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State space is the set of all possible states of a dynamical system; each 
state of the system corresponds to a unique point in the state space. For 
example, the state of an idealized pendulum is uniquely defined by its 
angle and angular velocity, so the state space is the set of all possible pairs 
"(angle, velocity)", which form the cylinder , as in Fig.1.  

In general, any abstract set could be a state space of some dynamical 
system. A state space could be finite, consisting of just a few points. It 
could be finite-dimensional, consisting of an infinite number of points 
forming a smooth manifold, as usually the case in ordinary differential 
equations and mappings. Such a state space is often called a phase space. 
A state space could be infinite-dimensional, as in partial differential 
equations and delay differential equations. In symbolic dynamics it is a 
Cantor set, which is zero-dimensional.  

The number of degrees of freedom of a dynamical system is the 
dimension of its phase space, i.e., the number of variables the modeler 
feels is needed to completely describe the system. In the context of 
Hamiltonian systems, the number of degrees of freedom is the number of 
pairs of state variables.  

Phase portrait 

Dynamical regimes, such as a resting state or periodic oscillation, correspond to geometric objects, such as a point 
or a closed curve, in the phase space. Evolution of a dynamical system corresponds to a trajectory (or an orbit) in 
the phase space. Different initial states result in different trajectories. The set of of all trajectories forms the phase 
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Figure 1: Phase portrait of a damped 
pendulum with a torque (see VCON). Contents 
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portrait of a dynamical system, though in practice, only representative trajectories are considered. Since it is 
usually impossible to derive an explicit formula for the solution of a nonlinear equation, the analysis of phase 
portraits provides an extremely useful way for visualizing and understanding qualitative features of solutions.  

Phase line 

When the state of a dynamical system can be specified by a scalar value  then the system is one-

dimensional. Often, only a subset of the phase line  corresponds to physically meaningful states of the 
system, and it is often more natural to consider one-dimensional phase spaces in the form of intervals and circles. