the conscious or uaasrisdiation of

actions.

2.8 Conclusions

This chapter has set out an interpretation of consciousness thbewtiplied in the rest of this
thesis. A distinction between the phenomenal and the physical e@ddaidefine consciousness
and to reject the hard problem of consciousness in favour of thprofsdem of consciousness,
which can only be addressed through work on the correlates of @osisess. This led to the
distinction between type | behaviour-neutral correlates of conswmess which cannot be
identified, and type Il correlates of consciousness, which can beasspaut through their
influence on behaviour. This chapter then outlined three type Il themfriesnsciousness and
models of conscious control and conscious will.

The approach to consciousness in this chapter will be used tdoplese new
methodology for describing the consciousness of artificial sysianShapter 4. The next
chapter summarizes some of the previous work that has been carriesh oodchine

consciousness.
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3 MACHINE CONSCIOUSNESS

3.1 Introduction

This chapter tackles some of the theoretical issues surrounding machine consciousness and
reviews some of the previous work in this field.?> Machine consciousness is currently a
heterogeneous research topic that includes a number of different research programs, with some
people working on the behaviours associated with consciousness, some people modelling the
cognitive characteristics of consciousness and some people interested in creating phenomenal
states in machines. To make sense of this diverse subject, the first part of this chapter identifies

four different areas of machine consciousness research:

MC1. Machines with the external behaviour associated with consciousness.

MC2. Machines with the cognitive characteristics associated with consciousness.

MC3. Machines with an architecture that is claimed to be a cause or correlate of human
consciousness.

MC4. Phenomenally conscious machines.

This classification starts with systems that replicate aspects of human® behaviour and moves on
to systems that are attempting to create real artificial consciousness. Although there is a certain
amount of overlap between these categories, they are a useful way of understanding work on

machine consciousness and will be used to identify different aspects of it throughout this chapter.

' An earlier version of this chapter was published as Gamez (2007a).

2 1 will be using the term “machine consciousness” to refer to this field, although “artificial consciousness” and
occasionally “digital sentience” (Anon, 2006) have also been used to describe it. Each of these terms has their own
merits, but the growing number of meetings dedicated to “machine consciousness” suggests that this is likely to
become the standard name for the field.

* In this chapter discussion generally focuses on human behaviour, cognitive characteristics and architectures
associated with consciousness because humans are generally taken as paradigmatic examples of conscious entities.
However, any work on the replication of animal behaviour, cognitive characteristics and architectures associated
with consciousness would also be part of machine consciousness research.
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The first application of these categories is to clarify the relationship between machine
consciousness and other fields. The interdisciplinary nature of machine consciousness is often a
source of confusion because it takes inspiration from philosophy, psychology, and neuroscience
and shares many of the objectives of strong Al and artificial general intelligence. These
relationships between machine consciousness and other fields become much clearer once
machine consciousness has been separated into MCI-4. For example, artificial general
intelligence has a certain amount in common with MCI1, but little overlap with MC2-4. On the
other hand, neuroscientists, such as Dehaene et al. (1998, 2003, 2005), are creating computer
models of the neural correlates of consciousness (MC3), but have little interest in MC1, MC2 or
MC4. This classification is also very useful for dealing with some of the criticisms that have
been raised against machine consciousness, which often only apply to one or two aspects of its
research. For example Dreyfus’ (1992) claims about what computers still can’t do mainly apply
to MC1 and many of them could be answered by work on MC2 and MC3. On the other hand,
Searle’s Chinese Room argument is directed against MC4 and leaves work on MCI-3
unaffected.

The second half of this chapter surveys some of the research projects that are taking place
in machine consciousness and uses MC1-4 to unpack the different objectives of this work. This
research includes theoretical approaches, models of consciousness, and systems designed to
actually be phenomenally conscious. The last two sections cover some of the ethical issues

linked to machine consciousness and explore its potential benefits.

3.2 Areas of Machine Consciousness Research

Machine consciousness is not a unified field with a set of clearly defined goals. At present a

heterogeneous network of researchers are working on different aspects of the problem, and this



[ 91]

can often make it difficult to understand how everything fits together. This section clarifies

machine consciousness research by dividing it into four different areas.

3.2.1 Machines with the External Behaviour Associated with
Consciousness (MC1)

A lot of our waking behaviours are carried out unconsciously in response to stimulation from the
environment. For example, the detailed muscle contractions involved in walking are rarely under
conscious control and we can perform relatively complex behaviours, such as driving home from
work, with our attention on other things.* Other examples of unconscious behaviour include
patients in a persistent vegetative state, who commonly produce stereotyped responses to
external stimuli, such as crying, grimacing or occasional vocalisation (Laureys et al., 2004),
blindsight patients who have a limited ability to respond visually to objects that they cannot
consciously see, and actions carried out under the influence of an epileptic seizure. A dramatic

example of the latter is given by Damasio (1999):

Suddenly the man stopped, in midsentence, and his face lost animation; his mouth froze, still open, and his
eyes became vacuously fixed on some point on the wall behind me. For a few seconds he remained motionless.
I spoke his name but there was no reply. Then he began to move a little, he smacked his lips, his eyes shifted
to the table between us, he seemed to see a cup of coffee and a small metal vase of flowers; he must have
because he picked up the cup and drank from it. I spoke to him again and again he did not reply. He touched
the vase. I asked him what was going on and he did not reply, his face had no expression. ... Now he turned
around and walked slowly to the door. I got up and called him again. He stopped, he looked at me, and some
expression returned to his face — he looked perplexed. I called him again and he said, “What?”

(Damasio, 1999, p. 6).

These examples show that a limited amount of behaviour can be carried out

unconsciously by humans. However, the stereotypical nature of this behaviour suggests that

* For another view on this issue see Franklin et. al. (2005).
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more complex activities, such as interpersonal dialogue, can only be carried out consciously and
many new behaviours have to be learnt when consciousness is present. This leads to a distinction
between human behaviours associated with consciousness and those carried out automatically
without consciousness.’

One research area in machine consciousness is on systems that replicate conscious human
behaviour. Although this type of research can be based on cognitive models (MC2) or on an
architecture associated with consciousness (MC3), this is not necessary to work on MC1, which
could also use a large lookup table or first-order logic to generate the behaviour. Although
certain external behaviours are associated with phenomenal states in humans, this is not
necessarily important to people working on MC1, since it has often been claimed that a zombie
robot could replicate conscious human behaviour without experiencing phenomenal states.
However, the boundary between MC1 and MC4 might start to become blurred when robots can
reproduce most human behaviours. In this case, Harnad (2003) argues that we will have to
attribute phenomenal experiences to MC1 machines because our only guide to phenomenal states
is a system’s external behaviour. Supporting this point, Moor (1988) suggests that we will need
to ascribe qualia to such systems in order to understand them.

Any attempt to pass the Turing Test has to replicate behaviours that are carried out
consciously in humans, and so people working on this challenge6 can be considered to be part of

MCI1. Research on artificial general intelligence (see Section 3.3.2) also falls within this area.

3.2.2 Machines with the Cognitive Characteristics Associated with
Consciousness (MC2)

A number of connections have been made between consciousness and cognitive characteristics,

such as imagination, emotions and a self - for example, Aleksander’s (2005) axioms and

3 See Section 2.7.2 for a more detailed discussion of this issue.

® For example, the contestants in the annual Loebner prize: http://www.loebner.net/Prizef/loebner-prize.html.
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Metzinger’s (2003) constraints (see sections 2.6.3 and 2.6.4). Detailed descriptions of conscious
states have also been put forward by phenomenologists, such as Husserl (1964), Heidegger
(1995a) and Merleau-Ponty (1995).

The modelling of the cognitive characteristics associated with consciousness has been a
strong theme in machine consciousness, where it has been carried out in a wide variety of ways,
ranging from simple computer programs to systems based on simulated neurons. Cognitive
characteristics that are frequently covered by this work include imagination, emotions, and
internal models of the system’s body and environment. In some cases the modelling of cognitive
states has aimed at more realistic conscious behaviour (MC1) or used an architecture associated
with consciousness (MC3), but MC2 systems can also be created without MC1 or MC3 — for
example, a computer model of emotions or imagination that does not have external behaviour.
There is also no necessary connection between MC2 and MC4 since the simulation of fear, for
example, can be very different from real phenomenological fear - just as the price of gold can be

modelled in a computer without the program, CPU or RAM containing any real gold.

3.2.3 Machines with an Architecture that is Claimed to be a Cause or
Correlate of Human Consciousness (MC3)

Many people are working on the simulation of architectures that have been linked to human
consciousness, such as Baars’ (1988) global workspace. This type of research often arises from
the desire to model and test neural or cognitive theories of consciousness and it is one of the
most characteristic areas of machine consciousness.

Work on MC3 overlaps with MC2 and MC1 when systems based on an architecture
associated with consciousness are used to produce the cognitive characteristics of consciousness
or conscious behaviour. It could also overlap with MC4 if it was thought that an implementation

of an architecture associated with consciousness would be capable of phenomenal states.
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However, simulating a ‘conscious’ architecture in a machine may not be enough for the machine

to actually become conscious.

3.2.4 Phenomenally Conscious Machines (MC4)

The first three approaches to machine consciousness are all relatively uncontroversial, since they
are modelling phenomena linked to consciousness without any claims about real phenomenal
states. The fourth area of machine consciousness is more philosophically problematic, since it is
concerned with machines that have real phenomenal experiences - machines that are not just
tools in consciousness research, but actually conscious themselves.

As has already been indicated, this approach has some overlap with MCI1-3, since in
some cases it might be hypothesized that the reproduction of human behaviour, cognitive states,
or internal architecture would lead to real phenomenal experiences. On the other hand, MC4
might be achievable independently of other approaches to machine consciousness. For example,
it might be possible to create a system based on biological neurons that was capable of
phenomenal states, but lacked the architecture of human consciousness and any of its associated
cognitive states or behaviours.” Furthermore, it has been claimed by Chalmers (1996) that
systems as simple as thermostats may have basic conscious states. If this is correct, the presence
of phenomenal states in a machine will be largely independent of the higher level functions that
it is carrying out.

Systems with real consciousness cannot be developed without methods for measuring
phenomenal states, and so there is a close relationship between MC4 and synthetic
phenomenology (see Chapter 4). The production of machines with real feelings also raises

ethical questions, which are covered in Section 3.6.

" DeMarse et al.’s (2001) neural animat might be a system of this kind.
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3.3 Relationship between Machine Consciousness and Other
Areas

3.3.1 Strong and Weak Al

Work on artificial intelligence is often classified using Searle’s (1980) distinction between strong

and weak Al:

According to weak Al, the principal value of the computer in the study of the mind is that it gives us a very
powerful tool For example, it enables us to formulate and test hypotheses in a more rigorous and precise
fashion. But according to strong Al, the computer is not merely a tool in the study of the mind: rather, the
appropriately programmed computer really is a mind, in the sense that computers given the right programs can
be literally said to understand and have other cognitive states. In strong Al, because the programmed computer
has cognitive states, the programs are not mere tools that enable us to test psychological explanations; rather,
the programs are themselves the explanations.

(Searle, 1980, p. 417)

According to Searle, strong Al is the attempt to create something that is a mind in the sense that I
am a mind, whereas weak Al is the process of modelling the mind using human-interpretable
symbols that work in the same way a mind works. This distinction is similar to that made by
Franklin (2003) between phenomenal and functional consciousness and it also relates to the
difference between the easy and the hard problems of consciousness (Chalmers, 1996). In all of
these cases, a contrast is set up between the external manifestations of a mind and a real mind,
which suggests a reasonably clear mapping between MC4 and strong Al, with MC1-3 being
examples of weak Al in Searle’s sense.

The problem with strict identity between MC4 and strong Al is that the notion of mind
can be separated from phenomenal consciousness - suggesting that computers can really be
minds without being conscious in the sense of MC4. For example, Carruthers claims that “The

view that we have, or can have, notions of mentality which do not presuppose consciousness is
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now widely accepted” (Carruthers 2000, p. xviii), and so it may be possible to build a strong Al
machine that is not conscious in the sense of MC4. A robot that grounded its symbols in sensory
data might be one example of a non-phenomenal mind that literally understands and has other

cognitive states.

3.3.2 Artificial General Intelligence

Artificial general intelligence (AGI) is another area within Al that has similarities with machine
consciousness. The aim of AGI is to replicate human intelligence completely and it is sometimes
contrasted with a second interpretation of weak Al as the solving of computer science problems
within a limited domain — for example, pattern recognition or chess playing.® AGI has a certain
amount of overlap with MC1, with the difference that MC1 is focused on conscious human
behaviour, whereas AGI is attempting to reproduce all human behaviours linked with
intelligence. Which of these is the larger category depends to some extent on the definition of
intelligence. Some behaviours linked to consciousness may be excluded by AGI’s definition of
intelligence, but it is also possible that AGI could use a broad interpretation of intelligence that
includes all MC1 behaviours.”

How AGI could be implemented is a completely open question and some AGI systems
may be produced by simulating the cognitive states associated with consciousness (MC2) or by
copying an architecture linked to consciousness (MC3). It is also possible that AGI systems will
have phenomenal states (MC4). The interpretation of weak Al as the solving of computer science
problems within a limited domain does not have much in common with any of the definitions of

machine consciousness.

® This interpretation of weak Al is also referred to as “narrow Al”.

? More information about AGI can be found in Goertzel and Pennachin (2007) and in the proceedings from the 2006
AGIRI Workshop: http://www.agiri.org/forum/index.php?showtopic=23.
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3.3.3 Psychology, Neuroscience and Philosophy

The empirical work carried out by experimental psychology and neuroscience often forms a
starting point for the modelling work in machine consciousness, but there is generally little
overlap between them. However, there are some exceptions to this trend, such as the research
carried out by Krichmar and Edelman (2006) using the Darwin series of robots and Dehaene et
al.’s (1998, 2003, 2005) modelling of neurons to test theories about attention and consciousness.
Dehaene et al.”s work clearly fits within MC3 and will be covered in Section 3.5.6. On the other
hand, although Krichmar and Edelman are modelling a reentrant neural architecture associated
with consciousness, they do not explicitly link their Darwin work to consciousness, and so I have
not included it in this chapter.lO

Amongst the other disciplines, cognitive psychology and connectionism also build
computer models of cognition, which leads to a substantial amount of overlap with MC2.
However, this work is more general than that carried out by machine consciousness because it
covers types of cognition that are not associated with conscious states. Although philosophy and
Al have historically been linked through their common use of logic, this connection has declined
in recent years with the atrophy of logic in both subject areas. The emergence of machine
consciousness has changed this relationship and philosophy now provides a theoretical

framework for MC1-4 and tackles ethical issues.

3.4 Criticisms of Machine Consciousness

3.4.1 The Chinese Room

The Chinese Room thought experiment consists of a person in a room who receives Chinese

characters, processes them according to a set of rules and passes the result back out without

10 Krichmar and Edelman’s work is covered in the discussion of research on neural networks in Section 5.6.
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understanding what the characters mean. This processing of characters could be used to create
the external behaviour associated with consciousness, to simulate the cognitive characteristics of
consciousness or to model a conscious architecture. However, Searle (1980) argues that in no
case would the person processing characters in the room understand what is going on or have
intentional states directed towards the objects represented by the Chinese characters. Although
the Chinese Room might be able to model a mind successfully, it will never literally be a mind in
the sense intended by MC4.

One response to this argument is based on the notion of symbol grounding. If the
characters in the Chinese room could be linked to non-symbolic representations, such as images
or sounds, then the system would understand what the symbols mean and have intentional states
directed towards this meaning. According to Harnad “Symbolic representations must be
grounded bottom-up in nonsymbolic representations of two kinds: (1)‘iconic representations’,
which are analogs of the proximal sensory projections of distal objects and events, and
(2)‘categorical representations’, which are learned and innate feature-detectors that pick out the
invariant features of object and event categories from their sensory projections.” (Harnad 1990,
p. 335). Neural models have also been cited as a way of grounding higher level symbolic
representations by connecting them to sensory inputs (Haikonen, 2003), and if the Chinese Room
can be grounded effectively in some kind of non-symbolic lower level, then it can be said to
understand the characters that it is manipulating.

A second reason why the Chinese Room argument is not fatal to MC4 is that brains and
computers are both physical systems assembled from protons, neutrons and flows of electrons.
Searle (2002) is happy to claim that consciousness is a causal outcome of the physical brain and
so the question becomes whether the physical computer and the physical brain are different in a
way that is relevant to consciousness. This can only be answered after we have done a lot more

research on the correlates of consciousness. Until this work has been carried out, the Chinese
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Room argument does not offer any a priori reason why the arrangement of protons, neutrons and
electrons in a physical computer is less capable of consciousness than the arrangement of

protons, neutrons and electrons in a physical brain.

3.4.2 Consciousness is Non-algorithmic

Machine consciousness has also been criticised by Penrose (1990, 1995), who claims that the
processing of an algorithm is not enough to evoke phenomenal awareness because subtle and
largely unknown physical principles are needed to perform the non-computational actions that lie
at the root of consciousness: “Electronic computers have their undoubted importance in
clarifying many of the issues that relate to mental phenomena (perhaps, to a large extent, by
teaching us what genuine mental phenomena are not) ... Computers, we conclude, do something
very different from what we are doing when we bring our awareness to bear upon some
problem.” (Penrose 1995, p. 393). If consciousness does something that ‘mere’ computation
cannot, then MC1-3 cannot be simulated by a computer and MC4 cannot be created in a
computer.

The most straightforward response to Penrose is to reject his theory of consciousness,
which is far from convincing and has been heavily criticised by Grush and Churchland (1995)
among others. However, even if Penrose’s theories about consciousness are correct, MC1-4
would continue to be viable research projects if they could develop an approach to machine

consciousness that fits within his framework:

I am by no means arguing that it would be necessarily impossible to build a genuinely intelligent device, so
long as such a device were not a ‘machine’ in the specific sense of being computationally controlled. Instead it
would have to incorporate the same kind of physical action that is responsible for evoking our own awareness.
Since we do not yet have any physical theory of that action, it is certainly premature to speculate on when or

whether such a putative device might be constructed. Nevertheless, its construction can still be contemplated
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within the viewpoint ... that I am espousing ..., which allows that mentality can eventually be understood in
scientific though non-computational terms.

(Penrose 1995, p. 393).

If Penrose is right, we may not be able to use algorithms to construct MC1-4 machines, but it
might be possible to create some kind of quantum computer, which incorporates the physical

mechanisms that are linked by Penrose to human consciousness.

3.4.3 What Computers Still Can’t Do

Dreyfus (1992) put forward a number of arguments against artificial intelligence projects that
attempted to reduce human intelligence to a large number of rules."! According to Dreyfus, this
can never work because human intelligence depends on skills, a body, emotions, imagination and
other attributes that cannot be encoded into long lists of facts. Dreyfus also criticises some of the
approaches to Al that have emerged as alternatives to fact-based systems, such as interactive Al,
neural networks with supervised learning and reinforcement learning.

These arguments affect work on the development of systems that are as intelligent as
humans in real world situations. However, there is no reason why MC1-4 could not be pursued
in a more limited way independently of this objective. For example, some of the behaviours that
require consciousness in humans (MC1) could be created in a simple and non-general way, and
imagination and emotion could be simulated (MC2) without the expectation that they will be
able to work as effectively as human cognitive processes.12 The modelling of architectures
associated with consciousness (MC3) is largely independent of Dreyfus’ objections and
phenomenal consciousness (MC4) may be possible without the generality and complexity of

human behaviour.

" Lenat’s Cyc is a good example of this kind of system (Matuszek et al. 2006). More recently Bringsjord has been
using logic-based artificial intelligence to control a four year old child in Second Life:
http://www.sciencedaily.com/releases/2008/03/080310112704.htm.

'> This is the case with the simple Khepera models described in Section 3.5.5.
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It can also be argued that the work being carried out on imagination, emotions and
embodiment in machine consciousness addresses some of the areas that Dreyfus claims to be
lacking in current artificial intelligence. Furthermore, the human brain is itself a machine, and so
biologically-inspired research on machine consciousness might eventually be able to solve
Dreyfus’ problems. However, all of this work is still at an early stage and it is far from clear
whether MC1-4 devices will ever become intelligent enough to act and learn like humans in the

real world.

3.5 Research on Machine Consciousnhess

The last few sections have outlined the different areas of machine consciousness, its relationship
to other fields and the criticisms that could be raised against it. I will now move on to some of
the research that has been carried out on MCI1-4. In order to focus on the unique aspects of
machine consciousness, this chapter will not include the large number of simulations that have
been done as part of AI, connectionism and brain modelling, and theoretical work on
consciousness will only be included if it deals explicitly with MC1-4. Although some of the
projects have been organised under sub-headings to highlight general areas of machine
consciousness research, it should be borne in mind that some systems could have been included
in several sections — for example, IDA has a global workspace architecture and is also a software

agent.

3.5.1 Aleksander’s Kernel Architecture

Aleksander (2005) and Aleksander and Morton (2007c) have developed a kernel architecture that
includes all five of Aleksander’s axioms (see Section 2.6.3). This includes a perceptual module
that depicts sensory input, a memory module that implements non-perceptual thought for

planning and recall of experience, an emotion module that evaluates the ‘thoughts’ in the



[ 102 ]

memory module, and an action module that causes the best plan to be carried out (see Figure

3.1).
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Figure 3.1. Aleksander’s kernel architecture’

Aleksander and Morton (2007b) have built a number of brain-inspired implementations
of this kernel architecture (MC3) using the Neural Representation Modeller (NRM) software,'*
which uses weightless neurons containing lookup tables that match input patterns to an output
response. During training, these neurons store the link between each input pattern and the
specified output; during testing, the neurons produce the output of the closest match to a known
input pattern or a random sequence of 1s and Os when there is more than one match. These
neurons are assembled into large recurrent networks and trained using the graphical and scripting

abilities of NRM.

" This figure is reproduced from Aleksander (2007c).

'Y This used to be called Magnus. More information about NRM is available at Barry Dunmall’s website:
http://www.iis.ee.ic.ac.uk/eagle/barry_dunmall.htm.
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These brain-inspired simulations of the kernel architecture are minimal implementations
of Aleksander’s five axioms, and so they have the potential for phenomenal consciousness
(MC4) according to the axiomatic theory. Full details about how the kernel architecture

implements the axioms can be found in Aleksander and Morton (2007c¢).

3.5.2 Internal Modelling with SIMNOS and CRONOS

The CRONOS project and its main components were outlined in Section 1.2 and this thesis
covers one of the approaches to machine consciousness that was developed as part of this
project. A different approach to machine consciousness in the CRONOS project was developed
by Holland, who claims that internal models play an important role in our conscious cognitive
states (MC2) and may be a cause or correlate of consciousness in humans (MC4) (Holland and
Goodman 2003, Holland 2007)." Holland is particularly interested in internal models that
include the agent's body and its relationship to the environment and the extent to which the
connection between this type of internal model and consciousness may be supported by
Metzinger's (2003) discussion of the phenomenal self model and Damasio's (1999) analysis of
the origins of consciousness. To test these theories about internal modelling, SIMNOS is being
employed as an internal model of CRONOS and the computational technique of simultaneous
localization and mapping (SLAM) will be applied to the visual stream from CRONOS's eye to
obtain information about the environment and the robot's movements in relation to it, which will
be used to continually update SIMNOS and its virtual environment. The internal model will then
be employed offline to 'imagine' potential actions with SIMNOS before the selected action is

carried out by CRONOS.

'> Some of the other work carried out by Holland on the link between internal models and consciousness is
described in Section 3.5.5.
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3.5.3 Cog

Cog was a humanoid robot developed by Brooks et al. (1998) that consisted of a torso, head and
arms under the control of a heterogeneous network of programs written in L, a multithreaded
version of Lisp (see Figure 3.2). Cog was equipped with four cameras providing stereo foveated
vision, microphones on each side of its head, and a number of piezoelectric touch sensors. This
robot also had a simple emotional system to guide learning and a number of number of hard
wired ‘innate’ reflexes, which formed a starting point for the acquisition of more complex
behaviours. The processors controlling Cog were organised into a control hierarchy, ranging
from small microcontrollers for joint-level control to digital signal processor networks for audio
and visual processing.

The development work on Cog was organised as a number of semi-independent projects
that focused on different aspects of human cognition and behaviour, such as joint attention and
theory of mind, social interaction, dynamic human-like arm motion and multi-modal
coordination. Although Brooks et al. (1998) do not explicitly situate this work within machine
consciousness, Dennett (1997) put forward a good case for Cog having the potential to develop
phenomenal states (MC4). Some of the behaviours of Cog, such as joint attention and theory of
mind, could also be said to be associated with consciousness in the sense of MC1, and Cog’s
emotional system is a cognitive characteristic associated with consciousness (MC2).

Although Cog could display many individual human behaviours, when the systems were
active together, competition for actuators and unintended couplings through the world led to
incoherence and interference. This made it difficult for Cog to achieve higher cognitive functions
and coherent global behaviour, which may be one of the reasons why this project has now

effectively stopped.
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Figure 3.2. Cog robot'®

3.5.4 CyberChild

CyberChild is a simulated infant controlled by a biologically-inspired neural system based on
Cotterill’s (2000) theory of consciousness. This virtual infant. (see Figure 3.3) has rudimentary
muscles controlling the voice and limbs, a stomach, a bladder, pain receptors, touch receptors,
sound receptors and muscle spindles. It also has a blood glucose measurement, which is depleted
by energy expenditure and increased by consuming milk. As the consumed milk is metabolised,
it is converted into simulated urine, which accumulates in the infant’s bladder and increases its
discomfort level. The simulated infant is deemed to have died when its blood glucose level
reaches zero. CyberChild also has drives that direct it towards acquiring sustenance and avoiding
discomfort and it is able to raise a feeding bottle to its mouth and control urination by tensing its
bladder muscle. However, these mechanisms are not enough on their own to ensure the survival
of the simulated infant, which ultimately depends on its ability to communicate its state to a

human operator.

'® Photograph taken by Donna Coveney.
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Figure 3.3. CyberChild

CyberChild is controlled by a simulated neural network containing a number of different
areas based on the brain’s neuroanatomy, including the premotor cortex, supplementary motor
cortex, frontal eye fields, thalamic nuclei, hippocampus and amygdala. Each of these areas is
modelled using twenty neuronal units and within each area about half of the units are active at
any one time. Interconnection between the neural areas is based on the known anatomical
connectivity of the brain and it includes efference copy connections from the premotor and
supplementary motor cortices to sensory receiving areas, which Cotterill claims to be a vital
feature of the neural processes underlying consciousness.

The overall aim of the CyberChild project was to use this detailed simulation to identify
the neural correlates of consciousness (MC3) and perhaps even create phenomenal states (MC4).

Cotterill (2003) planned to do this by looking for conscious behaviours (MC1), such as the
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ability to modify communications with a human operator, which could be linked to the neural

. . 17
correlates of consciousness in the system.

3.5.5 Simple Khepera Models

A number of researchers are using simulated or real Khepera robots (see Figure 3.4) to develop
simple embodied systems containing analogues of the cognitive characteristics associated with
consciousness. As these robots move around their environment they build up representations,

which can easily be examined for internal models or imagination.

Figure 3.4. Khepera robot

Internal models

To test their ideas about the role of internal models in consciousness, Holland and Goodman
(2003) used Linaker and Niklasson’s (2000) Adaptive Resource-Allocating Vector Quantizer
(ARAVQ) method to build models of the sensorimotor data from a Khepera robot. The ARAVQ
approach is based on the observation that a robot’s sensory input and motor output are often
relatively stable over time - for example, when a robot is following a wall, its distance from the
wall and speed remain approximately constant. Linaker and Niklasson’s (2000) method takes

advantage of this fact by regularly sampling a robot’s sensory input and motor output and

"7 Sadly, Cotterill passed away in 2007 and it is unlikely that his work on CyberChild will be continued.
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clustering this data using the ARAVQ on-line algorithm, which produces a small number of
relatively stable and distinct combinations of sensory inputs and motor outputs called concepts.
These concepts can be used to store long sequences of experiences very economically by
labelling them and recording the number of times that each is repeated.

In their experiments, Holland and Goodman programmed a simulated Khepera with wall
following and obstacle avoidance behaviour and allowed it to move around its environment
while the ARAVQ method built up concepts corresponding to combinations of sensory input and
motor output. Each concept represented the environmental features that activated the Khepera’s
rangefinders and how the robot moved in response to this stimulus, and so it was possible to plot
the movements step by step along with the range finder data to produce the map of the
environment that was stored inside the robot — a process that Lindker and Niklasson call
inversion. By inverting the Khepera’s concepts in this way Holland and Goodman produced a
graphical representation of the Khepera’s internal model and then examined how it could be used
to control the simulated robot. They discovered that an internal model formed by concepts could
accurately control the robot, process novel or incomplete data, detect anomalies and inform
decisions.

These experiments showed that internal models can be developed and studied in a simple
system and that they have the potential to play a useful role in the behaviour of an organism.
Some of the internal models in humans are integrated into conscious cognitive states, and so this
work is an example of MC2. Although Holland and Goodman do not claim that their simple
system was conscious, more complex systems with internal models could contain phenomenal
states (MC4) if their theories about the link between internal modelling and consciousness are

correct.
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Imagination

Ziemke et al. (2005) carried out a number of experiments on imagination using a simulated
Khepera robot. This robot was controlled by a simple neural network that was based around a
sensorimotor module, which mapped sensory input to motor output, and a prediction module. An
evolutionary algorithm was used to train the weights on the two modules, with the sensorimotor
module being evolved first to avoid obstacles and perform fast straightforward motion, and the
prediction module evolved to predict the sensory input of the next time step. When the robot
received real sensory input it was controlled by the sensorimotor module alone; when the robot
was ‘blindfolded’ so that it received no external sensory input, it was controlled by feeding the
prediction module’s predictions about the next sensory input into the sensorimotor module.
During the testing phase, it was found that ‘imagined’ sensory inputs produced very similar
behaviour to real sensory input, although the pattern of activation of the internal units was very
different in the two cases. These experiments demonstrated that the cognitive characteristics
associated with consciousness (MC2) could improve the performance of a robot.

Ziemke’s approach was developed further by Stening et al. (2005), who replaced the low
level neural networks used by Ziemke with Lindker and Niklasson’s (2000) ARAVQ method,18
which was used to identify combinations of sensory input and motor output that were relatively
invariant over time. The concepts generated by this method were then fed into a neural network
consisting of an input layer and a hidden layer that was trained to predict when the next concept
would occur. During the experiments, the robot’s behaviour was initially controlled by a pre-
trained neural network that moved the simulated Khepera around its environment with simple
right-hand following behaviour, whilst the ARAVQ method extracted the basic features of the
environment. The neural network’s predictions about the next concept were then fed back into its

input layer, which enabled the neural network to internally simulate a sequence of concepts

'8 See the earlier discussion of ARAVQ for more information about this method.
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without the need for external movement. Stening et. al. then ‘inverted’ this sequence of concepts
to produce a graphical representation of the Khepera’s ‘imagination’. This work is an example of
MC?2 and also falls within synthetic phenomenology (see Chapter 4). Although Hesslow and
Jirenhed (2007) discuss the potential consciousness of this type of system, it is not entirely clear

whether they are referring to MC2 or MC4.

3.5.6 Global Workspace Models

Global workspace theory is an influential interpretation of consciousness that was developed by
Baars (1988). The basic idea is that a number of separate parallel processes compete to place
their information in the global workspace, which is broadcast to all the other processes. A
number of different types of process are used to analyse information or carry out actions, and
processes can also form coalitions that work towards a common goal. These mechanisms enable
global workspace theory to account for the ability of consciousness to handle novel situations, its
serial procession of states and the transition of information between consciousness and
unconsciousness. A substantial amount of work has also been done connecting the global

workspace architecture to the thalamo-cortical system in the brain (Newman et al., 1997).

IDA naval dispatching system

Franklin’s (2003) IDA naval dispatching system was created to assign sailors to new billets at
the end of their tour of duty. This task involves natural language conversation, interaction with
databases, adherence to Navy policy and checks on job requirements, costs and sailors’ job
satisfaction. These functions are carried out using a large number of codelets' that are

specialised for different tasks and organised using a global workspace architecture.

' A codelet is a special purpose, relatively independent mini agent that is typically implemented as a small piece of
code running as a separate thread. These codelets correspond with processors in global workspace theory.
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The apparatus for ‘consciousness’ consists of a coalition manager, a spotlight controller,
a broadcast manager and a number of attention codelets. These attention codelets watch for an
event that calls for conscious intervention, and when this occurs they form a coalition with
codelets containing data about the situation and compete for the spotlight of consciousness. If the
coalition wins, its contents are broadcast to the other codelets, which may eventually choose an
action that resolves the issue. The selection of behaviours in IDA is controlled by drives that
award activation to behaviours that satisfy them, with activation spreading from behaviour to
behaviour along excitatory and inhibitory links until an action is chosen. A model of deliberation
is also included, which explores different scenarios and selects the best, and the architecture
contains emotions, such as guilt at not getting a sailor’s orders out on time, frustration at not
understanding a message and anxiety at not be able to convince a sailor to accept a suitable job.
A number of different learning mechanisms are also implemented.

IDA is an example of a system that produces behaviour requiring consciousness in
humans (MC1) and its architecture has some of the cognitive characteristics associated with
consciousness (MC2), such as attention, emotions and imagination. All of this is produced by an
architecture linked to human consciousness (MC3), and although Franklin thinks that IDA is

unlikely to be phenomenally conscious (MC4), he does not entirely rule this out.

Dehaene et. al.’s neural simulations of the global workspace

Dehaene et. al. (1998) created a neural simulation to study how a global workspace and
specialised processes interact during the Stroop task.”” Their neural model included input and
response units, global workspace neurons and vigilance and reward systems that modulated the
activity in the global workspace. This simulation demonstrated that tasks that were easy for the

system could be accomplished by local specialised processes without sustained activation in the

2 In the Stroop task a subject is presented with a series of cards and has to state either the colour name that is
printed on the card or the colour of the ink. This task is harder when the ink’s colour does not match the colour
name, for example when “red” is printed in blue ink.
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global workspace. On the other hand, tasks that were difficult for the model to accomplish, such
as naming the colour of the ink when this conflicted with the colour name, could only be done by
activating the global workspace and using the reward and vigilance systems to correct errors.
Dehaene et. al. (1998) used this model to make predictions about brain imaging patterns
generated during a conscious effortful task and about the pharmacology and molecular biology
of the brain.

More recent work by Dehaene et. al. (2003) studied the attentional blink,”" which they
explained using their theory about the implementation of a global workspace in the brain. When
the first target is presented to the subject, it gains access to the brain’s global workspace by
generating long range activations between many different neural areas and when the brain is in
this state it is much harder for the second target to globally broadcast its information. Although
local areas continue to carry out low level sensory processing on the second target, this does not
become conscious because it cannot access the brain areas that are responsible for memory and
reporting. Dehaene et al. tested these ideas about global workspace theory using a detailed neural
simulation and compared their results with human subjects tested on the same experiment.
Dehaene and Changeux (2005) have also used neural simulations to explore the role of
spontaneous activity in workspace neurons and how this affects phenomena related to
consciousness, such as inattentional blindness and transitions between the awake state and sleep,
anaesthesia or coma.

Although the main emphasis of this work is on neuroscience, it closely ties in with
theories about consciousness and Dehaene et al.’s neural models of global workspace theory are

examples of MC3, even if they are not explicitly situated within machine consciousness. Their

! An attentional blink occurs in human subjects when two targets are presented in succession with 100-500 ms
between them. Under these conditions the subject’s ability to detect the second target is reduced, as if their
attention had blinked after processing the first target.
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models also fall within MC2 since they capture the fact that conscious experiences move through

a serial progression of states with a limited content.

Shanahan’s brain-inspired global workspace models

Shanahan (2006) developed a brain-inspired cognitive architecture based on global workspace
theory, which was built using components that are functionally analogous to structures in the
brain. At the bottom level of this system a sensorimotor loop made an immediate motor response
to its situation, and on top of this a higher-order loop modulated the behaviour of the first order
loop by adjusting the saliency of its actions. The first-order loop was closed through its
interactions with the world, whereas the second-order loop was internally closed through an
association area, which simulated the sensory stimulus that followed from a motor output in a
way that was analogous to imagination. This simulation function was carried out using a global
workspace architecture in which association areas received information from the basal ganglia
analogue and competed to pass their information back to the basal ganglia analogue, which
selected the next set of information to be broadcast. This architecture enabled the system to
follow chains of association and explore the potential consequences of its actions prior to
carrying them out.

In his experimental setup Shanahan (2006) used NRM?* to create the neural simulation
and the robot simulator Webots to simulate a Khepera robot with a camera. This system was
programmed with a small suite of low level actions and trained to have positive and negative
preferences for cylinders with different colours. Using its global workspace architecture the
robot could explore the consequences of potential actions and give a low weighting to actions
that would bring about an aversive stimulus. This enabled it to select actions that were more
‘pleasant’ than the ones that it would have chosen using the simple sensorimotor loop. This

system is an example of MC1-3 since it is using imagination and emotion (MC2) implemented in

22 See the brief discussion of NRM in Section 3.5.1.
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a global workspace architecture (MC3) to produce behaviour that requires consciousness in
humans (MC1). Although Shanahan claims that his system respects all five of Aleksander’s
axioms, he is cautious about attributing real phenomenal consciousness to it.

In more recent work, Shanahan (2008) built a global workspace model using simulated
spiking neurons, which was based on the work by Dehaene et. al. (1998, 2003, 2005). This
showed how a biologically plausible implementation of the global workspace architecture could
move through a serial progression of stable states, and it had the potential to carry out the same
function as the core circuit described in Shanahan (2006). Unlike the earlier model, it did not

exhibit external behaviour, and so it is an example of MC2-3.

Neural schemas

The neural schema approach developed by McCauley (2002) is a neural and connectionist
implementation of some aspects of global workspace theory. This system is based on a network
of nodes that represent the state of the environment, actions, the effect of actions and the goals of
the system, and the level of activation of these nodes can spread along the links between them.
There is also a model of attention and consciousness based on global workspace theory, which
allocates ‘consciousness’ to nodes based on their change in activation over time, their ability to
accomplish current goals and their association with other nodes recently involved in
‘consciousness’. This ‘consciousness’ of the nodes alters their behaviour and the information in
them is broadcast across the network. This system is described by McCauley as an
implementation of part of a psychological theory of consciousness (MC2-3), and not as

something that displays true consciousness.
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3.5.7 Language and Agency

Agent-based conscious architecture
Angel (1989) sets out a language- and agent-based architecture for a conscious machine centred

around three attributes that must be possessed by any conscious system:

1. Independent purpose regardless of its contact with other agents.
2. The ability to make interagency attributions on a pure or natural basis.
3. The ability to learn from scratch significant portions of some natural language, and the

ability to use these elements in satisfying its purposes and those of its interlocutors.

According to Angel, these behavioural attributes associated with consciousness (MC1) can only
be used to infer real phenomenal states in a machine (MC4) if human consciousness is a physical
phenomena that conforms to physical laws. If human consciousness can somehow pre-empt or
transgress natural causes, then we cannot attribute consciousness to entities using these criteria.
Since Angel’s attributes are based on language and agency, it is not difficult to produce
formal models of them on a computer, and Angel suggests how a machine could be built that
would actually be conscious (MC4) according to his criteria. This would lead to a minimally
conscious system, which could be attributed more degrees of consciousness if it exhibited
cognitive characteristics associated with consciousness (MC2), such as emotion, wakefulness, a
sense of continuity with the past and an ego. As far as [ am aware, there has not been any attempt
to implement the architecture that Angel proposes, although the work of Steels (2003) points in

this direction.

Inner Speech
According to Steels (2003), inner speech is linked to conscious experience through the role that
it plays in our sense of self and agency. Steels’ work on inner speech started with experiments in

which two robotic heads watched scenes and played a language-game that evolved a lexicon or
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grammar (Steels, 2001). In one language-game, a speaker chose an object in the scene and
sought a verbal description so that the hearer could guess which object was chosen. In the early
versions of these experiments it was relatively easy for the agents to develop a lexicon, but they
could not evolve grammar until Steels applied the speaker’s language system to its own
utterances, either before transmitting them or after observing incomprehension in the listener.
This model of inner speech enabled the agents to evolve case grammar and Steels (2003)
suggests that it could be used outside of communication to rehearse future dialogue, submit
thoughts to self criticism, and conceptualise and reaffirm memories of past experiences. All of
these additional functions of inner speech could be the foundation of our sense of self and they
could also play a role in our inter-agency relationships with others. Steel’s modelling of inner
speech is mainly directed towards reproducing important aspects of our conscious experience
(MC2). Although Steels suggests that complex language production may have played a crucial
role in the origin of consciousness, he leaves open the possibility that models of inner speech
will lead to actual phenomenal states.

Other work on the link between inner speech and consciousness includes Clowes (2006,
2007), who argues that inner speech helps to organise conscious experience, direct attention and
manage ongoing activities. These ideas were tested by Clowes and Morse (2005) in some simple
experiments on the structuring of action by language. Haikonen (2006) also has a detailed

. . . . . . 2
discussion of the relationship between inner speech and consciousness. 3

 Tnner speech is an example of deliberation in the sense of Sloman (1999), which is implemented in Franklin’s
IDA naval dispatching system - see Franklin (2000) for more on the relationship between deliberation and IDA.
Deliberation in the sense of a consciously evoked internal virtual reality is closely related to internal models and
imagination, which appear in several of the projects covered by this chapter.
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3.5.8 Cognitive Architectures

A Cognitive Approach to Conscious Machines

Haikonen (2003, 2006, 2007) is developing a system that is intended to display cognitive
characteristics associated with consciousness, such as emotion, transparency, imagination and
inner speech, using a detailed neural simulation. This cognitive architecture starts with sensory
modules that process visual, auditory and tactile data into a large number of on/off signals that
carry information about different features of the stimulus. Perceived entities are represented
using combinations of these signals, which are transmitted by modulating a carrier signal (an
important aspect of Haikonen’s theory of consciousness). There is extensive feedback within the
system and cross connections between different sensory modalities integrate qualitative
characteristics carried by the signal with its location in motor space. Haikonen’s architecture also
includes emotions — for example, there is an analogue of pain, which uses information about
physical damage to initiate withdrawal and redirect attention. In this architecture, language is
part of the auditory system and the association of words with representations from other
modalities enables sequences of percepts to be linguistically described. Haikonen (2006) claims
that percepts become conscious when different modules cooperate in unison and focus on the
same entity, which involves a wealth of cross-connections and the forming of associative
memories.

If this system can be constructed, it will be an example of MC1-4 since it is attempting to
produce behaviour and cognitive states linked to consciousness using an architecture theorized to
be a cause or correlate of consciousness, which may actually become conscious. At the time of
writing Haikonen is working on the implementation of his proposed architecture and it is not

clear how much has been completed.



[ 118 ]

Schema-based model of the conscious self

Samsonovich and DeJong’s (2005a,b) cognitive architecture is based around schemas that
process data items, such as semantic knowledge, action primitives or sensory qualia. The
behaviour of these schemas is constrained by a set of axioms that correspond to the system’s
‘conscious’ self. These self axioms are beliefs that the agent holds about itself, such as the fact
that the self is the only author of self-initiated acts, the self is indivisible, and so on. In
Samsonovich and DeJong (2005b) this system was integrated using a dynamic multichart
architecture, whereas in Samsonovich and DeJong (2005a) it was coordinated by contextual,
conceptual and emotional maps based on the hippocampus. Samsonovich and DeJong (2005b)
describe how this cognitive architecture was used to control a virtual robot that learnt to move in
open space, navigate a maze and solve a simple push-push puzzle.

This cognitive model of the conscious self is an example of an MC2 system that is
capable of behaviours that require consciousness in humans (MC1). Although Samsonovich and
DeJong (2005a) map their architecture onto brain areas and functions, they do not explicitly link
it to any of the architectures that have been put forward as a cause or correlate of human
consciousness (MC3). Samsonovich and DeJong (2005a,b) do not comment on whether their

system is capable of real phenomenal states (MC4).

Cicerobot

Cicerobot is a robot created by Chella and Macaluso (2006) and Chella (2007), which has sonar,
a laser rangefinder and a video camera, and works as a museum tour guide in the Archaeological
Museum of Agrigento (see Figure 3.5). The cognitive architecture of this robot is based around
an internal 3D simulation, which is updated as the robot navigates around its environment. When
the robot moves it sends a copy of its motor commands to the 3D simulator, which calculates
expectations about the next location and camera image. Once the movement has been executed,

the robot compares its expected image with the 2D output from its camera and uses discrepancies
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between the real and expected images to update its 3D model. Cicerobot uses this 3D simulation

to plan actions by exploring different scenarios in a way that is analogous to human imagination.

Figure 3.5. Cicerobot

This ‘conscious’ cognitive architecture (MC2) is used to control the robot in the
unpredictable environment of a museum (MCI1). Chella and Macaluso (2006) also link the
robot’s comparison between expected and actual perceptions to the presence of real

phenomenological states (MC4).

3.5.9 Other Work

Other work on machine consciousness includes Mulhauser (1998), who used physics, computer

science and information theory to outline how consciousness and a conscious self model could
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be implemented in a machine. There is also Duch (2005), who sets out an architecture for a
conscious system that is inspired by brain-like computing principles. This proposed system’s
claims to be conscious would be based on its interpretation of variations in its internal states as
different feelings or qualia associated with the perceived objects. Bosse et al. (2005) have carried
out simulations of Damasio’s core consciousness using the Temporal Trace Language (TTL)
(Jonker and Treur 2002) and a simpler variation called /eads to. In their simulations dynamic
properties of the neural processes leading to emotion, feeling and core consciousness were
expressed using statements in TTL and /eads to and executed within a custom built simulation
environment that enabled temporal dependencies between different parts of the model to be
traced and visualised. Other neural network models of consciousness include the CODAM model
that links consciousness to a copy of the signal that changes the focus of attention (Taylor 2007,
Taylor and Fragopanagos 2007), Ikegami’s (2007) work with a mobile agent equipped with a
Fitz-Hugh-Nagumo neural network, and Cleeremans et al.’s (2007) networks inspired by
Rosenthal’s (1986) higher-order thought theory. More theoretical work on machine
consciousness can be found in Holland (2003), Chrisley et al. (2007) and Chella and Manzotti

(2007).

3.6 Social, Ethical and Legal Issues

Many people believe that work on machine consciousness will eventually lead to machines
taking over and enslaving humans in a Terminator or Matrix style future world. This is the
position of Kaczynski (1995) and Joy (2000), who believe that we will increasingly pass
responsibility to intelligent machines until we are unable to do without them - in the same way
that we are increasingly unable to live without the Internet today. This would eventually leave us
at the mercy of potentially super-intelligent machines that may use their power against us.

Against these apocalyptic visions, Asimov (1952) agrees with Kaczynski and Joy about how the
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machines will take over, but suggests that computers will run the world better than ourselves and
actually make humanity happier.24 A similar position is put forward by Sloman (2006), who
argues that “It is very unlikely that intelligent machines could possibly produce more dreadful
behaviour towards humans than humans already produce towards each other, all round the world
even in the supposedly most civilised and advanced countries, both at individual levels and at
social or national levels.”

At present our machines fall far short of many aspects of human intelligence, and we may
have hundreds of years to consider the matter before either the apocalyptic or optimistic
scenarios come to pass. It is also the case that science fiction predictions tell us more about our
present concerns than about a future that is likely to happen, and our attitudes towards ourselves
and machines will change substantially over the next century, as they have changed over the last.
For example, Kurzweil (2000) argues that as machines become more human and humans become
more machinic, the barriers will increasingly break down between them until the notion of a
takeover by machines makes little sense. Furthermore, as machines develop, the safety
regulations will increase and we may be able to build a version of Asimov’s laws into them, or at
least exclude intense negative emotions such as hate or envy. At present, work on machine
consciousness has many benefits (see Section 3.7) and it is not justified to call a halt to the whole
program because of scare stories and science fiction visions.”

A second ethical dimension to work on machine consciousness is how we should treat
conscious machines. As Torrance (2005) points out, we will eventually be able to build systems
that are not just instruments for us, but participants with us in our social existence. However, this
can only be done through experiments that cause conscious machines a considerable amount of

confusion and pain, which has led Metzinger (2003) to compare work on machine consciousness

2 Moravec (1988) was also an early advocate of this view.

» These ethical issues were discussed at length at the 2006 AGIRI Workshop: http://www.agiri.org/forum
/index.php?showtopic=23.
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to the development of a race of retarded infants for experimentation. We want machines that
exhibit behaviour associated with consciousness (MC1) and we want to model human cognitive
states (MC2) and conscious architectures (MC3), but we may have to prevent our machines from
becoming phenomenally conscious (MC4) if we want to avoid the controversy associated with
animal experiments. This can only be done by developing systematic methods for evaluating the
likelihood that a machine can experience phenomenal states.

A final aspect of the social and ethical issues surrounding machine consciousness is the
legal status of conscious machines. When traditional software fails, responsibility is usually
allocated to the people who developed it, but the case is much less clear with autonomous
systems that learn from their environment. A conscious machine might malfunction because it
has been maltreated, and not because it was badly designed, and so its behaviour could be
blamed on its carers or owners, rather than on its manufacturers. Conscious machines could also
be held responsible for their own actions and punished approplriately.27 A detailed discussion of

these issues can be found in Calverley (2005).

3.7 Potential Benefits of Machine Consciousness

This final section takes a look at some of the positive outcomes that might be realised through
research on machine consciousness. Although research on MCl1 is still at an early stage, it could
eventually help us to produce more plausible imitations of human behaviour. In the shorter term,
this might appear as more sophisticated chatterbots that carry out simple conversations as part of
a telephone or web application. Progress with MC1 is most likely to come from research on other

aspects of machine consciousness, such as MC2 or MC3.

% The ethical treatment of conscious machines is also discussed by Stuart (2003).

%7 Punishment might have to be limited to machines with some kind of self awareness if we want to avoid the
absurdities of the criminal prosecution of animals in the Middle Ages — see Evans (1987).
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One of the main benefits of research on MC2 will be the development of machines that
can connect emotions with objects and situations, attend to different aspects of their
environment, and imagine themselves in non-present scenarios.” This could eventually lead to
machines that can understand our human world and language in a human-like way, which would
vastly increase their ability to assist us and interact with us. Work on MC2 might also open up
intersubjective possibilities between humans and machines, enabling computers to imagine what
people might be thinking, empathize with them and imitate them.

At present, MC3 research is mainly oriented towards modelling the architectures that
have been associated with human consciousness, which is an excellent way to test ideas about
how consciousness works in human beings. When this modelling involves simulated neural
networks, it can advance our understanding of the neural correlates of consciousness, as seen in
the work of Shanahan (2006, 2008) and Dehaene et al. (1998, 2003, 2005). This neural
modelling could improve our diagnosis of coma and locked-in patients and help us to understand
how the brain processes information, so that we can develop prosthetic interfaces to restore
visual, auditory or limb functions. MC3 work can also help us to develop machines that tackle
problems in a similar way to humans, such as Franklin’s naval dispatching system.29

Although we often want to avoid phenomenal states in machines, work on MC4 does
have a number of potential benefits. The most important of these is the development of
systematic ways of examining systems for signs of consciousness and making predictions about
their phenomenal states. By working hand in hand with neurophenomenology, this synthetic
phenomenology could lead to more scientific theories about animal suffering and it will be
discussed in detail in the next chapter. Up to this point it has always been a vague question about
whether, for example, snails feel pain, but MC4 research may eventually be able to make

detailed predictions about the phenomenal states of non human systems. This could also help us

2 part of the work on deliberation — see footnote 23.

* See Franklin (2001) for more on how IDA tackles problems in a similar way to humans.
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to understand the phenomenal states of very young or brain-damaged people who are incapable

of communicating their experiences in language.

3.8 Conclusions

Machine consciousness is a relatively new research area that has gained considerable momentum
over the last few years, and there is a growing number of research projects in this field. Although
it shares some common ground with philosophy, psychology, neuroscience, computer science
and even physics, machine consciousness is rapidly developing an identity and problems of its
own. The benefits of machine consciousness are only starting to be realised, but work on MC2-3
is already proving to be a promising way of producing more intelligent machines, testing theories
about consciousness and cognition, and deepening our understanding of consciousness in the
brain. As machine consciousness matures it is also starting to raise some novel social and ethical
issues.

One of the challenges in MC4 work on machine consciousness is to establish whether a
system 1s capable of phenomenal states and to describe these phenomenal states when they
occur. This challenge is addressed by the emerging discipline of synthetic phenomenology,
which is covered in Chapter 4. Chapter 5 describes the design and implementation of an MCl,
MC?2 and potentially MC4 neural network, whose phenomenal states are analyzed in detail in

Chapter 7.
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4 SYNTHETIC PHENOMENOLOGY

At present we are completely unequipped to think about the subjective character of experience without relying
on the imagination - without taking up the point of view of the experiential subject. This should be regarded as
a challenge to form new concepts and devise a new method - an objective phenomenology not dependent on
empathy or the imagination. Though presumably it would not capture everything, its goal would be to
describe, at least in part, the subjective character of experiences in a form comprehensible to beings incapable
of having those experiences.

Nagel (1974, p. 449)

4.1 Introduction

Synthetic phenomenology is a new area of research that has emerged out of work on machine
consciousness. The term was first coined by Jordan (1998), who used it to refer to the
synthesizing of phenomenal states and a second interpretation was suggested by Chrisley and
Parthemore (2007), who interpret synthetic phenomenology as the “attempt to use the states,
interactions and capacities of an artificial agent for the purpose of specifying the contents of
conscious experience.” (p. 44). In this usage, an artificial system is being employed to describe
the phenomenology of a second system, which could be human, in order to overcome the
limitations of natural language. Synthetic phenomenology can also refer to the determination
whether artificial systems are capable of conscious states and the description of these states if
they occur, and it is in this sense that I will be using it in this thesis. This approach to synthetic
phenomenology is similar to that put forward by Aleksander and Morton (2007a) and it is close
to the philosophical tradition of phenomenology, with the word ‘“synthetic” being added to
indicate that it is the phenomenology of artificial systems that is being described. Husserl’s

(1960) phenomenological project was the description of human consciousness; the synthetic

! Earlier versions of parts of this chapter were published as Gamez (2005) and Gamez (2006).
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phenomenological project is the description of machine consciousness - a way in which people
working on machine consciousness can measure the extent to which they have succeeded in
realizing consciousness in a machine.’

It is impossible to describe the phenomenology of a system that is not capable of
consciousness, and so the first challenge faced by synthetic phenomenology is to identify the
systems that are capable of phenomenal states. In Chapter 2 it was argued that we do not have a
viable metaphysical theory of consciousness, and so we can only tell if a system is conscious by
looking at its type I and type II potential correlates of consciousness (PCCs). Setting aside the
problem that some correlates of consciousness may be probabilistic and multifactorial, the
behaviour-neutrality of type I PCCs means that we cannot identify a list of the necessary and
sufficient correlates of consciousness. This prevents us from ever knowing for certain whether
biological neurons, for example, are necessary for consciousness, or if they are just one of the
mechanisms by which consciousness happens to be implemented in human beings. Since it is
indeterminable whether silicon-based robotic systems are conscious or not, a major obstacle lies
in the way of any attempt to describe the phenomenology of such systems.

One approach to this problem is to follow Prinz (2003) and suspend judgement about
whether robots are capable of phenomenal states. However, one problem with this approach is
that many people have a strong intuition that machines built in a similar way to humans are
likely to be phenomenally conscious, and so it may be necessary to take the idea that certain
types of machines have conscious experiences seriously. Second, as machine consciousness
progresses we are likely to start developing machines that exhibit more complex behaviour and
spend a lot of time confused and potentially in pain. This has been somewhat dramatically

compared by Metzinger (2003, p. 621) to the development of a race of retarded infants for

? Traditional and synthetic phenomenology have different objectives: traditional phenomenology was trying to
increase our understanding of the world; synthetic phenomenology is describing the phenomenal states of
machines in order to monitor their consciousness and change their behaviour.
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experimentation. To address these ethical worries without stifling research a way needs to be
found to evaluate the likelihood that a robot is capable of phenomenal states. A third problem
with suspending judgement is that as more sophisticated robots emerge, people are inevitably
going to attribute more and more consciousness to them. People are already prepared to attribute
emotions to robots as simple as Braitenberg’s vehicles (Dautenhahn 2007), and a systematic way
of evaluating phenomenal states in a system needs to be in place before this becomes a live
public issue. The general public is very interested in the question whether something is really
conscious and it would be helpful if the machine consciousness community could formulate
some kind of answer, even if this is based on analogy with human beings. To address these
issues and provide a framework within which the more detailed work of synthetic
phenomenology can proceed, Section 4.2 outlines a scale that orders machines according to the
degree to which their type I PCCs match human type I PCCs.

The next part of this chapter suggests how type II theories of consciousness can be used
to generate a description of a machine’s phenomenal states. This approach is based around
concepts of a mental state and a representational mental state, which are defined in Section 4.3
along with some methods for identifying them in artificial systems. Once we have identified the
system’s representational and non-representational mental states and made predictions about
their association with phenomenal states, we need to find a way of moving from the physical
description of the mental states to a description of the system’s phenomenology. Section 4.4
outlines some of the reasons why human language is unsuitable for the description of non-human
mental states, and puts forward an alternative approach that uses a markup language to combine
human and physical descriptions with other information about the system. Finally, the last part of
this chapter covers some of the previous work that has been carried out in synthetic

phenomenology.



[ 128 ]

It is worth noting that this approach to synthetic phenomenology makes no assumptions
about whether any particular machine is capable of supporting conscious states: robots, stones

and human beings all have internal states and all three can be analysed using this applroach.3

4.2 Ordinal Machine Consciousness (OMC) Scale

.. we may say that measurement, in the broadest sense, is defined as the assignment of numerals or events
according to rules. The fact that numerals can be assigned under different rules leads to different kinds of
scales and different kinds of measurement. The problem then becomes that of making explicit (a) the various
rules for the assignment of numerals, (b) the mathematical properties (or group structure) of the resulting
scales, and (c) the statistical operations applicable to measurements made with each type of scale.

Stevens (1946, p. 677)

4.2.1 Introduction

The discussion of the brain-chip replacement experiment showed that it is impossible to establish
whether the behaviour-neutral type I aspects of a system, such as the material it is made from,
are correlated with consciousness or not (see Section 2.5.6). The presence of biological neurons
might be necessary for consciousness or it might not, and the introduction to this chapter put
forward a number of reasons why we need to make a decision about this, even if we cannot judge
with certainty. To address this issue, this section sets out a proposal for an ordinal* machine
consciousness (OMC) scale that makes predictions about what people would say about the
consciousness of non-human systems based solely on their type I PCCs. Type II PCCs do not
need to be included in the OMC scale because their correlation with consciousness can be

empirically assessed.

? Stones have few of the human type I PCCs, but it is an open and empirical question whether any of the type II
theories of consciousness would predict that they have phenomenal states.

* See Stevens (1946) for the difference between nominal, ordinal, interval and ratio scales. It was decided to make
the scale ordinal because it was anticipated that it would only be possible to measure people’s assessment about
whether one system is more or less conscious than another. In the future it may be possible to develop an interval
or ratio scale.
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The OMC scale is a model of our subjective judgement about the consciousness of
artificial systems, and although it might initially seem counterintuitive to use a numerical scale to
rank our judgements about the consciousness of systems, there has been a lot of psychophysical
work on the measurement of other subjective qualities, such as brightness, loudness, the hardness
of minerals, beauty or the desirability of automobiles (Baird and Noma 1978). The OMC scale is
a logical extension of this work that attempts to predict the degree to which a system’s type I
PCCs are judged by us to be relevant to consciousness. As Stevens (1946) points out,
measurement scales are possible when there is an isomorphism between certain properties of
objects and the properties of numerical series, and this isomorphism enables the series to model
relevant aspects of the empirical world. In this thesis the OMC scale is a proposed ordering of
systems that is predicted to match people’s judgments about systems’ consciousness based on
their type I PCCs.

This project did not have the resources to base the OMC scale on empirical
measurements of people’s judgements about the link between type I PCCs and consciousness,
and so the current version is put forward as a model of how people would make this type of

judgement. This use of models in psychophysics is summarised by Baird and Noma (1978):

In brief, a psychophysical theory is a set of statements (assumptions) that describes how an organism processes
stimulus information under carefully specified conditions. The assumptions usually concern hypothetical
processes that are difficult or impossible to observe directly. Once these assumptions are made explicit,
however, formal models can be devised. The validity of the theory can be tested by comparing observations
against the predictions of the model. In other words, a theory represents a set of “reasonable” guesses about
exactly how a person behaves as a measuring instrument when asked to judge properties of stimuli.

Detailed predictions of what a person will actually do in an experiment are based on models especially
designed to test one or more theories. Although in recent years the terms “model” and “theory” have often
been used interchangeably, a model is thought to be a concrete synthesis of the assumptions of a theory. This
synthesis specifies the interrelationships among the postulated primitives of the theory. Often these statements

are in the form of mathematical formulas, computer programs, or logical truisms. In this way they are both
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more specific and yet more general than the theory giving rise to them — more specific in that the theory,
through its models, is now amenable to laboratory test, and more general in that an abstract model may be used
to quantify theories in many areas of study.

Baird and Noma (1978, pp. 2-3)

The current OMC model enables predictions to be made about what people would say about the
consciousness of non-human systems based solely on their type I PCCs, and it is used in this
thesis to demonstrate a new approach to synthetic phenomenology.

This description of the OMC scale starts with an overview of the systems that are covered
by it. After explaining the factors and the way in which they are combined, some examples are
given to illustrate how it works. How this model might be validated and improved using real data

1s discussed in Section 4.2.7.

4.2.2 Systems Covered by the OMC Scale

In order to focus on the behaviour-neutral aspects of each system, the systems ranked by the
OMC scale need to have their behaviour held constant in some way, which can be done by
specifying that all of the systems ranked by the OMC scale must conform to the behaviour set of
a system that is generally acknowledged to be conscious. This ensures that a system’s type |
PCCs are the only factors that affect its position on the scale.

Since humans are our paradigmatic conscious systems, the functions of the human brain
can be used to specify a set of behaviours that systems on the OMC scale would have to match.’
This notion of approximating the functions of the human brain could be defined using Harnad’s
(1994) extended T3 version of the Turing test. A machine that could pass this test would be able

to control a human or artificial body in a way that was functionally indistinguishable from a

> This way of specifying the behaviour of systems covered by the OMC scale sets aside the whole question of the
body. In theory a computer could approximate the behaviour of the human brain without needing a body at all.
However, such a system would be almost impossible to develop and there might be a critical link between the body
and consciousness that would be missed by a purely brain-based approach — see, for example, Damasio (1999) for
more on the link between the body and consciousness.
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human for 70 years or more. Such a system could hold down a job, create works of art and have
relationships with other human beings. Machines that were in a persistent vegetative state or
interned in an asylum for strange behaviour would not be considered functionally identical to a
human being according to this measure.

Whilst the T3 version of the Turing Test defines the behaviour of a paradigmatically
conscious system, it has the disadvantage that our current machines are very far from passing it —
if T3 was used as the definition of behaviour, then the OMC scale could only be applied to our
current systems by treating them as if they had developed to the point at which they were capable
of passing it. A second way of defining the behaviour set of a conscious system would be to look
at humans who exhibit far less complex behaviour. For example, since we attribute
consciousness to locked-in patients who are limited to the movement of a single eyelid,6 the
symbolic T2 version of the Turing Test might be enough for behaviour neutrality. Many other
brain damaged people are also examples of systems that are attributed consciousness, but might
not be able to pass the T3 Turing Test, and their behaviour could also be used as a common
standard for systems ranked by the scale.

A third possibility is that our knowledge about animal consciousness might develop to
the point at which an animal’s brain could be used to specify a set of conscious behaviours.
Systems that conformed to this behaviour set would have to approximate the behaviour of the
brains of animals that are known to be conscious by controlling a body similar to the animal’s for
the lifetime of the animal (systems that imitated one or two simple behaviours, such as flying or
swimming, would be attributed less consciousness than the animal on behavioural grounds).
Whichever definition of behaviour is used, it is not the behaviour per se that is important, but the
fact that it approximates the behaviour of a system that is agreed to be conscious, so that only the

type I attributes of the system affect our judgement about its potential for conscious states.

6 For example, see Baubey (2002).
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4.2.3 OMC Factors and Weights

The scale is built in a modular fashion so that factors can easily be added, removed or adjusted to
match data gathered by psychophysical experiments. Each system is assigned a weight, w, for
each of its type I PCCs, and these weights are combined according to the rules set out in Section
4.2.4 to generate the scale. The working assumption behind the OMC scale is that people’s
attribution of consciousness to a system is largely based on similarities between the system and
the human brain, and so it was decided to set @ to 1.0 when the system was the same as the
human brain for a particular PCC. When the system deviates from the human brain on a
particular factor, it is given a weight less than 1.0, and to preserve the modularity of the scale the
minimum value of w was limited to 0.1. So, for example, Table 4.1 shows how the system is
assigned a weight of 1.0 if it runs at approximately the same speed as the human brain, a weight
of 0.55 if it runs ten times faster or slower than the human brain, and a weight of 0.1 if it runs
over a hundred times faster or slower than the human brain.

The current version of the OMC scale only covers a very small selection of the type I
PCCs that have turned up in discussions of consciousness in artificial systems by Block (1978),
Searle (1980), Kent (1981) and others, and the assignment of weights has been done in a
subjective and somewhat arbitrary fashion. In the future it is hoped that psychophysical methods
could be used to test and improve the scale, and some suggestions about how this could be done
are given in Section 4.2.7. An outline of the factors that I have selected for version 0.6 of the

OMC scale now follows.

Rate
Machines can operate much faster or slower than the human brain and we are more likely to
attribute consciousness to a machine that runs at approximately the same speed. If we were

forced to say whether the economy of Bolivia or the Earth’s crust is more likely to be conscious,
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we would probably choose the economy of Bolivia. This is not because it is more complex or has

more states, but because its states change more rapidly.

Rate 0]
R1 | Approximately the same speed as the human brain 1.0
R2 | Ten times faster or slower than the human brain 0.55
R3 | Over a hundred times faster or slower than the human brain 0.1

Table 4.1. Rate factors

Size
We are more likely to attribute consciousness to a system that fits inside a person’s head, than to

a system that is the size of the population of China.

Size [0}
S1 Approximately the same size as the human brain 1.0
S2 A thousand times larger or smaller than the human brain 0.55
S3 More than a million times larger or smaller than the human brain 0.1

Table 4.2. Size factors

Function Implementation
There are a wide variety of ways in which the functions of a system can be implemented, some
of which are closer to human biology than others. This factor weights machines according to the
degree to which the implementation of their functions matches that of the human brain. I have
gone down to the atomic level to take account of claims by Hameroff and Penrose (1996) that
consciousness depends on quantum functions.

This factor is complicated by the fact that neurons can be used to implement functions in
a biological and non-biological way. For example, a function can be implemented by a neural
network trained by back propagation or by a more biological structure of neurons. Since neurons

can themselves be simulated using neurons there is potential for infinite self-recursion, which I
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have limited by introducing a restriction on the number of levels. To keep things simple I have
also set aside the possibility that glia play an information-processing role (Haydon 2000).

The way in which these three tables are combined is fairly self-evident. If the functions
are implemented by a biological structure of neurons (F1 in Table 4.3), then the way in which the
function of the neurons is implemented has to be specified as well (for example, FN1 in Table
4.4). No further levels are required if a system’s functions are implemented in a non-neural way
(F3 in Table 4.3).

Since all computer simulations are physical systems consisting of a certain combination
of molecules, atoms and ions, the purpose of the function implementation factor is not to
determine whether the system is simulated or not, but to capture the level of detail at which the
system’s functions match the functions of the human brain. For example, if a system’s functions
are carried out using a large lookup table, then this might be stored as voltages in the computer’s
RAM, which is a physical thing, but we are more likely to attribute consciousness to a system
that implements the brain’s functions using simulated neural networks. We attribute maximum
consciousness to systems that match the human brain all the way down to the level of molecules,
atoms and ions and implement the molecules, atoms and ions using real biological molecules,

atoms and 1ons.

Function implementation 0]
F1 Produced by a biological structure of neurons 1.0
F2 Produced by a non-biological structure of neurons 0.55
F3 Produced using mathematical algorithms, computer code or some other | 0.1
method

Table 4.3. Function implementation
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Function of neurons 0]
FN1 Produced by a biological structure of molecules, atoms and ions 1.0
FN2 Produced by a non-biological structure of molecules, atoms and ions (silicon | 0.7
chemistry, for example)
FN3 Produced by a non-biological structure of neurons 0.4
FN4 Produced using mathematical algorithms, computer code or some other | 0.1
method
Table 4.4. Neuron implementation
Function of molecules, atoms and ions w
FMAII | Produced by real subatomic phenomena, such as protons, neutrons and | 1.0
electrons
FMAI2 | Produced by a non-biological structure of neurons 0.55
FMAI3 | Produced using mathematical algorithms, computer code or some other | 0.1

method

Table 4.5. Molecule, atom and ion implementation

Time Slicing

The processing of functions can be carried out in parallel with all of them operating

simultaneously on dedicated hardware. On the other hand a single processor can emulate the

parallel operation of many functions by time-slicing. This scale follows Kent (1981) in ranking

time-sliced systems, which approximate the time complexity of the brain, as being less likely to

be phenomenally conscious than systems with the same moment to moment space complexity as

the brain.
Time slicing [0}
TS1 All functions are dynamically changing and co-present at any point in time 1.0
TS2 Some functions are dynamically changing and co-present at any point in time | 0.55
TS3 A single function is dynamically changing and present at any point in time 0.1

Table 4.6. Time slicing
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Analogue / Digital
Although spiking neurons have a digital aspect, the brain includes many analogue processes that

may be more faithfully captured by an analogue system.7

Analogue / digital 0]
ADl1 Analogue system 1.0
AD2 Mixture of analogue and digital 0.55
AD3 Digital system 0.1

Table 4.7. Analogue / digital systems

4.2.4 Putting it All Together

To obtain the final OMC scale, a complete list of all the possible machines is extracted from the
factor tables. The weights applicable to each are then multiplied together to give total weightings
for each of the possible machines, which are used to situate them on an ordinal scale. Since many
of the machines have the same total weighting, this scale is much shorter than the number of
possible combinations. A couple of extra rules were also introduced for the combination of

factors:

1. Since neurons can be used to simulate the behaviour of neurons or the molecules,
atoms and ions that neurons are composed of, the function implementation is
potentially infinitely self-recursive. To prevent this I have stipulated that if non-
biological structures of neurons are used to implement the functions of neurons or the
functions of molecules, atoms and ions, then the neurons that are used for this cannot
themselves have their functions implemented using non-biological structures of

neurons.

7 See Roberts and Bush (1981) for examples of analogue processing in the brain, and Shu et al. (2006) for
experimental work on the hybrid analogue and digital nature of spike transmission.
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2. When machines have less levels of functional implementation than the brain some
kind of penalty needs to be imposed on machines that deviate from the human
structure — for example, when functions are implemented by a lookup table instead of
using biologically structured neurons implemented with molecules, atoms and ions.
In the present scale there are three levels of functional implementation and I have

used 0.1 as the weighting for each missing level.

The position, omc,s, of an actual machine on a scale with omc,, possible positions is
found by calculating its total weighting, and looking for this value in the complete list of possible
machines. To facilitate some kind of comparison between different versions of the scale, omc,,s
is normalised to a value between 0 and 1 to give the final OMC rating, omc,y,, using

Equation 4.1:

I-omc
omc,, =1+ ——-"" 4.1)

rat
omec,,

which gives a rating of 1 for human brains and a rating close to zero for the last system on the
list. The closer this OMC rating is to 1 the more human-like are its type I potential correlates of
consciousness. Citations of a system’s OMC rating should include the version of the scale, since
it is anticipated that it will evolve over time.

When all of a machine’s functions are implemented in the same way, this scale provides
the OMC rating for the complete system. However, some machines include components that
have different OMC ratings — for example, a human brain with a silicon hippocampus. In this
case, the OMC rating should be calculated for each part of the system.

The current version of the OMC scale starts with human beings and finishes with digital
single-processor simulations based on non-biological principles that are much larger or smaller

than the human brain and process at a much slower or faster rate. There is not space in this
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chapter to list the OMC ratings of all of the possible machines (the complete list has several
hundred thousand combinations), and so I have integrated everything together on a webpage,8
which can be used to calculate the position of a machine on the scale and its OMC rating. Some

examples are given in the next section.

4.2.5 Examples

To illustrate the operation of the OMC scale, this section gives some examples of the position
and rating of different types of system. At present none of these are even close to reproducing all
of the functions of the human brain for 70 years, and so this evaluation would only apply to them
after they have developed to the point at which they can pass the T3 version of the Turing test or

could match one of the less complex behaviour sets discussed in Section 4.2.2.

Neurally Controlled Animat

This is a system developed by DeMarse et al. (2001) that uses biological neurons to control a
computer-generated animal in a virtual world. The biological neurons start off in a disorganised
state and then self-assemble in response to stimulation from their environment. Since the
organisation of the neurons is not determined by the many factors present in embryological
development, this system produces the functions of the whole brain from a non-biological
structure of neurons. The factors are thus: R1, S1 F2, FN1, FMAI1, TS1 and ADI, giving a total

weighting of 0.55, an OMC position of 3 out of 192 and an OMC rating of. 0.990.

Lucy
Lucy is a robot developed by Grand (2003) that is controlled by a multi-processor simulation of
neurons arranged in a biological structure. The factors are thus R1, S1, F1, FN4, TS2 and AD3,

giving a total weighting of 5.5 x 10~. This needs to be multiplied by 0.1 to compensate for the

¥ The OMC scale webpage is included in the Supporting Materials along with the code that was used to generate it.
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fact that Lucy’s functions are not implemented at the level of molecules, atoms and ions, making
the total weighting 5.5 x 10, This gives Lucy an OMC position of 96 out of 192 and an OMC

rating of 0.505.

IDA

IDA is a naval dispatching system created by Franklin et. al. (2003) that is based on Baars’
(1988) global workspace model of consciousness.” The solutions used to implement this system
are all non-biological, and so the factors are R1, S1, F3, TS2 and AD3. This gives a total
weighting of 5.5 x 107, but since the functions are not implemented at the level of neurons or

molecules, atoms and ions, this needs to be multiplied by 2 x 0.1, to give a total weighting of 5.5

x 10”, which results in an OMC position of 146 out of 192 and an OMC rating of.0.245.

The Population of China

This is a thought experiment suggested by Block (1978) in which the functions of a human brain
are carried out by the population of China interconnected by two-way radios and satellites. The
population of China is approximately 1.3 billion and so this ‘machine’ is very much larger than
the human brain. It is also likely to work at a much slower rate. This ‘machine’ contains both
biological neurons and other hardware, and so the OMC rating has to be calculated separately for
the different parts of the system.

The biological parts are implemented using a non-biological structure of neurons whose
function is in turn implemented using a biological structure of molecules, atoms and ions, giving
the factors R3, S3, F2, FN1, FMAII, TS1 and AD1, which works out as a total weighting of 5.5
x 107, an OMC position of 50 out of 192 and an OMC rating of 0.745. The rest of the system,
consisting of the two-way radios, satellites, etc., has factors R3, S3, F3, TS2 and AD3, which

gives a total weighting of 5.5 x 10 that needs to be multiplied by 2 x 0.1 to compensate for the

° IDA is covered in more detail in Section 3.5.6.
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missing levels of functional implementation. This gives a total weighting of 5.5 x 107, an OMC

position of 188 out of 192 and an OMC rating of 0.02604.

4.2.6 OMC Scale Discussion

It is possible that consciousness decreases gradually as we move away from the human machine,
or there may be a cut off point at which it simply vanishes. For example, there might be less
consciousness when neurons are simulated using time slicing, or no phenomenal states at all
when this is used in a system. We cannot empirically establish whether consciousness cuts off or
not, but this does lead to two different interpretations of the OMC scale. If consciousness cuts off
abruptly, then the OMC rating can be interpreted as our evaluation of the likelihood that
consciousness is present in a machine that is built in a particular way. On the other hand, if
consciousness decreases gradually as the factors become less human, then the OMC scale ranks
machines according to our judgement about their degree of consciousness.

This is an extremely anthropocentric scale in which the great chain of machines is a kind
of fall from grace from perfectly conscious man. This is an epistemological necessity — we only
know for sure that we are conscious — but it is quite possible, although empirically
undeterminable, that robots at the far end of the scale are more conscious than ourselves. '

The final OMC rating expresses an ordering of machines according to our subjective
judgement about the relationship between their type I attributes and consciousness, so a system
with an OMC rating of 0.8 is judged to be more conscious (or more likely to be conscious) than a
system with a rating of 0.6. However, because successive intervals on the scale are not
necessarily equal, it is incorrect to say that a system with an OMC rating of 0.8 is judged to be

twice as conscious (or twice as likely to be conscious) as one with an OMC rating of 0.4.

'91f we judged machines to more conscious than humans, then we could assign them an OMC rating greater than 1.
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This scale only covers type I PCCs that cannot be empirically tested and affect our a
priori judgement about a machine’s potential for phenomenal states. For this reason the scale
excludes many of the factors that have been put forward as PCCs, such as synchronization
between neurons, a global workspace architecture, a model of the self, and so on. The correlation
between these factors and consciousness can be assessed empirically and it is hoped that we will
eventually come up with a list of type II correlates that are necessary in a conscious system. Any
machine that lacked one of these necessary conditions would not be deemed to be conscious,
regardless of its position on the OMC scale. However, a list of type II correlates will never be
sufficient for the prediction of consciousness because one or a number of type I correlates might
be necessary as well. Final judgements about a system’s potential phenomenal states should
combine the OMC scale’s a priori evaluation about its capability for consciousness with an
empirical assessment using a type II theory.

Many type I PCCs, such as the size of a system or its material, do not substantially
change from moment to moment and the OMC rating can be calculated once for the entire
lifetime of the system. When a system’s type I PCCs change over time, its OMC rating may have
to be recalculated each time its phenomenology is described.

It must be emphasized that a high OMC rating does not indicate that a system is actually
conscious — for example, living humans have an OMC rating of 1.0 and yet they are only
conscious for up to 16 hours per day. A high OMC rating only indicates that the system is judged
to completely or approximately match humans on all of the type I PCCs that are judged to be
relevant to consciousness; this OMC rating has to be combined with a type II theory to make
predictions about whether the system is actually conscious at any point in time.

Although the current OMC scale has many limitations, the most important question is not
whether this particular version makes sense, but whether the problems raised by the brain-chip

replacement experiment require us to use this type of scale. If the type I/ II distinction outlined in
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sections 2.5.7 and 2.5.8 is valid, then something like this OMC scale is likely to become an
essential tool in machine consciousness research, and the question becomes which is the best
possible scale for this purpose. On the other hand, if it can be shown that the distinction between
type I and type II PCCs is mistaken, then there is no need for the OMC scale at all.

Finally, as technology and culture develops, people’s intuitions will change, and a revised
version of the scale will have to be produced every few years. As we get closer to achieving
machine consciousness, this scale might eventually become superfluous: when we talk to robots
every day, work with robots that display conscious behaviour and perhaps even marry robots, we
might cease to worry about whether they really have phenomenal states, just as we rarely see

other people as automatons.

4.2.7 Future Development of the Scale

The current version of the scale is a model that predicts the subjective judgements that people
will make about the link between type I PCCs and consciousness. In the future this model needs
to be tested on real data by surveying people’s judgments about the consciousness of systems
with different type I PCCs. One way in which this could be done would be to show people short
films of a humanoid body controlled by brains, computers and other artefacts with different type
I PCCs, and ask participants to order them according to their potential for consciousness. To
begin with each factor could be varied individually and people could be asked about whether
system A was more or less conscious than system B to get an ordinal scale for each factor. The
factors could also be varied in combination and factors would have to be tested that were not on
the current version of the scale. One potential problem with carrying out these experiments on
the general public is that their judgements are likely to be based on an amalgam of what they
have seen in science fiction films and read in the media - although it could be argued that these

popular representations reflect our underlying beliefs as well as alter them. Expert opinion has
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the opposite problem that it can be too linked to particular theories, and so it would be best to
obtain sample data from both groups.

The first application of this data would be to revise the lists of factors that are used to
construct the scale. For example, if people systematically believed that green objects were less
likely to be conscious than red, then colour could be added as a factor. The weightings within
each list of factors would also have to be fine tuned, and it is anticipated that many of them will

approximate Fechner’s logarithmic law, which is given in Equation 4.2:1

p=klogg, “4.2)

where @ is the sensation magnitude, k is a constant and ¢ is the intensity of the stimulus in units
above an absolute threshold."?

A second application of this data would be to look at different ways of integrating the
factor scales. It might turn out that the current approach makes good predictions about the data,
but if it is not a good fit, then it would be worth experimenting with different methods of
combining the weights. One possibility would be to add the weights, and it might be necessary to
weight the factors to accommodate the fact that people attribute different importance to different
PCCs. Another option would be to use Shepard-Kruskal multidimensional scaling to combine the
different ordinal rankings into a single Euclidean space and use the normalized distance from the
most conscious system as the OMC rating (Shepard 1962a,b, Kruskal 1964).

Another direction of future work would be to use psychophysical methods to establish
thresholds for the subjective assignment of consciousness and it might be possible to obtain an
interval scale by including equisection or category scaling in the survey of people’s judgements
— see Gescheider (1997) for an overview of these methods. To obtain a more mathematically

sophisticated scale, nonmetric scaling could be used to convert the ordinal scale into an interval

" More details about Fechner’s law can be found in Gescheider (1997).

' This logarithmic relationship has already been incorporated into the size and rate factors of the current scale.
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scale (Shepard 1966)." A ratio scale would be more difficult to achieve since it depends on an
absolute zero, which might be difficult to agree upon in consciousness research — for example,
some people might be prepared to assign consciousness to a vacuum, thinking, perhaps, that it

could contain a spiritual non-material substance.

4.3 Mental and Representational States

4.3.1 Human and Synthetic Phenomenology

To clarify the relationship between synthetic and traditional phenomenology,14 I will give a
couple of examples from Husserl’s phenomenology of time consciousness and Merleau-Ponty’s

phenomenology of the body and the senses:

In the “perception of a melody,” we distinguish the tone given now, which we term the “perceived,” from
those which have gone by, which we say are “not perceived.” On the other hand, we call the whole melody one
that is perceived, although only the now-point actually is. We follow this procedure because not only is the
extension of the melody given point for point in an extension of the act of perception but also the unity of
retentional consciousness still “holds” the expired tones themselves in consciousness and continuously
establishes the unity of consciousness with reference to the homogeneous temporal Object, i.e., the melody.
An Objectivity such as a melody cannot itself be originarily given except as “perceived” in this form.

Husserl (1964, p. 60)

Already in the “touch” we have just found three distinct experiences which subtend one another, three

dimensions which overlap but are distinct: a touching of the sleek and of the rough, a touching of the things — a

' This would only work if the rank ordering of the intervals exhibited certain properties, such as weak transitivity of
the ordering and monotonicity.

T am using “traditional phenomenology” to refer to the phenomenological tradition that started with Husserl and
Brentano and attempted to describe human experience. I have left Dennett’s (1992) heterophenomenology out of
this discussion, which is a third person method for gathering the phenomenological descriptions of subjects: “It
involves extracting and purifying texts from (apparently) speaking subjects, and using those texts to generate a
theorist’s fiction, the subject’s heterophenomenological world. This fictional world is populated with all the
images, events, sounds, smells, hunches, presentiments, and feelings that the subject (apparently) sincerely
believes to exist in his or her consciousness. Maximally extended, it is a neutral portrayal of exactly what it is like
to be that subject — in the subject’s own terms, given the best interpretation we can muster.” (Dennett 1992, p. 98).
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passive sentiment of the body and of its space — and finally a veritable touching of the touch, when my right
hand touches my left hand while it is palpitating the things, where “the touching subject” passes over into the
rank of the touched, descends into the things, such that the touch is formed in the midst of the world and as it
were in the things. Between the massive sentiment I have of the sack in which I am enclosed, and the control
from without that my hand exercises over my hand there is as much difference as between the movements of
my eyes and the changes they produce in the visible. And as, conversely, every experience of the visible has
always been given to me within the context of the movements of the look, the visible spectacle belongs to the
touch neither more nor less than do the “tactile qualities.” We must habituate ourselves to think that every
visible is cut out in the tangible, every tactile being in some manner promised to visibility, and that there is
encroachment, infringement, not only between the touched and the touching, but also between the tangible and
the visible, which is encrusted in it, as conversely, the tangible itself is not a nothingness of visibility, is not
without visual existence. Since the same body sees and touches, visible and tangible belong to the same world.
It is a marvel too little noticed that every movement of my eyes — even more, every displacement of my body —
has its place in the same visible universe that I itemize and explore with them, as, conversely, every vision
takes place somewhere in the tactile space. There is double and crossed situating of the visible in the tangible
and of the tangible in the visible; the two maps are complete, and yet they do not merge into one. The two
parts are total parts and yet are not superposable.

Merleau-Ponty (1995, p. 134)

The first thing to note about these examples, is that they are based on first-person
introspection, in which the phenomenologist examines his or her experiences and writes down a
description in human language. At the current stage of development, artificial systems are fairly
rudimentary and incapable of describing any phenomenal states that they might have. This forces
synthetic phenomenology to start with third-person objective measurements, which can be
combined with type II theories of consciousness to make predictions about the system’s
phenomenal states.'> These objective measurements are generally carried out on a subset of the

system, such as its artificial neural networks or the code implementing a global workspace

' This approach is similar to neurophenomenology (see Section 4.5), which attempts to make predictions about
people’s first person phenomenology on the basis of objective brain measurements.
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architecture, which is analyzed as if it were a mind capable of representations and phenomenal
consciousness. To clarify this transition from the physical to the mental, Section 4.3.2 sets out a
definition of a mental state, which applies at the physical level and can be used to interpret
artificial as well as natural systems.

A second feature of traditional phenomenology is that it is based on objective features of
the world that can be physically measured and experienced by more than one person - for
example, the sound waves in Husserl’s melody can be recorded with scientific instruments and
Merleau-Ponty’s touching and touched hands are physical as well as phenomenal objects.16 This
suggests that phenomenal experiences can be interpreted as representations of objects that
appear in other peoples’ streams of experience, and these objects can be probed in a variety of
different ways. This interpretation of phenomenal experiences as representations is very useful
when we are describing the phenomenology of artificial systems, with the difference that we
have to find a way of identifying representations from a third person perspective. To address this
problem, a definition of a representational mental state is given in Section 4.3.3, and Section
4.3.4 discusses some of the ways in which representational mental states can be identified in
artificial systems.

A third observation about these quotations is that Husserl and Merleau-Ponty are
describing conscious mental states and do not consider the many unconscious mental states that
are in their minds. Section 4.3.5 explains how a theory of consciousness (based on type II
correlates of consciousness) can be used to make predictions about the association between
mental states and phenomenal states. Finally, Husserl and Merleau-Ponty are describing states
that are integrated together into a single consciousness, and this question about the relationships
between mental states is briefly covered in Section 4.3.6. The outcome of this process is a set of

physical descriptions of representational and non-representational mental states that are

'® This notion of a physical world would be interpreted with caution by traditional phenomenology, which often
claims that the phenomenal is more primordial than the physical — see Husserl (1960).
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associated with phenomenal states and Section 4.4 suggests how these can be turned into a full

phenomenological description.

4.3.2 Mental States

Homeric man believed that the seat of human consciousness was in the heart and lungs (Onians
1973) and over thousands of years people have gradually come to associate human
consciousness with human brains. Although many philosophers would argue that mental states
are conceptually distinct from physical states, the increase in our knowledge about the brain, and
the constant reduction of our mental functions to brain functions has led Churchland (1989) to
suggest that the term “mental state” will eventually become redundant and our use of mental
terminology will be superseded by descriptions in terms of states of the brain — a position known
as eliminative materialism.'” In the human case, this may eventually occur because a clear link
has been established between mental states and the brain. However, synthetic phenomenology is
analysing systems without biological brains and it is far from clear which part of the system is
the right place to look for phenomenal states. Within this context we need the concept of a
mental state to specify the part of the system (or subset of the system’s states) that we are
analysing for consciousness. For this purpose I will use “mental state” according to the following

definition:'®

A mental state is a state of the part of the system that is being analysed for 4.1)

consciousness.

When people analyze humans for consciousness they generally focus on the brain and

human mental states are usually taken to be states of human brains. Within the human brain,

' Rorty’s (1979, p. 71) thought experiment in which Antipodeans use brain descriptions instead of mental terms to
express their inner states is an example.

'® This differs from Metzinger’s (2003) definition, which links mental states to phenomenal accessibility.
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work on the neural correlates of consciousness has shown that neural activity is important for
consciousness, and so mental states can be defined in terms of the neuron’s firing rates, the
timing of their spikes or other properties of the neurons. However, it is also possible to analyse
other parts of the human body for phenomenal states. For example, we can examine the liver or
blood for consciousness, and when we do this, different states of the liver or blood become
mental states according to this definition."

In artificial systems a mental state can be a pattern of firing activity in simulated neurons
or a sequence of Is and Os in the computer’s RAM - for example, mental states could be
monitored in Franklin’s IDA (see Section 3.5.6) by using a debugger to measure changes in the
memory. Different ways of defining a system’s mental states may lead to different predictions
about its phenomenology, which can be tested by monitoring its behaviour.

In this thesis mental states will be described at the physical level, either in physical terms
or in terms that can easily be mapped down to physical descriptions without any loss of meaning
or information. These states of the physical world can be identified within our phenomenal world
by making phenomenal measurements of some region of the physical system and defining any

states that take place within this region as mental.”

4.3.3 Representational Mental States

Some mental states are systematically related to features of the world. “Representation” is a
natural way of describing this relationship, but since it is a controversial word, I will use it in a

very restricted way in this thesis according to the following definition:

1 See Holcombe and Paton (1998) and Paton et al. (2003) for a discussion of the computations carried out by the
liver and other tissues.

% Mental states can also be a particular class of states that are not physically distinct — for example, neurons firing at
40 Hz could be classified as mental states.
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A representational mental state is functionally or effectively connected to other  (4.2)

mental states or to the data that is entering or leaving the system.

Within a neural network functional connectivity is defined by Sporns et. al. (2004) as a
statistical relationship between two neurons that may or may not be due to a causal relationship
between them - for example, two neurons that share mutual information are said to be
functionally connected. Effective connectivity describes the set of causal effects that one neuron
has on another and it can be inferred experimentally by perturbing one part of the system or by
observing the temporal ordering of events. Whilst Sporns et al. (2004) apply their definition of
functional and effective connectivity to neuronal units, in this thesis it will be applied to all
mental states and to the data that is entering and leaving the system.21 It 1s also important that a
representational mental state is distinguished from the state that is being represented - or it would
no longer be a representation, but the thing itself. Some of the ways in which representational
mental states can be identified are discussed in the next section.

Representational mental states do not necessarily resemble what they represent, although
this is not excluded by Definition 4227 They are also different from depiction in Aleksander’s
(2005) sense. Depictions are mental states that are systematically related to both motor and
visual information, whereas the definition of representation that I am using here is much broader
and includes all mental states that are functionally or effectively connected to other mental states
or to features of the system’s incoming and outgoing data. The relationship between language
and representation is not covered by this definition, although it may be possible to analyse

language using this approach.

?! The outgoing data is included to cover cases in which the system is representing its own motor activity.

2 The question about representation and resemblance is a large topic that is beyond the scope of this thesis. A
discussion of resemblance can be found in Gamez (2007c, pp. 71-83) and it is also worth pointing out that the
interpretation of the phenomenal and the physical that was presented in Chapter 2 provides a strong argument
against the idea that phenomenal experiences associated with representational mental states resemble the physical
world in any way.
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This definition of representation is extremely broad and can be applied to any system.
Even a stone sustains transient internal vibrations in response to a blow that can be interpreted as
representational mental states. However, systems do exhibit substantial differences in the
complexity of their representations. For example, humans have a vast repertoire of states linked
to incoming light, whereas stones generate almost no internal states in response to light.

Many systems contain non-representational mental states. One candidate for a non-
representational state was put forward by Block (1995), who claimed that the phenomenal
content of orgasm is non-representational. This is not a particularly good example because the
phenomenal content of orgasm can readily be interpreted as a representation of the internal states
of a person’s body, genitalia and emotion system. However, other human mental states are likely
to be non-representational, such as the ones regulating breathing and the states corresponding to
spontaneous neuron activity. The same is likely to be true of many artificial systems.

Mental states that represent other mental states can also respond to complex features of
the world. For example a mental state that is functionally or effectively connected to mental
states that respond to combinations of lines could become active when the system is presented
with a cube. In this case the ‘meta representation’ is representing both the mental states
responding to the lines and the presence of a cube in the world. Mental states that represent non-
representational mental states lack this double level of representation.

Representations are most easily identified when the system is actively processing
information from its environment. Under these conditions, the internal states can be measured
and correlated with features of the data entering and leaving the system. At a later point in time
these representational mental states might become activated when the stimulus is no longer
present in a way that is analogous to imagination. Systems with language can be probed for these

offline representations by asking them what they are imagining, but without this kind of first
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person report it is difficult to identify unclassified representational mental states when the system

is not actively processing the stimulus.

4.3.4 Identification of Representational Mental States

The general procedure for identifying representational mental states is to expose the system to a
variety of different stimuli, record its responses, and look for functional or effective connections
between the stimuli and the mental states.” To carry this out successfully, a comprehensive test
suite needs to be designed that can probe a reasonable selection of the sensitivities of the system
and specify them as precisely as possible. This could start with simple low level features, such as
points, lines, and edges and work its way up to more abstract stimuli, such as faces and houses.
All of these single modality tests would have to be combined with other modalities, such as
audition, proprioception and sensation, and they would have to be carried out whilst the system
is engaged in different activities, such as looking to the left, moving forward, and so on, to take
account of sensorimotor contingencies. With even a moderately complex system this will soon
escalate into an unmanageable number and complexity of tests. Some of these challenges could
be met by appropriate subsampling of the test space and many tests can be automated by
simulating input to the sensors. Common sense can also be used to prune the test suite down to a
manageable size. This problem of scale will also appear in our animal and human tests as we
improve our scanning and recording technologies.

The use of electrodes to identify representational mental states in animal and human
subjects was pioneered by Hubel and Wiesel (1959), who inserted electrodes into the brains of

cats and measured the activity of the neurons when different stimuli were presented in different

3 One potential problem is that a system’s representational mental states may change over time and it may have to
be retested at regular intervals or have its adaptivity frozen whilst the description of its synthetic phenomenology is
taking place.
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parts of the visual field. Neurons whose activity chamged24 when the external stimulus was
presented were judged to be representing the information in the stimulus. More recently a similar
approach was pursued by Quian Quiroga et al (2005), who used electrodes to record from
neurons in the medial temporal lobe in eight human subjects, who were presented with pictures
of individuals, landmarks or objects. These experiments identified neurons that responded25 to
highly specific stimuli - for example one unit only responded to three completely different
images of the ex US president Bill Clinton and another responded to pictures of the basketball
player Michael Jordan.

The main limitation of using electrodes to identify representational mental states in
human subjects is that simultaneous recording is only possible from a few hundred out of the
billions of neurons in the brain. An alternative approach is to use scanning techniques, such as
fMRI, PET, MEG and EEG to record the response of different brain areas as stimuli are
presented. One example of this type of work is Haxby et al. (2001), who used fMRI to record the
activity in the ventral temporal cortex while subjects viewed faces, cats, five categories of man-
made objects and nonsense pictures. The distinct pattern of response that was identified for each
category of object was linked by Haxby et al. (2001) to the presence of widely distributed and
overlapping representations of faces and objects in the ventral temporal cortex. The main
limitation of the scanning approach is that current procedures have limited spatial resolution —

3 _and so

for example, fMRI measures the average activity within voxels of the order of 1 mm
they can only be used to identify the general areas that hold representational mental states.
With artificial systems one generally has full access to their internal states and incoming/

outgoing data, and they can be probed precisely for all of their representations. Previous work in

this area includes the backtracing method developed by Krichmar et. al. (2005), which finds

* This change could take several forms, such as an increase in firing rate, a decrease in firing rate or a burst of
spikes in response to the onset or offset of the stimulus.

* A response was considered significant if it was larger than the mean plus 5 standard deviations of the baseline and
had at least two spikes in the post-stimulus time interval (300—-1000 ms).
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functional pathways by choosing a reference neuronal unit at a specific time and then identifying
the neuronal units connected to the reference unit that were active during the previous time step.
This procedure is then repeated with the new list of neuronal units until the input neurons are
reached that initiated the internal activity. Since the response characteristics of the input neurons
are known, backtracing can be used to link internal states of the system to the stimuli presented
to its sensors. Another way of identifying representational mental states in an artificial system is
Granger causality, which is a method based on prediction that has been used by Seth (2007) to
link a system’s input to changes in its internal states. If a signal X; causes a signal X», then past
values of X; should contain information that helps predict X, over and above the information
contained in past values of X; alone. X; is said to Granger cause X> if the prediction errors in X>
are reduced by the inclusion of X 1.2% In this thesis representational mental states were identified
using a method based on Tononi and Sporns (2003), in which noise was injected into the input or
output layers and the mutual information that was shared between the input/ output and internal

layers was measured. The full details of this procedure are given in Section 7.3.3.

4.3.5 Which Mental States are Phenomenally Conscious at Time ¢ ?

At any point in time, many of a system’s representational and non-representational mental states
are unconscious (see Section 2.7.2), and to describe the phenomenology of the system a theory of
consciousness is needed to predict which of the physically defined mental states are associated
with phenomenal states. Since type I PCCs have been incorporated into the system’s OMC
rating, this separation between conscious and unconscious states is carried out using type II
theories of consciousness. In this thesis I am using Tononi’s theories about information
integration, Aleksander’s axioms and Metzinger’s constraints (see sections 2.6.2 — 2.6.4) to make

predictions about phenomenal states. Each of these theories can be used to predict which parts of

*® More information about how Granger causality is calculated can be found in Seth (2007).
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the system are conscious at time ¢, and these instantaneous predictions can be put together in a
sequence to describe the evolution of the system’s phenomenology over time. The details about
how these theories are applied to the neural network developed by this project are given in
Chapter 7.

Although I have decided to focus on the work of Tononi, Aleksander and Metzinger, the
methodology described in this thesis is completely general and can be used with other type II
theories of consciousness to make predictions about which mental states are associated with
phenomenal states. It is highly likely that different theories of consciousness will make different
predictions, and it may eventually be possible to discriminate between type II theories of
consciousness by comparing their different predictions with first-person reports or the system’s

behaviour.

4.3.6 Integration Between Mental States

A description of the phenomenology of a system also has to identify the relationships between
mental states, which determine how the mental states are integrated together into one or more
consciousnesses. For example, consider a system that is looking at a red cube and has conscious
representational mental states that respond to red information and conscious representational
mental states that respond to shape information. If the colour and shape information is integrated
or bound together, then it might be reasonable to claim that the system is conscious of a red
cube. However, if the information is not integrated together, then it would be more accurate to
say that there are two separate consciousnesses in the system: one that is conscious of redness,
and another that is conscious of a cube. In humans, the importance of the integration between
mental states is illustrated by the work on split brain patients (Gazzaniga, 1970), which suggests
that two substantially independent consciousnesses are created when the corpus callosum is cut

in the human brain, and the phenomenology of these two consciousnesses is likely to be very



[ 155 ]

different from that of a normal person. The integration between mental states can be identified
using methods for measuring functional and effective connectivity, such as Granger causality

(Seth 2007) and information integration (Tononi and Sporns 2003).

4.4 XML Description of the Phenomenology

4.4.1 Introduction

This section explains how information about a system’s OMC rating and mental states can be
integrated into a description of its phenomenology as it interacts with the world. A major
problem with describing the phenomenology of artificial systems is that the words and structures
of human languages are adapted to the description of human states. This problem is covered in
Section 4.4.2 and Section 4.4.3 suggests why a markup language, such as XML, is more
appropriate for synthetic phenomenology. Section 4.4.4 then outlines the structure of the XML
that I will be using to describe the phenomenology of a neural network in this thesis. After a
brief discussion of the use of XML to describe phenomenology, Section 4.4.6 looks at how this
approach to synthetic phenomenology relates to the interpretation of the science of

consciousness that was outlined in Section 2.4.5.

4.4.2 Problems Describing the Phenomenology of Non-Human Systems

Traditional phenomenology, especially in the work of Husserl (1960) and Heidegger (1995a),
derives its significance from the claim that the phenomena we experience are as important and
substantial as the physical world described by science, which is often portrayed as a secondary
interpretation of our experiences. In this way traditional phenomenology sets itself up with an
‘objective’ field of phenomena that are assumed to be the same for everyone and can be
unproblematically described in natural human language The problem with this approach is that

these assumptions about common experience start to break down once phenomenology is applied
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to the experiences of infants, animals and robots. To illustrate this problem, I will consider a
short extract from Wordsworth (2004), which contains a fairly straightforward description of

daffodils in natural human language:

When all at once I saw a crowd,
A host, of golden daffodils,
Beside the lake, beneath the trees,

Fluttering and dancing in the breeze.

Most people have had the experience of daffodils fluttering and dancing in the breeze and when
Wordsworth’s description is read by humans, they can readily imagine a similar past experience
and understand his words well enough. Although this description is reasonably straightforward,
it is actually an extremely vague and imprecise way of communicating daffodil information, and
each reader will imagine the flowers differently. More serious problems start to arise when we
try to use ordinary language to describe the experiences of an infant placed in front of a field of
daffodils. As Chrisley (1995) points out, we cannot simply say that the infant sees a host of
golden daffodils because the infant has a preobjective mode of thought, which is unable to locate
the daffodils within a single unified framework. Adults understand daffodils as something
objectively located in three dimensional space, whereas infants do not necessarily continue to
believe in the existence of the daffodils when they are occluded. In the adult and infant the word
“daffodils” refers to two different concepts and experiences. As Chrisley puts it: “The infant’s
concepts are not fully objective and are therefore non-conceptual. To ascribe conceptual content
to the infant in this case would mischaracterize its cognitive life and would not allow prediction
or explanation of the infant’s behavior.” (Chrisley 1995, p. 145).

These problems become even more difficult when the attempt is made to describe the
phenomenology of a non-human animal, such as Nagel’s famous bat (Nagel 1974). When a bat

flies over a field of daffodils it receives a complex pattern of returning ultrasound pulses, which
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are processed into phenomenal experiences that are likely to be very different from our own.
Sentences like “the bat is experiencing a host of golden daffodils” are at best an extremely
misleading description of the bat’s phenomenology.

The same difficulties are encountered by attempts to describe the phenomenal
experiences of artificial systems. For example, a robot that is pointing its camera at a field of
daffodils might have phenomenal states associated with mental states that are effectively
connected to its camera’s response to yellow light (independently of the location, movement or
shape of the light). However, we would have no basis for believing that the robot would have the
human phenomenal experience of yellow when the daffodils were placed in front of it, or even
that two different robots would have the same experience of yellow as each other. This problem
becomes even more acute when a system has phenomenal states that are systematically related to
features of the world that are invisible to human beings - for example, we have no words at all to
describe mental states that respond to X rays.

One approach to this problem would be to describe the scene in front of the robot in the
language of physics — for example, we could talk about the system having a representation of
590 nm electromagnetic waves, instead of talking about it experiencing yellow light,27 and use
the language of chemistry, biology and geometry to describe the features of the daffodils that the
system 1is sensitive to. The trouble with this approach is that it does not describe the
phenomenology of the system and it has the limitation that the data coming out of a system does
not always lend itself easily to an objective physical description. For example, to describe the
motor output signals that control an eye or arm one would have to come up with a physical

description of the eye or arm and specify its movement relative to a frame of reference that

7 There is not a straightforward link between wavelength of light and perceived colour and it is possible to
experience yellow when there are no 590 nm electromagnetic waves present. This problem has been set aside in
this thesis - in the future a more accurate physical description could specify all of the physical conditions under
which we would experience yellow.
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would also have to be physically described. Whilst this can be done, it is much easier to interpret
the motor output signals as an eye or arm movement.

The pragmatic solution that will be followed in this thesis is to use both human and
physical descriptions to describe a system’s representational mental states, when these are
possible and appropriate. The human description should be interpreted with caution (the
phenomenology of an artificial system that only responds to yellow is likely to be very different
from our human experience of yellow) and the physical description should only be taken as a
starting point for a phenomenological description. In the future, it may be possible to create
closer links between phenomenological and physical descriptions - perhaps by using the
information characteristics of mental states (Tononi 2004) or by applying O’Regan and No&’s

(2001) theories about sensorimotor contingencies.

4.4.3 Markup Languages for Synthetic Phenomenology

A combination of human and physical descriptions enables something to be said about the
contents of an artificial system’s phenomenal states, but it does not capture the relationships
between them. Furthermore, depending on how mental states are defined for the system, there
could be millions or even billions of active mental states that are predicted to be associated with
consciousness at any point in time. Even if it was possible to integrate all of these mental states
into a natural language description, the resulting document would be so long and tedious that it
would be almost impossible to read.

One way of solving these problems is to abandon the attempt to describe the
phenomenology of artificial systems in natural human language and use a markup language, such
as XML or LMNL, to structure the descriptions of the representational mental states and to
indicate the relationships between them. There are a number of reasons why a markup language

would be a good choice for the description of an artificial system’s phenomenology:
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e  Markup languages are much more precise and tightly structured than natural
language, which enables markup languages to describe complex nested hierarchies

and represent some of the relationships between different pieces of information.

e  Markup languages can describe low level details of a system’s hardware, but they can
also abstract from them, so that high level comparisons can be made between
machines with different architectures and between humans and machines. Whilst two
systems’ lower levels might be different — perhaps using neurons or silicon - the
higher levels are likely to be more similar, which would allow direct comparisons

between them once everything was encoded into a markup lamguage.28

e  Markup languages can be written and read by both machines and humans. With
simple small-scale analyses it is useful to be able to manually read and edit a
description of a machine's mental states. However, it is also relatively easy to
automatically generate and analyse the states of a machine using a markup language,
for example by writing programs that look for phenomenal states using different type

II theories of consciousness.

e  Data that has been structured using a markup language is typically stored in plain text
files that can be shared between different operating systems and easily archived,

either by converting them into a database or by storing them directly.

e  The structure of some markup languages can be validated without prior knowledge of

their form.

®  Once you have a highly structured representation of a machine's mental states and a
methodology for analysing them for phenomenal consciousness, it is possible to see

how a machine's conscious states can be extended or enhanced.

 Coward and Sun (2007) claim that this type of hierarchical description is necessary for a science of consciousness.
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e  Markup languages are a good foundation for other techniques for representing non-
conceptual mental states, such as the suggestions made by Chrisley (1995) about
content realization, ability instantiation and self instantiation (see Section 4.5), which
depend to some extent on a precise specification of states of oneself and the

environment

®  Markup languages can be very flexible. For example, in addition to tags and data,
XML can contain references to external files, pieces of code and equations, which

enables it to include features that cannot be precisely described in natural language.

Whilst a number of markup languages, such as JSON, LMNL, YAML and OGDL, would
have been appropriate for synthetic phenomenology, the popularity of the eXtensible Markup
Language (XML) and the availability of good parsers in most programming languages made it a
good choice for illustrating this approach. In the future it might be necessary to change to a more
sophisticated markup language, such as LMNL, which supports overlapping elements and

structured attributes.”

4.4.4 Example XML Description

This section outlines the XML structure that will be used to describe the phenomenology of an
artificial neural network in Chapter 7. This is only an example, rather than a fully fledged
standard, because it is tailored to an approach in which individual neurons are interpreted as
individual representational states, and the mutual information shared between each of the internal
neurons and neurons in the input and output layers is calculated using the methodology described
in Section 7.3.3. If XML is found to be a useful way describing the phenomenology of artificial

systems, then it is hoped that a more general specification can be developed. This example does

¥ A good XML tutorial can be found at: http://www.w3schools. com/ xml/default.asp. More information about
LMNL can be found here: http://Imnl.net/.
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not include non-representational mental states and mental states that represent other mental
states. As Chapter 7 shows, at the current stage of research it is hard enough to identify and
describe mental states that are systematically related to states of the world, without trying to

include mental states that are almost impossible to articulate in human language.

<!-- Standard XML header. -->°
<?xml version="1.0" encoding="1SO-8859-1"?>

<!/-- Start of the analysis. -->
<analysis>

<!-- General description of the contents of the file. -->

<description>Synthetic phenomenology of the SIMNOS virtual robot.
</description>

<!-- Author(s) of the file and date on which the analysis was generated. -->

<author>David Gamez</author>
<date>Mon Jan 28 14:44:27 2008</date>

<!-- The system that is being analysed along with its version number. A full description of the
system should be included in the source files. -->
<system>SIMNOS version 1.0; SpikeStream version 0.1 </system>

<!-- Source files for the analysis. These include the files for the neural network (if there is
one, since the system may not be neural) and the analysis files. Source files should always
be included with the phenomenological description to enable other researchers to validate
the predictions and generate their own description of the synthetic phenomenology. -->
<source_files>
<file>TrainedNeuralNetwork_versionl.sql.tgz</file>
<file>AnalysisRunl_NoiseRunl_NeuralArchive.sqgl.tar. gz</file>
</source_files>

<!--The archive that is being described. -->
<archive>Analysis Run 1 [ 2007-12-18 20:42:55 ]</ar chive>

<!-- The time step of the archive that is being analyzed or the time at which the data was
captured from the system. -->
<time_step>13194</time_step>

<!-- Start of the phenomenological description. -->
<phenomenology>

(X}

30 XML comments start with “<!-- " and end with “-->”.
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<!-- The next part of the file lists the system’s mental states. These may be representational
and they may be predicted to be conscious according a type I theory of consciousness. -->

<!-- A mental state of the system. -->
<mental_state>

<!/-- The OMC rating of the part of the system in which this mental state is instantiated,
along with the version of the scale that is being used. -->

<omc_scale>
<rating>0.427</rating>
<version>0.6</version>

</omc_scale>

<!-- In this example mental states are active neurons. -->
<physical_description>
<firing_neuron>
<id>120811</id>
</firing_neuron>
</physical_description>

<!--The cluster tag is used to indicate the functional or effective connectivity between
this mental state and other mental states. Different methods can be used to measure
this, such as information integration (Tononi and Sporns 2003). -->

<cluster>
<id>200809</id>
<type>phi</type>
<amount>75.1173</amount>

</cluster>

<!-- List of the states of the world that are functionally or effectively connected to this
mental state. In this example, representational states are identified using the mutual
information that is shared with neurons in the input or output layers — see Section

7.3.3. -->
<representations>

<!-- This mental state is effectively connected to data leaving the system. -->
<output>

<neuron>

<id>127936</id>

</neuron>

<mutual_information>0.993765</mutual_information>

<human_description>Proprioception / motor output

</human_description>

<physical_description>N/A</physical_description>

</output>

<!-- This mental state is effectively connected to data entering the system. -->
<input>
<neuron>
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<id>104327</id>
</neuron>
<mutual_information>1.00854</mutual_information>
<human_description>Red / blue visual input
</human_description>
<physical_description>700/450 nm electromagnetic wa ves
</physical_description>
</input>

<!-- Further input and outputs can be added here. -->

<!-- The end of the list of representations. -->
</representations>

<!-- Type Il theories of consciousness are used to predict whether phenomenal
consciousness is associated with this mental state. In this example, the predictions
are made using Tononi’s (2004), Aleksander’s (2005) and Metzinger’s (2003)
theories. -->

<phenomenal_predictions>

<!-- Whether this mental state is part of the conscious part of the system according
to Tononi’s theory of consciousness (see Section 7.5 for the criteria for this). -->
<tononi>0</tononi>

<!-- Whether this mental state is part of the conscious part of the system according
to Aleksander’s theory of consciousness (see Section 7.6.2 for the criteria for
this). -->

<aleksander>0.993765</aleksander>

<!-- Whether this mental state is part of the conscious part of the system according
to Metzinger’s theory of consciousness (see Section 7.7.3 for the criteria for this).
-->

<metzinger>75.1173</metzinger>

<!-- Other phenomenal predictions can be added here. -->

<!-- The closing tag of the phenomenal predictions. -->
</phenomenal_predictions>

<!-- The closing tag of the mental state. -->
</mental_state>

<!-- Any number of mental states can be added here. -->

<!-- The end of the description of the phenomenology of the system. -->
</phenomenology>
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<!-- This final closing tag ends the analysis of the system. -->
</analysis>

4.4.5 A Description of the Synthetic Phenomenology?

Given the history of phenomenology, we might expect that the final outcome of synthetic
phenomenology would be a natural language description. Even if we cannot achieve this at
present, it might be thought that this should be the final goal of the procedures outlined in this
chapter. Viewed from this perspective, the markup language would only be a preparatory stage
that would help us to prepare a traditional phenomenological account of the experiences of COG,
CRONOS or IDA. However, the problems discussed in Section 4.4.2 make it unlikely that we
are ever going achieve fluid natural language descriptions of the phenomenology of non-human
systems. Instead, it might be much better to treat the XML as the best description that we are
going to get of the phenomenology of an artificial system. We don't have adequate words in
human language to describe a system that can only experience vertical lines, but we can
represent such a system accurately using XML, and by looking at the XML we can start to
understand how much and how little we can imagine what it is like to be such a system. Some of

the issues raised by the use of XML in synthetic phenomenology are covered in Section 7.9.9.

4.4.6 Synthetic Phenomenology and Science

This section takes a brief look at how this approach to synthetic phenomenology fits in with the
approach to the science of consciousness that was put forward in Section 2.4.5. The main
difference between the study of human consciousness and synthetic phenomenology is that
robots are currently unable to describe their conscious states, and so we can only make
predictions about their consciousness based on theories that have been developed using humans

and animals.
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Phenomenal experiences Phenomenal
are predicted to be experiences of
associated with a the robot cannot
phenomenal robot be imagined by us
—— >
Phenomenal experiences
Phenomenal robot Precise
Precise phenomenological
physical description
description Predictions according to a
theory of consciousness that
Particles, forces, has been developed using Phenomenal
simulated human and animal subjects experiences of
neurons, etc. of ::> the robot
the physical described in-a
robot described For example: “Consciousness is markup language,
abstractly and/ or | associated with depictive neurons” predicts such as XML
mathematically. that whenever there are active depictive
neurons of type X, the system will

experience Y. If robots become capable of
reporting their conscious states, then it
might be possible to make the reverse
prediction that whenever the system has
experience Y it will have active depictive
neurons of type X.

Figure 4.1. How synthetic phenomenology fits in with the approach to the science of consciousness that was put
forward in Section 2.4.5. With artificial systems, it is only possible to make predictions about the phenomenal
experiences that are associated with them, and so there are unidirectional arrows from the phenomenal robot to the
robot’s phenomenal experiences and from the description of the physical system to the description of the robot’s
phenomenology. This diagram should be contrasted with Figure 2.4 in Chapter 2, where the horizontal arrows are
bidirectional because the association between phenomenal experiences and the phenomenal brain is the starting
point for experiments on the correlates of consciousness and systematic relationships are being identified between

the phenomenal and physical descriptions.

This situation is illustrated in Figure 4.1, in which the arrows between the robot and its
phenomenal states and between the physical and phenomenal descriptions are only one way to
indicate that phenomenal states are predicted to be associated with the robot. If we can develop
robots that can report their conscious states, then it will be possible to validate these predictions

and speak about an association between the phenomenal states and the robot.
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4.5 Previous Work in Synthetic Phenomenology

This approach to synthetic phenomenology has been substantially influenced by the previous
work in traditional phenomenology, such as Husserl (1960, 1964), Merleau-Ponty (1989, 1995)
and Heidegger (1995a), which attempted to describe different aspects of human conscious
experience from a first person perspective. These descriptions were carried out in natural
language and generally took the position that the physical world is a secondary interpretation of
our phenomenal experiences and not something to which our phenomenal experiences should be
reduced. Although Heidegger (1995b) made some attempts to understand animal consciousness,
the main emphasis of traditional phenomenology is on human phenomenal experience.

The question whether artificial systems are capable of conscious states has been
extensively discussed in the literature on consciousness and the contributions roughly divide into
those who accept the difficulties with behaviour-based attribution of phenomenal states, and
those who have a theory of consciousness that enables them to make definite claims about which
machines are phenomenally conscious. In the first group, Moor (1988) sets out the arguments
against knowing for certain whether robots have qualia, but claims that we need to attribute
qualia to robots in order to understand their actions. A similar position is set out by Harnad
(2003), who claims that the other minds problem limits us to attributing consciousness on the
basis of behaviour, and so any robot that passes the T3 version of the Turing test for a lifetime
must be acknowledged to be conscious. Prinz (2003) is closest to the position of this thesis since
he does not think that we can identify the necessary and sufficient conditions for consciousness
and does not suggest other grounds for attributing consciousness to machines.

People who claim to know exactly what the causes or correlates of consciousness are can
say precisely which machines are capable of phenomenal states - replacing the OMC scale set
out in this chapter with a dividing line dictated by their theory of consciousness. One of the most

liberal of these theories is Chalmers (1996), whose link between consciousness and information
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leads him to attribute phenomenal states to machines as simple as thermostats. At the other
extreme, Searle (1980) believes that his Chinese room argument excludes the possibility that any
of the functional levels could be simulated and Searle (2002) rather vaguely ties consciousness to
a causal property of matter, so that only biological humans, animals and possibly aliens could be
conscious. In between these positions are people like Aleksander and Morton (2007a), who set
out two criteria that a system must conform to if it is to be a candidate for synthetic
phenomenology: “To be synthetically phenomenological, a system S must contain machinery
that represents what the world and the system S within it seem like, from the point of view of S.”
(Aleksander and Morton 2007a, p. 110). An unpacked version of this definition is used by
Aleksander and Morton to argue that their own kernel architecture is synthetically
phenomenological, whereas the global workspace architecture is not.

Once it has been decided which artificial systems are capable of phenomenal states (if
any) the second question faced by synthetic phenomenology is how artificial phenomenal states
can be described. One approach to this was put forward by Chrisley (1995), who set out a
number of techniques for representing non-conceptual content. These include content realization,
in which content is referred to by listing “perceptual, computational, and/or robotic states and/or
abilities that realize the possession of that content” (Chrisley, 1995, p. 156), ability instantiation,
which involves the creation or demonstration of a system that instantiates the abilities involved
in entertaining the concept, and two forms of self instantiation, in which the content is referred to
by pointing to states of oneself or the environment that are linked to the presence of the content
in oneself. More recently Chrisley and Parthemore (2007) used a SEER-3 robot to specify the
non-conceptual content of a model of perception based on O’Regan and Noé&’s (2001)
sensorimotor contingencies. Initially the robot had no expectations about what it was going to
see and as it moved its eye around it built up expectations about what it would see if it were to

move its eye to a particular position. These expectations were plotted for each position in visual
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space to generate a graphical representation of the robot’s visual experience. Chrisley and
Parthemore used this representation to evaluate some aspects of O’Regan and Noé&’s (2001)
theory, such as their interpretation of change blindness and how visual experience appears to be
coloured at the periphery despite the lack of colour receptors outside the fovea. Other graphical
representations of a robot’s inner states have been produced by Holland and Goodman (2003)
and Stening et al. (2005), who plotted the sensory and motor information stored in a Khepera’s
concepts. More details about this work are given in Section 3.5.5.

Synthetic phenomenology has a number of overlaps with the description of human
phenomenology from a third person perspective. This type of research is commonly called
“neurophenomenology”, although this term is subject to two conflicting interpretations. The first
interpretation of “neurophenomenology” was put forward by Varela (1996), who used it to
describe a reciprocal dialogue between the accounts of the mind offered by science and
phenomenology.31 This type of neurophenomenology emphasises the first person human
perspective and it has little in common with synthetic phenomenology. However,
neurophenomenology can also be interpreted as the description of human phenomenology from a
third person perspective using measurements of brain activity gathered using techniques, such as
fMRI, EEG or electrodes. Good examples of this type of work are Kamitani and Tong (2005),
Haynes and Rees (2005a,b) and Kay et al. (2008), who used the patterns of intensity in fMRI
voxels to make predictions about the phenomenal states of their subjects. In some ways
neurophenomenology is easier than synthetic phenomenology because it does not have to decide
whether its subjects are capable of consciousness and the description of non-conceptual states is
considerably simpler in humans. However, both disciplines are attempting to use external data to
identify phenomenal states in a system and there is considerable potential for future collaboration

between them.

31 A review of this interpretation of neurophenomenology can be found in Thompson et al. (2005) and it had a
substantial influence on the analysis of consciousness in Chapter 2.
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4.6 Conclusions

This chapter has set out an approach to synthetic phenomenology that can be used to describe a
machine’s predicted phenomenal states. Since the link between type I PCCs and consciousness
cannot be empirically established, the first part of this chapter outlined an OMC scale, which
models our subjective judgement about the relationship between type I PCCs and consciousness.
The next part of this chapter developed concepts of a mental state and a representational mental
state and outlined how these could be identified in a system and used to make predictions about
phenomenal states using type II theories of consciousness. Problems with the description of
artificial phenomenal states in human language were then discussed and it was suggested how a
markup language, such as XML, could be used to describe the phenomenal states of artificial
systems.

The next chapter outlines the design and implementation of a neural network that is based
on the some of the theories of consciousness set out in Chapter 2. The approach to synthetic
phenomenology that has just been described is used to make predictions about the consciousness

of this network in Chapter 7.
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9 NEURAL NETWORK

5.1 Introduction

This chapter describes a neural network with 17,544 neurons and 698,625 connections that was
created to illustrate and test the theoretical ideas in this project. The first section explains the
factors that influenced the design of this network, Section 5.3 gives more details about the
modelling and architecture, and Section 5.4 outlines the experimental procedure. Section 5.5
documents the behaviour of the network and the tests that were run on it, and the chapter
concludes with some related research in this area and suggestions for future work. The

SpikeStream software that was developed to simulate this network is covered in Chapter 6.

5.2 Design

This section looks at some of the decisions that were made about the design of the network, such
as the task that it was to carry out, the neuron and synapse models, the size of the network and

the software that was used to simulate it.

5.2.1 Task

Although randomly firing neurons can be analyzed for consciousness, it is difficult to describe
the phenomenology of a system that lacks systematic relationships with its environment, and so a
system was needed that could be analysed for mental states that are functionally or effectively
connected to states of a real environment (or a pretty good approximation to it). Since the
network was being developed as part of the CRONOS project, the most obvious way to do this
was to use the network to control the CRONOS and/ or SIMNOS robots (see sections 1.2.2 and

1.2.3). Although I wanted to test the network on CRONOS as well as SIMNOS, considerable
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delays in the development of a software interface for CRONOS prevented me from using
CRONOS in this PhD.

One of the main aims of this network was the development of something that could be
plausibly analyzed for consciousness using Tononi’s (2004), Aleksander’s (2005) and
Metzinger’s (2003) theories (see Section 2.6). Whilst the amount of consciousness predicted by
Tononi’s (2004) theory is largely independent of the network’s functionality, both Aleksander
(2005) and Metzinger (2003) make explicit links between particular cognitive mechanisms and
consciousness, and to increase the likelihood of consciousness in the network it was decided to
incorporate some of these mechanisms into it. Since there was considerable overlap between
Aleksander’s axioms and Metzinger’s constraints, and it was difficult to see how some of
Metzinger’s constraints could be implemented,1 it was decided to base the network on the
cognitive mechanisms specified by Aleksander’s axioms. Some of the requirements for a

network that implements these axiomatic mechanisms are as follows:

1. Depiction. The network would have to include neurons that were sensitive to

combinations of sensory and motor information.

2. Imagination. The network would have to be able to operate in an offline as well as an
online mode. Some form of inhibition of sensory input and motor output could be
used to enable the network to operate in isolation from its environment. The network
would also have to be capable of changing between online and offline modes in

response to its perceptual and imaginative states.

3. Attention. The network would have to be able to ‘focus’ on different parts or aspects

of the world.

' Transparency is particularly difficult since Metzinger has few suggestions about how it is implemented in the
brain.
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4.  Volition. The activity of the network would have to be used to select actions. The use
of an ‘imagination’ mode would enable the perceptual circuitry to be used for
planning and a model of the emotions would be needed to evaluate the different

actions.

5.  Emotion. A representation of the system’s emotional states would have to be
included. Ideally this would be a representation of the states of the system’s body, but
since SIMNOS only has joint and muscle sensors, this could be a representation of
the emotions that the system would experience if it were to carry out that action —

something like the ‘as if” loop discussed by Damasio (1995).

Once the general functional requirements of the network had been established, the next
problem was to select a task that the network could carry out which would utilize all of these
mechanisms. The task chosen for this system was the control of SIMNOS’s eye movements,
with the network’s offline states being used to plan which part of the visual field is looked at
next. This choice was influenced by O’Regan and Noé&’s (2001) theories about eye movements
and by the research on active vision in experimental psychology (Findlay and Gilchrist 2003).
Since this task involves sensory and motor data, it was a good way of implementing
Aleksander’s depiction axiom and the system’s limited field of view meant that it was also a
rudimentary form of attention. Accurate or detailed visual perception was not a priority in this
project, and so a very basic visual system was used and SIMNOS’s environment was populated
with a red and blue cube. How the neural network was designed to carry out this task is
explained in detail in Section 5.3.

A final desirable property of the network was that it should implement at least one of the
models of conscious action put forward in Section 2.7. Since discrete conscious control could be

implemented more easily than conscious will, it was decided to focus on conscious control for
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this system.2 Whether the system is actually capable of discrete conscious control depends on the
predictions that are made about the consciousness of the network, which are discussed in

Chapter 7.

5.2.2 Modelling

To increase the system’s rating on the OMC scale, the network was designed to be as
biologically inspired as possible, but it was not intended that it should be an accurate model of
particular brain areas. It was decided to construct the network from spiking neurons because they
are more biologically realistic than rate based models and there is a growing body of evidence to
suggest that the timing of individual spikes is an important part of the neural code (Maas and
Bishop 1999). The high temporal resolution of spiking neural networks also makes them a
promising method for motor control and some methods of simulating spiking neural networks
are more efficient than rate-based models. For example, with Delorme and Thorpe’s (2003)
event-based approach, each neuron is only updated when it receives a spike, whereas a
traditional rate-based simulation has to update each neuron’s state at each time step. Although
this advantage is lost when the network has a high average firing rate or connectivity,3 event-
based modelling has a strong performance advantage on spiking networks with low activity
levels or low to medium connectivity.

The Spike Response Model (Gerstner and Kistler 2002, Marian 2003) was chosen for the
neurons because it is a well established phenomenological model that can be efficiently
implemented in an event-based manner. Although the Spike Response Model does not include

spontaneous neural activity, many of the models that do include this feature, such as Izhikevich

A model of conscious will would have required a reactive layer that could initiate the conscious decisions in
response to an environmental trigger.

? For example, a synchronous simulation with a time step of 1 ms updates each neuron 1000 times per simulated
second. The same update rate occurs in event-based modeling when each neuron is connected to 1000 neurons
firing at 1 Hz in simulated time.
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(2003), are difficult to implement using event-based simulation.* With spiking neural networks
the association between two stimuli (Hebb 1949) is commonly learnt using a spike time
dependent plasticity (STDP) learning algorithm, which reinforces the weight when the spike
arrives before the firing of the neuron and decreases the weight when the spike arrives after the
neuron has fired. In earlier work I experimented with the ReSuMe STDP algorithm (Ponulak and
Kasinski 2006) and used it to learn the association between the activity of a teacher neuron and
basic shapes, such as crosses and squares — see Gamez et al. (2006a). However, the artificial
need for a teacher neuron led me to select Brader et. al’s (2006) version of STDP learning for the
final network, which combines the standard STDP rule with a model of the calcium
concentration to improve the long term stability of the learnt information. Full details about the

neuron model and learning are given in section 5.3.2 and 5.3.3.

5.2.3 Network Size

The main constraint on the network’s size was the potential performance of the simulator. Both
Krichmar et al. (2005) and Shanahan (2006) have demonstrated that networks of the order of
100,000 neurons could be simulated on current equipment, and so this was set as the upper limit
on the size of the system. A second constraint on the network’s size was the visual input and
motor output resolution. In an earlier version of the network, 128 x 128 neuron layers were used
to encode the red and blue visual information and 50 neurons were used to encode the length of
each muscle. This led to high simulation times that were caused by the large number of
connections to and from the input and output layers - particularly from the inhibitory layer. Since
high sensory and motor resolution was not a requirement of this project, the red and blue visual
input resolutions were reduced to 64 x 64 and 5 neurons were used to encode the length of each

muscle.

* SpikeStream can run in a synchronous mode, and so it would be possible to experiment with Izhikevich’s model in
future work.
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Another constraint on the network’s size was the average number of connections per
neuron. In real biological networks cortical neurons have up to 10,000 connections (Binzegger
et. al. 2004), but since this system was only aiming at biologically inspired functionality, rather
than precise brain modelling, a much more manageable average of 40 connections per neuron
was used instead.’

A final potential constraint on the network’s size was the amount of processing that was
required to analyze it for information integration, which can take a great deal of computing
power on networks greater than 50 neurons (see Chapter 7). In this thesis, the functionality of the
network was given higher priority than the analysis, but in the future this constraint would be
worth considering when designing networks that need to be analyzed using computationally
intense algorithms.

Given all of these constraints, the final network was constructed with 17,544 neurons and
698,625 connections, which were found to deliver the required functionality with reasonable

performance using the SpikeStream simulator that was developed for the project.

5.2.4 Simulator

The size of the network and the choice of neuron model substantially constrained the choice of
simulator. To begin with, it was decided not to use simulators, such as NEURON, GENESIS and
NCS,® which work with complex dendritic trees and would not have been efficient on the point
neurons that were selected for this network. Rate-based simulators, such as Topographica,’ were

not suitable for spiking neural networks and I decided against using NRM® because I wanted to

> Although the average connectivity is low, it varies widely between different neuron groups: neurons in Eye Pan
and Eye Tilt connect to an average of 6 neurons; neurons in Inhibition connect to almost 9000 neurons.

® NEURON simulator: http://www.neuron.yale.edu/neuron/; GENESIS simulator: http://www.genesis-sim.org
/GENESIS/; NCS simulator: http://brain.cse.unr.edu/ncsDocs/.

" Topographica Neural Simulator: http://topographica.org/Home/index.html.

¥ This used to be called Magnus. More information about NRM is available at Barry Dunmall’s website:
http://www.iis.ee.ic.ac.uk/eagle/barry_dunmall.htm.
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use a more biologically inspired approach in this project. Whilst NEST did work with spiking
point neurons and had an impressive performance (Diesmann and Gewaltig 2002), the lack of a
graphical interface and the fact that it was designed to simulate a fixed period of time led me to
reject it for this project. Other unsuitable spiking simulators included the Amygdala library and
Mvaspike, which lack graphical interfaces and were not designed for robotic use, and the
Spiking Neural Simulator developed by Smith, which can simulate a spiking network for a fixed
period of time, but lacks many important features.’

The two most promising simulators were SpikeNET, created by Delorme and Thorpe
(2003), and SpikeSNNS (Marian 2003). Although I was initially impressed by Delorme and
Thorpe’s claims about the ability of SpikeNET to efficiently model large networks, there were a
number of major limitations in the free version — for example, no delay, a single spike per neuron
during each simulation run and the lack of a graphical interface — that would have necessitated
major revisions of the software. SpikeSNNS overcame some of these limitations, but since it was
based around a single event queue, it would have been difficult to distribute the processing over
multiple machines and the SNNS interface is somewhat outdated and difficult to use. All of the
simulators that I looked at suffered from the limitation that they were not designed to work with
external devices, such as SIMNOS, and they were generally designed to simulate fixed periods
of time.

Since a major revision of an existing simulator would have taken a substantial amount of
effort and potentially left little of the original code intact, it was decided to create a new
simulator that met my requirements and could be more easily extended as these requirements
changed. The SpikeStream simulator that was developed for this project is described in

Chapter 6.

 Amygdala simulator: http://amygdala.sourceforge.net/; Mvaspike simulator: http://www-sop.inria.fr/odyssee
/softwares/mvaspike/; Spiking Neural Simulator: http://www.cs.stir.ac.uk/~Iss/spikes/snn/index.html.
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5.3 Network Details

5.3.1 Introduction

This section explains how the network was modelled and gives details about the construction and
function of the different layers. This network is a biologically inspired model of aspects of the
brain’s processing, not a biologically accurate copy, and so the names given to individual layers,
such as “Motor Cortex”, are only intended to indicate that the layers’ functions were inspired by

particular brain areas.

5.3.2 Neuron and Synapse Model

The neuron model for these experiments is based on the Spike Response Model (Gerstner and
Kistler 2002, Marian 2003), which has three components: a leaky integrate and fire of the
weights of the incoming spikes, an absolute refractory period in which the neuron ignores
incoming spikes, and a relative refractory period in which it is harder for incoming spikes to
push the neuron beyond its threshold potential. The resting potential of the neuron is zero and
when it exceeds the threshold the neuron is fired and the contributions from previous spikes are
reset to zero. There is no external driving current and the voltage V; at time ¢ for a neuron i that
last fired at 7 is given by:

([—t}f))

‘/i(t)zzzwije T _el‘l—(f—f,’)mHv(l,_fi)’ (5.1)
if

where w;; is the synaptic weight between i and j, 7,, is the membrane time constant, fis the last

m
firing time of neuron j, m and n are parameters controlling the relative refractory period, and H’

is given by:
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H(t—f)=17 Jostivr (5.2)

otherwise

for an absolute refractory period p. To facilitate the learning algorithm set out in Section 5.3.3,
the neuron model also contains a variable ¢ that represents the calcium concentration at time ¢.

Each time the neuron fires, this calcium concentration is increased by C, and it decays over time

according to Equation 5.3, where C,, is the calcium decay constant.

t—1f;

i

e =Y, Cie (5.3)

The thresholds given in Table 5.3 were adjusted in each neuron group until the network
produced the desired behaviour. The values for the other neuron parameters were based on
(Marian 2003) and Brader et al. (2006) and are given in Table 5.1. The synapse model is very

basic, with each synapse class passing its weight to the neuron when it receives a spike.

Parameter Value
Cs 1

C, 60

P 1 ms
T 1

M 0.8

N 3
Minimum postsynaptic potential -5

Table 5.1. Parameters common to all neurons

5.3.3 Learning

Learning in this network was carried out using Brader et. al’s (2006) spike time dependent

learning algorithm. In Brader et. al.’s model the internal state of the synapse is represented by
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X(t) and the efficacy of the synapse is determined by whether X(z) is above a threshold. In my
model, the state of the synapse is represented by a weight variable, w, which is the amount by
which the post-synaptic membrane potential is increased when the neuron fires. When a spike is

received at time ., this variable w is changed according to equations 5.4 and 5.5:

w—ow+a if V(,)>6, and Qip <c(t,,)< 9:; (5.4)

w—ow=>b if V(,)<6, and 6

down

< C(tpre) < e:own (55)

where a and b are jump sizes, 6, is a voltage threshold, c(?) is the calcium concentration at time

and 6"

down

t,and ' , 8", 6"

up > “up > “down

are thresholds on the calcium variable. In the absence of a pre-

synaptic spike or if the two conditions in equations 5.4 and 5.5 are not satisfied, the weight

changes at the rate given by equations 5.6 and 5.7:

22 if w>6, (5.6)
%V:_/; if w<eo, (5.7)

where a and f are positive constants and 6 is a threshold. If w drops below 0 or exceeds 1, then

it is held at these boundary values. The parameters that were used for training the network are
given in Table 5.2. These parameters were initially set using Brader et. al ‘s (2006) values and
then fine tuned until the network successfully learnt the association between motor output and

visual input, as outlined in Section 5.4.
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Parameter Value
gpr 4
9 h 1 20
up
etgown O
etjlown 4
‘9v 0.4
a 0.01
b 0.01
6 0.7
o 0.00001
p 0.00001

Table 5.2. Synapse parameters used during training

5.3.4 Experimental Setup

The network was created in SpikeStream (see Chapter 6 and Appendix 1) and connected to the
eye of the SIMNOS virtual robot using the synchronized TCP interface described in sections 6.4
and A1.9.2. Spikes were sent from the network to set the pan and tilt of SIMNOS’s eye, and
when a spike containing red or blue visual information was received from SIMNOS, the value of
0.8 was added to the voltage of the neuron that corresponded to the location of the red or blue
data in the visual field.

To set up the environment of SIMNOS, a red and blue cube were created in Blender'®
and loaded into the SIMNOS environment using the Collada format."' The head and body of
SIMNOS were then put into kinematic mode, which enabled them to be placed in an absolute

position and made them unresponsive to spikes from the network, and the eye was moved in

19 Blender 3D animation software: www.blender.org.

' COLLADA format: www.collada.org.
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front of the red and blue cubes so that it could only view one cube at a time - see figures 5.1 and

5.2.

Spikes controlling

e et

eye muscles ey '
SpikeStream P
Spikes encoding Field of view

visual data SIMNOS eye

Figure 5.1. Experimental setup with the eye of SIMNOS in front of red and blue cubes

Figure 5.2. Screenshot of SIMNOS in front of the red and blue cubes

5.3.5 Architecture

The network is organized into ten layers whose overall purpose is to direct SIMNOS’s eye
towards ‘positive’ red features of its environment and away from ‘negative’ blue objects. To
carry out this task it includes an ‘emotion’ layer that responds differently to red and blue stimuli
and neurons that learn the association between motor actions and visual input. These neurons are
used to ‘imagine’ different eye movements and select the ones that are predicted to result in a
positive visual stimulus — in other words a planning process is carried out that changes the part of
the world that is looked at by the system.

An illustration of the connections between the layers is given in Figure 5.3, and Figure

5.4 shows a view of the network in SpikeStream. The parameters for the layers are given in
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Table 5.3, the details about the connections between the layers can be found in Table 5.4 and a
SpikeStream file for this network is included in the Supporting Materials. The next two sections
highlight some of the key functions of the network and describe the design and functionality of

the individual layers in more detail.

SIMNOS Eye
—pp \/ision Input |« Visual data
\." M ¢ Motor
Al SN Cortex
Blue i
oo |
Motor
' Intzntjrgc:on control
Red Dola 9
Sensori- [ elay
motor * *
Inhibition Eye Eye
Excitation Pan, Tilt
C\ * Y i ¢
Emotion ——Inhibition——yp INhibition f==Inhibition=pm- Motor Output

Figure 5.3. Neural network with SIMNOS eye. Arrows indicate connections within layers, between layers or
between the neural network and SIMNOS. The connections marked with dotted crosses were disabled for the

imagination test in Section 5.5.2.
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Vision Input
(Connected to SIMNOS visual output)

Red Sensorimotor

Motor Cortex

Blue Sensorimotor

Motor Integration

350,
Emotion Inhibition Eye Tilt
i w wan
Eye Pan

Motor Output ¥
(Connected to SIMNOS motor input) Y

N

Figure 5.4. The network in SpikeStream. The red and blue sensitive parts of Vision Input are highlighted in red and

blue. The neurons in Motor Output that set the pan and tilt of SIMNOS’s eye are highlighted in green.

Area Size Threshold | Noise Device
1 Vision Input 64x128 |05 - SIMNOS vision'?
weight 0.8
2 Red Sensorimotor 64 x 64 0.8 - -
3 Blue Sensorimotor 64 x 64 0.8 - -
4 Emotion 5%x5 2 - -
5 Inhibition 5x5 0.1 20% weight 1.0 -
6 Motor Cortex 20 x 20 1.5 20% weight 0.6 -
7 Motor Integration 5%x5 0.65 - -
8 Eye Pan S5x1 0.7 - -
9 Eye Tilt 5x1 0.7 - -
10 Motor Output 5x 135 0.1 - SIMNOS muscles

Table 5.3. Layer parameters

12 Spikes from SIMNOS change the voltage of the corresponding neurons in Vision Input with a weight of 0.8.
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Projection Arbor Connection | Weight Delay
Probability
Vision Input—Red Sensorimotor D 1.0 1.0 0
Vision Input—Blue Sensorimotor D 1.0 1.0 0
Red Sensorimotor —Emotion 8] 0.5 0.5 0
Blue Sensorimotor —Emotion U 0.5 -0.5 0-5
Emotion—Emotion ECIS 5/ 10 0.5/0.5 0.8+0.2/-0.8+0.2 0-5
Emotion—Inhibition U 1.0 -1.0 0-5
Inhibition—Inhibition ECIS 5/10 0.5/0.5 0.8+0.2/-0.8+£0.2 0-5
Inhibition— Vision Input 8] 1.0 -1.0 0
Inhibition—Motor Output U 1.0° -1.0 0
Motor Cortex—Motor Cortex ECIS 1.7/30 | 0.99/0.99 0.8/-0.8 2
Motor Cortex—Motor Integration T 1.0 0.5 0
Motor Integration—Red Sensorimotor | U 1.0 0.5 11
Motor Integration—Blue Sensorimotor | U 1.0 0.5 11
Motor Integration—Eye Pan T 1.0 1.0 0
Motor Integration—Eye Tilt T 1.0 1.0 0
Eye Pan—Motor Output D 1.0 1.0 0
Eye Tilt—Motor Output D 1.0 1.0 0

Table 5.4. Connection parameters. Unstructured connections (U) connect at random to the neurons in the other layer
with the specified connection probability. Topographic connections (T) preserve the topology and use many to one
or one to many connections when the layers are larger or smaller than one other. Excitatory centre inhibitory
surround (ECIS) connections have excitatory connections to the neurons within the excitatory radius and inhibitory
connections between the excitatory and the inhibitory radius - for example, ECIS 5/50 has excitatory connections to
neurons within 5 units of each neuron and inhibitory connections to neurons from 5 to 50 units away. A device
connection (D) connects a layer to part of an input or output layer that is connected to an external device, such as a
robot or camera. So, for example, Red Sensorimotor connects to the part of Vision Input that receives red visual

input from SIMNOS.
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5.3.6 Network Functions

Input and output

The spikes containing visual data from SIMNOS’s eye are routed so that red and blue visual data
is passed to different halves of Vision Input as shown in Figure 5.4. The Motor Output layer is a
complete map of all the ‘muscles’ of SIMNOS and the activity in each of the five neuron rows is
sent as spikes across the network to SIMNOS, where it sets the length of the virtual muscles. The
only rows in Motor Output that were active in these experiments were the ones controlling eye

pan and tilt, which are highlighted in green in Figure 5.4.

Self-sustaining activity

Three of the layers — Motor Cortex, Emotion and Inhibition — have recurrent positive
connections, which enable them to sustain their activity in the absence of spikes from other
layers. A random selection of 20% of the neurons in Inhibition and Motor Cortex are injected
with noise at each time step by adding 1.0 or 0.6 to their voltage (see Table 5.3), and this enables
them to develop their self sustaining activity in the absence of spikes from other layers. The
neurons in Emotion can only develop their self-sustaining activity when they receive spikes from

Red Sensorimotor.

Selection of motor output

The position of SIMNOS’s eye is selected by the activity in Motor Cortex, which has long range
inhibitory connections that limit its self-sustaining activity to a single small cluster of 2-4
neurons. The activity in Motor Cortex is passed by topographical connections to one or two
neurons in Motor Integration, which is a complete map of all the possible combinations of eye
pan and eye tilt. The activity in Motor Integration is then topographically transmitted through
Eye Pan and Eye Tilt to Motor Output and passed by SpikeStream over the Ethernet to SIMNOS,

where it is used to set the lengths of the eye pan and eye tilt muscles.
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Learning

A delay along the connection between Motor Integration and Red Sensorimotor ensures that
spikes from a motor pattern that points the eye at a red stimulus arrive at Red Sensorimotor at the
same time as spikes containing red visual data. When these spikes arrive together, the STDP
learning algorithm increases the weights of the connections between Motor Integration and the
active neurons in Red Sensorimotor, and decreases the weights of the connections between
Motor Integration and inactive neurons in Red Sensorimotor. The same applies to the
connections between Motor Integration and Blue Sensorimotor, except that the association
between motor patterns and blue visual data is learnt. Prior to the learning, repeated activation of
Motor Integration neurons within a short period of time fires all of the neurons in Red/ Blue
Sensorimotor. Once the learning is complete, spikes from Motor Integration only fire the neurons
in Red/ Blue Sensorimotor that correspond to the pattern that is predicted to occur when the eye

i1s moved to that position.

Online and offline modes

Inhibition has a large number of negative connections to Vision Input and Motor Output, which
prevent the neurons in Vision Input and Motor Output from firing when Inhibition is active. I
have called this the ‘imagination’ or offline mode because in this situation the network is isolated
from its environment and no spikes from SIMNOS are processed by the network or sent by the
network to SIMNOS. When the neurons in Inhibition are not firing, the neurons in Vision Input
are stimulated by spikes from SIMNOS and the neurons in Motor Output send spikes to
SIMNOS to set the position of the eye, and this will be referred to as the online mode of the
network. The switch between online and offline modes is controlled by Emotion, which is
connected to Inhibition with negative weights, so when Emotion is active, Inhibition is inactive

and vice versa. Emotion enters a state of self-sustaining activity when it receives spikes with
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positive weights from Red Sensorimotor, and its state of self-sustaining activity ceases when it

receives spikes with negative weights from Blue Sensorimotor.

5.3.7 Overview of Individual Layers

Motor Cortex

This layer was designed to select a motor pattern at random and sustain it for a period of time.
These motor patterns are used to set the lengths of the eye pan and eye tilt muscles in SIMNOS,
and in ‘imagination’ mode these patterns need to be sustained to overcome the delays between
the selection of an appropriate motor pattern, the ‘imagination’ of that pattern and the removal of
inhibition that allows the pattern to be executed. Short range excitatory and long range inhibitory
connections in Motor Cortex encourage a small patch of neurons to fire at each point in time and
this active cluster of firing neurons occasionally changes because a random selection of 20% of
the neurons in Motor Cortex are injected with noise at each time step by adding 0.6 to their
voltage. The topographic connections between Motor Cortex and Motor Integration enable the
active cluster of neurons in Motor Cortex to send spikes to just one or two neurons in Motor

Integration.

Motor Integration

Each neuron in this layer represents a different combination of eye pan and eye tilt. Activity in
Motor Cortex stimulates one or two neurons in Motor Integration and this activity is transformed
through Eye Pan and Eye Tilt into a pattern of motor activity that is sent to SIMNOS’s eye. The
activity in Motor Integration is also sent along delayed connections to Red Sensorimotor and
Blue Sensorimotor, where it is used to learn the relationship between motor output and red and

blue visual input.
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Eye Pan
This layer connects topographically to Motor Output, where it stimulates the row corresponding

to eye pan in SIMNOS. Eye Pan receives topographic connections from Motor Integration.

Eye Tilt
This layer connects topographically to Motor Output, where it stimulates the row corresponding

to eye tilt in SIMNOS. Eye Tilt receives topographic connections from Motor Integration.

Motor Output

This layer is a complete map of all the ‘muscles’ of SIMNOS and the activity in each of the five
neuron rows in this layer sets the length of one of SIMNOS’s virtual muscles. In these
experiments, only eye pan and eye tilt were used and the rest of the muscles were locked up by
setting them into kinematic mode. The neurons highlighted in green in Figure 5.4 are
topographical connected to Eye Pan and Eye Tilt, and strong inhibitory connections between
Inhibition and Motor Output ensure that there is only activity in Motor Output (and motor output

from the network) when Inhibition is inactive.

Vision Input

This layer is connected to SIMNOS’s visual output so that each spike from SIMNOS stimulates
the appropriate neuron in this layer with a weight of 0.8, with one half responding to red visual
input from SIMNOS and the other half responding to blue visual input. When Inhibition is
inactive the spikes from SIMNOS fire the neurons in Vision Input; when Inhibition is active, a
large negative potential is injected into the neurons in Vision Input, which prevents this layer

from responding to visual information.
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Red Sensorimotor and Blue Sensorimotor

Red Sensorimotor and Blue Sensorimotor are topographically connected to the red and blue
sensitive parts of Vision Input. Positive connections between Red Sensorimotor and Emotion
cause Emotion to develop self-sustaining activity when Red Sensorimotor is active. Negative
connections between Blue Sensorimotor and Emotion inhibit the self-sustaining activity in
Emotion. Red Sensorimotor and Blue Sensorimotor receive delayed copies of the motor output
from Motor Integration and the synapses on these connections use Brader et al.”’s (2006) STDP

rule to learn the association between motor output and visual input.

Emotion

This layer plays an analogous role to emotions in the human brain, although in a greatly
simplified form."® Recurrent positive connections within Emotion enable it to sustain its activity
once it has been stimulated: spikes from Red Sensorimotor set Emotion into a self-sustaining
state; spikes from Blue Sensorimotor inhibit it. Emotion inhibits Inhibition, so when Emotion is

active, Inhibition is inactive, and vice versa.

Inhibition

A random selection of 20% of the neurons in Inhibition are injected with noise at each time step
by adding 1.0 to their voltage, which enables Inhibition to develop its self sustaining activity in
the absence of spikes from other layers. When Inhibition is active it inhibits Motor Output and
Vision Input and puts the system into its offline ‘imagination’ mode. Negative connections from

Emotion cause the neurons in Inhibition to be inactive when Emotion is active.

" To be a true emotion this layer would have to receive connections from the robot’s body. Since this is not the
case, the activity in this layer is more like the ‘as if’ loop described by Damasio (1995). The limitations of this
emotion model are discussed in more detail in Section 7.6.1.
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5.4 Experimental Procedure

The first part of the experiments was a training phase in which the network learnt the association
between motor output and visual input. Since the ‘imagination’ mode interfered with this
training, it was disabled by blocking the connections from Inhibition. During the training phase
spontaneous activity in Motor Cortex changed the position of SIMNOS’s eye, copies of the
motor signals were sent from Motor Integration to Red/ Blue Sensorimotor, and the synapse
classes on these connections used Brader et. al.’s (2006) rule to learn the association between
motor output and red and blue visual input. By monitoring the changes in the weights over time
it was empirically determined that a training period of 50,000 time steps (or 50 seconds of
simulated time at 1 ms time step resolution) enabled the network to learn the association between
motor output and visual input for most combinations of eye pan and eye tilt.

Once the network had been trained, Inhibition was reconnected and the network was
observed and tested. For both the training and testing a time step resolution of 1 ms was found to

offer a good balance between the accuracy and speed of the simulation.

5.5 Operation of the Network

5.5.1 Overview

During the training phase, the network spontaneously generated eye movements to different parts
of its visual field and learnt the association between an eye movement and a visual stimulus.
After training, the network was fully connected up and Motor Cortex moved SIMNOS’s eye
around at random until a blue object appeared in its visual field. This switched the network into
its offline ‘imagination’ mode, in which it generated motor patterns and ‘imagined’ the red or
blue visual input that was associated with these potential eye movements. This process continued

until it ‘imagined’ a red visual stimulus that positively stimulated Emotion. This removed the
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inhibition, and SIMNOS's eye was moved to look at the red stimulus. Videos of the network in

operation are available in the Supporting Materials.

5.5.2 Imagination Test

This was a rough qualitative evaluation of the associations that the network had learnt between
motor output and visual input. In this test Red Sensorimotor and Blue Sensorimotor were
disconnected from Vision Input (the dotted crosses in Figure 5.3), so that they only received
input from Motor Integration, and Vision Input continued to receive visual input from
SIMNOS’s eye, which remained under the control of Motor Cortex. If the system had learnt the
association between motor output and visual input, then the activity in Red/ Blue Sensorimotor,
caused by Motor Integration, should match the activity in Vision Input, which was driven by real

visual input.

Real input in ‘
Vision Input Illl

i i
‘Imagined’ visual input in

Red/ Blue Sensorimotor 'l
s ¥

Figure 5.5. Examples of the contrast between real visual input (top row) and imagined visual input (bottom row)

During the imagination test visual inspection of Vision Input, Red Sensorimotor and Blue
Sensorimotor showed that the ‘imagined’ visual inputs were reasonably close to the real visual
inputs, but often a larger area of Red Sensorimotor or Blue Sensorimotor was activated than
would have been caused by visual input alone. It also happened that several different patterns
were activated simultaneously in Red Sensorimotor and Blue Sensorimotor, which was probably

caused by oscillation in Motor Integration between two different positions during training.
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Furthermore, Red/.Blue Sensorimotor sometimes contained areas of active neurons when the real
stimulus was just off screen, which was again probably due to multiple neurons in Motor
Integration being simultaneously active during training. Some examples of the contrast between

imagined and real visual input are given in Figure 5.5.

5.5.3 Behaviour Test

This network was designed to use its ‘imagination’ to reduce its exposure to ‘negative’ blue
visual input and a test was run to establish whether it achieved this objective. In this test, the
untrained network was run for 100,000 time steps (100 seconds of simulated time) with Emotion
and Inhibition disabled, and the activity in the red and blue sensitive parts of Vision Input was
recorded. The ‘imagination’ circuit was then trained and connected, and the measurements were
repeated. This procedure was carried out five times with the SIMNOS environment set up from
scratch on each run to reduce potential biases towards the red or blue cubes that might have been
introduced by the manual positioning of the robot’s eye.

The results of the behaviour test are presented in Figure 5.6 and Figure 5.7, which show
that the activity in the blue visual area was substantially reduced when the ‘conscious’ circuits
were in operation. This suggests that if the ‘negative’ blue stimulus was capable of damaging the
system, then the cognitive mechanisms associated with consciousness could play a useful role in

the life of the organism."

' These cognitive mechanisms might have to be combined with a reflex that moves the eye away from the
damaging stimulus whilst the imagination is taking place — see Section 5.7 for a discussion of this point. It is also
worth noting that the imagination did not have to be particularly accurate to carry out this function.
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5.6 Previous Work

Previous work on neural networks in machine consciousness — for example, Aleksander (2005),
Shanahan (2006, 2008) and Cotterill (2003) — has already been covered in Chapter 3, and so this
section focuses on research on simulated neural networks that is not explicitly related to machine
consciousness. The simulation of neural networks is an extremely large topic and only a few of
the most significant or relevant projects are covered here.

A number of experiments have been carried out by Krichmar and Edelman (2006) using
robots controlled by simulated neural networks that are closely based on the brain. For example,
Krichmar et. al (2005) developed a system that learnt to navigate to a hidden platform from an

arbitrary starting position using only visual landmarks and self-movement cues. The robotic part

15 The error bars are +/- 2 standard deviations.

16 The error bars are +/- 2 standard deviations.
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of this system was a wheeled robot base equipped with a camera and odometry and infra red
sensors. The simulated nervous system had 50 neural areas, including a visual system, head
direction system, hippocampus, basal forebrain, value or reward system, and an action selection
system. The complete network had 90,000 neuronal units, which were modelled using a rate-
based model, and 1.4 million connections. The neural network was simulated on a Beowulf
cluster of 12 1.4GHz computers that communicated wirelessly with the robot. Using innate
behaviours for exploration, obstacle avoidance and platform detection, the robot moved around
its environment until it detected the hidden platform and the run was terminated. After a number
of runs, the robot learnt to locate the platform and could travel directly to it from multiple
starting points. Krichmar et al.’s (2005) analysis of the neural system showed that it had
developed place specific units, similar to those identified in rodents, that were sensitive to a
combination of visual and self-movement cues, and Krichmar et al. were able to trace functional
pathways within the nervous system using their backtracing method."’

Larger scale simulations of biological neural networks have been created by the Blue
Brain project (Markram 2006), which is attempting to produce a biologically accurate model of a
single cortical column, consisting of around 10,000 neurons interconnected with 30 million
synapses. This project is simulating the neurons in this column at a high level of detail using
Neocortical Simulator 7 and NEURON 8, which are running on an IBM Blue Gene
supercomputer containing 8192 processors and 2 TB of RAM - a total of 22 x 1012 teraflops
processing power. The first simulation of the rat cortical column was carried out in 2006 and it is
currently running at about two orders of magnitude slower than real time. The main objective of
this project is to reproduce the behaviour of in vitro rat tissue, and so the stimulation is not
connected to sensory input and it has not been used to control the behaviour of a real or virtual

robot.

' This backtracing method is described in more detail in Section 4.3.4.
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A larger and less detailed neural model has been developed by Ananthanarayanan and
Modha (2007), who simulated a network with 55 million single-compartment spiking neurons
and 442 billion synapses. This model was run on a 32,768 processor Blue Gene/LL with 8TB
memory, and one second of simulation time could be processed in 9 seconds per Hertz of
average neuronal firing rate. This system was created to demonstrate the possibility of large scale
cortical simulations and the neurons were connected probabilistically together without any
attempt at biological plausibility.

There has also been some substantial work on the development of large scale neural
models in silicon. For example, Boahen is developing the Neurogrid system, which will consist
of 1 million silicon neurons and 6 billion synaptic connections (Silver et. al., 2007). This uses an
analogue circuit to emulate a real neuron’s ion-channels and the spikes between neurons are
routed digitally. Another significant hardware project is SpiNNaker, which is attempting to
simulate a billion spiking neurons in real time using a large array of power-efficient processors
(Furber et. al., 2006)."®

Other related work on the simulation of neural networks is that by Grand (2003), who
used a network of more than 100,000 neurons to control a pongid robot, and Izhikevich et. al.
(2004) have carried out simulations of 100,000 neurons and 8.5 million synapses to study the self
organization of spiking neurons into neuron groups. More recently Izhikevich claims to have
created a much larger scale simulation of 100 billion neurons and 10" synapses. According to
his website, it took 50 days on a Beowulf cluster of 27 processors to calculate a second of

simulation time for this network."”

'8 See http://intranet.cs.man.ac.uk/apt/projects/SpiNNaker/.

' This research is discussed on his website: http://vesicle.nsi.edu/users/izhikevich/human_brain_simulation, but I
have not been able to find any publications on it.
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5.7 Discussion and Future Work

A first problem with this network is that its visual processing is very basic and its actions are
limited to the panning and tilting of a single eye. In the future more sophisticated visual
processing could be added to the network along the lines of that developed by Krichmar et al.
(2005), and it could be designed to plan and execute more complex actions.

A second limitation is that the motor patterns are selected randomly in the offline mode
and then a decision is made about whether to execute them or not. Even with just 25 eye pan/ tilt
combinations it often took more than 5,000 time steps (5 simulated seconds) to find a motor
combination that was associated with a red object and switched the network out of its
‘imagination’ mode. Future versions of this network might be able to address this problem by
using a learnt association between emotions and colours and between colours and motor actions
to prime the motor choices - when the network ‘imagined’ the colour that positively stimulated
its emotion system, an appropriate motor pattern could be selected automatically.

A third problem with the network is that it is not clear whether it would perform any
better than a simple reflex that moved the eye away from the ‘negative’ stimulus to a random
part of the visual field. Such a reflex would reduce the activity in the blue input layer in the same
way as the imagination circuit, but with a great deal less complexity. However, the imagination
circuit would have an advantage when there were a large number of blue objects in the visual
field, which would increase the probability that a random motor action would select another blue
object. In this case, imagination should perform better since it would only execute actions
directed towards red objects.

When blue visual input is inhibited, the eye continues to point at the blue stimulus, and so
the organism's retina would burn out if it was actually directed at a painful visual stimulus, such
as the sun. To solve this problem, some kind of reflex would be needed to move the eye away

whilst the imagination was taking place. However, if blue is simply an unattractive or depressing
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visual stimulus — a second dead and decaying SIMNOS, for example - then the inhibition of
visual input is a successful strategy.

This network has all of the components needed for the model of discrete conscious
control that was set out in Section 2.7.4, since it can imagine different scenarios, evaluate its
emotional response to them and immediately execute a selected action. The question whether
this network is actually conscious as it selects and executes its actions is addressed in Section
7.9.7. This network cannot model conscious will (see Section 2.7.5) because it does not have a
reactive layer that would enable its actions to be executed automatically in response to
environmental stimuli. When this network is deliberating, the eye is static, whereas a system
implementing conscious will would continue to react to the world whilst it was planning future
actions, with these reactions being a mixture of past decisions and hardwired behaviours. In
future work a reactive layer could be added to the network that would have its parameters set by
the ‘imagination’ circuit in a similar way to the model developed by Shanahan (2006).

The current system has only been implemented on the virtual SIMNOS robot, but some
people, such as Thompson and Varela (2001), believe that real physical embodiment may be
necessary for consciousness. The realistic physical nature of the SIMNOS simulation should
address many of these worries and in the future the neural network could be used to control the

CRONOS robot when the software interface is ready.

5.8 Conclusions

This chapter has presented a spiking neural network that uses some of the cognitive mechanisms
that have been associated with consciousness to control the eye movements of the SIMNOS
virtual robot. This network enables SIMNOS to avoid ‘negative’ stimuli and it is also an
example of a neural system that can learn the association between sensory input and motor

output and use this knowledge to plan actions.
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The next chapter outlines the SpikeStream simulator that was developed to model this
network and Chapter 7 describes how this network was analysed for phenomenal states using

Aleksander’s, Metzinger’s and Tononi’s theories of consciousness.
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6 SPIKE STREAM

6.1 Introduction

This chapter outlines the spiking neural simulator that was developed to model the ‘conscious’
neural network described in Chapter 5. This simulator had to be fast, it had to exchange spikes
with the SIMNOS robot, it needed to support different neuron and synapse models, and the
ability to record a network’s activity was essential for the synthetic phenomenology in Chapter 7.
A substantial amount of fine tuning of the network was required, and so an intuitive graphical
interface with good monitoring facilities was also desirable.

Since none of the available simulators met these requirements (see Section 5.2.4), 1
developed a new spiking neural simulator, SpikeStream, that can be used to edit, display and
simulate up to 100,000 neurons. This simulator uses a combination of event-based and
synchronous simulation and stores most of its information in databases, which makes it easy to
run simulations across an arbitrary number of machines. A comprehensive graphical interface is
included and SpikeStream can send and receive spikes to and from real and virtual robots across
a network. The architecture is highly modular, and so other researchers can use its graphical
editing facilities to set up their own simulations or use their own code to create networks in the
SpikeStream databases.

The first part of this chapter outlines the different components of the SpikeStream
architecture and sets out the features of the graphical interface in more detail. Next, the
performance of SpikeStream is documented along with its communication with external devices.
The last part of this chapter suggests some applications for SpikeStream, describes its limitations

and gives details about the SpikeStream release under the terms of the GPL license. Much more

1 An earlier version of this paper was published as Gamez (2007b).
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detailed information about the features and operation of SpikeStream is given in the SpikeStream

Manual, which is included as the first appendix to this thesis.

6.2 Architecture

SpikeStream is built with a modular architecture that enables it to operate across an arbitrary
number of machines and allows third party applications to make use of its editing, archiving and
simulation functions. The main components of this architecture are a number of databases, the
graphical SpikeStream Application, programs to carry out simulation and archiving functions,

and dynamically loaded neuron and synapse classes.

6.2.1 Databases

SpikeStream is organized around a number of databases that hold information about the network
model, patterns and devices. This makes it easy to launch simulations across a variable number
of machines and provides a great deal of flexibility in the creation of connection patterns. The

SpikeStream databases are as follows:

® Neural Network. Each neuron has a unique ID and connections between neurons are
recorded as a combination of the presynaptic and postsynaptic neuron IDs. The
available neuron and synapse types along with their parameters are also held in this

database.

e Patterns. Holds spatiotemporal patterns that can be applied to the network for

training or testing.

® Neural Archive. Stores archived neuron firing patterns. Each archive contains an

XML description of the network and data in XML format.

® Devices. The devices that SpikeStream can exchange spikes with over the network.



[ 201 ]

These databases are edited by SpikeStream Application and used to set up the simulation run.
They can also be edited by third party applications - to create custom connection patterns or
neuron arrangements, for example - without affecting SpikeStream’s ability to visualize and

simulate the network.

6.2.2 SpikeStream Application

An intuitive graphical user interface has been written for SpikeStream (see Figure 6.1) with the

following features:
e [Editing. Neuron and connection groups can be created and deleted.

® 3D Visualisation. Neuron and connection groups are rendered in 3D using OpenGL
and they can be rotated, selectively hidden or shown, and their individual details
displayed. The user can drill down to information about a single synapse or view all

of the connections simultaneously.

e  Simulation. The simulation tab has controls to start and stop simulations and vary
the speed at which they run. Neuron and synapse parameters can be set, patterns and

external devices connected and noise injected into the system.

® Monitoring. Firing and spiking patterns can be monitored and variables, such as a

neuron’s voltage, graphically displayed.

Archiving. Archived simulation runs can be loaded and played back.

Much more information about the graphical features of SpikeStream can be found in

Appendix 1.
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Figure 6.1. SpikeStream graphical user interface. The numbers highlighted in yellow indicate the following

features: (1) Simulation controls, (2) Dialog for monitoring the firing of neurons in a layer, (3) Dialog for

monitoring variables inside the neurons, such as the calcium concentration and voltage, (4) Dialog for viewing and

setting neuron parameters (5) Dialog for viewing and setting the noise in the network, (6) 3D network view.

6.2.3 SpikeStream Simulation

The SpikeStream simulator is based on the SpikeNET architecture (Delorme and Thorpe 2003)

and it consists of a number of processes that are launched and coordinated using PVM, with each

process modelling a group of neurons using a combination of event-based and synchronous

simulation.” In common with synchronous simulations the simulation period is divided into steps

with an arbitrarily small time resolution and each neuron group receives lists of spikes from

2 One difference between SpikeStream and SpikeNET is that messages are sent rather than requested at each time

step.
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other connected layers at each time step. However, only the neuron and synapse classes that
receive a spike are updated, which substantially cuts down on the amount of processing required.
Since the main overhead is calculating the neurons’ state and sending the spikes, the simulator’s
update speed depends heavily on the level of network activity, and at high levels the
performance becomes the same as a synchronous simulator. In theory, SpikeStream’s run speed
should be relatively independent of the time step resolution, since the calculation of each time
step is efficient and the network should emit the same number of spikes per second
independently of the time step resolution. In practice, the setting of this value can affect the
number of spikes emitted by the network because higher values reduce the number of spikes that
arrive during a neuron’s refractory period and alter the network dynamics (see Table 6.2).

The spikes exchanged between neurons are a compressed version of the presynaptic and
postsynaptic neuron IDs, which enables each spike to be uniquely routed to a class simulating an
individual synapse. Variable delays are created by copying emitted spikes into one of 250
buffers, which enables them to be delayed for up to 250 time steps. This number of buffers was
chosen to minimize the space required to store the delays in the database and it was found to
offer enough resolution and length of delay for the time step values that were used in the
experiments.3

Unlike the majority of neural simulation tools, SpikeStream can operate in a live mode in
which the neuron models are calculated using real time instead of simulation time. This live
mode is designed to enable SpikeStream to control robots that are interacting with the real world
and to process input from live data sources, such as cameras and microphones. Although
SpikeStream is primarily an event-driven simulator, it can also be run synchronously to

accommodate neuron models that generate spontaneous activity.

3 This value could be changed by editing the SpikeStream code if longer delays or higher delay resolution was
required.
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6.2.4 SpikeStream Archiver

During a simulation run, the firing patterns of the network can be recorded by SpikeStream
Archiver, which stores lists of spikes or firing neurons in XML format along with a simple

version of the network model.

6.2.5 Neuron and Synapse Classes

Neuron and synapse classes are implemented as dynamically loaded libraries, which makes it
easy to experiment with different neuron and synapse models without recompiling the whole
application. Each dynamically loadable class is associated with a parameter table in the database,
which makes it easy to change parameters during a simulation run. The current distribution of
SpikeStream includes neuron and synapse classes implementing the Spike Response Model and
Brader et al.’s (2006) STDP learning rule (see sections 5.3.2 and 5.3.3), which were developed

for the work in this thesis.

6.3 Performance

6.3.1 Tests

The performance of SpikeStream was measured using three test networks put forward by Brette
et. al. (2006). The main network specified by this paper has 3,200 excitatory neurons and 800
inhibitory neurons that are randomly interconnected with a 2% probability. Larger networks of
10,000 and 20,000 neurons with a similar excitatory/ inhibitory ratio were also put forward by
Brette et al., and for the performance tests of SpikeStream the networks were divided into four
layers to enable them to be distributed across multiple machines. The neuron and synapse models

for these networks could be implemented in four different ways:
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® Benchmark 1. A network of conductance-based integrate and fire neurons,

equivalent to the COBA model described in Vogels and Abbott (2005).

®  Benchmark 2. A network of integrate and fire neurons connected with current-based
synapses, which is equivalent to the CUBA model described in Vogels and Abbott

(2005).
® Benchmark 3. Conductance-based Hodgkin-Huxley network.

®  Benchmark 4. Integrate and fire network with voltage-jump synapses.

For these performance tests, Benchmark 4 was chosen because it was the easiest to implement
using event-driven simulation strategies.

At the beginning of each simulation run the networks were driven by a random external
current until their activity became self sustaining and then their performance was measured over
repeated runs of 300 seconds. A certain amount of fine tuning was required to make each
network enter a self-sustaining state that was not highly synchronized and the final parameters
for each size of test network are given in Table 6.1.* The neuron and synapse models that were
used for these tests were the same as those described in Section 5.3.2.

The first two networks were tested on one and two Pentium IV 3.2 GHz machines
connected using a megabit switch with time step values of 0.1 and 1.0 ms. The third network
could only be tested on two machines because its memory requirements exceeded that available

on a single machine. All of the tests were run without any learning, monitoring or archiving.

4 Most of the initial values of these parameters were taken from Brette et. al. (2006).



Parameter Small network | Medium network | Large network
Neurons 4000 10,000 19,880
Connections 321985 1,999,360 19,760,878
w;; (excitatory ) 0.11 0.11 0.11

w;; (inhibitory) -1.0 -0.6 -0.6
Threshold 0.1 0.15 0.25

Ty 3 3 3

m 0.8 0.8 0.8

n 3 3 3
Connection delay 1 1 1

p 3 3 3
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Table 6.1. Parameters of test networks

6.3.2 Results

The amount of time taken to simulate one second of biological time for each of the test networks
is plotted in Figure 6.2. In this graph the performance difference between 0.1 and 1.0 ms time
step resolution is partly due to the fact that ten times more time steps were processed at 0.1 ms
resolution, but since SpikeStream is an event-based simulator, the processing of a time step is not
a particularly expensive operation. The performance difference between 0.1 and 1.0 ms time step
resolution was mainly caused by changes in the networks’ dynamics that were brought about by
the lower time step resolution, which reduced the average firing frequency of the networks by

the amounts given in Table 6.2.

Time step resolution

Small network

Medium network

Large network

0.1 ms

109 Hz

72 Hz

40 Hz

1.0 ms

79 Hz

58 Hz

30 Hz

Table 6.2. Average firing frequencies in simulation time at different time step resolutions
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Figure 6.2.. Time taken to compute one second of biological time for one and two machines using time step

resolutions of 0.1 and 1 ms

The differences in average firing frequency shown in Table 6.2 suggest that the
relationship between real and biological time needs to be combined with other performance
measurements for event-based simulators. To address this issue, the number of spikes processed
in each second of real time was also measured and plotted in Figure 6.3. This graph shows that
SpikeStream can handle between 800,000 and 1.2 million spike events per second on a single
machine and between 1.2 million and 1.8 million spike events per second on two machines for
the networks that were tested. Figure 6.2 and Figure 6.3 both show that the performance
increased when the processing load was distributed over multiple machines, but with network
speed as a key limiting factor, multiple cores are likely to work better than multiple networked

machines.
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Most of the performance measurements in Brette et. al. (2006) are for the neuron and
synapse models specified by benchmarks 1-3, which cannot be meaningfully compared with the
SpikeStream results for Benchmark 4. The only results that are directly comparable are those for
NEST, which are given by Brett et al. (2006, Figure 10B) for two machines. On the 4,000 neuron
network NEST takes 1 second to compute 1 second of biological time when the synapse delay is
I ms and 7.5 seconds to compute 1 second of biological time when the synapse delay is 0.125
ms. Compared with this, SpikeStream takes either 14 or 30 seconds to simulate 1 second of
biological time, depending on whether the time step resolution is 1.0 or 0.1 ms, and these
SpikeStream results are independent of the amount of delay that is used.

The other point of comparison for the performance of SpikeStream is SpikeNET. The
lack of a common benchmark makes comparison difficult, but Delorme and Thorpe (2003) claim
that SpikeNET can simulate approximately 400,000 neurons firing at 1Hz real time with 49
connections per neuron and 1 ms time step. This works out as 19.6 million spike events per

second, whereas SpikeStream can only handle a maximum of 1.2 million spike events per second
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on a single PC for the networks tested (see Figure 6.3). This measurement for SpikeNET was
obtained using a substantially slower machine, and so its performance would probably be at least

800,000 neurons firing at 1 Hz in real time today.

6.4 External Devices

SpikeStream can pass spikes over a network to and from external devices, such as cameras and

real and virtual robots, in a number of different ways:

e Synchronized TCP. Spikes are exchanged with the device at each time step;
SpikeStream and the external device only move forward when they have both

completed their processing for the time step.

e Loosely synchronized UDP. Spikes are sent and received continuously to and from
the external device with the rate of the simulation determined by the rate of arrival

of the spike messages.

e Unsynchronized UDP. Spikes are sent and received continuously from the external

device. This option is designed for live work with robots.

The main external device that has been used and tested with SpikeStream is the SIMNOS
virtual robot created by Newcombe (see Section 1.2.3 and Figure 6.4). Visual data (available
with different types of pre-processing), muscle lengths and joint angles are encoded by SIMNOS
into spikes using a variety of methods and passed across the network to SpikeStream using the
synchronized TCP method. When the spikes are unpacked by SpikeStream they are used to
directly fire neurons or to change their voltage. SIMNOS also receives muscle length data from
SpikeStream in the form of spiking neural events, which are used to control the virtual robot.
Together SIMNOS and SpikeStream provide an extremely powerful way of exploring sensory

and motor processing and integration.
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Figure 6.4. SIMNOS virtual robot. The red lines are the virtual muscles consisting of damped springs whose lengths
are sent as spikes to SpikeStream. The outlines of spheres with arrows are the joint angles, which are also sent as

spikes to SpikeStream.

6.5 Applications

Some potential applications of SpikeStream are as follows:

Biologically inspired robotics
Spiking neural networks developed in SpikeStream can be used to process sensory data from real
or virtual robots and generate motor patterns. A good example of this type of work is that carried

out by Krichmar et. al. (2005) on the Darwin series of robots (see Section 5.6).

Genetic algorithms
The openness of SpikeStream’s architecture makes it easy to write genetic algorithms that edit

the database and run simulations using PVM.
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Models of consciousness and cognition.
Dehaene et al. (1998, 2003, 2005) and Shanahan (2008) have built models of consciousness and
cognition based on the brain that could be implemented in SpikeStream (see Section 3.5.6). The

neural network in Chapter 5 is also an example of this type of work.

Neuromorphic engineering

SpikeStream’s dynamic class loading architecture makes it easy to test neuron and synapse
models prior to their implementation in silicon. Initial work has already been done on enabling
SpikeStream to read and write AER events, which would enable it to be integrated into AER

chains such as those developed by the CAVIAR project.’

Teaching
Once installed SpikeStream is well documented and easy to use, which makes it a good tool for

teaching students about biologically structured neural networks and robotics.

6.6 Limitations and Future Work

The flexibility and speed of SpikeStream come at the price of a number of limitations:

e Neurons are treated as points. Each connection can have a unique delay, but there is

none of the complexity of a full dendritic tree.

e The connection delay is a function of the time step, not an absolute value, and there
i1s a maximum of 250 delayed time steps. This limitation makes it more complicated
to change the time step resolution, but it does not affect the accuracy or the
performance of the simulator. The number of buffers could be changed in a future

SpikeStream release if higher resolution of the delay or a longer delay was required.

5 CAVIAR project: http://www.imse.cnm.es/caviar/.
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The full functionality of SpikeStream is only available for layers of rectangular
neurons. The main work that would be needed for three-dimensional neuron groups
is the extension of SpikeStream Application to enable it to monitor three-
dimensional firing patterns. The editing and visualisation have already been partly
extended to deal with three-dimensional neuron groups, the simulation and archiving
code will work with any shape of neuron group, and the databases will also support

any shape of neuron group.

Any two neurons can only have a single connection between them. This restriction
exists because the ID of each connection in the database is formed from a
combination of the presynaptic and postsynaptic neuron IDs. This limitation has
little impact on the ability of SpikeStream to model point neurons. Multiple
connections between two neurons would only make sense if the full dendritic tree
was being modelled - when a simulator, such as NEURON or GENESIS, would be

more appropriate.

Although SpikeStream’s performance was adequate for the network developed by
this thesis, it is likely that it could be substantially improved. Whilst the
performance advantage of SpikeNET was achieved at the cost of many important
features, it would be worth looking more closely at NEST to see if some its
optimization strategies could be incorporated into the SpikeStream simulator. It
might also be possible to use the SpikeStream databases to set up simulation runs in

NEST, which lacks a graphical user interface.

SpikeStream currently uses mysqldump to save and load its databases. In the future

it would be worth extending the saving and loading functions of SpikeStream to
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support the standard XML formats that have been developed for neural networks,

such as NeuroML® and BrainML.”

6.7 Release

SpikeStream is available for free download under the terms of the GPL license. The current (0.1)
release has 25,000 source lines of code,® full source code documentation, a mailing list for
SpikeStream users, and a comprehensive 80 page manual, which has been included in this thesis
as Appendix 1. SpikeStream is also available pre-installed on a virtual machine, which works on
all operating systems supported by VMware and can be run using the free VMware Player.”
More information about this release 1is available at the SpikeStream website:
http://spikestream.sf.net. At the time of writing SpikeStream 0.1 has had 140 downloads from the

Sourceforge website.

6.8 Conclusions

This chapter has outlined the architecture and performance of SpikeStream, which can simulate
medium sized networks of up to 100,000 neurons and is available for free download under the
terms of the GPL licence. This simulator is modular, flexible and easy to use and can interface
with real and virtual robots over a network. SpikeStream was used to model the neural network
described in Chapter 5, and the next chapter analyzes this network for representational mental

states and information integration, and makes predictions about its phenomenal states.

6 NeuroML website: http://www.neuronml.org.
7 BrainML website: http://www.brainml.org.

8 This was calculated using Wheeler’s SLOCCount software. More information about Wheeler’s measure can be
found here: http://www.dwheeler.com/sloc/.

9 VMware Player: http://www.vmware.com/products/player/.
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/. ANALYSIS

7.1 Introduction

This chapter describes how the neural network in Chapter 5 was analyzed for consciousness
using the approach to synthetic phenomenology set out in Chapter 4. The first section in this
chapter covers the calculation of the OMC rating of the network, Section 7.3 explains the method
that was used to identify the representational mental states, and then Section 7.4 describes the
analysis of the system for information integration using Tononi and Sporns’ (2003) approach.
Sections 7.5-7.7 look at whether the network is capable of consciousness according to
Tononi’s, Aleksander’s and Metzinger’s theories and definitions are formulated that enable the
network to be automatically analyzed for phenomenal states. The final part of this chapter
describes how the network’s activity was recorded and combined with the analysis data to
produce a sequence of XML files that predict the phenomenology of the system according to the
three theories of consciousness.

All of this analysis was carried out on two 3.2 GHz Pentium IV computers with 2 GB
RAM. The code for this analysis is all part of the Network Analyzer software, which was written
as part of this PhD and is briefly covered in Appendix 2. No official release of Network
Analyzer is planned, but the source code for the current version is included in the supporting

materials.

7.2 OMC Rating

In this network all of the mental states are implemented in the same way, and so they all have the

same rating on version 0.6 of the OMC scale described in Section 4.2. The system is a
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biologically inspired simulated neural network running on two single processor computers at a
speed that is significantly slower than the human brain, and so its factors are S1, R2, F1, FN4,
TS2, AD3, giving a total weighting of 3.025 x 10”. This needs to be multiplied by 0.1 to
compensate for the missing level of molecules, atoms and ions, leading to a final weighting of
3.0x 10'4, which is an OMC position of 111 out of 192 on the scale, and an OMC rating of 0.43.
This OMC rating makes intuitive sense because the final arrangement of atoms and electrons in
the system is substantially different from that in a human brain, but not to the extent that it is
impossible to conceive that it has conscious states. This OMC rating is incorporated into the

XML description of the phenomenology in Section 7.9.

7.3 ldentification of Representational Mental States

7.3.1 Definition of a Mental State for this System

In this analysis a simulated neural network is being analysed for consciousness, and so the
mental states are states of the simulated network.' Depending on how a neural network is
modelled, there are many different ways of defining its states — for example, the spiking activity
of a population of neurons, the voltages in the neurons, the average neuron firing rates, changes
in memory addresses or activity in the processor and RAM — and in this analysis, it was decided
to treat the firing of a neuron as a mental state. Although this is fairly basic, the main purpose of
this analysis is to illustrate how synthetic phenomenology can be carried out, and it would have
been unnecessarily complicated to use population codes or memory addresses to make

predictions about the network’s phenomenal states.

' See Section 4.3.2 for the definition of a mental state that is being used in this thesis.
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7.3.2 Selection of Method

To identify the representational mental states of the network a method was needed that could
identify the functional or effective connections between the input and output data and the
internal states (see Definition 4.2 in Chapter 4). In this network the input and output pass through
Vision Input and Motor Output, and so I decided to look at the functional and effective
connections between these layers, which had known response characteristics, and the internal
layers whose responses were not known. The first problem that had to be addressed was that a
complete map of the representational states of the network was required for the XML
description, and yet the network only activated a small selection of its possible states during
normal activity. To get around this problem it was decided to inject noise into the layers that had
known response characteristics, and use an algorithm or mathematical method to identify the
functional or effective relationships between activity in the neurons with known response
characteristics and activity in the internal neurons whose representational characteristics were
being measured.

One of the first algorithms that I considered was the backtracing method developed by
(Krichmar et. al. 2005), which examines the firing rate of a reference neuron at a specific time
step and identifies the neurons connected to the reference neuron that were active during the
previous time step. Whilst it might have been possible to trace the spikes back through the
network in this way, the recurrent loops and delays in the network would have made this process
extremely complicated. Another method that was considered was Granger causality (Seth and
Edelman 2007), but this would have required conversion of the spiking activity into average
firing rates, which 1 wanted to avoid if possible. Instead, it was decided to use mutual
information to measure the relationships between the input/ output and internal neurons, and the

next section describes how this can be calculated from the spiking activity. Although mutual
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information does not directly measure causal relationships, under these experimental conditions

a strong case can be made that it is a measure of effective connectivity (see Section 7.3.6).

7.3.3 Identification of Representational Mental States Using Mutual
Information

The first step in the analysis for representational mental states was the selection of an input or
output layer, which was given one description in natural human language and another in terms
applicable to the physical world (when this could be done reasonably easily). Next, noise was
injected into the input or output layer and the network activity was recorded. This data was then
used to calculate how much mutual information each internal neuron shared with the input or
output neurons that had been given the physical and human descriptions. This procedure was
repeated separately for each input and output layer that had response characteristics that could be
easily described. In theory this noise injection technique could be also used to identify mental
states that represent other mental states, but the difficulty of describing internal neuron groups
led me to exclude meta representational mental states from this analysis.2

The mutual information between each input/output neuron, X, and each internal neuron,
Y, was calculated by recording the number of times that the following combinations occurred for
different steps back in time (“1” indicates that the neuron was firing at that time step and “0”

indicates that the neuron was quiescent):

x=0 & y=0
x=1& y=0
x=0 & y=1
x=1 & y=1

These statistics enabled the joint probabilities to be calculated:

? Meta representational mental states would have been needed to analyze the network using Rosenthal’s (1986)
higher order thought theory. However for the reasons discussed in Section 2.3.2 this theory was not used in this
analysis.
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p(x=0, y=0)
p(x=1, y=0)
p(x=0, y=1)
p(x=1, y=1)

for different steps back in time as well as the marginal probabilities:

p(x=0)
p(x=1)
p(y=0)
p(y=1).

Using these values, the mutual information between each input/output neuron X and each

internal neuron Y was calculated using the standard formula for mutual information:

X)) =SS pix )l ;ﬂ&le_ 71
(X;Y) gggglﬂx y)Og(le)p(y) (7.1)

Equation 7.1 was also used to work out the maximum possible mutual information under

the experimental conditions. With 20% of the neurons being fired randomly at each time step:

p(x=0)=0.38
p(x=1)=02
p(y=0)=0.8
p(y=1)=0.2.

When the mutual information between X and Y is at a maximum, their state will always be the
same, and so:

p(x=0, y=1)=0

p(x=1,y=0)=0,
and the remaining joint probabilities can be derived from the noise:

p(x=0, y=0)=0.8
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p(x=1, y=1)=0.2.
Putting these figures into Equation 7.1 yields a maximum possible mutual information of 0.72.

During the recording of the data a time step value of 10 ms was used to avoid
complications caused by the refractory period3 and all other sources of network noise were
switched off. The injection of 20% noise into each input/ output layelr4 and approximately 10,000
time steps of recorded activity were found to give mutual information values that matched
expectations based on the known connectivity of the network. Since the mutual information
between two neurons is rarely zero, a threshold was used to eliminate low mutual information
values that would have been superfluous in the final XML description. The results for Vision

Input and Motor Integration are covered in the next two sections.

7.3.4 Visual Representational Mental States

Vision Input was an obvious choice of input layer for the visual analysis because it could be
easily labelled and had strong forward connections to the rest of the network. With layers of
several thousand neurons the analysis for representational mental states consumes a lot of time
and memory because the mutual information has to be calculated for each combination of
input/ output and internal neurons. This problem can be reduced by excluding layers from the
analysis that are unlikely to have any systematic link with the layer that is being used as input or
output For the visual analysis Motor Cortex was excluded because it did not have any input
connections from other layers, and Motor Integration, Eye Pan and Eye Tilt were also left out
because they did not have any direct or indirect connections from Vision Input. The mutual

information between the input and internal neurons was calculated for between zero and five

? The total refractory period of the neurons is approximately 10 ms.

* Noise injection in this part of the analysis was done by firing a random selection of 20% of the neurons at each
time step.
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steps back in time because activity in Vision Input took four time steps to propagate to Motor
Output.

The next stage in the visual analysis was to decide on appropriate labels for the neurons
in Vision Input. Since half of Vision Input carries red visual information and half carries blue, it
was decided to include both red and blue in the human description and to use the corresponding
wavelengths of light in the physical description.5 The parameters for the identification of visual

representational mental states are summarised in Table 7.1.

Parameter Value
Input Neuron Group Vision Input
Internal Neuron Groups Emotion, Red Sensorimotor, Blue Sensorimotor,

Inhibition, Motor Output

Human Description “Red / blue visual input”

Physical Description “700 nm / 450 nm electromagnetic waves”
Steps back in time 0-5

Mutual Information Threshold 0.1

Input Neuron Group Noise 20%

Table 7.1. Parameters for the analysis of visual representational mental states

The data structures were too large to fit in memory, and so the input/output and internal layers
were split into five groups and the mutual information calculations were run on the 25 possible
combinations between them, which took several days to complete.6 A high level summary of the
average mutual information shared between Vision Input and the internal layers is plotted in

Figure 7.1.

> A more sophisticated analysis could have distinguished between light wavelengths and perceived colours when
assigning the human and physical labels.

® This separation into separate groups did not have any effect on the final result.
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Figure 7.1. Average mutual information shared between Vision Input and the internal layers during the analysis for

representational mental states

The results in Figure 7.1 show that the mutual information shared between Red Sensorimotor
and Blue Sensorimotor and Vision Input was close to the theoretical maximum of 0.72, which
matched expectations because of the strong topological connections between Vision Input and
Red/ Blue Sensorimotor. Although Emotion is indirectly connected to Vision Input, it shared no
mutual information above the threshold, which was probably due to the large number of internal
connections within Emotion that made its self-sustaining activity largely independent of Red
Sensorimotor. The other neuron groups downstream of Emotion, such as Inhibition and Motor

Output, also shared no mutual information with Vision Input.
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7.3.5 Proprioception/ Motor Output Representational Mental States

Motor Output would not have been a good choice of output layer for the motor analysis because
it does not have any forward connections to the other layers, and no representational mental
states would have been found by injecting noise into it. A better choice was Motor Integration,
which has forward connections to other layers, contains a complete map of all possible motor
combinations and plays a key role in action selection through its connections to Red
Sensorimotor and Blue Sensorimotor. Motor Integration can also be given a clear human
description because it maps directly down to Motor Output through Eye Pan and Eye Tilt. Motor
Cortex and Vision Input were excluded from this part of the analysis because they did not have
any incoming connections from other layers.

Although the neural network does not receive sensory data from SIMNOS’s joints or
muscles, the motor control signals sent from Motor Integration accurately predict the position of
the eye after a delay of a few time steps, and so activity in this layer encodes both proprioceptive
and motor information. To reflect this dual role, “Proprioception / motor output” was chosen as
the human description of the neurons in Motor Integration and the physical description was set to
“N/A” because it would have been too complicated to describe the physical movements of the
eye in response to activity in this layer. There is an 11 time step delay from Motor Integration to
Red Sensorimotor and Blue Sensorimotor, and so the mutual information between the input and
internal neurons was calculated for between zero and twelve steps back in time. Although this
had the effect of excluding potential representational links between Motor Integration and
Emotion via Red/ Blue Sensorimotor, the visual analysis strongly suggested that there was no
representational relationship between Emotion and Red/ Blue Sensorimotor. The parameters for
the identification of proprioception/ motor output representational mental states are summarized

in Table 7.2.
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Parameter Value
Input Neuron Group Motor Integration
Internal Neuron Groups Emotion, Red Sensorimotor, Blue Sensorimotor,

Inhibition, Eye Tilt, Eye Pan, Motor Output.

Human Description “Proprioception / motor output”
Physical Description “N/A”

Steps back in time 0-12

Mutual Information Threshold 0.1

Input Neuron Group Noise 20%

Table 7.2. Parameters for the analysis of proprioception/ motor output representational mental states

The data structures for the proprioception/ motor output analysis fitted comfortably in memory
and the calculations took less than an hour to complete. A high level summary of the average
mutual information shared between Motor Integration and the internal layers is plotted in
Figure 7.2.

In the results shown in Figure 7.2 Motor Output shows a small response with a peak of
0.01 at minus two time steps, which might have been expected to be higher since there is an
indirect link between Motor Integration and Motor Output. However, the value of 0.01
represents the average mutual information between Motor Integration and Motor Output, and
only 10 out of 675 neurons in Motor Output are indirectly connected to Motor Integration. The
highest average mutual information is shared between Motor Integration and Eye Pan and Eye
Tilt at -1 time steps. This is close to the theoretical maximum and it is due to the topographic
connections between Motor Integration and Eye Pan and Eye Tilt. There are also average mutual
information peaks for Red Sensorimotor and Blue Sensorimotor at -12 time steps, which
matched expectations since there is a connection with a delay of 11 time steps from Motor
Integration to Red/ Blue Sensorimotor and it takes one time step for a spike to be emitted from

one group and processed in another.
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Figure 7.2. Average mutual information shared between Motor Integration and internal layers during the analysis

for representational mental states

The graphs in Figure 7.1 and Figure 7.2 only give the average mutual information that is
shared between the input/output and internal layers. The detailed results can be found in the
VisualRepresentationalMentalStates.xml and MotorRepresentationalMentalStates.xml files,

which are included in the supporting materials.

7.3.6 Representational Mental States: Discussion and Future Work

One limitation of mutual information is that by itself it is not a measure of the causal
relationships between neurons. If two neurons, A and B, share mutual information, then it could
be because A is causally influencing B, B is causally influencing A or because A and B are under

the causal influence of a third neuron, C. However, in the method described Section 7.3.3 there is
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good reason to believe that the activity of the internal neurons is due to their causal dependencies
on the input/ output layers because the input/ output layers are individually put into a high (but
not maximum) state of entropy and there is no other source of spontaneous activity within the
network. A second reason why this method is likely to measure causal dependencies is because
the mutual information is calculated for different numbers of steps back in time. If the mutual
information between A and B peaked at time step zero, for example, then this would suggest that
A and B were under the causal influence of a third neuron, C, but if B shares maximum mutual
information with A at -2 time steps, then it is more likely that there is a causal relationship
between A and B - although A and B could still be subject to a common cause C that is connected
to A and B with different delays. Finally, the close match between the mutual information
relationships and the structure and delays of the network makes it reasonable to assume that the
internal neurons sharing high mutual information with input/output neurons are causally
dependent on these input/output neurons.

This analysis did not attempt to identify mental states that represent other mental states
because the descriptions would have been too complicated to define at both the human and
physical levels. Future work in this area might be able to track the processing of data through the
network by repeating the analysis a number of times at different levels. For example, mental
states that responded to a combination of motor output and blue visual information could be
injected with noise to discover representational mental states that respond to more abstract higher
level information. In this way meta representational mental states could be described as
combinations of more basic mental states that are linked to states of the world. Mental states
representing more complex features of the world could also be identified using more specific test
data.

The visual and motor systems of this network were extremely basic and on such a simple

system the injection of noise into Vision Input and Motor Integration was a good way of
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identifying representational mental states. However, a more subtle approach would be needed to
identify representational mental states in more complex systems. If the system is designed with
layers that respond to different aspects of the input signal - for example the visual input layers in
Krichmar et. al. (2005) — then the layers could be individually labelled and injected with noise to
identify the representational mental states. However, when the system’s responses to complex
aspects of the world are not known — for example, in self-organizing networks, such as the
hippocampus in Krichmar et al. (2005) — then it might be possible to use the statistical methods
developed by Lungarella et. al. (2005) and Lungarella and Sporns (2006) to identify regularities
in the input and output signals, which could be used to label the representational mental states.

In the future it would be worth exploring whether other techniques, such as transfer
entropy (Schreiber 2000, Sporns et al. 2006), backtracing (Krichmar et. al. 2005) and Granger
causality (Seth and Edelman 2007), make different predictions about the representational mental
states of the network. It would also be worth investigating how the definition of a system’s
mental states affects its representations. For example, if mental states were defined in terms of
populations of neurons, then Kohonen (2001) or one of Grossberg’s (1976) neural networks
could be used to identify patterns in the neuron populations, and the mutual information shared
between these patterns and the input/ output data could then be measured using the noise

injection method.

7.4 Information Integration Analysis

7.4.1 Introduction

This section describes how the neural network was analyzed for information integration using
Tononi and Sporns’ (2003) method. The main motivation for this analysis was to make
predictions about the consciousness of the network using Tononi’s (2004) information

integration theory of consciousness. The phenomenology of a system also depends on the
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integration between the different pieces of conscious information (see Section 4.3.6), and since
information integration is a measure of effective connectivity (Sporns 2007), it made sense to use
Tononi and Sporns’ method to identify the integration between the mental states in the network.
Information integration is also used in the predictions about the consciousness of the network
based on Metzinger’s (2003) theory (see Section 7.7.3).

The central difficulty with Tononi and Sporns’ (2003) method is that the analysis time
increases factorially with the number of subsets and bipartitions, which makes it impossible to
exhaustively analyse systems with more than fifty elements. To find out the scale of this
problem, Section 7.4.3 gives an estimate of how long the full analysis would take on a network
with 17,544 neurons. Since this is of the order of 10°*® years, optimisation strategies had to be
developed for large networks, which are documented in Section 7.4.4, and Section 7.4.5 gives
the result of testing these optimizations on Tononi and Sporns’ (2003) sample networks. The
remaining information integration sections present the results and some background and future

work. Further details about the information integration results are included in Appendix 3.

7.4.2 Tononi and Sporns’ Information Integration Calculation

As explained in Section 2.6.2, the complexes of a system are identified by considering every
possible subset S of m elements out of the n elements of the system, starting with m =2 and
finishing with m =n. For each possible bipartition of the subset, the effective information
integrated across the bipartition, EI(A=B), is calculated and the minimum normalized effective
information, min{ EI(A=B) / H"**(A=B)}, is identified. The non-normalized minimum
effective information is the @ value of the subset, and a complex is a subset with ® > 0 that is
not included in a larger subset with greater ®@. At the centre of this method is the calculation of
EI(A=B), which is repeated a large number of times during the analysis. The stages in the

calculation of EI(A=B) are as follows.
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Normalization
The starting point for the EI(A<B) calculation is the connection matrix, CON(X), which is an
m X m matrix representing all of the connections between the m elements of the subset. In this
analysis all of the weights were made positive by multiplying them by -1 on the grounds that a
connection is passing information regardless of whether it is excitatory or inhibitory.7 Without
this normalization of negative weights it is conceivable that the positive and negative
connections between the two bipartitions of a subset would have partially cancelled each other
out, leading to a value of EI(A=B).that did not reflect the amount of information that was
exchanged between the two bipartitions.8

Tononi and Sporns (2003) normalized the connection matrix by multiplying the weights
so that the absolute value of the sum of the afferent synaptic weights per element was a constant
value, w, which they set to 0.5 for their analysis Whilst this normalization method was
appropriate for Tononi and Sporns’ task of comparing different architectures that have been
artificially evolved, it substantially distorts the relationships between the weights and does not
correctly measure the information integrated by the system. For example, two neurons connected
with a weight of 0.00001 have very little effective information between them, but the constant
value weight normalization changes the connection weight to 0.5 and substantially alters the
information exchanged between the two neurons. To avoid these problems, this analysis
normalized the connection matrix by summing each neuron’s afferent weights, finding the
maximum value and calculating the factor that would reduce this maximum to less than 1.0. All

of the weights in the network were then multiplied by this factor, which ensured that the sum of

7 The alternative method of adding a constant to all of the weights was rejected because it would have made positive
connections count for more, when in fact positive and negative connections with the same weight were
transmitting the same amount of information

% 1 have not been able to find any discussion of negative weights in Tononi and Sporns (2003) or Tononi (2004) and
their examples are all based on positive weights.
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each neuron’s afferent weights was always less than one without distorting the relationships

between them.

Covariance Matrix

In each effective information calculation one part of the subset, A, is put into a state of maximum
entropy and the entropy of the response of B is used to calculate EI(A—B). Since A is being
substituted by independent noise sources, all of the self connections within A and the
connections afferent to A are set to zero within CON(X). Under Gaussian assumptions, the
elements in the system can be represented by a vector X of random variables that are subject to
independent Gaussian noise R of magnitude c. When the elements settle under stationary

conditions, the final state of the system is given by Equation 7.2:

X =X * CON(X) + cR. (7.2)

Using standard algebra and averaging over the states produced by successive values of R, this

equation can be rearranged as:

X =R (1-CON(X))!, (7.3)

and a substitution of:

Q = (1-CON(X))-1 (7.4)

into Equation 7.3 gives the formula:

X =RQ. (7.5)

In Equation 7.5, the elements of R that correspond to the A bipartition of the subset are set to 1.0

to put A into a state of maximum entropy, and the elements of R that correspond to the B
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bipartition are set to a value that corresponds to the background noise, which is typically

0.00001. Using the standard covariance formula:
COV(X) = X'X, (7.6)
and substituting in Equation 7.5, we obtain:
COV(X) = (RQ)'RQ, (7.7)
which is equivalent to Equation 7.8:
CoV(X) = Q'R'RQ, (7.8)

and can be calculated from CON(X) using standard matrix operations.

Entropy
EI(A=B) depends on the entropies H(A), H(B) and H(AB), which can be calculated by
extracting the sub matrices COV(A), COV(B) and COV(AB) from the covariance matrix and

putting their determinants into Equation 7.9:

In( 27me)" | COV (X))

H(X)= > :

(7.9

where | COV(X) | is the determinant of COV(X).9

El(A=B)
The effective information from A to B, EI(A—B), is given by the mutual information between A

and B when A is in a state of maximum entropy:

? This standard formula for calculating the entropy from the determinant of a covariance matrix can be found in
Papoulis (1984, p. 541).
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MI(APMAX. B) = HATMAX) 4 H(B) - H(ATMAXB), (7.10)

which can easily be calculated from the entropy values. The process is then repeated in the
opposite direction by putting B into a state of maximum entropy to calculate EI(B—A), and the

final value of effective information is given by:
EI(A=B) = EI(A—B) + EI(B—A). (7.11)

This is normalized by HY**(A<B) to enable different bipartitions to be compared, and the
information integration for subset S, or ®(S), is the non-normalised value of EI(A<B) for the

minimum information bipartition.

The C++ code for these calculations was based on Tononi and Sporns’ Matlab toolkit.'
The most substantial change was that the Matlab code calculates QTRTRQ on the whole
connection matrix and then extracts the A, B and AB sub matrices to work out the entropy. Since
the complete connection matrix has 17,544 rows and columns, this approach would have been
impossible with the computer resources available in this project. To get around this problem, the
connection matrix was generated for each bipartition and then the determinants of A, B and AB
were extracted. This yielded nearly identical results to the Matlab code on the validation tests
(see Section 7.4.5) and can be justified by assuming that the effect of A on B when A is in a state
of maximum entropy is much greater than the effect of the rest of the system on B. A brief

overview of the Network Analyzer software is given in Appendix 2.

'“The Matlab complexity toolbox is available at: http://tononi.psychiatry.wisc.edu/informationintegration/
toolbox.html.



[ 232 ]

7.4.3 Time for the Full Information Integration Analysis

The full information integration analysis is computationally expensive because the EI(A=B)
calculations are processor-heavy matrix operations that have to be run on every bipartition of
every possible subset of the network. The first part of the full analysis is the extraction of all the
possible subsets of the network, with the number of ways of selecting m elements out of the n

elements of the system being given by:

n!
m, (7.12)

which has to be summed over all subset sizes from m =2 to m = n.

The next part of the full analysis is the calculation of EI(A=B) on every possible
bipartition of each subset in order to find the minimum information bipartition. A bipartition is
created by selecting k elements out of the m elements in the subset, where k ranges from 1 to

m / 2. Putting the subset selections together with the bipartition selections gives:

n m/2 l’l' m‘

tanalysis = Z Z f(m) s (713)

g ml(n—m)! k!(m—k)!

where tanaiysis 18 the full analysis time and f{m) is the time taken to calculate EI(A=B) on a single
bipartition of a subset of size m. By cancelling out m! Equation 7.13 can be rearranged as

follows:

n

m/2 1 1
4 =n! m 7.14
bt ;;(n—m)!k!(m—k)!f( ) 719

Equation 7.14 omits the fact that when the number of neurons in each half of the bipartition is
exactly the same, the number of possible bipartitions has to be divided by two, because the

selection of all possible combinations in one half results in the selection of all possible
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combinations in the other half. This adjustment was included in the code that was used to
estimate the full analysis times.

The time taken for each EI(A<B) bipartition calculation depends on a number of factors,
including the efficiency of the code and the speed of the computer, and an estimate of this value
was obtained by recording the average time that each EI(A=B) calculation took on subsets of

different sizes (see Figure 7.3).
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Figure 7.3. Actual and predicted times for each EI(A=B) bipartition calculation on subsets of different sizes

The curve fitting functions of gnuplot suggested that:
fim) =m+3.4e” x m’ - 300 (7.15)

was a good approximation to the actual values for m > 200 and Equation 7.15 was combined

with the actual EI(A<B) calculation times to predict the bipartition calculation times for subsets
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with 2 -5000 neurons. A short piece of code was then written that used the bipartition
calculation times, Equation 7.14 and the adjustment for equal bipartitions to calculate tinaiysis for

networks of different sizes, and the results from this calculation are plotted in Figure 7.4.M
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Figure 7.4. Predicted full information integration analysis times for networks of different sizes

Figure 7.4 only shows the predicted times for networks up to 4000 neurons because the
factorial calculations took an increasingly long time to run as the network size increased and it
was unclear whether it would reach 18,000 neurons within a reasonable time. However, the
linear relationship between network size and the log of the calculation time can be extrapolated
up to 18,000 neurons to give a predicted full analysis time of around 107°% years. This shows

that a full information integration analysis would have been completely impossible on a 17,544

"' The data in Figure 7.4 was generated by the TimeCalculator class in Network Analyzer, which is included in the
Supporting Materials.
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neuron network with my current equipment. This difficulty is acknowledged by Tononi and
Sporns (2003), who admit that “Practically, the procedure for finding complexes can only be
applied exhaustively to systems composed of up to two dozen elements” (p. 18). The
optimization and approximation strategies that were used to address this problem are discussed

next.

7.4.4 Optimizations and Approximations

Given the extremely large amount of time that would have been required for the full analysis, it
was necessary to develop optimizations and approximations that could identify some of the
complexes in the network with the limited time and computer resources that were available to

this project.

Sub-sampling

One approximation suggested by Tononi and Sporns (2003) is to evaluate EI(A=B) on a
random selection of the possible bipartitions at each subset level. For example, to take 15
samples at each level for a 200 neuron subset, one would evaluate EI(A=B) for 15 samples of
the 1:199 bipartition, 15 samples of the 2:198 bipartition, and so on up to 15 samples of the
100:100 bipartition. Although Tononi and Sporns suggested using 10,000 sub samples per level,
the duration of each bipartition calculation suggested that orders of magnitude less sub-samples
would have to be used if the calculation was going to complete in a reasonable time.

The impact of this approximation strategy is shown in Figure 7.4, where the blue line
plots the predicted analysis times when the number of bipartition calculations per level is limited
to 50, and the timings for the group analyses in Table A3.12 demonstrate that this approximation
strategy is effective in practice. The disadvantage of this approximation is that it can
dramatically reduce the proportion of bipartitions that are examined for the minimum

information bipartition, which leads to a substantial loss of accuracy. In Network Analyzer, this
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approximation is implemented as the Max number of bipartitions per level parameter. The
current version of the code examines the permutations of each bipartition in an ordered sequence
up to the maximum limit; in the future it might be better to select the permutations at random.'?
Another way of reducing the number of bipartition calculations is to sub-sample the
levels. For example, in a subset of 200 neurons, this could involve sampling the 20:180, 40:160
... 100:100 bipartitions instead of every possible level. Although this option was included in the

Network Analyzer code as the Percentage of bipartition levels parameter, it was rarely used in

practice.

Seed expansion method

A second strategy, developed in collaboration with Richard Newcombe at Essex, is to grow each
complex incrementally from a seed. To begin with a single neuron is selected at random, either
from the entire network or from one of the neuron groups in the network. Next, one or a number
of neurons connected to this seed are added to the subset and the ® of the subset is calculated. If
the new @ is greater than the old one, the neurons are left in the subset and the process is
repeated again. On the other hand, if the new @ is less than the old one, then the new neurons are
removed from the subset and the process is repeated with a different set of connected neurons.
When all of the connections to and from the seed have been explored, the connections to and
from other neurons in the subset are tried until the subset cannot be expanded any further. The
remaining subset is likely to be a complex because any larger subset with greater @ that includes
the subset would have to be connected to it, and it has been shown that the addition of further
connected neurons decreases the subset’s ®. The steps in the seed method are summarised in

Figure 7.5:

2 Random selection was not done in the current analysis because of the extra processing that would have been
required to calculate the full range of permutations and make a random selection from it.



[ 237 ]

1. Start a new subset by choosing a neuron to act as the seed.

2 Sel ect numNeur neurons connected to neurons in the subset that have
not been sel ected before.

3. if ( numNeur > 0 ) //Have found neurons connected to the subset

4. Add neurons to the subset.

5. else //No neurons connected to the subset — it is a comp lex

6. Store details about the conplex and return to step 1

7. Calculate the new © of the subset, newPhi.

8. if ( newPhi < oldPhi ) //Adding the neurons has reduced the @

9. Del ete the added neurons and return to step 2.

10. else //Adding the neurons has increased the @

11. Leave the neurons in the subset, set oldPhi equal to newPhi and

return to step 2.

Figure 7.5. Seed expansion algorithm

One advantage of the seed method is that it avoids all subsets with disconnected neurons
and a ® value of 0, whereas Tononi and Sporns’ full analysis checks all subsets regardless of
whether they contain disconnected neurons. The seed method also provides a way of identifying
small complexes in large networks and it enables a limit to be set on the maximum size of the
complexes, which is very useful for controlling the analysis duration.

The seed method does suffer from a number of potential and actual problems. To begin
with, it can miss complexes that include subsets with higher @ — for example the large complex
in Tononi and Sporns (2003, Figure 7) was missed by this method (see Section 7.4.5). However,
this was not a problem in the current analysis, which only aimed to identify the highest @
complex that each neuron was involved in. A second disadvantage of the seed method is that the
order of expansion may affect the final complex and in future work it would be worth doing
some experiments to see if this is a significant effect. Finally, the seed expansion algorithm can
lead to multiple calculations of @ on the same subset, particularly when the neurons are highly
connected together. Although this did occasionally happen during the analysis, it was not found

to be a major issue.
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A number of parameters were included in Network Analyzer to control the speed and

accuracy of the seed expansion method:

e FExpansion rate per connection group. This controls the number of neurons that are
added to the subset at step 2 of the algorithm. Higher values of this parameter enable
larger complexes to be identified in a shorter time, but smaller complexes may be

missed when the expansion rate is greater than 1.

®  Maximum subset size. The subset is discarded if it expands beyond this limit. This
parameter is useful for searching for small complexes within a large neuron group
and it was used extensively in this analysis because many seeds expanded into

subsets that exceeded the available time and processing power.

®  Maximum number of consecutive expansion failures per connection group. Some
neural networks have large homogenous connections and the effect of adding one
neuron from a homogenous connection group is likely to be the same as adding
another neuron from the same group. When the number of failed attempts exceeds
this limit, the entire connection group is discarded. For example, the network in this
thesis has over 8000 connections with identical weights from each neuron in
Inhibition to Vision Input. If the first twenty connections cannot be used to expand
the subset, there is little reason to think that the next 8000 will, and it is more

efficient to abandon the attempt to expand the connection group. 13

e Store @ calculations. When several neurons in the subset connect to the same
external neuron, the same @ calculation may be repeated several times and it might

be thought that storing the results would be a good way to speed up the analysis.

'3 A variation of this approximation is to sample a random selection of neurons from a homogenous connection
group. This option is available in Network Analyzer, but it was superseded by the consecutive expansion failures
parameter.
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However, this approach was not used in practice because the number of repeated
calculations was not that large and it took a significant amount of processing to
compare the neuron IDs in the current subset with the neuron IDs in each of the

stored calculations.

Equal bipartitions

Another optimization strategy suggested by Tononi and Sporns (2003) is that “the bipartitions
for which the normalized value of EI will be at a minimum will be most often those that cut the
system in two halves, i.e. midpartitions” (p. 17). To evaluate how often mid partitions yield the
minimum normalized effective information, seeds were selected from six of the layers and
allowed to expand into a complex or up to a maximum subset size of 200 neurons. The
percentage of times that the each bipartition had the minimum normalized effective information
is plotted in Figure 7.6, which shows that mid partitions most often had the minimum normalized
El, but this was by no means always the case and during one of the seed expansions the mid
partition only accounted for 40% of the minimum information bipartitions. When this
approximation was applied in combination with the seed expansion method it was found that the
occasional wrong expansion had a substantial effect on the final complex, and so this
approximation was not used in the final analysis - although the timings presented in Section A3.3

show that the equal bipartition approximation can speed up the analysis by a factor of ten.
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Figure 7.6. Percentage of times that different bipartitions had the minimum normalized effective information

Final strategy

The time taken to expand the seeds from each layer depends heavily on the complexes that are
present in the network. For example, although Vision Input has 8,192 seed neurons, the analysis
could be completed in 4.5 days because it identified a large number of complexes of
approximately 30 neurons that were relatively quick to analyze. On the other hand, Inhibition has
only 25 neurons, but it took 3.5 days to analyze because each seed neuron in this group had to be
expanded up to the maximum subset size of 150 neurons. Since the complexes in the network
were unknown at the start of the analysis, one or two test runs had to be carried out on each
neuron group to identify the parameters that would enable the analysis to complete in a
reasonable time. The seed expansion was then restarted on the neuron group and allowed to run

to completion.
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To fill in the gaps left by the seed-based analysis the @ calculations were also run on
combinations of neuron groups up to a maximum size of 700 neurons — a number that was found
to be a reasonable compromise between the information gained about the network and the time
available. These group analysis results are not complexes because it has not been shown that
they are not included within a subset of higher @, and to make this distinction clear they will be
referred to as clusters.

Although the seed and group analyses were carried out with a high level of
approximation, enough information was gathered about the complexes and clusters of the
network to allow predictions to be made about the network’s phenomenology in Section 7.9. In
the future if more accurate information about the complexes of the network could be obtained,
then it would be easy to re-generate the predictions about consciousness using the improved

information integration data.

7.4.5 Validation on Tononi and Sporns’ Examples

The Network Analyzer code and the seed expansion method were tested on the examples
supplied by Tononi and Sporns (2003) using the parameters given in Table 7.3."* These tests
were mainly intended to establish that the seed expansion method could find the same complexes
as the full analysis, and so the approximations were disabled by setting Maximum number of
consecutive expansion failures per connection group to 1000 (greater than the number of
connections in any of the examples) and Max number of bipartitions per level to 5000 (greater
than the maximum number of possible bipartitions for this network). The results for this

validation are given in Table 7.4.

'* The connection matrices for the validation analysis were downloaded from: http://tononi.psychiatry.wisc.edu/
informationintegration/toolbox.html.
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Parameter Value
Max number of bipartitions per level 5000
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 20000
Maximum number of consecutive expansion failures per connection group | 1000
Only examine equal bipartitions false

Table 7.3. Parameters for the validation on Tononi and Sporns’ examples

Example Seed Expansion Algorithm Tononi & Sporns (2003) Analysis
Network
Neurons [ Neurons ()
Figure 2 1,234 20.8 1,234 21
5,6,7 20.1 5,6,7 20
1,2,3,4,5,6,7,8 7.4 1,2,3,4,5,6,7,8 7
Figure 3 1,2,3,4,5,6,7,8 73.9 1,2,3,4,5,6,7,8 73
1,4 19.1 - -
3,5 19.6 |- -
Figure 4 1,2,3,4,5,6,7,8 5.8 1,2,3,4,5,6,7,8 5.8
3,6 1.8 - -
Figure 5 1,2,3,4,5,6,7,8 60.8 1,2,3,4,5,6,7,8 60
1,2,3,4,6,7 405 |- -
5.8 203 |- -
Figure 6 1,2,3,4,5,6,7,8 20.5 1,2,3,4,5,6,7,8 20.5
Figure 7 1,2 20.3 1,2 20.5
34 203 (34 20.5
5,6 20.3 |56 20.5
7.8 203 |78 20.5
- - 1,2,3,4,5,6,7,8 19.5

Table 7.4. The complexes found in Tononi and Sporns’ (2003) example networks by the full analysis and using the
seed expansion algorithm. The quoted ® values for Tononi and Sporns’ (2003) analysis are approximate readings

from the graphs in their figures.
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The results in Table 7.4 show that the seed expansion algorithm finds most of the
complexes that were identified in Tononi and Sporns (2003) and that the Network Analyzer code
performed accurate ® calculations. However the seed expansion algorithm did identify a number
of false complexes in figures 3, 4 and 5, and since none of the other approximations were being
used, the most likely explanation is that the order of expansion of the neurons altered the
complexes.15 The only results from the information integration analysis that are used in the
predictions about consciousness are the highest @ complexes that each neuron is involved in (see
Section 7.4.6). From this perspective the identification of false complexes is not a problem as
long as the larger complexes with higher @ that incorporate the smaller complexes are also
found. On these examples, all of the highest ® complexes were correctly identified by the seed
expansion algorithm and the false complexes could have been easily eliminated by post-
processing the seed analysis results.'

The only other disparity between the results from the seed algorithm and the full analysis
are that the expansion algorithm can miss complexes that include smaller complexes with higher
® — see the last row of the results in Table 7.4. This was also not a problem in an analysis which

is only looking for the highest @ complex that is associated with each neuron.

7.4.6 The Information Integration of the Network

Since there was a great deal of overlap between the different complexes and clusters, the results
from the seed and group analyses were integrated together to identify the main complex, the
independent complexes and the information integration between different parts of the network.

More detailed results from the seed and group analyses and illustrations of some of the

5 For example, suppose that the subset contains two neurons, A and B, and A is connected to another two neurons,
C and D. It might be the case that adding C before D reduces the @ of the subset, whereas adding C after D causes
the @ value of the subset to increase. It is also possible that adding C or D individually to the subset reduces its @,
whereas adding both together increases it.

'® For example, in the figure 3 example in Table 7.4, the seed method claims that neurons 1 and 4 form a complex
with a ® value of 19.1 and that these neurons are also part of another complex with ® =73.9. According to the
definition of a complex, it is easy to see that the complex containing only neurons 1 and 4 is a false complex.
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complexes are given in Appendix 3, and the results are also available in XML format in the
Supporting Materials. To present the results as clearly as possible the neuron groups in figures
7.7 -77.15 are labelled using the IDs in Table 7.5, which correspond to the IDs that were used for

these neuron groups in the database.

ID | Neuron Group

24 | Vision Input

28 | Red Sensorimotor

29 | Blue Sensorimotor

62 | Emotion

34 | Inhibition

61 Motor Cortex

60 | Motor Integration

54 | Eye Pan

55 | Eye Tilt

53 | Motor Output

Table 7.5. Neuron group IDs

According to Tononi and Sporns (2003) the main complex of the network is the one with
the highest ®. In this network the main complex has 91 neurons, a ® value of 103 and it includes
all of Inhibition, most of Emotion and small numbers of neurons from Vision Input, Red
Sensorimotor, Motor Output, Eye Tilt and Motor Integration (see Figure 7.7). Tononi (2004)

claims that the main complex is the conscious part of the network.
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Figure 7.7. The main complex of the network.

A second aspect of information integration is whether different parts of the network
integrate their information in isolation from each other (see Section 4.3.6). In this analysis, the

notion of an independent complex is defined as follows:

None of the neurons in an independent complex, A, are part of another complex, B,  (7.1)

that has higher ® than A.

This definition was used to search for independent complexes in the network, and it turned out
that the main complex was the only independent complex, with all of the other complexes and
clusters having some overlap with the main complex and thus not being independent by this
definition.

In order to understand the information integration between different parts of the network,
ten neurons were selected at random from each neuron group and the complex(es) with the
highest @ that each neuron was involved in were identified. Only the highest ® complexes were
considered because the phenomenal predictions in sections 7.5 and 7.7 are based on the

maximum information integration of each mental state, and the most significant information
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relationships of each neuron will be with other neurons in its highest ® complex. The results

from this analysis were as follows:

Vision Input
All of the sampled neuron’s highest ® complexes included Inhibition and different combinations
of Blue Sensorimotor, Red Sensorimotor, Emotion and Motor Output. Amongst the sampled

neurons, the typical highest @ complex contained 29-31 neurons, with ®@ ranging from 75-93.

Red Sensorimotor

All of the sampled neuron’s highest ® complexes included Inhibition and Vision Input, along
with different combinations of Blue Sensorimotor, Emotion, Motor Integration and Motor
Output. Amongst the sampled neurons, the typical highest ® complex contained 29-31 neurons,

with @ ranging from 75-93.

Blue Sensorimotor

All of the sampled neuron’s highest ® complexes included Inhibition and Vision Input, along
with different combinations of Blue Sensorimotor, Emotion, Motor Integration and Motor
Output. Amongst the sampled neurons, the typical highest ® complex contained 29-31 neurons,

with @ ranging from 75-93.

Emotion
Although this neuron group was strongly integrated with itself, higher values of @ were found in
complexes that included Inhibition and other layers. The sampled neurons’ highest ® complex

was the main complex.



[ 247 ]

Inhibition

All of the sampled neuron’s highest ® complexes were part of the main complex. The Inhibition
layer is a key part of many high ® complexes because of its recurrent connections and its large
number of strong connections to Vision Input and Motor Output. On its own Inhibition has a @
of 77.3 and this increases to more than 129 when it is combined with a small number of neurons

from other layers.”

Motor Cortex

Despite a large number of recurrent connections, Motor Cortex only had a @ value of 17.9 when
it was measured by itself. The sampled neurons had two highest @ clusters: one with ® =59 and
425 neurons from Motor Cortex and Motor Integration, and another with ® =59 and 435

neurons from Motor Cortex, Motor Integration, Eye Pan, and Eye Tilt.

Motor Integration

One of the sampled neurons in Motor Integration had 129 highest ® complexes with ®=75 and
25 neurons from other layers. Some of the other highest ® complexes of the sampled neurons
had 75-91 neurons and @ ranging from 84-103. Motor Integration also had sampled neurons that
were not included in any of the complexes identified by the seed-based analysis. These had two
highest @ clusters: one with ®=58.7 and 425 neurons from Motor Cortex and Motor Integration,
and another with ®=58.7 and 435 neurons from Motor Cortex, Motor Integration, Eye Pan and

Eye Tilt.

Eye Pan
One of the seeds in this layer expanded beyond the maximum subset size of 150 and its highest

® value came from the group analysis, which identified two highest ® clusters: one with ®=58.7

'7 Some of the subsets expanded from Motor Output included Inhibition and achieved a @ value of 129 before the
maximum subset size was exceeded.
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and 425 neurons from Motor Cortex and Motor Integration, and another with ®=58.7 and 435
neurons from Motor Cortex, Motor Integration, Eye Pan and Eye Tilt. The other four neurons in
this group had highest ® complexes with 75-79 neurons from all of the other layers and @

ranging from 84-102.

Eye Tilt
The sampled neuron’s highest ® complexes had 71-91 neurons from some or all of the other

layers and @ ranging from 80-103.

Motor Output
The sampled neuron’s highest ® complexes had ®=57 and 22 neurons from Inhibition. Ten of
the neurons in Motor Output, which were not included in the random sample, are connected

through Eye Pan and Eye Tilt into complexes with @ up to 103.

These results show that the highest ® complexes of neurons in different layers have a
consistent level of information integration that typically ranges from 58 -103. The most
important neuron group for information integration was Inhibition, which played a central role in

many of the complexes with higher ®.

7.4.7 Previous Work on Information Integration

Evidence for a link between information integration and consciousness was provided by Lee et
al. (2007), who made multi-channel EEG recordings from 8 sites in conscious and unconscious
subjects and constructed a covariance matrix of the recordings on each frequency band that was
used to identify the complexes within the 8 node network using Tononi and Sporns’ (2003)
method. This experiment found that the information integration capacity of the network in the

gamma band was significantly higher when subjects were conscious.
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Theoretical work on information integration has been carried out by Seth et al (2006),
who identified a number of weaknesses in Tononi and Sporns’ (2003) method and criticized the
link between information integration and consciousness. To begin with, Seth et al. showed that
simple Hopfield-type networks can be designed to have arbitrary values of @, which suggests
that @ may not be an adequate sole measure of the consciousness of a system. A second problem
identified by Seth et al. is that the value of @ depends on arbitrary measurement choices made by
the observer. Different descriptions of the system lead to different predictions about its
information integration, and Seth et al. demonstrate that a simple continuous system consisting
of two coupled oscillators can generate arbitrary and even infinite values of ® depending on the
measurement units that are used. Both of these criticisms highlight the fact that Tononi and
Sporns’ (2003) method is at an early stage of development and needs further refinement to
increase the accuracy of its predictions about real biological networks. Seth et al. also point out
that @ is essentially a static measure of consciousness, which makes it unable to distinguish
between a conscious and an unconscious brain, and they discuss the difficulties of calculating the
information integration of a realistic system.

Tononi and Sporns’ (2003) ® measure is based on their earlier work on neural
complexity (Tononi et al. 1994, 1998). Neural complexity is defined as the average mutual
information that is shared between a subset of the network and the rest of the system, where this
average is taken over all subset sizes. Whilst Tononi and Sporns’ (2003) method looks for the
minimum information bipartition of the subset and introduces the concept of a complex, neural
complexity is calculated once for the whole network without searching for the most integrated
part. The computation cost of calculating neural complexity increases factorially in a similar way
to effective information, but it can be approximated by limiting the analysis to bipartitions

between a single element and the rest of the network (Seth et al. 2006). Since neural complexity
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depends solely on mutual information it is only a measure of functional and not effective
18
connectivity.
Another way of measuring effective connectivity is the causal density measure put
forward by Seth et. al. (2006), which identifies the causally significant interactions amongst a
network’s elements using Granger causality, and then calculates the causal density using

Equation 7.16:

o

dzm, (7.16)

where cd is the causal density, a is the total number of significant causal interactions and n(n - 1)
is the total number of directed edges in a fully connected network with n nodes.'® Causal density
depends on a comprehensive set of test data because it is calculated using the actual activity of
the network, and it also has scaling problems since the multivariate regression models become
difficult to estimate accurately as the number of variables increases. However, these scaling
problems are substantially less serious than the factorial dependencies associated with neural
complexity and .

There has also been a substantial amount of analysis of the anatomical, functional and
effective connectivity of biological networks, either using scanning or electrode data, or based on
large-scale models of the brain. For example, Honey et al. (2007) used transfer entropy to study
the relationship between anatomical and functional connections on a large-scale model of the
macaque cortex, and demonstrated that the functional and anatomical connectivity of their model
coincided on long time scales. Other examples of this type of work are Brovelli et al. (2004),
who used Granger causality to identify the functional relationships between recordings made

from different sites in two monkeys as they pressed a hand lever during the wait discrimination

'® See Sporns et al. (2004) for the difference between anatomical, functional and effective connectivity.

' Granger causality has also been used by Seth and Edelman (2007) to identify causal cores within a large network.
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task, and Friston et al. (2003), who modelled the interactions between different brain areas and
made predictions about the coupling between them. There is also the work by Massimini et. al.
(2005) who measured the cortical effective connectivity during non-REM sleep and waking. An

overview of this type of research can be found in Sporns et. al. (2004) and Sporns (2007).

7.4.8 Information Integration: Discussion and Future Work

The seed expansion method was found to be an effective way of speeding up the calculations and
offered a valuable way of controlling the analysis time by limiting the maximum subset size.
However, this method did have the problem that errors introduced by other approximations could
lead to erroneous expansions of the subset, and it is also probable that the order of expansion of
the connected neurons significantly altered the final complex. Future work in this area could
evaluate the effect of different expansion orders on the complexes found in the network.

One possible improvement to this analysis would be to use a shuffling algorithm to
randomly select different neurons from homogenous connections, in order to identify complexes
with similar @ and connection patterns. For example, the high information integration of the
main complex partly depends on connections to Vision Input that are selected from a large
uniform set, and a different selection of these connections could be used to identify a different
complex with similar ©.

In this analysis, the main compromise between speed and accuracy was the limitation on
the number of calculations per bipartition, which had a big effect on the calculation time (see
Figure 7.4 and Table A3.12 in Appendix 3), and a proportionally greater impact on larger
networks. On most calculations this approximation would have made the final @ higher than it
actually was by reducing the number of bipartitions that were examined for the minimum
normalized effective information. However, in some circumstances this approximation might

have artificially reduced the ®@ by changing the way in which the subset expanded.
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Although the equal bipartition approximation speeded up the analysis considerably, the
results in Figure 7.6 show that a significant number of other bipartitions had the minimum
normalised effective information. When this approximation was combined with the seed method
it led to substantially different complexes, and so it was not used in the final analysis. In future
work it would be worth investigating the strengths and limitations of this approximation in more
detail and it might be possible to use the structure of the network to decide when the equal
bipartition approximation is most likely to be accurate.

The main limitation of this analysis was the extremely long time that was required to
calculate ®. One way of addressing this problem would be to use graphics cards for the matrix
calculations - for example, using the NVIDIA CUDA system.20 Although this analysis did run
partly in parallel by expanding the seeds from different neuron groups on different computers,
the code could be rewritten to automatically distribute itself across an arbitrary number of
processors. This would enable it to run on supercomputers and address some of the memory
limitations that were encountered with large neuron groups.21

Work is already in progress on the simulation of networks with a billion spiking neurons
(see Section 5.6) and on networks of this size even supercomputing power will not be enough to
identify the complexes of the network. Future work should investigate other methods of
estimating the effective connectivity of neural networks, such as Seth et. al.’s (2006) causal
density measure, and it would also be worth investigating whether @ can be estimated on the
basis of sub-samples of each bipartition.

A further limitation of Tononi and Sporns’ (2003) method is that it is essentially static
and ignores the fact that complexes in a real network might change over time. In future work, it

would be much better to record the network as it interacts with the world and use transfer

* NVIDIA CUDA: http://www.nvidia.com/object/cuda_home.html.

*! For example, the ® of Vision Input could not be calculated because it used more than 2GB of RAM, which was
the maximum that could be installed on the computers used for this analysis.
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entropy (Schreiber 2000) or a similar method to identify the effective information that is
integrated across different bipartitions of each subset. It would also be worth analyzing the
system at a number of different levels - for example, using populations of neurons, ion channels
and memory addresses as well as neurons — to increase our understanding of the difference
between simulated and physical systems.

In the next three sections definitions based on Tononi’s, Aleksander’s and Metzinger’s
theories of consciousness are developed, which are used make predictions about the

phenomenology of the network in Section 7.9.

7.5 Phenomenal Predictions based on Tononi’s Information
Integration Theory of Consciousness

Tononi (2004) makes an explicit connection between the consciousness of a system and its
capacity to integrate information: “consciousness corresponds to the capacity to integrate
information. This capacity, corresponding to the quantity of consciousness, is given by the ©
value of a complex.” This link between ® and consciousness is independent of the material that
the system is made from, but there is not a simple proportional relationship between @ and
consciousness because only the main complex is capable of consciousness according to Tononi’s
theory — parts of the system that are outside the main complex are completely unconscious.
When complexes overlap it seems reasonable to follow Tononi (2004) and only allocate
consciousness to the one with the highest ®.** However, when complexes do not overlap and
exchange relatively little information, it seems more sensible to attribute two consciousnesses to
the system, rather than saying rather arbitrarily that the one with slightly higher ® is conscious
and the other not conscious at all. To accommodate this type of case without including all of the

independent complexes of the system, this analysis will consider a firing neuron to be conscious

** The problems with this are discussed in Section 7.9.4.



[ 254 ]

according to Tononi’s theory if it is part of the main complex or if it is part of an independent
complex whose @ value is at least 50% that of the main complex. The explicit definition is as

follows:

A mental state will be judged to be included in the phenomenally conscious part (7.2)
of the system according to Tononi if it is part of the main complex or if it is part
of an independent complex whose ® is 50% or more of the ® of the main

complex. The amount of consciousness will be indicated by the @ of the complex.

The results from the information integration analysis showed that the main complex was
the only independent complex, and so Tononi’s theory predicts that the 91 neurons in the main
complex will be the only parts of the network that are associated with conscious states. Tononi
(2004) claims that the amount or quantity of consciousness in the conscious part of the network

is given by the @ value of the main complex, which is 103.

7.6 Phenomenal Predictions based on Aleksander’s Axioms

7.6.1 Is the System Synthetically Phenomenological?

In earlier work, Aleksander and Dunmall (2003) set out five axiomatic mechanisms and claimed
that these are minimally necessary for consciousness (see Section 2.6.3). Objects that did not
possess these mechanisms were not considered to be conscious according to this theory. Over the
last few years Aleksander’s thinking has evolved and he now emphasises the importance of

depiction over the other axioms, as illustrated in the following quotation:

Def 1: To be synthetically phenomenological, a system S must contain machinery that represents what the
world and the system S within it seem like, from the point of view of S. ...
Def 2: A depiction is a state in system S that represents, as accurately as required by the purposes of S the

world, from a virtual point of view within S.
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Assertion 1: A depiction of Def. 2 is the mechanism that is necessary to satisfy that a system be synthetically
phenomenological according to Def. 1.

Aleksander and Morton (2007a, p. 72)

This section will take a brief look at whether the neural network developed in this thesis
conforms to all five of Aleksander’s axioms, but it will only consider the network to be capable

of consciousness (or synthetically phenomenological) if it includes depiction.

1. Depiction

Although the network described in this paper does not have gaze locked cells, the neurons in Red
Sensorimotor and Blue Sensorimotor are connected to both Vision Input and Motor Integration,
and respond to both visual data and the motor signals sent to control the eye, which contain
proprioceptive information. These observations are confirmed by the measurements of
representational mental states in Section 7.3, which showed that neurons in Red Sensorimotor
and Blue Sensorimotor share mutual information with Vision Input and Motor Integration. It also
appears to be consistent with the interpretation of depiction in this thesis that it could be
implemented as a population code in which the combined activity of the motor and visual layers
represents the presence of an out there world. In this case some kind of binding or integration

between the motor and visual layers would be all that was needed for depiction.

2. Imagination
The network has an offline mode in which it can ‘imagine’ the consequences of different motor

actions without carrying them out.

3. Attention
This network’s ‘imagination’ is used to select the part of the world that is looked at by the

system.
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4. Volition
When Vision Input and Motor Output are inhibited, the ‘imagination’ circuit decides which part
of the world to look at and then executes the selected motor action based on the response of its

‘emotion’ layer.

5. Emotion

The neural network has an ‘emotion’ layer, which responds in a hardwired way to different
characteristics of the world with a high impact low information signal that is characteristic of the
neuromodulatory aspect of emotion (Arbib and Fellous 2004). However, it could be argued that
this ‘emotion’ layer does not directly represent the state of SIMNOS’s body, and so it is at best
something like the ‘as if’ circuit discussed by Damasio (1995). Other limitations of the
‘emotional’ response are that it does not modulate the way in which neurons and synapses
compute and it lacks the detail that we sense when our viscera and skeletal muscles are changed
by an emotional state, such as fear or love (Damasio 1995, p. 138). These limitations do not
completely exclude the possibility that the ‘emotional’ response of the network can be counted
as an emotion, and so it will be provisionally accepted as a very primitive emotion that is much

simpler than our basic human emotions.

This discussion suggests that the neural network in this thesis is capable of depiction and
minimally conforms to Aleksander’s other axioms, and so it is likely to possess a very simple
form of consciousness according to this theory. Since the network is simulated and operates very
differently from a real biological network on a much smaller scale, the contents and qualitative
character of this consciousness will be very different from the consciousness of biological

. . . 2
creatures that have the axiomatic mechanisms.”

> These differences are likely to be much greater than those identified by Nagel (1974) between human and bat
consciousness.
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7.6.2 What are Aleksander’s Predictions about Phenomenal States at Time t ?

In this analysis, predictions about phenomenal states according to Aleksander’s theory are based
on his link between depiction and consciousness. The depictive neurons are identified by using
the method set out in Section 7.3 to look for representational relationships between input/ output
neurons and internal states of the system. Under these experimental conditions, high mutual
information between an input/ output and internal neuron indicates a strong representational
relationship, and so an internal neuron that shares a high level of mutual information with both
visual and proprioceptive data is likely to be depictive. Since depictive neurons are defined by
the fact that they respond to both sensory and proprioceptive data, the amount of depiction will

be limited by whichever of these is smallest. This leads to the following definition:**

A mental state will be judged to be within the phenomenally conscious part of the (7.3)
system according to Aleksander if it shares mutual information with both sensory
and proprioceptive layers. The amount of consciousness will be measured by the
minimum mutual information that is shared with sensory and proprioceptive
layers. So, for example, if the neuron has 0.4 mutual information with an
auditory input layer, 0.2 mutual information with a visual input layer and 1.0
mutual information with a proprioception layer, then its amount of consciousness

would be judged to be min{0.4, 0.2, 1.0} = 0.2, according to Aleksander’s theory.

Based on this definition, the only parts of the network that share mutual information

with both visual input and proprioception/ motor output are Red Sensorimotor and Blue

It might be thought that the sensory and motor mutual information values could be added or multiplied together to
get the amount of depiction. However, consider two neurons: neuron A that has 1000 mutual information with
visual input and 0.1 mutual information with motor output, and neuron B that has 10 mutual information with
visual input and 10 mutual information with motor output. A’s strong response to visual information makes it
much more like a photographic representation, whereas neuron B is much closer to the gaze-locked neurons
discovered by Galletti and Battaglini (1989) that respond to a particular combination of sensory and muscle
information, and are cited by Aleksander (2005) as a key example of depictive neurons. In this example, addition
of the mutual information values gives 1000.1, for neuron A and 20 for neuron B, which erroneously suggests that
neuron A is more depictive than neuron B. The product of the mutual information values gives 100 for neuron A
and 100 for neuron B, which is also an incorrect measure of their relative levels of depiction. In this example, the
minimum of the two values, which is 0.1 for neuron A and 10 for neuron B most accurately predicts which neuron
is most depictive.
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Sensorimotor, and so activity in these parts of the network will be conscious according to
Aleksander’s theory. For the phenomenal predictions in Section 7.9 the mutual information
values were normalized to the range 0-1, and so the maximum amount of consciousness is 1.
In the future, methods such as transfer entropy (Schreiber 2000, Sporns and Lungarella,
2006), backtracing (Krichmar et. al. 2005) and Granger causality (Seth and Edelman 2007)

could be used to identify the depictive parts of the network.

7.7 Phenomenal Predictions based on Metzinger’s
Constraints

7.7.1 Is Artificial Subjectivity Possible?

Although Metzinger (2003) believes that machines are capable of consciousness, he points out
that our current simulations and robotic models are too coarse to replicate the extremely fine

levels of detail of biological systems:

The subtlety of bodily and emotional selfhood, the qualitative wealth and dynamic elegance of the human
variety of having a conscious self, will not be available to any machine for a long time. The reason is that the
microfunctional structure of our emotional self model simply is much too fine-grained, and possibly even
mathematically intractable. ... Self-models emerge from elementary forms of bioregulation, from complex
chemical and immunological loops—and this is something machines don’t possess.

Metzinger (2003, p. 619)

One way of developing machines with a fine-grained biological structure is to use biological
neurons to control a real or virtual robotic body, as was done in the work of DeMarse et al.
(2001). Metzinger also points out that consciousness is a graded phenomena and that there are
degrees of constraint satisfaction and phenomenality: “just as with animals and many primitive
organisms surrounding us on this planet, it is rather likely that there will soon be artificial or

postbiotic systems possessing simple self-models and weaker forms of conscious experience in
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our environment.” (Metzinger 2000, p. 620). If consciousness is graded, then systems as simple
as the neural network developed by this project may be capable of an extremely limited form of

consciousness if they can satisfy Metzinger’s minimal set of constraints.

7.7.2 Does the Network Conform to Metzinger’s Constraints?

Although Metzinger describes his constraints on conscious experience at a number of different
levels, these descriptions remain at a fairly high level of abstraction and in some cases it is quite
difficult to say whether the network developed by this thesis matches them or not. This section is
a general discussion about the degree to which the network conforms to the constraints; a more
precise definition of what it would mean for the network to conform to Metzinger’s minimal

definition of consciousness is given in the next section.

1. Global availability

The network can access information in different parts of its real and imaginary environment and
this information is available for the control of action, and so the network does possess a limited
form of global availability. Metzinger links global availability with Tononi’s earlier work on

information integration, and so it might be possible to use ® to measure this constraint.

2. Window of presence

Activity within the network does exist in a single now and there is a certain amount of temporal
integration along the connections with different delays. The reverberatory activity within
Emotion, Inhibition and Motor Cortex also stores a limited amount of information about earlier
states of the system. Taken together these observations suggest that the window of presence of

the network is very thin, but not completely non-existent.
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3. Integration into a coherent global state

Global availability (constraint 1) is a functionalist-level description of global integration, which
Metzinger links to Tononi’s earlier work on information integration. This suggests that @ could
be used to measure the degree to which the network integrates information into a coherent global

state.25

4. Convolved holism
The visual processing of the neural network is too basic to identify wholes at different levels of
scale, and so it does not even minimally conform to this constraint. In the future, more complex

processing could be added to the network to enable it to identify part-whole relationships.

5. Dynamicity
The network can sustain the activation of a neuron group over time, but it has a very limited
ability to integrate information between points in time and it is not sensitive to the part-whole

structure of temporal information.

6. Perspectivalness

This constraint has a certain amount of overlap with Aleksander’s depiction axiom and the
network’s integration between sensory and proprioceptive information should give it some kind
of rudimentary sense of seeing the world from somewhere. Since the size of objects changes
with distance and the network only perceives part of the world at any one time, there is also

some sense to the idea that it has a perspective.

» Metzinger (2003) was published in the same year as Tononi and Sporns (2003), and so it is unlikely that
Metzinger (2003) knew about Tononi’s work on ®@. Metzinger’s more recent work, such as Metzinger and Windt
(2007) and Metzinger (2008), has focused on the phenomenal self model and the phenomenal model of the
intentional relation.
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7. Transparency

Since the network lacks internal sensors there is some basis to the claim that it is as transparent
as a biological neural network, such as the brain. However, Metzinger distinguishes between
conscious and unconscious transparency and claims that almost nothing is known about the
neural basis of phenomenal transparency. This suggests that we have no reason to believe that
the neural network is less transparent than the human brain, but much more research needs to be

done on transparency.

8. Offline activation
This constraint is similar to Aleksander’s second axiom of imagination and the system is capable
of inhibiting its sensory input and motor output whilst it ‘imagines’ an eye movement that would

look at a red or blue object.

9. Representation of intensities
Information in the network is held as neurons that spike at different rates, and so this constraint

is implemented by the system.

10. “Ultrasmoothness”: the homogeneity of simple content.

Although individual neurons represent individual areas of colour, there is no representation
within the system of the gaps between neurons, and so the network cannot access the graininess
of the neurons’ spatial firing patterns that is visible to us as outside observers. The network is
also unable to represent the graininess of its temporal representations, and so it is probably

reasonable to claim that its mental states are ultrasmooth.

11. Adaptivity
This network did not come about through natural selection, and so it does not conform to this

constraint.
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7.7.3 What are Metzinger’s Predictions about Phenomenal States at Time ¢ ?

The discussion in the previous section demonstrated that the network is likely to conform to a
number of Metzinger’s constraints, including a coherent global model of reality (constraint 3), a
window of presence (constraint 2) and transparency (constraint 7), which are sufficient for
Metzinger’s minimal notion of consciousness. In this analysis, the degree to which a mental state
is involved in a coherent global model of reality will be indicated by the @ value of the highest ®
complex that it is involved in. Since recurrency is a key way in which information can be
integrated over time, a window of presence will be attributed to neurons whose highest @
complex includes a recurrent part of the system. Transparency will be left out of this analysis
because it cannot be directly identified, and it has been argued that we do not have any reason for
believing that the network is less transparent than the human brain. The final definition is as

follows:

A mental state will be judged to be minimally conscious according to Metzinger if (7.4)
the highest @ complex that it is involved in includes one or more recurrent

layers. The amount of consciousness will be indicated by the ® of this complex.

According to this definition, the conscious parts of the network will be the complexes that
include Motor Cortex, Emotion and Inhibition. The amount of consciousness will be the ® of

these complexes.

7.8 Other Phenomenal Predictions

For the reasons discussed in Section 2.6.1, only three theories of consciousness are being used to
make predictions about the consciousness of the network in this thesis. However, to provide

more context for this work I will make brief remarks about some other theories that make fairly
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explicit predictions about the consciousness of the network. None of these predictions were used

to generate the final XML description in Section 7.9.

Pantheism

Pantheists, such as Spinoza (1992), believe that all matter is conscious to some degree, and so
the physical computer running the simulation is conscious even when it is switched off. From
this perspective, the task of synthetic phenomenology is to determine the amount of
consciousness in the system and the qualitative character of this consciousness at different points
in time. Pantheism is a type I theory because the behaviour of the system does not affect the

attribution of consciousness to it.

Information states

Chalmers (1996, p. 292) claims that conscious experiences are realizations of information states,
and so systems as simple as thermostats are conscious because they contain information. Since
the neural network contains a large number of information states, it is conscious according to this
hypothesis. This link between consciousness and information states is a type I theory because
every object in the universe interacts to some degree and stores ‘information’ about the particles

and forces affecting it.

Non-biological systems cannot be conscious

A number of people would argue that the neural network developed by this project can never
become conscious because it is a simulated artificial system (Searle 2002) or because the
calculations that are used to simulate it are all algorithmic (Penrose 1990, 1995). These theories

are discussed in detail in Section 3.4.
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Internal models

Holland (2007) claims that internal models play an important role in our conscious cognitive
states and may be a cause or correlate of consciousness in humans (see Section 3.5.2). In this
network, the activity in Motor Cortex, Motor Integration, Eye Pan, Eye Tilt and Motor Output
accurately reflects the position of SIMNOS’s eye ‘muscles’, and this could be interpreted as an
internal model in an extremely limited sense. This internal modelling could be made more
realistic by making the activity in Emotion reflect the internal states of SIMNOS’s body, which

would also link the network more closely to Damasio’s (1995) work.

7.9 XML Description of the Phenomenology of the Network

7.9.1 Introduction

This section explains how the data about representational mental states and complexes was
integrated with definitions 7.2 - 7.4 to generate a sequence of XML files that predicts the
phenomenology of the network at each time step. The first parts of this procedure were two
recordings of the network, which are documented in Section 7.9.2. The next section explains
how the XML files were generated, and then sections 7.9.4 —7.9.6 examine the predictions that
were made about the consciousness of the network using Tononi’s, Aleksander’s and
Metzinger’s theories of consciousness. After discussing what these results show about the
relationship between consciousness and action, some extensions and enhancements of the
consciousness of the network are suggested in Section 7.9.8, and the analysis concludes with a

discussion and suggestions for future work.

7.9.2 Analysis Data

The main data for this analysis was recorded as the neural network moved SIMNOS’s eye and

used its ‘imagination’ to avoid looking at the blue cube, as described in Section 5.5.1. The
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recording starts at time step 13100 with the network in its online perception mode and an empty
visual field. At time step 13138 a red object starts to appear in the top left corner of the visual
field and this moves in and out of view until time step 13503, when a blue object appears in the
bottom left corner of the visual field. This leads to the activation of Inhibition after time step
13520 and the system switches into its offline ‘imagination’ mode. At time step 13745 the
system ‘imagines’ a blue blob in the left half of its visual field and eventually it ‘imagines’ a red
object at time step 13945, which activates Emotion and returns the system to online perception.
Finally at time step 13966 the network starts to perceive a red object in the top left corner of its
visual field. This recording of data from time steps 13100 to 14004 will be referred to as
“Analysis Run 17, and a video of Analysis Run 1 is included in the supporting materials.

The average number of times that each neuron fired during Analysis Run 1 was recorded
and the results were normalized to the range 0-1 and used to illustrate the activity of the network
in Figure 7.8. This shows that Inhibition was the most active part of the network, followed by

Emotion. Traces of motor and visual activity can also be seen in Figure 7.8.
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Figure 7.8. Normalized average firing frequency of neurons during Analysis Run 1
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A recording was also made in which the neuron groups were disconnected from each
other and themselves and 5% noise was injected into each layer at each time step for 100 time
steps. The normalized average firing frequency of each neuron was used to illustrate the activity

of the network in Figure 7.9, which shows that there was a reasonably even spread of activity

across the layers. This noise recording will be referred to as “Noise Run 1.
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Figure 7.9. Normalized average firing frequency of neurons during Noise Run 1

The data from Analysis Run 1 can be used to predict the actual consciousness that was
experienced by the network as it interacted with the world. However, in this recording only a
small part of the network was active, and so it does not tell us about the consciousness that might
be predicted to be associated with the other parts of the network. On the other hand, the noise
data has an even spread of activity that includes all of the neurons, but it was recorded with the
layers disconnected from themselves and each other, and so the predictions about the
consciousness of the network during Noise Run 1 are made as if the noise patterns had been
present when the network was fully connected. In other words, the noise data provides a useful

way of understanding the potential for consciousness of the different parts of the network.
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7.9.3 Generation of the XML Description

To generate the XML files, the recordings of the network’s activity were combined with the
OMC rating, representational mental states, complexes, clusters and definitions to produce a
sequence of XML files describing the phenomenology of the system at each time step. As
discussed in Section 7.3.1, firing neurons are being treated as mental states for this analysis and
the predictions about the consciousness associated with each mental state are given by
definitions 7.2 —7.4. It was decided not to normalize the predictions based on Tononi’s and
Metzinger’s theories of consciousness, both because ® does not have a maximum value and
because Tononi interprets ® as an absolute measure of a system’s consciousness. The predictions
based on Aleksander’s theory were normalized to the range 0-1 by dividing the mutual
information by the maximum possible mutual information of 0.72.%°

In addition to the representational mental states identified in sections 7.3.4 and 7.3.5, the
neurons in the input and output layers were also treated as representational mental states in the
final XML description and assigned a mutual information value of 1 to reflect the fact that they
shared the maximum amount of mutual information with themselves. The other mutual
information values for the representational mental states were normalized by the maximum
possible mutual information. In the integration part of the description, neurons that were not
included in any complex were assigned a @ value of zero.

In order to compare the different theories’ predictions about the distribution of
consciousness associated with the network, the amount of predicted consciousness per neuron
was averaged over Analysis Run 1 and Noise Run 1, normalized to the range 0-1 and used to
highlight the network in figures 7.10 - 7.15. T have only shown the relative distribution of

consciousness in the network because the assignment of absolute values to predicted

% See Section 7.3.2 for the calculation of this value. In practice the normalized values occasionally strayed over 1.0
due to noise in the data.
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consciousness is largely meaningless without some form of calibration on humans — a problem

that 1s discussed in Section 7.9.9.

7.9.4 Predictions about the Consciousness of the Network According to
Tononi’s Theory

Tononi’s theory predicts that the main complex is the only conscious part of a system and that
the amount of consciousness in the main complex can be measured by its @ value. In this
network the main complex has a ®@ of 103 and it includes all of the neurons highlighted in Figure
7.77. The predicted consciousness of the network at each point in time is therefore the intersection
of the neuron activity with the main complex. In Noise Run 1 there is fairly uniform activity
across the network, and so the distribution of consciousness for Noise Run 1 is an extract from

the average activity shown in Figure 7.9 that is shaped like the main complex (see Figure 7.10).
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Figure 7.10. Predicted distribution of consciousness during Noise Run 1 according to Tononi’s theory

The more specific neuron activity during Analysis Run 1 did not include any of the main
complex neurons outside of Emotion and Inhibition, and so the predicted distribution of

consciousness in Figure 7.11 only includes neurons from Emotion and Inhibition, with the
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pattern closely matching the average firing frequencies shown in Figure 7.8. The network would

not have been conscious of anything during Analysis Run 1 because none of the conscious
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Figure 7.11. Predicted distribution of consciousness during Analysis Run 1 according to Tononi’s theory

These results highlight a major problem with a simplistic link between the main complex
and consciousness. This network has a number of overlapping complexes with approximately the
same value of @ and it seems somewhat arbitrary to interpret just one of these as the main
complex, when it is also conceivable that several overlapping complexes could be part of the
same consciousness. In such a consciousness, there would be strong integration between the
neurons in Inhibition and Vision Input, but low integration between the different neurons in
Vision Input. This appears to reflect our own phenomenology since we seem to be most
conscious of our intentional relationship with the world and much less conscious of the
relationships that different parts of the world have to each other. One way in which overlapping

complexes could be combined would be to look at the rate of change of ® between adjacent

" Tononi’s (2004) suggestion that the qualitative character of mental states is determined by their informational
relationships might lead to different predictions about what the network was conscious of during Analysis Run 1.
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overlapping complexes: a high rate of change of @ could be used indicate a boundary between

the conscious and unconscious parts of the system.

7.9.5 Predictions about the Consciousness of the Network According to
Aleksander’s Theory

Aleksander’s emphasis on depiction led to a prediction about phenomenal states that was based
on the minimum amount of mutual information shared with both sensory input and
proprioception/ motor output. In this network only Red Sensorimotor and Blue Sensorimotor
share mutual information with both Vision Input and Motor Integration, and so these were the
only layers that were capable of consciousness according to Aleksander’s theory. Whilst there
are homogenous connections between Vision Input and Red/ Blue Sensorimotor, the connections
between Motor Integration and Red/ Blue Sensorimotor reflect the learnt associations between
motor output and visual input, which are stronger whenever motor output consistently resulted in
red or blue visual input. This variation in connection strength affects the mutual information

between Motor Integration and Red/ Blue Sensorimotor, producing a pattern in the predicted

distribution of consciousness for Noise Run 1, which is shown in Figure 7.12.
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Figure 7.12. Predicted distribution of consciousness during Noise Run 1 according to Aleksander’s theory
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The predicted distribution of consciousness for Analysis Run 1 reflects the fact that
visual activity was concentrated in the top left corner of the red visual field with the occasional
‘imagined’ blue image (see Figure 7.13). According to Aleksander’s definition of depiction, the
red and blue data that is represented by these conscious mental states would have been

experienced by the system as part of an out there world.
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Figure 7.13. Predicted distribution of consciousness during Analysis Run 1 according to Aleksander’s theory

x

7.9.6 Predictions about the Consciousness of the Network According to
Metzinger’s Theory

Predictions about consciousness based on Metzinger’s theory used a combination of spatial and
temporal integration, with the former measured using ® and the latter marked by the presence of
a recurrent neuron group in the highest ® complex. It turned out that almost all of the neurons’
highest @ complexes included one of the three recurrent layers (Motor Cortex, Emotion and
Inhibition), and so almost all of the network was predicted to be minimally conscious according
to Metzinger. This is shown in the predicted distribution of consciousness for Noise Run 1
(Figure 7.14) and Analysis Run 1 (Figure 7.15), which closely match the distribution of firing

frequencies depicted in Figure 7.9 and Figure 7.8.
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Figure 7.15. Predicted distribution of consciousness during Analysis Run 1 according to Metzinger’s theory

During Analysis Run 1 the network would have been conscious of all the active visual
and proprioception/ motor output information. This prediction of uniform potential for
consciousness throughout the network is likely to change if more of Metzinger’s constraints were

taken into account. For example, if the mental states associated with consciousness had to be
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capable of offline activation (constraint 8), then the neurons in Vision Input and Motor Output

would no longer be predicted to be associated with consciousness.

7.9.7 Predictions about Conscious and Unconscious Action

This section looks at how the predictions made about the consciousness of the network stand in
relation to the discussion of consciousness and action in Section 2.7. As discussed in Section 5.7,
the absence of a reactive layer in the network makes it incapable of conscious will, and this
discussion focuses on whether it is capable of discrete conscious control according to the

different theories of consciousness.

Tononi

The main complex includes only a small number of neurons from Vision Input, Blue
Sensorimotor, Motor Integration, Eye Pan, Eye Tilt and Motor Output, and all of these were
predicted to be unconscious during Analysis Run 1. However, under very specific conditions it is
possible that these sensory and motor parts of the main complex could become active and
‘imagine’ an action prior to carrying it out, but this is unlikely to happen during normal
operation, and most of the time it will be the unconscious parts of the network that decide an

action, initiate it and unconsciously carry it out.

Aleksander

Aleksander’s theory predicts that there will not be any conscious activity in Vision Input, Motor
Integration, Eye Pan, Eye Tilt, Motor Output, Inhibition or Emotion during Analysis Run 1.
Whilst the network might be experiencing red and blue in an out there world, the conscious parts
do not have any way of differentiating between real and imagined visual input, and so the system
cannot tell whether it is deciding to perform an action or actually carrying it out. If the network

cannot consciously differentiate between planning and execution, then it cannot be said to be
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making a conscious decision - it may be conscious of parts of the planning process, but it is not
conscious that it is planning and it is unable to remember whether it is planning or executing an
action. So this interpretation of Aleksander’s theory predicts that the network unconsciously

chooses an action, unconsciously initiates it and then consciously carries it out.

Metzinger

According to this interpretation of Metzinger’s theory, the network is conscious of its planned
motor actions and their ‘imagined’ sensory consequences, and when an action is chosen and
initiated, the system becomes conscious of the actual sensory consequences. This suggests that
the network is capable of discrete conscious control, in which it consciously plans actions that

are initiated immediately and consciously carried out.

7.9.8 Extensions and Enhancements to the Predicted Consciousness of the
Network

These predictions about the consciousness of the network suggest a number of ways in which it

could be extended or enhanced.

Tononi

Before any thought can be given to extending the consciousness that was predicted to be
associated with the network according to Tononi’s theory, it is essential to get a more plausible
picture of its consciousness by improving the way that consciousness is analyzed to take account
of overlapping complexes in a more flexible way (see Section 7.9.4). Once this has been done, it
might be possible to design a network in which the main complex has enough representational
mental states for conscious decision making. The network’s consciousness could also be

increased by evolving connection patterns that give the main complex a higher value of ®.
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Aleksander

The mutual information between Vision Input and Red/ Blue Sensorimotor cannot be increased
because it is already at its theoretical maximum, but it might be possible to increase the mutual
information between Motor Integration and Red/ Blue Sensorimotor by fine tuning the training.
The main direction of improvement for this network would be to extend the range of
consciousness by making more parts depictive. For example, Emotion and Inhibition could
become depictive if they were connected to proprioceptive data and internal sensory data from
virtual organs in SIMNOS’s body. Red/ Blue Sensorimotor could then change the state of the
virtual organs, and when the system sensed this change it would become conscious of the
difference between ‘positive’ and ‘negative’ body states.

However, consciousness of ‘positive’ and ‘negative’ states would not be enough for the
network to differentiate between imagination and online perception — it would be conscious of
seeing red and feeling good or conscious of seeing blue and feeling bad, but it would not know if
it was imagining or perceiving the red or blue stimuli.?® One solution to this problem would be to
use a remembered context or image intensity to indicate whether the network is imagining or not,
and in Aleksander’s kernel architecture (see Section 3.5.1), the memory module in the awareness

area could perform this function by remembering which state is the real world.

Metzinger
The entire network was predicted to be minimally conscious according to Metzinger’s theory,
and so it would not be possible to extend this predicted consciousness. The qualitative

characteristics of the consciousness in the network could be greatly improved by extending the

*® This problem is closely related to Metzinger’s discussion of the world zero hypothesis: “one of both world-models
has to be defined as the actual one for the system. One of both simulations has to be represented as the real world,
in a way that is functionally nontranscendable for the system itself. One of both models has to become indexed as
the reference model, by being internally defined as real, that is, as given and not as constructed.” (Metzinger 2003,
p. 61).
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visual processing, adding other senses, such as touch and audition, and increasing the complexity

of the actions.

7.9.9 Phenomenal Predictions: Discussion and Future Work

The XML format that was used in these experiments is intended to be a simple example that
illustrates the main ideas and a great deal more work is needed to turn this starting point into a
usable method. As this approach develops there are likely to be a large number of changes and
ambiguities, and although this might initially appear to be a weaknesses of the method, it is
actually a strength because it indicates that synthetic phenomenology has the potential to become
a paradigmatic science that can move forward by asking questions and resolving ambiguities. At
the moment synthetic phenomenology is so unclear that even its lack of clarity is unclear to it,
and this XML-based approach will enable synthetic phenomenology to ask and answer precise
questions and move forward in a sustainable manner. As has been shown, different theories
generate different predictions about the phenomenal states of a system and as brain scanning
improves and robots become able to report their conscious states, we will be able to test these
predictions and eliminate inaccurate theories.

This analysis presented the final results as the normalized average distribution of
consciousness in the network during Noise Run 1 and Analysis Run 1. Whilst this did provide
useful predictions about the consciousness of the network and suggestions for enhancing it, it did
not address the question about how much consciousness was present. Ideally, this analysis would
have stated that this network exhibited 5% of the consciousness of the average waking human
brain, for example, but without calibration of the measurement scales it is impossible to say how
much consciousness was associated with the system. Although Tononi (2004) claims that @ is an
absolute measure of the amount of consciousness, he has made no attempt, as far as I am aware,

to calculate or measure the ® of the main complex in an average waking human brain, and



[ 277 ]

without this reference point, the ® values quoted in this analysis are without absolute meaning.
The values of mutual information that were used to measure depiction are equally problematic
because we have no idea about how much mutual information is needed to make a mental state
depictive.

In order to address this problem urgent work is needed to measure or estimate the ® and
mutual information of a waking human brain, in order to have some way of comparing the
measurements of other systems with a system that can (at least to begin with) be taken as a
reference standard of consciousness. Without such a ‘platinum bar’, it is impossible to measure
the amount of consciousness in a system using numerical methods. A first step towards obtaining
these figures would be to measure @ and mutual information on more realistic simulations, such
as the networks created by the Blue Brain project (Markram 2006). This would give some idea
about the ® and mutual information values that might be found in a real biological system and
help us to understand what level of consciousness might be associated with the @ value of 103
that was found in this network. Better ways of quantifying the amount of consciousness in the
system will also go some way towards addressing the “small networks” argument put forward by
Herzog et al. (2007), which suggests that many influential theories of consciousness can be
implemented by very small networks of less than ten neurons, which we would unwilling to
attribute much consciousness to.

In the future it might make sense to multiply the predicted levels of consciousness by the
OMC rating to compensate for the type I differences between each system and the human brain.
However, in this analysis it would have been pointless to multiply the uncalibrated predictions
by a constant factor that would not have appeared in the relative distributions plotted in figures
7.10 - 7.15. Once calibration has been done on ® and on the use of mutual information to

measure depiction, it will be possible to use the OMC scale to compensate for the differences
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between the system and the human brain, and say how much consciousness the network
experienced during Analysis Run 1.

The sequence of XML files is a reasonably accurate description of the predicted
phenomenology of the network that makes minimal assumptions about the nature of the
phenomenal states. However, large XML files are almost impossible to read and digest and it is
difficult to understand how the predicted consciousness of the system changes over time A
logical extension of this work would be to investigate ways of presenting the content of these
XML files in a more intuitive manner. If the system was experiencing a red spot in the left hand
corner of its visual field, then it would be much easier to use virtual reality, for example, to show
this to a human observer, instead of asking him or her to read an XML description. Such a
‘debugger’ for conscious states would also have applications in neurophenomenology.

Another direction of future work would be to move towards a common XML standard for
neuro- and synthetic phenomenology that would facilitate collaboration between people working
on machine consciousness and people from neuroscience and experimental psychology. This
would enable phenomenal prediction methods that were developed in the biological sciences to
be tested on artificial systems, and the methodology developed for synthetic phenomenology
could be applied to fMRI data and used to make predictions about the consciousness of live
human subjects.

Finally, in future work it would be worth making predictions about the consciousness of
the network using other theories. For example, it would be particularly interesting to use some of

the neural correlates of consciousness, such as neural synchronization (Crick 1994).

7.10 Conclusions

This chapter has demonstrated how the approach to synthetic phenomenology developed in

Chapter 4 can be used to make predictions about the consciousness of an artificial neural
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network. This analysis led to a number of suggestions about how the network’s consciousness
could be extended and enhanced and it showed how different theories of consciousness make
different predictions about the relationship between consciousness and action. This work is at an
extremely early stage and a great deal of research is needed to improve the accuracy of our
predictions about phenomenal states. It is hoped that this will eventually lead to a more
systematic science of consciousness that includes both natural and artificial systems within a

single conceptual and experimental framework



[ 280 ]

8 CONCLUSIONS

I shall certainly admit a system as empirical or scientific only if it is capable of being tested by experience.
These considerations suggest that not the verifiability but the falsifiability of a system is to be taken as a
criterion of demarcation. In other words: I shall not require of a scientific system that it shall be capable of
being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that
it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical
system to be refuted by experience.

Popper (2002, p.18)

8.1 Achievements

One of the key achievements of this thesis was the development and demonstration of a synthetic
phenomenology framework that provides a way of predicting and describing the conscious states
of artificial systems using different theories of consciousness. This methodology works entirely
from a third person perspective and it does not rely on implicit assumptions about biological
neurons being necessary for consciousness. Systematic falsifiable predictions about artificial
conscious states could help machine consciousness to become more scientific, and this
methodology may also contribute to the science of consciousness more generally since it enables
predictions to be made about the consciousness of biological systems. The work on synthetic

phenomenology also offered a number of significant innovations:
® An OMC scale that models our intuitions about the consciousness of artificial systems.
e A clear definition of mental states and representational mental states.

e A method for the identification of representational mental states that uses noise

injection and mutual information.
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e New approximation methods for measuring the information integration of systems

with more than a few dozen elements.

e The use of a markup language to describe artificial phenomenal states.

e Detailed predictions about the distribution of consciousness in a neural network

according to Tononi’s, Metzinger’s and Aleksander’s theories.

A second achievement of this project was the development of a neural network that used
some of the cognitive characteristics associated with consciousness to control the eye movements of
the SIMNOS virtual robot. This network is a novel contribution to the field and differs from the
networks developed by Aleksander (2005), Shanahan (2006, 2008), Dehaene et al. (1998, 2003,
2005) and Krichmar et al. (2005). This network exhibited a limited form of conscious behaviour
(MC1), had cognitive characteristics associated with consciousness (MC2) and was predicted to be
phenomenally conscious (MC4) according to three theories of consciousness, and so this thesis can
lay reasonable claim to have created an extremely limited form of consciousness for SIMNOS, and
thus to have fulfilled one of the key aims of the CRONOS project.

A further significant achievement of this project was the development of the SpikeStream
neural simulator. This has good performance and its simulation features and graphical interface
were a substantial advance over Delorme and Thorpes’s (2003) implementation of the SpikeNET
architecture. The source code of SpikeStream is fully documented and SpikeStream has been
released both as source code and pre-installed on a VMWare virtual machine running SUSE
Linux. The close integration between SpikeStream and SIMNOS makes them an extremely
powerful toolset for carrying out research into all aspects of perception, muscle control, machine
consciousness and spiking neural networks.

Finally, this thesis makes a number of theoretical contributions to the study of natural and

artificial consciousness, which include the discussion of the relationship between the
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phenomenal and physical, the distinction between type I and type II potential correlates of
consciousness, and the analysis of conscious will and conscious control. The distinction between
the different MC1-4 areas of machine consciousness was also original and the review of work in
machine consciousness, published as Gamez (2007a), received a positive response from other

people working in the field.

8.2 General Discussion and Future Work

This thesis has emphasized the importance of scientific experimentation in machine consciousness
research. Whilst theoretical discussion is needed to establish a framework within which empirical
work can take place, machine consciousness will only become fully scientific when it can make
falsifiable predictions about the consciousness of artificial systems.1 Key requirements for this are
more formal definitions of each theory that can be used to make predictions about the
consciousness associated with different systems. These definitions can be mathematical equations,
algorithms or pieces of code — their only requirement is that they take the states of an arbitrary
system as input and generate predictions about its phenomenal states. The work of Tononi (2004)
is a good example of how a theory of consciousness can be formalized in this way, and the
definitions offered in Section 7.6.2 and Section 7.7.3 were a first attempt at a formalization of
Aleksander’s and Metzinger’s theories.

To compare predicted distributions of consciousness with first ‘person’ reports, more
work needs to be done on how artificial systems can be given the ability to speak about their
conscious states — perhaps using the work of Steels (2001, 2003). More theoretical work is also
needed to understand how the reporting of conscious states fits into the framework of conscious
control and how this works at a phenomenal and physical level. Formalized theories of

consciousness could also be used to make predictions about the consciousness of biological

' This view is shared by Crick and Koch (2000) — see the quotation in Section 2.6.1.
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systems that can report their conscious states, which could be tested through collaborations with
people working in experimental psychology and neuroscience. The current lack of low level
access to biological systems’ states means that this work is not likely to progress very fast until
scanning technologies experience breakthroughs in their temporal and spatial resolution.

Many parts of the approach to synthetic phenomenology in this thesis are based on
numerical methods that need to be tested and calibrated on real data. To begin with, the OMC
scale could be tested by using psychophysical methods to establish how accurately it models our
subjective assessment about the link between type I PCCs and consciousness. Second, we need
to measure how much mutual information is necessary for a state to become representational in a
real biological system, and the link between mutual information and depiction needs to be
validated and calibrated by estimating the amount of depiction in humans. Finally, the
information integration of real biological systems needs to be measured to establish a connection
between information integration and consciousness. This process faces many problems, such as
the size of real biological neural networks, the fact that noise injection cannot be practiced on
humans and the low spatial and/ or temporal resolution of scanning data.

The neural network developed by this project was very basic and could be improved in
many ways. One direction of improvement would be to use SIMNOS’s visual pre-processing to
add layers sensitive to movement, edges and other data, which could work in a similar way to the
visual input layers in the network developed by Krichmar et al. (2005). A reactive layer could
also be included to improve the performance of the network and to make it capable of conscious
will. In this thesis the lack of a viable software interface for CRONOS and delays in the
production of the final robot meant that it was not possible to test the network on a real system,
and this is something that could be attempted in future work. The learning of the network could
also be improved and more research needs to be done on how learning can be implemented on

different time scales.
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In the future a well documented biologically inspired test network could be developed
that would enable people to validate their predictions about consciousness on a commonly
agreed standard and compare different methods of measuring functional and effective
connectivity. Although a common project or series of meetings might be needed to design such a
network, the previous work on machine consciousness (Chapter 3) and on the simulation of
biologically inspired neural networks (Section 5.6) suggests that enough work has been done to
design an initial test system.

The interpretation of consciousness put forward in Chapter 2 will not be popular with
people who believe that some kind of reduction of the phenomenal to the physical is the only
way in which a science of consciousness can proceed. However, if a non-reductive interpretation
is correct, then it could provide a more secure framework for a science of consciousness, and in
the future more work needs to be done to clarify this approach and work through ‘use cases’ that
examine the relationship between the phenomenal and the physical in as much detail as possible.
One major problem is how independent causal chains within the phenomenal and the physical
should be understood, and it may need some reworking of the concept of causation to deal with
the crossover that occurs when a conscious decision leads to changes in the physical world.?

The main focus of this thesis was on the development of a systematic framework for
analyzing systems for conscious states. Since current theories could be used to illustrate this
approach, it was not necessary to develop a new type II theory of consciousness in this thesis,
and little attempt was made to criticize or improve existing theories. As robots and scanning
technologies improve, we will be able to make more accurate comparisons between predictions
about consciousness and reports of conscious states, which should enable us to develop better

type II theories of consciousness.

 Hume’s (1983) interpretation of causation as a constant conjunction between cause and effect might be applicable
here.
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APPENDIX 1
SPIKESTREAM MANUAL

Note on the Text

This appendix is the manual that was included with the 0.1 distribution of SpikeStream and it has
been included in this thesis to give a better idea about the functionality of the SpikeStream
simulator, which was developed as part of this PhD. The documentation in this manual is
complementary to the comprehensive source code documentation, which is also part of the
SpikeStream distribution and is included in the Supporting Materials. The text of this manual is
largely the same as the version that was included in the SpikeStream 0.1 release, with a few
minor improvements. The numbers and formatting have been changed to match the rest of the

thesis.

A1.1 Introduction

SpikeStream is a simulator that has been tested on medium sized networks of up to 100,000
spiking neurons. It works in a modular distributed manner and can run in parallel across an
arbitrary number of machines. SpikeStream exchanges spikes with external devices over a
network and it comes ready to work with the SIMNOS virtual humanoid robot (see Section
A1.9.4). More information about the architecture of SpikeStream can be found in Gamez
(2007b). This manual covers the installation of SpikeStream and use of its key features.

I have tried to make the installation of SpikeStream on Linux as painless as possible
using four scripts that set the necessary variables, build SpikeStream, install SpikeStream and

create the databases. However, these depend on third party software and a database, and so a
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certain amount of work is required to get the whole system running. For other operating systems
a virtual machine distribution has been prepared, which is covered in Section A1.2.8.

SpikeStream is a complex piece of software with many useful features and it is stable
enough to run experiments. However, it is still at an early stage of development and subject to a
number of bugs and limitations. Occasionally it will crash, but most of the time no data will be
lost because all changes are immediately stored in the database and restarting most often solves
the problem. If you let me know about any undocumented bugs and limitations, I will do my best
to solve them and any offers of help with SpikeStream are extremely welcome. If there is enough
interest, [ will turn it into a collaborative open source project.

This manual is targeted at the user of SpikeStream who wants to use the simulation
functions and may want to extend the Neuron or Synapse classes to create their own neuron and
synapse models. I have tried to make the information in this manual as accurate as possible and
apologize for any errors and omissions. Documentation of the source code is available in the doc
folder of the distribution and at http://spikestream.sourceforge.net.

Feel free to get in touch if you have any problems building and running SpikeStream.
You can reach me at david@davidgamez.eu or on +44 (0) 7790 803 368. I have also set up a

mailing list for SpikeStream at spikestream-user @lists.sourceforge.net.

A1.2 Installation

A1.2.1 Overview

Before installing SpikeStream it is recommended that you read the paper covering its
architecture and operation (Gamez, 2007b). Sections A1.2.2 - A1.2.7 give full instructions for
installing SpikeStream on Linux and other UNIX-based systems. If you just want to try
SpikeStream out or use it on a different operating system, it is available pre-installed on a SUSE

10.2 virtual machine, which can be run using the VMware Player (see Section A1.2.8).



[ 287 ]

A1.2.2 System Requirements for Linux Installation

Operating System

SpikeStream has been written and tested on SUSE 10.0 and SUSE 10.2. SpikeStream Simulation
and SpikeStream Archiver have also been tested on Debian 3.1. A few adjustments may be
required to get it working on other Linux and UNIX operating systems. It should be possible to

get SpikeStream running on Cygwin under Windows, but I have not attempted this yet.

Hardware
SpikeStream can run on a single machine or across a cluster. On the main workstation, hardware
graphics acceleration will speed up the visualization of large networks. A megabit network is

useful if you want to run SpikeStream across several machines.

A1.2.3 Dependencies

SpikeStream depends on a number of other libraries, which must be installed first. Some of these
are only needed on the main workstation to compile and run SpikeStream Application. Others

are needed by all modules.

Google Sparse Hash
Fast and efficient dense and sparse hash maps developed by Google. Available at http://goog-
sparsehash.sourceforge.net/.

Install on all machines.

MySQL Database and Development Libraries
May form part of your Linux distribution. Otherwise available at www.mysql.org. You need the
development parts of MySQL as well as the server.

The development libraries need to be installed on all machines. The server only needs to be
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installed on the machine(s) that are hosting the databases.

MySQL++
C++ wrapper for MySQL. Available at: http://tangentsoft.net/mysql++/ .

Install on all machines.

Ot

Provides a graphical user interface and many useful functions. Likely to come with your
distribution of Linux.

IMPORTANT NOTE: SpikeStream only compiles and runs using Qt version 3.**. It will not
compile using Qt 4.*.*. If 4.** is your default version of Qt, you need to install Qt 3.*.* in a
separate location to compile SpikeStream. In SUSE 10.2 the default Qt version is 4, but Qt 3 is
also installed and you can make Qt 3 the default by adding the Qt 3 directory to the start of your
path in your .bashrc file using: export PATH=$QIDI F/ bi n: $PATH. You can also
directly invoke this version of gmake on the command line by using $QTDIR/bin/gmake
instead of gmake when you generate the makefiles.

Ot is only needed on the main workstation.

PVM (Parallel Virtual Machine)

Used for distributed message passing and spawning of remote processes. Included with some
Linux distributions, otherwise install manually. Available at: http://www.netlib.org/
pvm3/index.html.

IMPORTANT NOTES:

1. The build of PVM may break with recent versions of gcc. If it breaks with the error:

src/global.h: 321: error: array type has inconplete el enent type

src/ gl obal.h: 323: error: array type has inconplete elenment type

Replacing PVM_ROOT/src/global.h with global.h from the 'extras' folder of the
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SpikeStream distribution should fix the problem.

2. It can be useful to give user accounts permission to write to SPVM_ROOT/bin/LINUX.
This makes it easier when you have to manually install spikestreamarchiver and
spikestreamsimulation, which have to be installed in this directory to be launched by
pvm.

3. On SUSE 10.2 (and perhaps elsewhere) you may get an error along the lines of :
“netoutput() sendto: Invalid argument” when adding a second host in pvm. This can be

fixed by adding an entry to your hosts file along the lines of:

[ machi ne i p address] [machi ne nane]

for example:

192.168. 1. 22 deskt opnmachi ne

If you install pvm yourself, don't forget to create a link to PVM_ROOQOT/lib/pvm from your bin
folder so that it can be run from anywhere. You may also want to install xpvm, which can be
very helpful for debugging processes and messages when things go wrong. Getting pvm to run
successfully across several machines can be tricky and is beyond the scope of this manual.

Install on all machines.

Owt
Graph drawing libraries available at: http://qwt.sourceforge.net/.

Only needed on the main workstation.

A1.2.4 Build and Installation Using Scripts

This section covers the installation of SpikeStream using scripts that set the variables, build the
modules and install the libraries. These are the quickest and easiest way to install SpikeStream
on Linux. If anything goes wrong with these scripts, Section A1.2.5 covers manual installation of

the individual modules.



[ 290 ]

Unpack Distribution

When you have downloaded SpikeStream, you need to unpack it using the command:

tar -xzvf spikestream-0.1.tar.gz

This will extract it to a directory called spikestream-0.1. This will be the root directory for
building and running the application, so move this directory to its final location before moving

on to the next step.

Set SPIKESTREAM_ROOT
SpikeStream depends on a shell variable called SPIKESTREAM_ROQOT, which is essential for
building and running the application. This variable should be set to the root of the spikestream-

0.1 directory. The best place to set this is in your .bashrc file by adding, for example:
export SPIKESTREAM_ROOT=/home/davidg/spikestream-0. 1

This needs to be done on all machines that you build and run SpikeStream on and you need to
make sure that the remote shell invoked by pvm (which may be different from your default bash

shell) also has SPIKESTREAM_ROQOT set correctly.

Set Build Variables

To keep everything as simple as possible, the locations of the libraries needed for building
SpikeStream are set by the SetSpikeStreamVariables script, which can be found in the scripts
folder of the distribution. Open this script up and check that the library and include locations

match those on your system:

#Location of MySQL

export MYSQL_I NCLUDE=/ usr/i ncl ude/ nysql

# Location of MySQ.++

export MYSQLPP_I NCLUDE=/ usr/ | ocal /i ncl ude/ nysql ++

# Location of QM files. Not needed for sinulation builds

export QWM _ROOT=/usr/| ocal / gwt
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# Location of Google hash map include files.

export GOOGLE I NCLUDE=/usr/ | ocal /i ncl ude/ googl e

When you are installing SpikeStream across several machines, the Qt and Qwt libraries are only

needed on the machine running SpikeStream Application. In this case, run the script with the

(13 2

option “-s
SpikeStream cannot be built unless these variables have been set correctly for the type of

build. When you have checked the locations, save the script and try running it from the scripts

folder using:

/SetSpikeStreamVariables (Main workstation)

/SetSpikeStreamVariables -s (Other machines used in the simulation)

If it exits without errors, you can move on to the next stage of the installation. If you get errors
setting the variables, make sure that all of the required libraries are in the places set by the script

and SPIKESTREAM_ROOT and PVM_ROQOT are set correctly.

Run Build Script

SpikeStream comes with a build script that compiles all of the modules and copies the ones that
are installed in the SPIKESTREAM_ROOT directory to their correct locations. This is not
guaranteed to work on every occasion, but it can speed up the installation process considerably.
If you have problems running this script it is worth taking a look inside it for the list of
commands that are needed to build and install the parts of the application. To run this script,

change to the scripts folder and type:

./BuildSpikeStream (Main workstation)

./BuildSpikeStream -s (Other machines used in the simulation)

If all goes well you should end up with the following output on the main workstation:
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Spi keStreamAppl i cation: Built ok.

Spi keStreanti mul ati on: Built and installed ok.
Spi keStreamArchiver: Built and installed ok.
STDP1 Neuron: Built ok.

STDP1 Synapse Built ok.

Spi keStream bui It successfully.

If one of the libraries or applications does not build, you will have to track down the error by
looking at the configure and make output and either re-run the build script or install the missing
component(s) individually. Instructions for installing each of the components individually are

given in Section A1.2.5.

Install SpikeStream

This  script  installs  spikestreamsimulation = and  spikestreamarchiver in  the
$PVM_ROOT/bin/LINUX directory, which often requires root privileges. Some neuron and
synapse libraries also need to be installed as root to enable dynamic linking and the install script
creates symbolic links between one of the default library locations on your system and the
neuron and synapse libraries in $SPIKESTREAM_ROOT/lib. The use of symbolic links is
suggested because it is anticipated that you will be recompiling the neuron and synapse libraries
to implement your own learning algorithms and the use of symbolic links saves you the trouble
of installing them as root each time you do this. If you are planning to use only the supplied
neuron and synapse classes, then copies of these can be placed in the specified locations. More

information about this can be found in Section A1.12.3.
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IMPORTANT NOTE: You should only install links to these libraries as root if you are the sole
user of SpikeStream on the system. Otherwise you may end up dynamically loading another

user's libraries!

To run the install script, get a root shell, make sure that SPIKESTREAM_ROOT is
defined in the root shell (“echo $SPI KESTREAM ROOT” should return the correct location)
and run:

$SPIKESTREAM_ROOT/scripts/InstallSpikeStream

If everything has worked up to this point you can move on to set up the databases, as described
in Section A1.3. If the build has broken for some reason, take a look at some of the common
build and installation problems covered in Section Al.2.7. Instructions for manually building

each component are given in the next section.

A1.2.5 Manual Installation Procedure

Once your have unpacked the distribution and set the SPIKESTREAM_ROQT variable (Section
A1.2.4), you are ready to manually build and install the SpikeStream components. You should
only install SpikeStream this way if you have run into problems with the build and installation

scripts.

SpikeStream Library

This contains classes that are common to many parts of the system and should be compiled first.

o Check the locations in the SetSpikeStreamVariables script and run it using .

/SetSpikeStreamVariables ”” (don't miss the second dot before the slash!).
o Change to directory $(SPIKESTREAM_ROOT)/spikestreamlibrary/

e Run the command: ./configure —libdir=$SPIKESTREAM_ROOT/lib
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» Type make

» If everything goes ok, type make install . There should be a file called

libspikestream.a in the $SSPIKESTREAM_ROOT/Iib directory.

SpikeStream Application
This is the graphical application for editing neuron groups and launching simulations and it only
needs to be built on the main workstation. It is a Qt project, so installation is a little different

from the other parts of the system.

o Check your version of Qt is correct by typing gmake --version . The output should
contain the version of Qt that gmake is using, for example Qt 3.3.7. If your version is
greater than 3.*.*, you need to install Qt 3 on your system and make sure that qmake uses

this version of Qt. See Section A1.2.3 for more on this.

e Check the locations and debug flags in the SetSpikeStreamVariables script and run it

using: . ./SetSpikeStreamVariables (don't miss the second dot before the slash!).

o Change to the SSPIKESTREAM_ROOT/spikestreamapplication directory and use gmake

to create the makefiles: gmake spikestreamapplication.pro
» Type make

o If everything goes ok, there should be a program called spikestreamapplication in the

$SPIKESTREAM_ROOT/spikestreamapplication/bin directory.

o If you want, create a symbolic link to $SPIKESTREAM_ROOT/bin or your local bin
directory using: In -s $SPIKESTREAM_ROOT/spikestreamapplication/bin

Ispikestreamapplication $SPIKESTREAM_ROOT/bin/spike stream .

You can try to run spikestreamapplication, but it will not work properly until the database has

been configured — see Section A1.3.
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SpikeStream Simulation

This is the program that simulates a neuron group. It is launched using pvm, so it has to be

installed in the SPVM_ROOT/bin/LINUX directory on every machine that you want to run the

simulation on. If you are running SpikeStream across several different Linux versions, this

program will have to be recompiled for each architecture.

Check the locations and debug flags in the SetSpikeStreamVariables script and run it

using: . ./SetSpikeStreamVariables (don't miss the second dot before the slash!).
Change to the $SSPIKESTREAM_ROOT/spikestreamsimulation directory.

Run the command: .configure --bindir=$PVM_ROOT/bin/LINUX --

libdir=$SPIKESTREAM_ROOT/lib

Type make

If all goes well type make install . You will need to have write permission to the

$PVM_ROOT/bin/LINUX directory or change to superuser for this step.

If everything goes ok, there should be a file called libspikestreamsimulation.a in the
$SPIKESTREAM_ROOT/lib  directory and an  executable file  called

spikestreamsimulation in the $PVM_ROOT/bin/LINUX directory.

SpikeStream Archiver

This program stores firing patterns in the database. It is launched using pvm, so it has to be in the

$PVM_ROOT/bin/LINUX directory of every machine that you want to run a simulation on. If

you are running SpikeStream across several different Linux versions, this program will have to

be recompiled for each architecture.

Check the locations and debug flags in the SetSpikeStreamVariables script and run it

using . ./SetSpikeStreamVariables (don't miss the second dot before the slash!).
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o Change to the $SPIKESTREAM_ROOT/spikestreamarchiver directory.
e Run the command: ./configure --bindir=$PVM_ROOT/bin/LINUX
» Type make

o If all goes well type make install . You will need to have write permission to the

$PVM_ROOT/bin/LINUX directory or change to superuser for this step.

« If everything goes ok, there should be an executable file called spikestreamarchiver in the

$PVM_ROOT/bin/LINUX directory.

Neuron and Synapse Classes

Neuron and Synapse classes are stored as libraries that are dynamically loaded at runtime and the
name of each library should be added to NeuronTypes or SynapseTypes in the database. Some
neuron and synapse libraries may need to call methods on each other and they need to be placed
in the $SPIKESTREAM_ROOT/lib directory to enable cross linking. Copies also need to be
placed in /user/local/lib to enable dynamic loading. Section A.1.12 gives detailed information
about adding your own neuron and synapse classes to SpikeStream. Installation instructions are
given here for STDP1Synapse, which should be followed for each of the neuron and synapse

libraries.

e Check the order in which the neuron and synapse classes need to be built. Some neuron
and synapse classes depend on each other so the build order may be important. For

example, STDP1Synapse must be built before STDP1Neuron.

e The neuron and synapse classes depend on the spikestreamsimulation library, so make

sure that this is installed correctly before commencing installation.

e Check the locations and debug flags in the SetSpikeStreamVariables script and run it

using: . ./SetSpikeStreamVariables (don't miss the second dot before the slash!).
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o Change to the $SSPIKESTREAM_ROOT/STDP1Synapse directory.
e Run the command: ./configure

» Type make

o If all goes well copy the libstdplsynapse.so library to $SPIKESTREAM_ROOT/lib

directory.
» Login as root and change to your system's library location: cd /usr/local/lib

e Create a link from your system's library location to the neuron library: In -s -f

${SPIKESTREAM_ROOTY/lib/libstdplsynapse.so libstdpl synapse.so.1

e Add the information about the neuron class that you have installed to the database — see

Section A1.12.4.

A1.2.6 Cleaning Up and Uninstalling SpikeStream

CleanSpikeStream Script

SpikeStream can cleaned up using the CleanSpikeStream script. This removes all of the files in
SPIKESTREAM_ROOT that were created by the build script and runs make clean in each of the
directories. It also removes the “makefile” files created by qmake in the spikestreamapplication
directory. The clean script does not remove spikestreamsimulation, spikestreamarchiver or the
symbolic links to libstdplneuron.so and libstdplsynapse.so that are created by the
InstallSpikeStream script. You need to run the uninstall script to delete these components of

SpikeStream.

UninstallSpikeStream Script
This script uninstalls spikestreamsimulation, spikestreamarchiver and deletes the symbolic links
to the neuron and synapse libraries. Use this when you want to remove all SpikeStream files

from the system except for those at SPIKESTREAM_ROOT.
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IMPORTANT NOTE: This script must be run as root.

A1.2.7 Common Build and Installation Problems

Some common build and installation problems are as follows.

1. When building SpikeStream application you are likely to get the warning “has virtual
functions but non-virtual destructor”. This is a known issue, which should be ignored.

See: http://lists.trolltech.com/qt-interest/2005-10/msg00342.html.

2. You may get some strange Qt errors that break the build, such as:

In file included from NetworkDataXm Handl er. h: 27,
from Archi veManager . h: 28,
from Archi veManager . cpp: 24:
Net wor kMoni tor. h: 33:17: error: qgl.h: No such file or directory
In file included from Archi veManager. h: 28,
from Archi veManager . cpp: 24:
Net wor kDat aXm Handl er . h: 30: 18: error: gxm . h: No such file or
directory
In file included from Spi keStreamvai nW ndow. h: 28,
from Archi veManager. cpp: 28:
Net wor kVi ewer . h: 33: 20: error: gaccel.h: No such file or directory
In file included from Spi keStreamvai nW ndow. h: 29,
from Archi veManager. cpp: 28:
Net wor kVi ewer Properties. h:38:20: error: qtable.h: No such file or
directory
In file included from MonitorArea. h: 28,
from Si mul ati onW dget . h: 29,
from Spi keSt r eamvhi nW ndow. h: 31,
from Archi veManager. cpp: 28:
Moni t or W ndow. h: 32: 25: error: gdockw ndow. h: No such file or
directory
In file included from Simul ati onW dget. h: 29,
from Spi keSt r eamvhi nW ndow. h: 31,
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from Archi veManager. cpp: 28:
Moni t or Area. h: 37: 23: error: qdockarea.h: No such file or directory
In file included from Spi keStreamvai nW ndow. h: 34,

from Archi veManager. cpp: 28:

Layer Wdget . h: 32: 24: error: gpopupnenu. h: No such file or directory

These are almost certainly caused by compiling with the wrong Qt version. Check the Qt
version by using “qmake --version”. If the Qt version is 4.*.%, it will not work! You must
build SpikeStream Application using Qt 3.** When you have sorted out the correct
version of Qt (see Section A1.2.3) you need to remove the “makefile” files from
spikestreamappliction and spikestreamapplication/src before running the build script
again. This can be done manually or by invoking the CleanSpikeStream script, which will
do it for you. A future version of SpikeStream will compatible with Qt 4.

3. Double check that all the libraries are installed in the places specified in the
SetSpikeStreamVariables script. If, during manual installation, you run this script without

a dot and space before it, then the variables will not be set.

4. Double check that SPIKESTREAM_ROOT and PVM_ROQOT are set correctly for your
system. Both are crucial to a successful build. A common problem when running
SpikeStream across several machines is that the default shell invoked by pvm is different

from the one in which SPIKESTREAM_ROOT and PVM_ROOT are set.

5. The error: “cp: cannot create regular file “/home/davidg/lib/
pvm3/bin/LINUX/spikestreamarchiver': Permission denied” is caused because you
do not have permission to access the directory where pvm is installed. Change to root
before running the installation script again or give all users write access to this directory.

If you lack superuser access you may need to create a local pvm installation.

6. A build problem related to permissions may occur if you copy the spikestream-0.1.tar.gz
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file as root and then unpack and build it. This can cause errors building STDP1 Neuron
and STDP1 Synapse, which gcc attributes to inadequate permission to access the lib file.
To solve this problem, set yourself as the owner of spikesream-0.1.tar.gz and set its group

to users before unpacking it.

7. If the SpikeStream Application GUI looks like it was built in the 1970's and does not
share the look and feel of other KDE applications on your machine, rebooting may solve

the problem. Otherwise check that you are not compiling against an old version of Qt

(before 3.*.%).

8. If you have database problems when SpikeStream is launched across several machines,
make sure that the database configuration is not set to 'localhost' — put the ip address in

spikestream.config instead (see Section Al.4.1).

If you cannot find a solution to your problem, see Section Al.1 for further support.

A1.2.8 Virtual Machine Installation

Overview

SpikeStream is also available pre-installed on a SUSE 10.2 virtual machine. This is a much
bulkier distribution (around 4GB when uncompressed) that enables it to run on a variety of
operating systems with a minimum of installation difficulties. The disadvantages of this are the
size, a slightly reduced running speed and the fact that you have to boot up the virtual machine
every time that you want to run SpikeStream (although SpikeStream can be restarted any number
of times once the virtual machine has booted up). This manual only covers the basics and the
VMware documentation should be consulted for full instructions about installing the VMware

Player and running virtual machines.
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Virtual Machine Files
The virtual machine files are available on DVD (drop me an email if you would like to receive a

copy) or for download at: http://csres82.essex.ac.uk/~daogam/.

Install VMware Player

Download and install the free VMware Player from: http://www.vmware.com. If you want to use
SpikeStream with SIMNOS (see Section A1.9.4) you need to configure the networking between
the SUSE virtual machine and the host operating system so that you can ping each operating
system from the other and access the Devices database on the host operating system from SUSE.
This is not necessary if you are not using SIMNOS. Support with installation of VMware Player

and its networking can be found in the VMware documentation and forums.

Run Virtual Machine

Once SUSE 10.2 is running in your VMware Player, click the SpikeStream icon on the SUSE
desktop to start SpikeStream. Some of the devices, such as the DVD drive at location E: and the
floppy drive, may not be available on your system. If you want to correct these problems or
change the configuration of the virtual machine, you will have to purchase a copy of VMware

Workstation, since the free VMware Player does not allow you to edit the virtual machine.

IMPORTANT NOTE: To reduce the size of the virtual machine distribution, the virtual hard
drive has been kept as small as possible. There is only about S00MB free space on the drive, so

take care not to over fill it or you may not be able to boot the virtual machine.
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A1.3 Databases

A1.3.1 Introduction

SpikeStream depends on a number of databases, which can be distributed across different
machines. The parameters for these databases are set in the
$SPIKESTREAM_ROOT/spikestream.config file. This file is only used on the main workstation
since the database parameters are passed to SpikeStream Simulation and SpikeStream Archiver

as command line parameters. The SpikeStream databases are as follows:

e NeuralNetwork. Stores neurons, synapses and the connections between them. Different
types of neuron and synapse classes are also stored here, along with parameters and the

amount of noise injected into each of the neuron groups.

e NeuralArchive. Stores patterns of spikes or firing neurons that are recorded by the user

during a simulation run.

e Patterns. Stores patterns that can be applied by the user to a layer during a simulation

run. More information about patterns is given in Section A.1.10.

e Devices. Lists the devices that are available for SpikeStream to connect to. Also breaks
the device layer down into receptors and groups of receptors known as components. See

Section A.1.9 for more about SpikeStream and external devices.

More detailed information about the structure and purpose of these databases can be found in the
SQL files in $SPIKESTREAM_ROOT/databases, which are used to create and populate the
databases. When running SpikeStream with SIMNOS, SIMNOS sets up and updates the Devices
and SIMNOSSpikeReceptors tables in the Devices database, and the host, username and
password of the Devices database needs to be coordinated with SIMNOS. This manual assumes

that all four databases will be set up using the same host, username and password.
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A1.3.2 Setting up MySQL

Introduction

Before SpikeStream can run, the correct databases need to be created and their user, host and
password information entered in the $SPIKESTREAM_ROOT/spikestream.config file. This
only needs to be done on the main workstation since the database parameters are passed to
SpikeStream Simulation and SpikeStream Archiver as command line parameters. You can go
straight on to Section A1.3.4 if you already have a MySQL server and an account set up that you
want to use with SpikeStream. Details about setting up and running MySQL can be found in
many places and there is extensive MySQL documentation online. Only the basics are given

here.

Start MySQL Server
When you have installed MySQL (see Section A1.2.3), test to see if it is running using: ps -el
| grep mysqgl . This should return a line containing “mysqld” as one of the running processes.
If this is not listed, use chkconfig to enable the service. As superuser type: chkconfig --list
mysql , which should tell you if mysql is enabled or not. If it is not enabled for your current run
level, type: chkconfig mysql on and make sure that it is enabled.

Even when mysql is enabled, the daemon may not have started. To start the daemon go to
/etc/init.d/ and log in as root. Then run the mysql command by typing: ./mysql start , which

should start up the daemon. Check that it has started, then you are ready to set up the accounts.

Set Maximum Number of Connections

Each layer is handled by SpikeStream using a separate pvm process, which may have several
connections to the database. If you are going to be using a large number of layers it is a good
idea to increase the number of allowed connections to the database, which is set by default to

100. You can view the maximum number of connections using:
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SHOW VARIABLES LIKE 'max_connections';
and change the maximum number of connections using, for example:

SET GLOBAL max_connections=150;

Configure Firewall

You need to allow external access to MySQL if you are running SpikeStream across several
machines and your system's firewall may need to be changed to facilitate this. In SUSE this can
be done by adding MySQL to the firewall configuration using YAST. If you are communicating
with SIMNOS on Windows you will also need to open ports for each device, in addition to the

Devices database (if this is on the Windows machine).

A1.3.3 Create Accounts

Root Account

Log in as root using mysq|l -u root

Display the current accounts: SELECT user, host, password FROM mysql.user;
Set a password for root: SET password=PASSWORD(“secretpassword”)

Get rid of unnecessary users: DELETE FROM mysql.user WHERE user != “root”;

Get rid of logins from outside machine: DELETE FROM mysql.user WHERE host =

“localhost”;

SpikeStream Account
Create accounts with the user ‘SpikeStream’ and the password 'myPassword' that can access the database

on localhost or a subnetwork:

GRANT ALL ON *.* TO SpikeStream@Iocalhost IDENTIFIE D BY “myPassword”;

GRANT ALL ON *.* TO SpikeStream@'192.168.1.0/255.25 5.255.0'
IDENTIFIED BY “myPassword”;
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If these have been created successfully it should be possible to log into the database locally or

from another machine on the same network using:

mysql -uSpikeStream -pmyPassword (local login with password “myPassword”)

mysql -uSpikeStream -pmyPassword -h192.168.1.9 ( remote login with mysql

hosted on 192.168.1.9 and password “myPassword”)

You can create a different account for each database or put the databases on different machines.
As long as the privileges are set up correctly it should work fine. The details for each database

need to be added into the spikestream.config file on the main workstation.

A1.3.4 Create Databases and Tables

Create Database Script
Once you have configured the account(s), you can use a SpikeStream script to set up the
databases. Open up the script in a text editor and change the user, host and password information

to match the details you set earlier. When this information has been set correctly run it using:

$SPIKESTREAM_ROOQOT/scripts/CreateSpikeStreamDatabase S

IMPORTANT NOTE: This script will overwrite the contents of all SpikeStream databases that

are already on the system. It can also be used at a later point to reset all of the databases.

Manual Database Creation
Four SQL files are wused to create the databases. These can be found at

$SPIKESTREAM_ROOT/ database:

e NeuralNetwork.sql
e NeuralArchive.sql

e Patterns.sql
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e Devices.sql

Another four SQL files are used to add neuron types, synapse types, probe types and devices to

the databases that have been created.

e AddNeuronTypes.sql
e AddSynapseTypes.sql
e AddProbeTypes.sql

e AddDevices.sql

Finally, each neuron and synapse type needs an entry in the NeuronTypes and SynapseTypes
tables indicating the location of their parameter table and the location of their class library. See
the CreateSpikeStreamDatabases script for the commands needed to load these SQL files

individually into the database.

IMPORTANT NOTE: The NeuralNetwork SQL sets up the database so that neuron ids start at
10, rather than 0. It is essential for the operation of the system that neuron ids 0-10 remain
unused. These ids are generated each time a neuron is added to the system and I am not certain
what happens when the automatically generated ids wrap around back to the beginning. It is

worth keeping an eye on this and periodically re-initialise the database if necessary.

A1.4 Running SpikeStream

A1.4.1 Configuration

Open up the $SPIKESTREAM_ROOT/spikestream.config file and make sure that the database
information is set correctly for the four databases. This only needs to be done on the main
workstation since the database parameters are passed to SpikeStream Simulation and

SpikeStream Archiver as command line parameters. I recommend leaving the database name
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untouched. You may also want to set the default location for saving and loading files. Once the
config file has been saved you can start SpikeStream Application using the symbolic link

“spikestream” in the SPIKESTREAM_ROOT/bin directory.

A1.4.2 PVM

On a single machine SpikeStream should launch pvm and run without problems. If you want to
run SpikeStream across several machines, you will need to start pvm and add the other machines
as hosts before starting a simulation using SpikeStream. SpikeStream Application can be running
whilst you are doing this as long as a simulation is not initialized.

Getting pvm to work across several machines depends on being able to remotely invoke
commands on the other machines using rsh (it can also be configured using ssh, but this probably
incurs a significant performance penalty). Many Linux clusters are already set up for this, but
configuring it from scratch on a new distribution can be a tricky process since rsh is usually
disabled by default for security reasons. Finding the right place to set PVM_ROOT and
SPIKESTREAM_ROOT so that they is available when pvm is remotely invoked can also cause
problems. When pvm has been correctly configured you should be able to start it and add the

remote host using the commands:

pvm (should return the prompt: “pvm>")

pvm>add newHostName

If this works typing conf should list the new virtual machine configuration. Once the virtual
machine has been configured SpikeStream will be able to run a simulation across multiple

machines.
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A1.4.3 Monitoring and Debugging Information

Some of the monitoring and debugging information that is available when running SpikeStream

is as follows:

The command line output of SpikeStream generally gives more information than is
explicitly displayed in error messages. You will need to launch SpikeStream from the

command line (rather than a desktop shortcut) to see this information.
xpvm enables the monitoring of messages sent between the different processes.

Output of processes started with pvm (all the simulation and archiving tasks) is routed to
/tmp/pvml.1000. It can also be picked up using the task output feature of xpvm, although

this can cause crashes when there is a large amount of output.

Most SpikeStream modules have a file called Debug.h, which enables different types of
debugging information to be displayed. The relevant part will have to be recompiled for

this to take effect.

pvm has a command line interface that lets you see what processes are running and kill
them if necessary. Type pvm and then “help” to find out more about the available

commands and look at the online documentation for pvm.

A1.4.4 Common Problems Running SpikeStream

A number of problems can arise when running SpikeStream:

You will occasionally get an error message “FAILURE TO UPDATE DATABASE
WITH TASKID”, even when everything is set up correctly between SpikeStream and its
databases. This is a bug that has not been sorted out. Restarting the simulation usually

fixes the problem.
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When you have built SpikeStream and try clicking on spikestreamapplication with the
mouse you may get an error message informing you that SPIKESTREAM_ROOT is not
defined and SpikeStream will exit. If SpikeStream runs ok when you type
Jspikestream in the SPIKESREAM_ROQT/bin directory, this problem can be solved
by logging out of your user account and logging in again. If SpikeStream does not run
from the command line either, then you need to make sure that SPIKESREAM_ROOT is
defined in the appropriate file for your shell (probably .bashrc). See Section A1.2.4 for

more on this.

Sometimes you will get errors along the lines of “mksocs() connect Connection
Refused”. This is probably due to a problem with pvm. If this happens, it is most likely
due to some old files left over in /tmp from a previous simulation run that crashed. The
best solution is to wait 30 seconds until SpikeStream times out, when it will ask you if
you want to run the CleanPVM script. Run this script and the problem should go away.
Persistent problems can often be solved by deleting all pvm related files from /tmp. The
CleanPVM script can also be separately invoked to reset pvm and delete unused files

from /tmp.

SpikeStream will fail to connect with databases and devices on other machines if the

firewalls on both machines are not set correctly.

Simulations will not start if the dynamic neuron and synapse libraries cannot be found by
the operating system (see Section Al.12.3). This may generate the message
“libstdplneuron.so: cannot open shared object file” or “libstdplneuron.so: cannot open
shared object file”, which can be caused by omitting to run the install script as part of the
installation process. It can also be caused by copying a library across from another

machine, instead of recompiling it for your system.
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Simulations will not start if pvm is not installed properly. You can check that pvm is
working correctly by typing pvm, which should return the pvm command prompt:
pvm>,

Loading a saved database occasionally creates problems when you have added or
removed a neuron or synapse type, since the saved database contains tables with the old
information. Similar problems can occur with the Devices database. If SpikeStream
generates parameter errors or crashes after loading a database containing different neuron
or synapse types, restarting it usually resolves the problem., which is caused by a bug in

the parameter dialogs.

If you have problems adding additional hosts to pvm make sure that you have rsh
installed on your system, which may have been left off the default install for security
reasons. You will also need to add the main workstation to your list of allowed hosts in
.rhosts on the remote machines so that pvm can invoke commands on them without being
prompted for the password. Use the IP address if you are working on a local network
since the name of the machine may not be resolved (this will have to be set up each time

the machines boot if you are using DHCP).

With more recent versions of qwt you may get the error “libqwt.s0.5: cannot open shared
object file: No such file or directory”. This linking error arises because the operating
system cannot find the qwt library that spikestream was compiled against. One way of
solving this problem is to create a symbolic link that points to the appropriate libraries.

To solve the qwt problem change to /ust/lib in super user mode, and type

In -s /usr/local/gwt-5.0.2/lib/libgwt.so0.5 libgwt. s0.5

The details of this solution will change depending on the version of qwt that you are

using.
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e A similar problem can arise with mysqlpp libraries, which can be solved in a similar way

by changing to /usr/lib in super user mode and typing:

In -s /usr/local/lib/libmysqlpp.so0.2 libmysqglpp.so 2

Again, the specific paths and library will change depending on the versions that you are
using. Linking problems can also be solved by adding the appropriate locations to the
LD_LIBRARY_PATH system variable, which is probably the best bet if you do not have

root access to the system.

A1.4.5 Error Messages

When SpikeStream Application detects an error it generally displays an error message. When
this error only affects the function that is currently being performed, SpikeStream will not exit,
but you will probably want to restart SpikeStream (if possible after sorting the problem out). For
example, if you get a database related error when loading a simulation, try to resolve the problem
and then restart the simulation. When the error is likely to corrupt the database or make future
work impossible, SpikeStream will immediately exit.

When simulation and archive tasks detect an error they will not exit immediately, but
enter an error state in which they only respond to exit messages. This is to enable the simulation
manager to do an explicit clean up after the end of the simulation without needing to restart and
clean pvm. If you get an error message from a task, destroy the simulation, determine the cause
of the error if possible and then restart the simulation. Let me know about any persistent

problems and I will try to resolve them.

A1.4.6 Known Bugs and Missing Functionality
Known bugs and limitations in SpikeStream 0.1 are as follows:

e The probe feature is still under development and has not been fully implemented.



[ 312 ]

Rotation of layers for patterns and devices is missing. Although it may be possible to
connect a layer with width 10 and length 25 up to a device or pattern with width 25 and
length 10, the simulation will not work. You are advised to only connect up layers to

patterns or devices that have the same width and height as the layer.

The ability to set and change the neuron spacing is not well tested. It should work, but it

is best left at the default of 1.

The simulation will only run for 2% time steps, which is around 1000 simulated hours at
1 ms per timestep. After this, the simulation clock will overflow with unknown

consequences.

On later versions of Qt 3, the Network Monitor goes black when resized beyond a certain
point. The firing patterns have been made dark red so that they can still be seen, but I
have not found a better work around for this problem, which will probably disappear

when SpikeStream is rewritten for Qt4.

There is a limit to the maximum number of network monitors that can be open at once.
This is currently 100, which is set using the variable
MAX_NUMBER_MONITOR_WINDOWS in SPIKESTREAM_ROOT/include

/GlobalVariables.h.

Off center on surround connections are not implemented in the current version of

SpikeStream.
Make defaults button is not implemented on most of the parameter dialogs.

Neuron and synapse types can only be changed when SpikeStream Application is not
running. If SpikeStream Application is running when they are changed, it is likely to

crash, but this will not affect the data in the database and restarting solves the problem.
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o The exchange of spikes between SIMNOS and SpikeStream (see Section A1.9.4) is still
at the early stages. This feature does work, but expect a certain amount of sweat and

hassle to get everything running.

e The “Load Defaults” button is not implemented in the neuron or synapse parameter

dialogs.

o The cancelling of operations is not well handled at present and may generate an error
message when cancelling the loading of a simulation. A future version of SpikeStream

will address this problem by using separate threads to handle heavy operations.

o The recording of network patterns is buggy and currently runs without synchronization to
the spikesreamsimulation tasks. This occasionally results in the dropping of recorded
time steps, particularly at the beginning or end of the simulation run. You may also get an
error: “ArchiveWidget: MYSQL QUERY EXCEPTION MySQL server has gone away",
which can be resolved by restarting SpikeStream. These problems will be sorted out in a
later version of SpikeStream, which will tightly synchronize spikesreamarchiver with the

simulation tasks.

A1.5 Creating Neural Networks

A1.5.1 The Editor Tab

The creation and editing of neural networks is carried out on the Editor tab (see Figure Al.1).
The top table in the Editor tab shows information about the current neuron groups; the bottom

table contains information about the connections between neuron groups.
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Figure Al.1. Editor Tab

Neuron Group Table

The top half of the Editor tab contains the neuron group table which displays information about
the neuron groups in the database. The start of each row has an eye and a magnifier symbol.
Clicking on the eye hides or shows a neuron group and you can click on the column header to
hide or show all neuron groups. A single click on the magnifying glass zooms to the side of the
appropriate neuron group. Click on it again and you are taken to the top of the appropriate

neuron group. A third click returns you to a wide view of the entire network.

Connection Group Table
The bottom half of the Editor tab is taken up with the connection group table, which displays

information about the connection groups in the database. At the left of each row is an eye symbol
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that can be used to show or hide the connection groups and you can click on the table header to
view or hide all connection groups and to check or uncheck all of the tick boxes. Viewing of
connection groups is disabled by default and very large connection groups will only be loaded
when you attempt to view them, which may lead to a short delay whilst this is carried out.
Virtual connections can never be viewed and are coloured light grey. Clicking on the blue
“View” button in the connection group table shows the parameters that were used to create the

connection group.

A1.5.2 Adding Neuron Groups

Clicking on the “Add Neurons” button above the neuron group table displays the Neuron Group

Properties Dialog, shown in Figure A1.2.

~ Neuron Group Properties _:

"

Mame |Motor Output I

Meuron Group Type !ED Rectangular Layer iv|

Neuron Type | STDP1 Neuron [6] iv|

Width (neurons) [20 |
Length (neurons) |20 i

Meuron Spacing |‘I

Location X:[10 | ¥:[10 | zZ[s0 |

Ok | | Cancel

Figure A1.2. Neuron Group Properties Dialog

This dialog allows you to set the following information about the layer.
o Name. The name of the new neuron group
e Neuron Group Type. This combo box has three options.
e 2D Rectangular Layer. Creates a standard 2D layer 1 neuron thick.

e 3D Rectangular Layer. Creates a 3D layer. This is not fully implemented yet.
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e SIMNOS Component. Uses information from the Devices database to create a layer
that connects to a sub-part of an input layer - see Section A1.9.4.

e Neuron Type. A list of the neuron classes in the NeuronTypes table.

«  Width. The width of the neuron group in neurons.

o Length. The length of the neuron group in neurons.

e Neuron Spacing. Allows you to change the spacing between the neurons. WARNING:
This feature has not been fully tested and it is recommended to leave it at 1.

e Location. The location of the bottom left corner of the neuron group when seen from

above. Make sure that your selected location does not clash with an existing layer.

A1.5.3 Editing Neuron Groups

Some of the properties of a neuron group can be changed at a later point in time by right clicking
on the neuron group in the neuron group table and selecting “Edit Neuron Group Properties”

from the popup menu.

A1.5.4 Deleting Neuron Groups

Check the neuron groups that you want to delete and click on the “Delete” button. A dialog will
popup to confirm your decision. Clicking “Ok” will permanently delete the neuron group from

the database.

IMPORTANT NOTE: There is no undo function in SpikeStream and no method of reversing this
step. Future work on SpikeStream may look into using the MySQL rollback feature to undo

transactions.
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A1.5.5 Adding Connection Groups

SpikeStream comes with a number of predefined connection patterns. Once you are familiar with
SpikeStream you are likely to start creating your own connection patterns by directly editing the
database (see Section A1.5.7). To use the built in connection patterns, start by clicking on “Add

Connections”. This launches the Connection Properties Dialog shown in Figure A1.3.

Connection Properties r__

) Connections within a single layer

| Emation [1] iv|

@) Connections between layers!

From Layer: [Mutur Fattern Generator [7] |v] To Layer: i'Mntur Cutput [3] "I
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Connection Parameters

Excitation weight 0.8 (-]
Inhibitian weight ' 0.8

Inner length . 10

Inner width ' 10

Mormal weight distribution? . 1

Outer length ' 30

Outer width 30 o
Cwerlap _ 0 E.:l
Rotate? 0 -
Synapse type |STDP1 Synapse [1] v!

Delay Range:  Min |0 | Max (250 |

Ok ] | Cancel

Figure A1.3. Connection Properties Dialog

The properties that can be set in this dialog are as follows:
« Connections within a single layer/ between layers. These radio buttons select between

inter and intra layer connections. Different types of connection are available for each.
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From layer. The starting layer for the connection.

To layer. The layer that the connection is made to.

Connection Type. Several different connection types are available in the current version

of SpikeStream.

« Simple Cortex. Neurons are connected with short range excitatory connections and
long range inhibitory connections. The parameters for this type of connection are

given in Table Al.1.

Parameter Description

Excitation connection probability The number of neurons connected to within the
excitation radius. Set to greater than 1 to increase the
connection density; set to less than 1 to reduce the
connection density.

Excitation radius Select neurons within this radius for the neuron to
connect to.
Excitation weight The weight of excitation connections +/- the weight

range. Weights can range from -1.0 to 1.0.

Inhibition connection density The proportion of neurons connected to within the
inhibition radius. Set to greater than 1 to increase the
connection density; set to less than 1 to reduce the
connection density.

Inhibition radius Neurons within this radius, but outside of the
excitation radius minus the overlap are selected for
inhibitory connections.

Inhibition weight The weight of inhibitory connections +/- the weight
range.
Normal weight distribution Randomness in the weight is selected using a normal

distribution. 1 switches normal distribution on; 0
switches it off.

Overlap Overlap between the inhibitory and excitatory
connections
Weight range The amount by which the weights can vary randomly.

Table Al.1. Simple cortex connection parameters

e Unstructured excitatory (inter) and Unstructured excitatory (intra).
Unstructured connections in which each neuron makes all excitatory or all inhibitory

connections. The parameters for this type of connection are given in Table A1.2.
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Description

Excitation connection prob

Excitation weight

Excitation weight range

The probability of an excitatory neuron connecting to
another excitatory neuron. This parameter can vary
between 0 and 1.0.

The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

The range of the excitation weight.

Excitation percentage

The percentage of excitatory neurons. Ranges from 0-
100.

Inhibition connection prob

Inhibition weight

Inhibition weight range

The probability of an inhibitory neuron connecting to
another inhibitory neuron. This parameter can vary
between 0 and 1.0.

The weight of inhibitory connections +/- the weight
range. Weights can range from -1.0 to 1.0.

The range of the inhibitory weights.

Table A1.2. Unstructured excitatory (inter) and Unstructured excitatory (intra) parameters

On Center Off Surround. Rectangular connection with an excitatory centre and

inhibitory surround. The fo layer must be smaller than the from layer for this type of

connection to work. The parameters for this type of connection are given in Table

A1.3. WARNING: Some of these parameters are not fully tested.

Parameter

Description

Excitation weight

The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inhibition weight

Inner length

Inner width

The weight of inhibitory connections +/- the weight
range. Weights can range from -1.0 to 1.0.

The length of the central excitatory connection area.

The width of the central excitatory connection area.

Outer length The length of the inhibitory connection area.

Outer width The width of the inhibitory connection area.

Overlap Overlap between the excitatory and inhibitory
connection areas.

Rotate One layer may be rotated relative to the other one.

Weight range The amount by which the weights can vary randomly.

Table A1.3. On centre off surround connection parameters
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Off Centre On Surround. Similar to on centre off surround connections. Note that
the to layer must be smaller than the from layer for this type of connection to work.
The parameters for this type of connection are given in Table Al.4. IMPORTANT

NOTE: Not implemented at present.

Parameter Description

Excitation weight The weight of excitation connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inhibition weight The weight of inhibitory connections +/- the weight
range. Weights can range from -1.0 to 1.0.

Inner length The length of the central inhibitory connection area.
Inner width The width of the central inhibitory connection area.
Outer length The length of the excitatory connection area.

Outer width The width of the excitatory connection area.
Overlap Overlap between the excitatory and inhibitory

connection areas.

Rotate One layer may be rotated relative to the other one.

Weight range The amount by which the weights can vary randomly.

Table A1.4. Off centre on surround connection parameters

Unstructured. Each neuron in the from layer is connected to a random number of

neurons in the to layer. The parameters for this type of connection are given in Table

AlS.
Parameter Description
Average weight The weight of connections +/- the weight range.
Weights can range from -1.0 to 1.0.
Connection density The proportion of neurons connected to. This
parameter can vary between 0 and 1.0.
Weight range The amount by which the weights can vary randomly.

Table A1.5. Unstructured connection parameters

Virtual. In order to run the simulation, each neuron group needs to be connected to at

least one other neuron group. When there are no functional connections, virtual
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connections need to be created between neuron groups so that they can be
synchronized in the simulation. NOTE: The simulation may also create temporary
virtual connections to enable synchronization between the layers. The creation and

destruction of these does not require any intervention by the user.

o Topographic. This creates topographic connections between the layers. The

parameters for topographic connections are given in Table Al.6.

Parameter Description

Average weight The weight of connections +/- the weight range.
Weights can range from -1.0 to 1.0.

Overlap When layers of different size are topographically
connected there can be an overlap between each set of
connections.

Rotate One layer can be rotated relative to the other.

Weight range The amount by which the weights can vary randomly.

Table A1.6. Topographic connection parameters

« Synapse Type. Selects one of the currently selected synapse classes for the connection.
« Delay Range. Sets the range of delay expressed in timesteps. The absolute value of the
delay for each connection is the update time per timestep multiplied by the number of

timesteps delay.

A1.5.6 Deleting Connection Groups

Select the connection groups that you want to delete and press the “Delete” button above the
connections table. Press “Ok” to confirm deletion and the connection groups will be removed

from the database.

IMPORTANT NOTE: There is no undo function in SpikeStream and no method of reversing this
step. Future work on SpikeStream may look into using the MySQL rollback feature to undo

transactions.
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A1.5.7 Other Ways to Create Neuron and Connection Groups

The preset ways of creating and editing neuron and connection groups in SpikeStream
Application are hard coded and can only be changed by modifying SpikeStream. However, it is
reasonably easy to write your own programs or scripts to add new neurons or connection patterns

to the SpikeStream database. The following limitations apply when doing this:

e Any pair of neurons can only have a single connection between them.

o Each neuron group can only have one connection of each type between it. Thus, there
can be several connection groups of different types between two layers, but not two

connection groups of the same type.

o SpikeStream can visualize neuron groups of any shape, but it is currently unable to
connect patterns or devices to non-rectangular neuron groups, or to provide live

monitoring of non-rectangular neuron groups.

A1.6 Viewing Neural Networks

A1.6.1 Viewer Tab

The Network Viewer (see Figure A1.4) enables networks to be viewed in three dimensions. This
three dimensional window is permanently on the right hand side of the screen and its size can be
adjusted by grabbing the dividing bar. The Network Viewer tab has controls that enable you to

view different aspects of the connections and set the rendering properties.
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Figure A1.4. Network Viewer tab (left) and Network Viewer (right)

The controls available in the Network Viewer Tab are covered in the next few sections.

Highlight

Clicking on the highlight button launches the Highlight Dialog shown in Figure A1.5. Type or
paste in a list of comma separated neuron IDs that you want to highlight and click on “Add
Highlight” to highlight them. The colour can be changed by clicking on the colour field. Multiple

groups of neurons can be highlighted in different colours.
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K spikéstreamapplication

Highlight colour;

123456, 12323, 234433, 444333,
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Figure A1.5. Highlight Dialog

Render Settings

Normally neurons are drawn using simple vertices, which considerably speeds up the rendering
time. However, if you want a more attractive view, you can check this box to draw neurons as
grey spheres. The render delay sets the time between the last navigation event in Network

Viewer and the start of the render.

Connection Settings

When the Show Connections check box is selected the Network Viewer displays all of the
connections that are set as visible in the Connection Group Table. This part of the Network
Viewer tab is very useful for showing different aspects of the connections between neurons and
it is also used to select the neurons for monitoring or noise injection in the Simulation tab. If you

want to select a subset of the connections for viewing, the following options are available:

e All connections. Shows positive and negative connections.
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« Positive connections. Only connections with positive weights are shown.
« Negative connections. Only connections with negative weights are shown.

e from/to. Connections from and to the selected neuron in the selected neuron group are

shown
e from. Connections from the selected neuron in the selected neuron group are shown
» to . Connections to the selected neuron in the selected neuron group are shown

« between. Connections between the first selected neuron and the second selected neuron
are shown. Use this mode to select an individual synapse for monitoring during a

simulation.

The connection details check box displays information about the selected connections (see
Figure A1.6. In this table, “Saved Weight” is the weight that is loaded up at the beginning of a
simulation as the synapse's starting weight. As the simulation progresses, this weight may
change and the user can view the current value of the weights by pressing “View Weights” in the
Simulation tab. The synapse's current weight is then visible in the “Temp Weight” column of this
table. If the user chooses to permanently save the weights during a simulation, their values are
written to the Saved Weight field and will become the starting weights when the simulation is

next initialised.
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Figure A1.6. Connection Details Table

A1.6.2 Network Viewer

The Network Viewer shows all of the visible neurons and connections in three dimensions. This
display starts out with the Z axis vertical, the X axis horizontal and to the right and the Y axis
going into the display away from the viewer. You can navigate around this window using the

following controls:

o Arrow-left. Moves camera left.
e Arrow-right. Moves camera right.
e Arrow-up. Moves camera up.

e Arrow-down. Moves camera down.

o Ctrl + Arrow-left. Rotates camera left.
o Ctrl + Arrow-right. Rotates camera right.

o Ctrl + Arrow-up. Rotates camera up.
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e Ctrl + Arrow-down. Rotates camera down.

e Ctrl + =. Zooms in.
e Ctrl + -. Zooms out.

o Ctrl +Y. Zooms out to show all layers.

When viewing connections from/to, from and fo an individual neuron, the neuron will be

highlighted in red and the selected neuron can be changed using the following controls:

e« ALT + Arrow-right. Selects the next neuron within the group moving along X positive.
e ALT + Arrow-left. Selects the next neuron within the group moving along X negative.

e ALT + Arrow-up. Selects the next neuron within the group moving along Y positive.

« ALT + Arrow-down. Selects the next neuron within the group moving along Y

negative.

When viewing connections between two individual neurons, the from neuron will be highlighted
in red and the selected neuron can be changed using the controls that have just been outlined.
The to neuron will be highlighted in green and the selected fo neuron can be changed using the

following controls.

« SHIFT + ALT + Arrow-right. Selects the next neuron within the fo group moving
along X positive.

« SHIFT + ALT + Arrow-left. Selects the next neuron within the fo group moving along
X negative.

e« SHIFT + ALT + Arrow-up. Selects the next neuron within the fo group moving along
Y positive.

« SHIFT + ALT + Arrow-down. Selects the next neuron within the fo group moving

along Y negative.
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WARNING: Occasionally the Network Viewer loses keyboard focus, which may cause the
keyboard to control other aspects of SpikeStream. This is rarely serious, but I have accidentally
quit the application on occasions by inadvertently navigating through the file menu. Click on the

Network Viewer to restore keyboard focus.

A1.6.3 View Menu

The view menu on the main menu bar allows you to selectively refresh information in

SpikeStream:
» View->Reload devices Ctrl+D. Reloads the list of devices in the Simulation tab.
» View->Reload patterns Ctrl+P. Reloads the list of patterns in the Simulation tab.

o View->Reload everything Shift+F5. Reloads everything, including neuron and

connection groups, parameters, patterns and devices.

A1.7 Running a Simulation

A1.7.1 Simulation Tab

The Simulation tab (see Figure A1.7) is used to control all aspects of a simulation.
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Figure A1.7. Simulation tab

A1.7.2 Archive Name and Type

At the top of the Simulation tab is a box where you can enter a name for the archive. This

archive will only be stored if you record data from the simulation. There is also a combo box that

enables you to select between recording the firing neuron patterns from a layer or the spikes

emitted from a layer. The firing neurons option is recommended because it has been more

thoroughly tested. The archive name can be changed at a later point using the Load Archive

Dialog.
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A1.7.3 Patterns and Devices

The next part of the Simulation tab is another set of tabs that let you connect patterns and devices
up to layers in the simulation. Each of the combo boxes in these tables only displays the layers
that are the correct size for the pattern or device. Selecting the layer in the combo box will
connect the pattern or device up to the layer when the simulation is initialized. If you add a new
device to the Devices table you can refresh the devices table by clicking on “View->Reload
devices” or pressing CTRL+D. At the bottom of the pattern table is a text box where you can set
the number of time steps between each pattern. For example, if you set this to ten, a pattern will
be applied every ten time steps. This is particularly important when you are using patterns that
are spread over time. See Section A1.9 for more information on devices and Section A1.10 for

more information about patterns.

A1.7.4 Parameters

Parameters for the simulation are set using the four buttons in the “Parameters” section of the

Simulation tab.

Neuron Parameters
Clicking on the “Neuron Parameters” button brings up the dialog shown in Figure A1.8, where
you can set the parameters for the simulation. This dialog edits the neuron parameters table in the

database and these parameters can be changed at any point during a simulation run.
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@
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oK I Load Defauits | Cancel

Figure A1.8. Neuron Parameters Dialog
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To change the parameters, click on the edit button for a particular layer and an Edit Neuron

Parameters Dialog will be launched that enables you to adjust the parameters (see Figure A1.9).

Neuron group 1

Calcium decay rate |3

Calcium increase amount !1 |

Membrane time constant (ms) |'3 [

Fefractory parameter M [D.B ]

Refractory parameter N |3 |

Refractory period (ms) |1 |

Threshold [1 |

| Ok | | LoadDefaults | | Make Defaults | | Cancel

Figure A1.9. Edit Neuron Parameters Dialog

Pressing “Ok” in this second dialog updates the Neuron Parameters Dialog, but will not update
the simulation until you press “Ok” or “Apply” within the Neuron Parameters Dialog. Boolean

parameters are set using the check boxes within the Neuron Parameters Dialog.

IMPORTANT NOTE: The “Load Defaults” button is not implemented in the Neuron Parameters
Dialog and the “Make Defaults” button has not been implemented in the Edit Neuron Parameters

Dialog.

Synapse Parameters

The editing of synapse parameters proceeds in a similar way to the editing of neuron parameters.

Global Parameters
This dialog (see Figure A1.10) controls parameters that are global to the simulation. Checking
“Run simulation in real time” will update the simulation clock in real time instead of using the

time step duration value. “Time step duration” enables you to set the amount of time that is
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simulated by each time step. Smaller values will lead to a more accurate simulation, but may also

increase the amount of time taken to compute the simulation.

Global Parameters _

|_:Run simulation in real time

Time step duration (ms) |1 |

| Ok || Apply || LoadDefautts | | Make Defaults | | Cancel

Figure A1.10. Global Parameters Dialog

Noise

This dialog (see Figure A1.11) enables you to add random noise to the neuron groups.

Noise Parameters -

Neuron Group Moise | Fercent of Meurons | Direct # Synaptic Firing

Ermotion [1] " [ 5+ | Direct -|
Inhibition [2] ] | 5 vIDirect bl
Maotor Qutput [3] Ol [ 5+ | Direct -|
Elue WVisual Input [4] ] | 5 vIDirect b
Red WVisual Input [5] Ol [ 5+ | Direct -|
Wisual Input [€] ] | 5|+ | Direct b
Motar Pattern Generator [7] T [ 5 vIDirect v]
Ok | Load Defaults I Cancel

Figure A1.11. Noise Dialog

The second column enables or disables noise for the neuron group. The third column selects the
percentage of neurons that will be randomly selected from each neuron group at each time step.
There is also a “random” option that selects a random percentage of neurons at each time step.

The last column selects between direct and synaptic firing. In direct noise mode, the selected
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neurons are directly fired by the simulation. In synaptic noise mode, the specified synaptic

current is injected into the neuron at each time step, which may or may not lead to firing.

A1.7.5 Simulation Controls

The next set of controls are for running and monitoring the simulation and for the manual
injection of noise. These controls are only enabled when the simulation is initialized (see Figure

Al.12).

—Simulation Cantrols

Destroy Reload weights Save weights “iew weights
D> ﬂ . ) Max speed 'v_ EEvent driven v
| All layers '~| |Neurons v ;' Live Maonitor
| Maotar Output[B] v 810 | Monitar Neuron
From: 210 To: 2010 ~ Monitor Synapse

| Motor Pattern Generator [77 = | |1 Neuran --'i Inject Moise

[ Mator Qutput [3] '~ (810 Fire Melran

Figure A1.12. Simulation controls

Initialise / Destroy

When initialize is pressed, pvm is used to launch the simulation across all the hosts that have
been added to the virtual machine. These are created as separate tasks running in parallel, with
one task per neuron group. An extra task is created for the archiving of the simulation. Pressing

“Destroy” causes all of these tasks to exit.

Weight Buttons

During a simulation run these buttons offer the following functions:
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« Reload weights. Requests each task to reload its weights from the database.
« Save weights. Requests each task to save its current weights to the database.

« View weights. Requests each task to save its current weights to the “Temp Weight” field
in the database. This enables the user to view the weights without permanently changing

them.

Transport Buttons

The simulation is run using a standard set of transport buttons:
« Play. Plays and stops the simulation.

» Step. Advances to the next time step. Strange behaviour with pvm message passing can

lead each step to take a second or two.
» Record. Records the simulation using the specified archive name.
» Stop. Stops the simulation.

The first combo box after the stop button can be used to slow the simulation down, which is
extremely useful for monitoring what is going on in. The last combo in this row is used to

control the update mode of the simulation:

« Event driven. The fastest update mode. Neuron and synapse classes are only updated

when they receive a spike.

» Update all neurons. All neuron classes are updated at each time step. Synapses are only
updated when they receive a spike. Useful for neural models that display spontaneous

activity.

o Update all synapses. All synapse classes are updated at each time step. Neurons are

only updated when they receive a spike.
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Update everything. All neuron and synapse classes are updated at each time step. In this

mode, SpikeStream operates like a synchronous simulator.

Monitoring

The next set of controls are used to monitor what is going on in the simulation.

Live Monitor. Launches a window displaying the firing state of the selected neuron
group or all the neuron groups. This window can display the spikes emitted by the

neuron group or the firing of the neurons in the neuron group.

Monitor Neuron. Each neuron class can define its own set of variables for live
monitoring. Select a neuron using Network Viewer or type in a neuron ID and click this
button to draw a live graph of the monitored variables for the neuron (see Figure A1.13).
NOTE: If this is launched part way through a simulation, it may take a little while to

adjust itself.

Monitor Synapse.. Each synapse class can define its own set of variables for live
monitoring. To select a synapse you need to set the Network Viewer tab to 'between’
mode. You should have a green neuron and a red neuron highlighted. Select a synapse
using the Network Viewer and click “Monitor Synapse” to draw a live graph of the
monitoring variables for the synapse. NOTE: If this is launched part way through a

simulation, it may take a little while to adjust itself.

Closing these windows stops the monitoring data being sent from the tasks simulating the neuron

group.
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Figure A1.13. Graphs of monitored neuron variables

NOTE: The values in this graph are sampled every time step so with a high time step value of
10ms, for example, you may not see any change on the membrane potential in response to

incoming spikes because the neuron will have reset itself to zero by the end oft each time step.

Noise Injection

Controls that can be used to manually inject noise into a neuron group within a single simulation

step:
» Inject Noise. Fires the specified percentage of neurons once within a simulation step.

o Fire Neuron. Fires the specified neuron once within a simulation step. The neuron's id

can be typed into the field or selected using the Network Viewer.

Docking Controls

A number of buttons are available to selectively hide and show monitoring information.
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« Dock All. Places all live monitor windows in the docking area. These windows will
continue to display the neuron patterns whilst they are in the docking area and they can

be dragged around and rearranged.
« Undock All. Restores all live monitor windows to their original location.
« Hide Graphs. Makes all graphs invisible and switches their plotting off.

e Show Graphs. Makes all the current graphs visible and switches their plotting on.

A1.7.6 Network Probes

Clicking on “Tools->Probe manager” launches a dialog to manage the probes. Network Probes
are designed to run alongside the simulation and carry out actions on the neural network for
testing purposes. For example, a network probe might be created to stimulate parts of the
network with noise in order to identify its effective connectivity. NOTE: This feature is still

under development and should be ignored.

A1.8 Archives

A1.8.1 Archive Tab

The recording of archives is carried out in the Simulation tab. Archives are played back in the

Archive tab shown in Figure A1.14.
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Figure A1.14. Archive tab

Loading and Playing Back an Archive

To load an archive press the “Load” button, which will open up the Load Archive Dialog, shown
in Figure A1.15, which has controls to rename and delete archives. When you have selected your
archive and pressed “Ok”, the archive will be loaded and can be replayed, stepped through,

rewound etc. using the controls available in the Archive tab.
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Load Archive L_

Archive 1 [ 2007-03-05 14:13:46 ]
Archive 2 [ 2007-03-05 14:14:09 ]
Archive 3 [ 2007-03-05 14:14:22 ]

I Fename I | Delete | | Delete all |

I Ok | | Cancel I

Figure A1.15. Load Archive Dialog

Archive Statistics

Statistics about the archive can be gathered by adding a statistics monitor to count the number of
times a neuron fires, the number of times a range of neurons fire, or the number of times neurons
fire in a particular neuron group. Clicking on the “Add Statistics Monitor” button launches the
dialog shown in Figure A1.16. In this dialog you can choose to monitor the number of times
neurons fire in a particular layer or count the number of times one or a number of neuron IDs
fire, which is done by adding the neuron IDs as a comma separated list. OR, AND and range

operators are supported, for example: 12121 & 12121, 1323 - 56565, 123213 1098098.
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Figure A1.16. Archive Statistics Dialog

There is also a button that allows you to view the XML network model associated with the
archive (see next section), which may be different from the network model that is currently

loaded into SpikeStream.

A1.8.2 Archive Structure

Each archive contains a summary of the neuron groups stored in XML format in the

NetworkModels table. An example of a network model is given below:

<?xm version="1.0" encodi ng="1 SO 8859- 1" ?>
<neur al _net wor k>
<neur on_gr oupi d="19">
<nane>Lear ner </ nane>
<start _neuron_i d>161429</start_neuron_i d>
<wi dt h>1</wi dt h>
<l engt h>1</1 engt h>

<| ocati on>10, 1, 10</| ocati on>
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<spaci ng>1</ spaci ng>
<neur on_t ype>6</ neur on_t ype>
</ neur on_group>
<neuron_group id="17">
<name>Gener at or </ nane>
<start _neuron_i d>161427</start_neuron_i d>
<wi dt h>1</w dt h>
<l engt h>1</1 engt h>
<l ocation>1, 1, 1</l ocati on>
<spaci ng>1</ spaci ng>
<neur on_t ype>6</ neur on_t ype>
</ neur on_group>

</ neur al _net wor k>
Each network model is associated with one or more rows of firing patterns in the NetworkData
table, which are also stored in XML format. An example of NetworkData for one time step is
given below:
<?xm version="1.0" encodi ng="1 SO 8859- 1" ?>
<networ k_pattern>

<neuron_group id="17">161427</ neur on_group>

<neur on_group id="18">161428</neuron_group>

</ net wor k_pattern>

A1.9 Devices

A1.9.1 Introduction

SpikeStream can send and receive spikes across a network to and from an external device, such
as a real or virtual robot, camera, etc. This feature is still under development and only the TCP

synchronized method has been fully tested between SpikeStream and the SIMNOS virtual robot.
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A1.9.2 Sending and Receiving Spike Messages

A number of different methods exist for sending and receiving spike messages across a network.
Not all of them have been implemented and the synchronized TCP methods have been most
thoroughly tested. The next few sections outline the general procedure for sending and receiving

messages. More detail about this can be found in the SpikeStream Simulation code.

Synchronized TCP Network Input

This method uses TCP to send and receive spike packets across the network. This is designed to
work with devices that run in their own simulation time, such as the SIMNOS virtual robot (see
Section A1.9.4), and it enables the two devices to remain perfectly synchronized. The procedure

for receiving this type of message is as follows:
»  Wait to receive packet containing the data.
»  Unpack the first four bytes, which contain the number of spikes in the message.
» Unpack the spikes, each of which is four bytes long.
o The first byte is the X position of the spike within the layer.
o The second byte is the Y position of the spike within the layer.

e The third and fourth byte contain the time delay of the spike. WARNING: This is

untested for non-zero values and should be set to zero for the moment.

e When all spikes have been unpacked send a confirmation message containing a single
byte to confirm that the data has been received. This has the value
SPIKESTREAM_DATA_ACK_MSG (defined in $SPIKESTREAM_ROOT/include/

DeviceMessages.h), which is currently set to 1, but may change.

» Fire neurons in the layer that received spikes from the device.
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Since the layer connected to the device will not complete its simulation step until it has updated
itself, this method synchronizes SpikeStream with the external device, which should also wait

until it receives the acknowledgment message.

Synchronized TCP Network Vision Input
This method is similar to the previous one, except that no delay is included within the packet and
the X and Y positions are defined using two bytes. The procedure for receiving this type of

message is as follows:

Wait to receive packet containing the data.

»  Unpack the first four bytes, which contain the number of spikes in the message.
« Unpack the spikes, each of which is four bytes long.

« The first two bytes are the X position of the spike within the layer.

« The next two bytes are the Y position of the spike within the layer.

«  When all spikes have been unpacked send a message containing a single byte to confirm
that the data has been received. This has the value SPIKESTREAM_DATA_ACK_MSG
(defined in $SPIKESTREAM_ROOT /include/DeviceMessages.h), which is currently set

to 1, but may change.
« Fire neurons in the layer that receive spikes from the device.
Since the layer connected to the device will not complete its simulation step until it has updated

itself, this method synchronises SpikeStream with the external device, which should also wait

until it has received the acknowledgment message.
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Synchronized TCP Network Output
This method sends spikes in a synchronized manner from SpikeStream to an external device. The

procedure is as follows:

e Add the number of spikes as a four byte value to the packet.

e Add the spikes to the packet. The first byte is the X position, the second byte is the Y

position and the next two bytes are the delay, currently not used.

» Send the packet.

» Wait to receive a packet containing an acknowledgment that the data has been received.
This has the value DEVICE_DATA_ACK_MSG (defined in $SPIKESTREAM_ROOT/

include/ DeviceMessages.h), which is currently set to 3, but may change.

Synchronized UDP Network Input

This method creates a loose synchronization between the external device and SpikeStream by
timing the interval between spike packets and slowing the simulator down to match. This method
only works if the device can slow itself down as well. This method has been implemented on
SpikeStream, but it has not been fully tested and some tweaking of the SpikeStream Simulation

code may be necessary to get it working properly. The basic approach is as follows:

o The receive method runs as a separate thread which receives the spike messages and

unpacks them into a separate buffer.

« The first two bytes of each packet contain the synchronization information. The first 7
bits are the time step count on the external device. This can overflow without problems
since it is there to indicate the rate of increase of the time steps in the external device.
The remaining bit is a flag to indicate whether the external device was delaying itself on

the previous time step.
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« The rest of the packet is filled with spikes, with the first byte being the X position, the
second byte the Y position and the next two bytes a delay value, which is not currently

used.

»  When the packet has been unpacked, the receive method calculates the update time per

time step for the external device.

e When SpikeStream Simulation completes a simulation step, it sleeps if its own update
time per time step is less than that of the external device and if the external device is not

delaying itself.

o The SynchronizationDelay table in the Devices database is used to coordinate delay

information between independent SpikeStream tasks.

UDP is a potentially lossy method of transmission and the synchronization is also approximate.
This makes this approach a useful halfway step between the loss free TCP synchronization and
the potentially highly lossy sending and receiving of information to and from a live hardware

device, such as a robot, which is interacting with the real world.

Synchronized UDP Network Output
This method is virtually identical to synchronized UDP network input. SpikeStream needs both

input and output connections to a device to make this synchronization method work properly.

Asynchronous UDP Network Input/ Output
This method has been designed for using SpikeStream with a live device, but has not yet been

implemented. The procedure is something like the following.

» Input spikes are received by a separate thread that unpacks them into a buffer, which is

used to fire the neurons at each time step.

e Output spikes are transmitted at the end of each time step.



[ 346 ]

When it is implemented, the code will be similar to that used for the synchronized UDP input

and output, only without the delay.

A1.9.3 Adding Devices

The Devices table in the Devices database contains a list of available devices that SpikeStream
can connect to and details about any new devices should be added here. The communication
protocol between SpikeStream and the device is determined by the Type field in this table.
Definitions of the different device types can be found in
$SPIKESTREAM_ROOT/include/DeviceTypes.h. When a device is selected in the Simulation
tab, SpikeStream will attempt to connect to it using the information provided. The “Firing
Mode” option in the Devices table in the Simulation tab is used to select whether the spikes from

the device fire the neuron directly or inject the specified post synaptic potential into the neuron.

A1.9.4 SpikeStream and SIMNOS

Overview
The main external device that has been used and tested with SpikeStream is the SIMNOS virtual

robot created by Richard Newcombe, which is shown in Figure A1.17.
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Figure A1.17. SIMNOS virtual robot

SIMNOS is a humanoid anthropomimetic robot whose body is inspired by the human
musculoskeletal system. Information about muscle length, joint angles and visual information
(available with a wide variety of preprocessing methods) is encoded by SIMNOS into spikes
using a selection of methods developed by Newcombe (Gamez et. al. 2006b) and passed across
the network to SpikeStream. SIMNOS can also receive muscle length data from SpikeStream in
the form of spiking neural events, which are used to control the virtual robot. Together SIMNOS
and SpikeStream provide an extremely powerful way of exploring sensory and motor processing
and integration. More information about SIMNOS can be found at www.cronosproject.net.
SIMNOS will be released soon and anyone interested in using it should contact Richard

Newcombe (r.a.newcombe @gmail.com) if they would like a free copy of the current version.

SIMNOS Device Database

The Devices database works a little differently when you are using SIMNOS and SpikeStream
together. In this case, the Devices table in the Devices database is created automatically by the
SIMNOS spike servers, which enter their information into the Devices and

SIMNOSSpikeReceptors tables when they start. To use SIMNOS and SpikeStream you will need
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to enter the details of the SIMNOS Device database into your spikestream.config file on the
main workstation. You will know that you are connecting correctly if you see the four entries in
the Devices table shown in Figure A1.18 (the exact entries depend on the configuration of

SIMNOS):

Pattern input | Live Input/Output I

ID| Description Type IP Address | Port | Width | Length | Neuron Group
01 WisionOutput Synchronized TCP netwo 192.168.1.32 7300 128 128 |MNone -
01 MuscleQutput Synchronized TCP netwo 192.168.1.3 7100 50 45 I il
01 ProprioceptionOutput Synchronized TCP netwo 132.168.1.2 7200 0 4> [Mone A
01 Musclelnput Synchronized TCP netwo 132.168.1.2 7400 0 13> [Mone A

Figure A1.18. SIMNOS device entries

When using SIMNOS, you need to manually create the SynchronizationDelay and
SIMNOSReceptors tables in the SIMNOS Devices database by pasting in the appropriate SQL

from Devices.sql.

SIMNOS Receptors and Components

Information is exchanged between SIMNOS and SpikeStream in the form of relatively large
layers, which connect to layers of equivalent size within the simulator. However, in many cases
one wants to connect neuron groups up to part of this incoming information, such as the data
from a single arm. It is to solve this kind of problem that the SIMNOS Receptors and
Components framework was created. The SIMNOSSpikeReceptors table contains a list of the
receptors that are available in SIMNOS, which are associated with a particular device. The
SIMNOS Components table consists of lists of receptors, which together constitute a SIMNOS
component. These lists of receptor IDs could correspond to the head, neck, arm, part of the
visual field or any other abstraction that you want to make of the data from a particular device.

Entries in the SIMNOSComponents database have to be created manually by the user and they
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can then be used to connect a neuron group up to a part of an input or output layer, as explained

in the next section.

Using SIMNOSComponents

1.

Create a layer that matches the input width and length of the SIMNOS device. For this
example we will create a layer to connect to the Muscle Output of SIMNOS, which is
currently 50 neurons wide and 45 neurons long. NOTE: The width varies depends on the

spike conversion settings in SIMNOS.

. Create an entry in the SIMNOSComponents database listing the receptors that you want

to connect to in this layer. You need to look in SIMNOSSpikeReceptors table for the
receptor IDs, which are associated with a description of the receptor. For example, to
connect to the first third and fourth receptor in the SIMNOS muscle output, we need to

add an entry as follows: |INSERT |INTO SIMNGCSConponents (Nane,

Recept or | Ds, W dt h, Lengt h) VALUES (" Exanpl e component
description", "2001, 2003, 2004", 50, 3);

Click on the “Add Neurons” button to launch the Neuron Group Properties Dialog, enter
a name for the layer and select “SIMNOS Component from the “Neuron group type”

combo box. The Neuron Group Properties Dialog should look like Figure A1.19.

Since there is only one component and one input layer, you don't have any choices in the

other combo boxes and you just have to set a location for the new layer.

Press “Ok” and you will be presented with a dialog to set the properties for the
connection between the device input layer and the component layer that you have just

created (see Figure A1.20).
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6. When you have set the connection properties, click “Ok” and you should see a new layer
with connections to the first third and fourth row of the device muscle output layer (see

Figure A1.21).

Neuron Group Properties '

MName Example Component

Neuron Group Type | SIMNOS Component -|

4

Device input/output layer SIMNOS Muscle Ouput [6]

SIMNOS component Example component description [3] ‘v

MNeuron Type STDP1 Meuron [1] -

Width (neurons) 50
Length (neurons) |3

Location X [1 Y |1 | z (2o |

Ok ] Cancel

Figure A1.19. Creating a SIMNOS component

Connection Properties '

Connection Parameters

Average weight | 05
‘Weight range 05
Synapse type ISTDF'1 Synapse [1] H

Delay Range:  Min [0 Max [250

| Ok ] Cancel

Figure A1.20. Setting connection properties for a SIMNOS component
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l

Figure A1.21. SIMNOS component layer connected to device receptors

A1.10 Patterns

A1.10.1 Introduction

Patterns can be applied to layers in the network for training or testing purposes. Two different

types of pattern are available:

» Static. A snapshot of a firing pattern in the layer at a single point in time. This pattern

will be held for every time step that the pattern is held.

» Temporal. The pattern codes a firing pattern that is spread out over several time steps.

Each neuron will only be fired once at its specified time.

A1.10.2 Adding Patterns

Pattern Manager
The Pattern Manager (see Figure A1.22) is used to load patterns from a file into the SpikeStream

database. Click on Tools->Pattern manager to launch the Pattern Manager, which will display a
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list of patterns currently stored in the database. Patterns can be deleted by checking their

associated box and clicking the “Delete Pattern(s)” button. To load a pattern into the database

from a file, click on “Add Pattern(s)”, navigate to the file(s) that you want to add and then click

“Ok”. If the pattern file(s) loads up successfully you will see the new pattern(s) listed in the

Pattern Manager. Instructions for creating pattern files are given in the next section.

" Paftern Manager —
=

| Add Pattem(s) | | Delete Pattern(s) |

_!E, Description !Type !Wid]‘h !Length ISize :File

7 Sample static pattern Static 4 5 9 /home/davidg/spikestream/patterns/examples/Sampledx5StaticPattern pat

[ | 5 Sample temporal pattern Temporal 4 4 16 thome/davidg/spikestream/pattemns/examples/Sampledx4TemporalPattern.pat
| Ok | | Cancel

Figure A1.22. Pattern Manager

Pattern Files

The easiest way to create patterns is to manually or programatically generate pattern files and

load them into the database using the Pattern Manager. The format is as follows.

First lines. Can contain any information you wish, such as comments, authorship, etc.,
but must not contain hashes. All lines will be skipped by the parser until the information

about the pattern is reached.

# Type. The type of the pattern. This line should either be “# Type: static” or “# Type:

temporal”.

# Width. The width of the pattern, for example “# Width: 4”.

# Height. The height of the pattern, for example “# Height: 4”.

# Description. A short description of the pattern that will be added to the pattern

database, for example “# Description: Sample static pattern”.
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o # Pattern data. After the information about the pattern, the file can contain one or more
pieces of pattern data. After each ‘“#Pattern data:” heading there should be a
width x height matrix of numbers, separated by spaces, containing the pattern at that
point in time. For static patterns, these numbers must be either 1 or 0. For temporal
patterns, they must be between 0 and 250 (currently the maximum number of time steps).
The numbers in temporal patterns code the time that the neuron will be fired after the
pattern has been loaded. For example, if you create a pattern containing a number of fives
and set the “Number of time steps per pattern” in the Simulation tab to ten, then five time
steps after the pattern was loaded, the neurons corresponding to the fives in the pattern
will be fired and after another five time steps, the next pattern will be loaded. All of this

will become much clearer when you try out the static and temporal sample pattern files

given in SPIKESTREAM_ROQOT/patterns/examples

NOTE: If your pattern does not behave as expected, make sure that you have the static /

temporal field set correctly for your pattern.

Direct Pattern Generation

Whilst the automatic generation of pattern files is probably the easiest way to generate patterns,
it 1s also possible to directly add patterns directly to the Patterns database without using the
Pattern Manager. In this case, you need to generate a pattern description and one or more rows of
pattern data. When you have added a couple of test patterns to the database using the Pattern
Manager, a look at the structure of the data will show you how to directly generate your own

patterns.
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A1.11 Saving and Loading Databases

A1.11.1 Introduction

SpikeStream Application directly edits the database and so there is no need to explicitly save
anything when you close it apart from any weights that have been changed during a simulation
run. To enable users to save and load different neural networks, SpikeStream can save its

databases to a file and reload them at a later point in time.

A1.11.2 Saving Databases

Click on “File->Save database” and you will be prompted to choose the file to save the databases
into. When the file is selected you will be presented with the Database Dialog shown in Figure
A1.23. This enables you to select which of the databases you want to save — for example, you
may only want to save the NeuralNetwork database into the file and leave out the Neural
Archive, Patterns and Devices databases. When you have checked the databases that you want to
save, press “Ok” and they will be saved into the specified file. Saving and loading of databases is
carried out by the SaveSpikeStreamDatabase and LoadSpikeStreamDatabase scripts, which use

the mysqldump program.
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* SaveDatabases © =g

?Datahase ‘ Host | |
MeuralMetwork localhost ]
MeuralArchive localhost L]
Patterns localhost ]
Devices localhost ]

Ol | l Cancel

Figure A1.23 Database Dialog

This operation stores everything associated with each database - for example, neuron types,
synapse types, global and noise parameters are all saved when the Neural Network database is

saved.

A1.11.3 Loading Databases

Databases can only be loaded when the simulation is not initialized and an archive is not
currently being played back. The loading of databases follows the reverse procedure to the
saving of databases. Click on “File->Load databases”. This will first warn you that the loading
operation will overwrite any of the databases that you choose to load. If you want to keep the
current database you should cancel the loading operation and save the current database in a
separate file. When you are ready to load the database, click “Yes” on this warning and use the
file dialog to select the database that you want to load. SpikeStream will then inspect this file to
determine which databases are stored inside it and present you with a Database Dialog
containing a list of the databases that are available in the file. Select the databases that you want

to load and click ok.
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IMPORTANT NOTE: In the present implementation, the adding and removing of neuron and
synapse types must be done without SpikeStream running. Loading up a database with different
neuron and synapse classes from the ones currently loaded will lead to errors. The database

should be ok, but you will need to restart SpikeStream to resolve the problem.

A1.11.4 Clear Databases

The databases can only be cleared when the simulation is not initialized and an archive is not
currently being played back. Clicking on “File->Clear databases” resets all data in the databases
except the neuron, synapse and probe types. This operation is not reversible, so make sure that
you do not have any important information or saved simulation runs that you want to keep before
pressing “Yes” when the confirm dialog is displayed. If you want to reset everything back to its
default state including the neuron, synapse and probe types, use the load database feature
(Section A1.11.3) to load the file $SSPIKESTREAM_ROOT/database/DefaultDatabase.sql.tar.gz.

The CreateSpikeStreamDatabases script can also be used to reset all the databases.

A1.11.5 Import Connection Matrix

This feature is at an early stage of development and it is used to create a neuron group and set of
connections based on a connection matrix in which the x and the y axes are the neuron IDs and
the values are the weights. After you have clicked “File->Import connection matrix” and selected
the file containing the connection matrix it will create the new layer at (0, 0, 0) using the default
neuron and synapse types. Before running this function you will need to create enough space at

(0, 0, 0) for the new layer.
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A1.12 Neuron and Synapse Classes

A1.12.1 Introduction

The dynamic class loading features of SpikeStream make it relatively easy to change the neuron
and synapse models without modifying the whole application. However, a certain amount of
work is required to get a new neuron or synapse class recognized by SpikeStream so that it can

run in a distributed manner.

IMPORTANT NOTE: Adding and removing synapse classes should be done without
SpikeStream running or you will get errors from the Neuron and Synapse parameters dialogs,
which only load up the Neuron and Synapse type information once during initialization of
SpikeStream. Errors can also occur when you load a database with different neuron and synapse
types or with a different TypelD from the existing types. Restarting SpikeStream usually

resolves the problem.

A1.12.2 Creating Neuron and Synapse Classes

Extend the Neuron or Synapse Class
The first stage is to write the code for the neuron or synapse classes, which should extend the
Neuron or Synapse classes in $SPIKESTREAM_ROOT/spikestreamsimulation/src. More
information about these classes can be found in the online source documentation, available on
the project website http://spikestream.sourceforge.net/pages/documentation.html

The easiest place to start when writing your own neurons or synapses is to look at
STDP1Neuron and STDP1Synapse and tweak these to match your own neuron or synapse model
or learning rule. These examples also illustrate some of the areas that need to be handled

carefully by a neuron or synapse class. The methods that you need to extend are now covered.
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Synapse.h

virtual const string* getDescription() = 0; Returns a descriptive name for the synapse,
which can be useful for debugging class loading. The class that invokes this method is
responsible for cleaning up the string.

virtual short getShortWeight() = 0; Returns the weight as a short between
MIN_SHORT_WEIGHT and MAX_SHORT_WEIGHT (defined in Synapse.h). This is a
virtual method because some implementations may need the state of the weight to be
calculated retrospectively.

virtual double getWeight() = 0; Returns the weight as a double between
MIN_DOUBLE_WEIGHT and MAX_DOUBLE_WEIGHT. This is a virtual method
because some implementations may need the state of the weight to be calculated
retrospectively.

virtual bool parametersChanged() = 0; Called when the parameters of the synapse
have changed. The parameters of the synapses are held as references to parameter maps
and when these are reloaded this method is called.

virtual void processSpike() = 0; Called when a spike is routed to this synapse. In event-
based simulation the synapse should be updated by this method.

virtual void calculateFinalState() = 0; Called to update synapse class when all synapses
are being updated at each time step. This method is never called during event based
simulation. In this mode, the synapse class is only updated whenever it processes a spike.
virtual string getMonitoringInfo(); This method returns a string containing an XML
description of the variables that are available for monitoring within this class. Overload
this method and getMonitoringData() if you want to send monitoring information back to
the main application. This will enable you to view a graph of the weight, for example, as

described in Section A1.7.5.
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virtual MonitorData* getMonitoringData(); Returns a monitor data struct (defined in
GlobalVariables.h) containing the data that is being monitored. This returned data must

match that defined in the string returned by getMonitoringInfo();

Neuron.h

virtual void calculateFinalState() = 0; Calculates the final state of the neuron after all
spikes have been received. In synchronous simulation mode all neurons have this method
called on them at the end of each simulation step.

virtual void changePostSynapticPotential(double amount, unsigned int
preSynapticNeuronID) = 0; This method is called when a synapse changes the
membrane potential of the neuron. The neuron should update itself when this method is
called by calling calculateFinalState().

virtual const string* getDescription() = 0; Returns a description of this neuron class for
debugging only. Destruction of the new string is the responsibility of the invoking
method.

virtual bool setParameters(map<string, double> paramMap) = 0; Sets the parameters
of the neuron. These should be defined in their own database, whose name is listed in the
NeuronTypes database. This method is called on only one instance of the neuron class
with the parameters being set and held statically. The parametersChanged() method is
called after the static setting of the parameters to inform each neuron class that the
parameters have changed.

virtual void parametersChanged() = 0; Called after the parameters have been statically
changed to inform each neuron class that the parameters have been changed. This enables
them to update their weights, for example, after learning has been switched off.

virtual string getMonitoringInfo(); This method returns a string containing an XML

description of the variables that are available for monitoring within this class. Overload
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this method and getMonitoringData() if you want to send monitoring information back to
the main application. This will enable you to view a graph of the membrane potential, for
example, as shown in Section A1.7.5.

« virtual MonitorData* getMonitoringData(); Returns a monitor data struct (defined in
GlobalVariables.h) containing the data that is being monitored. This returned data must

match that defined in the string returned by getMonitoringInfo();

A1.12.3 Build and Install Library

When you have created your neuron and synapse classes, compile them as .so libraries and copy
them to $SPIKESTREAM_ROOT/lib. They need to have the standard library name format, such
as libstdplneuron.so for a “stdplneuron” library. More information about this procedure can be
found at: http://www.linux.org/docs/ldp/howto/Program-Library-HOWTO/shared-libraries.html.
When your neuron class calls methods that are unique to the synapse class — i.e. methods that are
not present in Synapse.h — you need to link against the synapse library to build the neuron class.
This can be done by passing information about the dynamic synapse library to gcc when you
build the neuron class. However, to run a simulation using the neuron class, the dynamic library
that you have linked against needs to be accessible by the operating system in one of the known
locations.' This can be done in one of three ways, which have to be carried out on every machine

that you run the simulation on.

Method 1: Change the LD_LIBRARY_PATH Environment Variable
One way to ensure that the operating system can find the dynamic libraries is to add the location
of your neuron and synapse libraries to the system path. This can be done by adding the

following line to your .bashrc file:

1 This step could probably be avoided by linking the neuron or synapse class against a static version of the other
neuron or synapse class. However, I have not tried this yet and it is probably more memory efficient to use a
dynamic library.
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LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${SPIKESTREAM_ROGQib

This can work fine if you are running SpikeStream on a single workstation, but it is likely to

cause problems running across multiple machines and is not recommended anyway.

Method 2: Add Links to Library in /usr/local/lib
This method creates a link from /ust/local/lib to the location of your libraries. For example, to
install STDP1Synapse, change to /usr/local/lib, log in as root and create the links using the

following command:

In -s /home/davidg/spikestream/lib/libstdplsynapse .SO

libstdplsynapse.so.l

This may have to be done using the full address of the library if SPIKESTREAM_ROOT has
only been defined for the user shell. The advantage of this approach is that it makes it easy to
update the libraries when developing the neuron and synapse classes and it is more portable
across systems. This approach is implemented by the InstallSpikeStream script, which is used to

install the neuron and synapse classes included in the SpikeStream distribution (see Section

A1.2.4).

IMPORTANT NOTE: You should only install links to these libraries as root if you are the sole
user of SpikeStream on the system. Otherwise you may end up dynamically loading another

user's libraries!

Method 3: Copy Library to /user/local/lib

If your dynamic libraries are rarely going to change, it makes more sense to install them
permanently by copying them to /ust/local/lib, rather than linking from /usr/local/lib to
somewhere else on the system. This approach only makes sense if the other parts of SpikeStream
were installed in /usr/local/bin as well. Since SpikeStream is still in the process of development,

this option is not recommended at this stage.
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IMPORTANT NOTE: You should only install these libraries as root if you are the sole user of
SpikeStream on the system. Otherwise you may end up dynamically loading another user's

libraries!

A1.12.4 Update Database

The final stage is to add appropriate entries and tables to the Neural Network database so that
networks can be created and simulated using the new neuron classes. This involves updating the
neuron and synapse types and adding tables for the neuron and synapse parameters. In these

examples, the neuron and synapse classes will be called Example Neuron and Example Synapse.

Add Neuron and Synapse Types

The NeuronTypes and SynapseTypes tables in the NeuralNetwork database hold information
about all of the available neuron and synapse types. To use your new neuron and synapse classes
in SpikeStream, they must have an entry in these tables. Before adding a new neuron type, select
a TypelD. This is a unique identifier for your neuron type which must not conflict with any of
the existing types. In this example, I have selected a TypelD of 2 since the only neuron class
currently in the database is an STDP1Neuron with a TypelD of 1. To add a new neuron type, use

the following SQL.:
USE NeuralNetwork;

INSERT INTO NeuronTypes(Typel D, Descri ption, ParaneterTabl eNane,
Cl assLi brary) VALUES (1, "Exanple Neuron", "Exanpl eNeuronParaneters",

"I i bexanpl eneuron. so");

The SQL for adding a new synapse type is similar:
USE NeuralNetwork;

INSERT INTO SynapseTypes(Typel D, Description, ParaneterTabl eNane,
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Cl assLi brary) VALUES (1, "Exanmple Synapse", "Exanpl eSynapseParaneters",

"Ii bexanpl esynapse. so");

Add Parameter Tables

Each neuron and synapse class has an associated parameter table in which the parameters for the
neuron or synapse model can be set individually for each neuron or connection group, which
have entries in the appropriate table. In order for this to work, the parameter table has be set up
in a specific fashion. The SQL for the STDP1Neuron and STDP1Synapse parameter tables is

given below:

USE Neur al Net wor k;

CREATE TABLE STDP1Neur onPar aneters (

Neur onG pl D SMALLI NT UNSI GNED NOT NULL,

Cal ci um ncreaseAmt val DOUBLE DEFAULT 1. 0,

Cal ci um ncreaseAmt _desc CHAR(100) DEFAULT "Cal ci um i ncrease anmount",
Cal ci unDecayRat e_val DOUBLE DEFAULT 60. 0,

Cal ci umDecayRat e_desc CHAR(100) DEFAULT "Cal ci um decay rate",
RefractoryPeri od_val DOUBLE DEFAULT 1.0,

Refract oryPeri od_desc CHAR(100) DEFAULT"Refractory period (ms)",
Menbr aneTi neConst ant _val DOUBLE DEFAULT 3. 0,

Menbr aneTi meConst ant _desc CHAR(100) DEFAULT "Menbrane time constant (ns)",
Ref ract or yPar anM val DOUBLE DEFAULT 0. 8,

Ref ract or yPar amM desc CHAR(100) DEFAULT "Refractory parameter M,

Ref ract oryPar anN_val DOUBLE DEFAULT 3. 0,

Ref ract oryPar anmN_desc CHAR(100) DEFAULT "Refractory parameter N',
Threshol d_val DOUBLE DEFAULT 1.0,

Threshol d_desc CHAR(100) DEFAULT " Threshol d",

Lear ni ng_val BOOLEAN DEFAULT 0,

Learni ng_desc CHAR(100) DEFAULT " Learni ng",

PRIMARY KEY (NeuronG plD));
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CREATETABLE STDP1SynapseParaneters (

ConnG pl D SMALLI NT UNSI GNED NOT NULL,

Lear ni ng_val BOOLEAN DEFAULT 0,

Learni ng_desc CHAR(100) DEFAULT " Lear ni ng",

Di sabl e_val BOOLEAN DEFAULT O,

Di sabl e_desc CHAR(100) DEFAULT "Di sabl e",

Cal ci uniThr eshUpLow_val DOUBLE DEFAULT 30. 0,

Cal ci umThr eshUpLow_desc CHAR(100) DEFAULT "Cal ci um threshold up | ow',
Cal ci uniThr eshUpHi gh_val DOUBLE DEFAULT 120. 0,

Cal ci umThr eshUpHi gh_desc CHAR(100) DEFAULT " Cal ci um threshol d up high",
Cal ci umrhr eshDownLow _val DOUBLE DEFAULT 30. 0,

Cal ci umrhr eshDownLow_desc CHAR(100) DEFAULT " Cal ci umt hreshol d down | ow',
Cal ci unThr eshDownHi gh_val DOUBLE DEFAULT 40. 0,

Cal ci umrhr eshDownHi gh_desc CHAR(100) DEFAULT " Cal ci um t hreshol d down hi gh",
Wi ght ChangeThr eshol d_val DOUBLE DEFAULT 0. 8,

Wei ght ChangeThr eshol d_desc CHAR(100) DEFAULT "Wi ght change threshol d",
Wi ght | ncr easeAmt _val DOUBLE DEFAULT 0. 1,

Wei ght I ncreaseAmt _desc CHAR(100) DEFAULT "Wei ght i ncrease amunt”,

Wei ght Decr easeAmt _val DOUBLE DEFAULT 0. 1,

Wei ght Decr easeAmt _desc CHAR(100) DEFAULT "Wei ght decrease ampunt”,
PRIMARY KEY ( ConnGrpl D)) ;

As you can see from the examples, each parameter table has a neuron or connection group ID as
its primary key. The parameters themselves can either be boolean, which appears as a check box
in the parameter dialog, or doubles. Each value is defined using ExampleName_val, which stores
the value of the parameter and has the specified default, and ExampleName_desc, whose default
is the description of the value. As long as these conventions are adhered to in your parameter

tables, you should be able to set the parameters using the Neuron Parameters Dialog and Synapse

Parameters Dialog and the simulation should be able to access them without problems.
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APPENDIX 2
NETWORKANALYZER

A2.1 Introduction

This appendix gives a brief overview of the Network Analyzer software, which has
approximately 10,000 source lines of code' and was used for the analysis work in this thesis.
There has been no formal release of Network Analyzer, but the source code is included in the

Supplementary Materials. A brief overview of the main features of this software now follows.

A2.2 Representation Analyzer

Representation Analyzer identifies representational mental states in the network using the
method set out in Section 7.3.3. It includes 2D and 3D plotting tools to display the mutual

information between neurons at different steps back in time.

' Calculated using Wheeler’s SLOCCount software. More information about Wheeler’s measure can be found at:
http://www.dwheeler.com/sloc/.
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Figure A2.3. 2D mutual information plotter

A2.3 Phi Analyzer

Phi Analyzer identifies the complexes in the network using the method described in Section
7.4.2. The neuron IDs in a current subset or complex can be viewed and used to highlight the

SpikeStream network.



[ 368 ]

Network Analyzei

File

Representations ‘Phi |XMLBuiIdcr |

@ | Select Neuron Groups | O

| Parameters | | Reset | Seed: 126378 Neuron: 123768 Phi: 56.8047
| Start | | Stop | Seedcount 4 Subsetsize: 23 /
I View Current Cluster | Analysis duration: 3 mins 20 secs
Descriptien [Moter Output seed | | Save in File | | savein Database |
|Clushr Size | Phi
22 56.8047 ¥
22 56.8047 M
22 568047
22 56.8047 [

Figure A2.4. Phi Analyzer

A2.4 XML Builder

XML Builder was used to construct the final sequence of XML files that describe the predicted

phenomenology of the network.



R S

File

Representations |Phi |XMLBuiIdcr l

| Reset |

Author(s): |David Gamez | Description: [Sym‘hetic phenomenolegy of the SIMNOS virtual robot

System(s): [SIMNOS version 1.0; SpikeStream version 0.1 |

[ Source Files |
i Archive | Analysis Run1 [2007-12-18 20:42:55 ]

| causal Analysis |

[ Phi Analysis |
Start time step 5068 | Number of time steps
[ Build | | Stop | Processed time step 0 outof ©

Figure A2.5. XML Builder

[ 369 ]



[ 370 ]

APPENDIX 3
SEED AND GROUP ANALYSES

A 3.1 Introduction

This appendix presents the detailed results from the seed and group information integration

analyses.

A3.2 Complexes Found using Seed Expansion Method

This section presents the complexes that were found in the network using the seed expansion
method. All of these results were brought together in the general discussion of the information
integration of the network in Section 7.4.6. To present the results as clearly as possible the
neuron groups in the figures are labelled using the IDs in Table A3.1, which correspond to the
IDs that were used for these neuron groups in the database. The full results are included as XML

files in the Supporting Materials.

ID | Neuron Group

24 | Vision Input

28 | Red Sensorimotor

29 | Blue Sensorimotor

62 | Emotion

34 | Inhibition

61 Motor Cortex

60 | Motor Integration

54 | Eye Pan

55 | Eye Tilt

53 | Motor Output

Table A3.1. Neuron group IDs
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A3.2.1 Vision Input

Since this layer contained over 8,000 neurons, it was decided to start with a maximum subset
size of 50. All of the seeds in this neuron group expanded to small complexes of approximately
30 neurons with @ ranging from 75-91. Most of the neurons in these complexes were in

Inhibition, as shown in Figure A3.1. The analysis took 4.5 days.

Parameter Value
Max number of bipartitions per level 5
Percentage of bipartition levels 50
Expansion rate per connection group 1
Maximum subset size 50
Maximum number of consecutive expansion failures per connection group | 5
Only examine equal bipartitions false

Table A3.2. Parameters for seed-based Vision Input analysis

Figure A3.1. Typical complex found during expansion of seeds in Vision Input

A3.2.2 Blue Sensorimotor

This was a large layer with over 4,000 neurons, and so it was decided to start with a maximum

subset size of 50. About 2500 of the seeds in this layer expanded into small complexes with @
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ranging from 26-93. Most of the neurons in these complexes were in Inhibition, as shown in

Figure A3.2. The analysis took 2 days.

Parameter Value
Max number of bipartitions per level 5
Percentage of bipartition levels 50
Expansion rate per connection group 1
Maximum subset size 50
Maximum number of consecutive expansion failures per connection group | 5
Only examine equal bipartitions false

Table A3.3. Parameters for seed-based Blue Sensorimotor analysis

A

Figure A3.2. Typical complex found during seed-based Blue Sensorimotor analysis

A3.2.3 Red Sensorimotor

This was a large layer with over 4,000 neurons, and so it was decided to start with a maximum
subset size of 50. About 3200 of the seeds in this layer expanded into small complexes with @
ranging from 26-93. Most of the neurons in these complexes were in Inhibition, as shown in

Figure A3.3. The analysis took 2.5 days.



Parameter Value
Max number of bipartitions per level 5
Percentage of bipartition levels 50
Expansion rate per connection group 1
Maximum subset size 50
Maximum number of consecutive expansion failures per connection group | 5
Only examine equal bipartitions false

Table A3.4. Parameters for seed-based Red Sensorimotor analysis

x

Figure A3.3. Typical complex found during seed-based Red Sensorimotor analysis

A3.2.4 Inhibition
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The seeds in Inhibition expanded their connections with Vision Input into a subset that had a

relatively low @ of about 6 (see Figure A3.4). Each expansion increased the ® value by a small

amount, but since there were 8192 connections between each neuron in Inhibition and Vision

Input, all of the subsets expanded beyond the maximum subset size of 150. After eleven seeds

had been expanded without a complex being found, the expansion rate was changed to 10 to

speed up the analysis, which took 3.5 days.
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Parameter Value
Max number of bipartitions per level 25
Percentage of bipartition levels 100
Expansion rate per connection group 10
Maximum subset size 150
Maximum number of consecutive expansion failures per connection group | 10
Only examine equal bipartitions false

Table A3.5. Parameters for seed-based Inhibition analysis

Figure A3.4. Subset during seed-based Inhibition analysis

A3.2.5 Motor Output

Most of the seeds in this layer expanded into a complex with 23 neurons and ® = 56.8 that
included most of Inhibition (see Figure A3.5). A number of seeds also expanded into complexes
with 71-91 neurons that included a number of different neuron groups and had ® ranging from
80-103. One of these turned out to be the main complex, which is shown in Figure A3.6. Only

one seed expanded beyond the maximum subset size of 150 neurons. The analysis took 7.5 days.
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Parameter Value
Max number of bipartitions per level 25
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 150
Maximum number of consecutive expansion failures per connection group | 10
Only examine equal bipartitions false

Table A3.6. Parameters for seed-based Motor Output analysis

Figure A3.5. Typical small complex found during seed-based Motor Output analysis
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Figure A3.6. Larger complex found during seed-based Motor Output analysis. This is the main complex of the

network.

A3.2.6 Eye Pan

One of the seeds in this layer expanded to more than 150 neurons and three seeds expanded to
complexes with 12 neurons and ® = 4.7, an example of which is shown in Figure A3.7. The fifth
seed expanded to a complex with 77 neurons and ® = 59.2, which included neurons from a

number of different groups including Inhibition. The analysis took 4 days.

Parameter Value
Max number of bipartitions per level 50
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 150
Maximum number of consecutive expansion failures per connection group | 10
Only examine equal bipartitions false

Table A3.7. Parameters for seed-based Eye Pan analysis
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Figure A3.7. Typical small complex found during seed-based Eye Pan analysis

A3.2.7 Eye Tilt

One of the seeds in this layer expanded into a complex with 69 neurons and @ =46, which is
shown in Figure A3.8. The other four seeds expanded into complexes with 12 neurons and

® = 4.7, an example of which is shown in Figure A3.9. The analysis took 9 hours.

Parameter Value
Max number of bipartitions per level 50
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 150
Maximum number of consecutive expansion failures per connection group | 10
Only examine equal bipartitions false

Table A3.8. Parameters for seed-based Eye Tilt analysis



[ 378 ]

A
Figure A3.8. Large complex found during seed-based Eye Tilt analysis

Figure A3.9. Small complex found during seed-based Eye Tilt analysis

A3.2.8 Motor Integration

12 of the seeds expanded into small complexes with 4 neurons and @ = 4.0, as shown in Figure
A3.10. The rest of the seeds expanded into subsets larger than 150 neurons with higher values of

®, as shown in Figure A3.11. The analysis took 9.5 days.



Only examine equal bipartitions

Parameter Value
Max number of bipartitions per level 25
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 150
Maximum number of consecutive expansion failures per connection group | 10
false

Table A3.9. Parameters for seed-based Motor Integration analysis

i
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Figure A3.11. Subset during seed-based Motor Integration analysis
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A3.2.9 Motor Cortex

This layer has 400 neurons, and so it was decided to start with a maximum subset size of 50.
Since this layer has a large number of recurrent connections, it was anticipated that the seeds
would expand into complexes that included the whole of Motor Cortex and possibly more.
During the analysis all of the seeds in this neuron group expanded into subsets greater than 50

neurons.

Parameter Value
Max number of bipartitions per level 10
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 50
Maximum number of consecutive expansion failures per connection group | 10
Only examine equal bipartitions false

Table A3.10. Parameters for seed-based Motor Cortex analysis

A3.2.10 Emotion

Most of the seeds in this layer expanded into a complex of 25 neurons that included the whole of
Emotion and had @ =79.9. One seed expanded into a complex with 39 neurons and @ = 74.4.

The analysis took approximately 20 hours.

Parameter Value
Max number of bipartitions per level 50
Percentage of bipartition levels 100
Expansion rate per connection group 1
Maximum subset size 200
Maximum number of consecutive expansion failures per connection group | 10
Only examine equal bipartitions false

Table A3.11. Parameters for seed-based Emotion analysis
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A 3.3 Calculation of ® on Neuron Groups(s)

Although 14,528 complexes were identified with the seed expansion method, the limit on subset
size meant that many complexes could not be identified and the information integration of many
neurons was not known — a problem that was particularly apparent in Motor Cortex and Motor
Integration. To close these gaps in the analysis, the ® calculation was also run on individual
neuron groups and on combinations of connected neuron groups, up to a maximum size of about
700 neurons, which was the largest subset that could be analyzed in the time available. Neuron
groups without recurrent connections — Blue Sensorimotor, Red Sensorimotor, Vision Input, Eye
Pan, Eye Tilt, Motor Integration, and Motor Output - were only analyzed in combination with
other neuron groups because they would have had zero @ on their own.

To measure the effect of the approximations described in Section 7.4.4, these group
analyses were also run with five bipartitions per level and using only equal bipartitions.
However, only the values with the least approximation were used to generate the XML
descriptions in Section 7.9. The results are presented in Table A3.12 and included as XML files
in the Supporting Materials. These group analysis results are not complexes because it has not
been shown that they are not included within a subset of higher ®. To make this distinction clear

they are referred to as clusters in this thesis.
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Neuron Group(s) Size | ® Parameters Analysis
Time

la 77.3 | All bipartition levels, 50 bipartitions per level | 8 seconds

1b | Inhibition 25 77.3 | Equal bipartitions, 50 bipartitions per level 8 seconds

Ic 77.3 | All bipartition levels, 5 bipartitions per level 7 seconds

2a 79.9 | All bipartition levels, 50 bipartitions per level | 8 seconds

2b | Emotion 25 79.9 | Equal bipartitions, 50 bipartitions per level 7 seconds

2c 80.2 | All bipartition levels, 5 bipartitions per level 7 seconds

3a 7.1 | All bipartition levels, 50 bipartitions per level | 17 seconds

3b | Emotion + Inhibition 50 | 7.1 | Equal bipartitions, 50 bipartitions per level 7 seconds

3c 7.1 | All bipartition levels, 5 bipartitions per level 8 seconds

4a 8.4 | All bipartition levels, 50 bipartitions per level | 3 days
Inhibition + Motor 700 . . ]

4b Output 8.4 | Equal bipartitions, 50 bipartitions per level 9 minutes

4c 8.4 | All bipartition levels, 5 bipartitions per level 6 hours

Sa 17.9 | All bipartition levels, 50 bipartitions per level | 12 hours

5b | Motor Cortex 400 | 17.9 | Equal bipartitions, 50 bipartitions per level 3 minutes

5c 17.9 | All bipartition levels, 5 bipartitions per level 1 hour

6a 58.7 | All bipartition levels, 50 bipartitions per level | 16 hours
Motor Cortex + Motor — — ]

6b Integration 425 1805 Equal bipartitions, 50 bipartitions per level 3.5 minutes

6¢ 58.7 | All bipartition levels, 5 bipartitions per level 1.3 hours

Ta 31.8 | All bipartition levels, 50 bipartitions per level | 8 seconds
Motor Integration + Eye 35 . .

75 | Pan + Eye Tilt 36.2 | Equal bipartitions, 50 bipartitions per level 7 seconds

Tc 31.8 | All bipartition levels, 5 bipartitions per level 7 seconds

.7 | All bipartition level ipartiti level |16.5h

8a Motor Cortex + Motor 58.7 bipartition levels, 50 bipartitions per leve 6.5 hours

8b | Integration + Eye Pan+ | 435 |80.7 | Equal bipartitions, 50 bipartitions per level 4 minutes
Eye Tilt

8c 58.7 | All bipartition levels, 5 bipartitions per level 1.3 hours

9a Motor Integration + Eye 46.8 | All bipartition levels, 50 bipartitions per level | 7 days

9b | Pan+Eye Tilt+ Motor | 735 | 46.8 | Equal bipartitions, 50 bipartitions per level 22 minutes
Output + Inhibition

9c 46.8 | All bipartition levels, 5 bipartitions per level 13.5 hours

Table A3.12. Neuron group(s) analysis results. The ‘b’ analyses use equal bipartitions, the ‘c’ analyses use only 5

bipartitions per level. Only the more accurate ‘a’ values were used to generate the XML description in Section 7.9.
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APPENDIX 4
GAMEZ PUBLICATIONS RELATED
TO MACHINE CONSCIOUSNESS

Gamez, D. (2005). An Ordinal Probability Scale for Synthetic Phenomenology. In R. Chrisley,
R. Clowes and S. Torrance (eds.), Proceedings of the AISBO5 Symposium on Next

Generation approaches to Machine Consciousness, Hatfield, UK, pp. 85-94.

Gamez, D. (2006). The XML Approach to Synthetic Phenomenology. In R. Chrisley, R. Clowes
and S. Torrance (eds.), Proceedings of the AISBO6 Symposium on Integrative Approaches

to Machine Consciousness, Bristol, UK, pp. 128-35.

Gamez, D. (2007a). Progress in Machine Consciousness. Consciousness and Cognition

doi:10.1016/j.concog.2007.04.005, in press.

Gamez, D. (2007b). SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks. In J.
Marques de S4, L.A. Alexandre, W. Duch and D.P. Mandic (eds.), Proceedings of ICANN

2007, Lecture Notes in Computer Science Volume 4668, Springer Verlag, pp. 370-9.
Gamez, D. (2007¢). What We Can Never Know. London & New York: Continuum.

Gamez, D., Taffler, S., Delbruck, T. and Ponulak, F. (2006a). A Distributed Saliency System
using Ethernet AER. Report on the 2006 Workshop on Neuromorphic Engineering,
Telluride, pp. 45-52. Available at: http://ine-web.org/fileadmin/templates/_docs

/report06_2.pdf.

Gamez, D., Newcombe, R., Holland, O. and Knight, R. (2006b). Two Simulation Tools for
Biologically Inspired Virtual Robotics. Proceedings of the IEEE 5th Chapter Conference

on Advances in Cybernetic Systems, Sheffield, pp. 85-90.
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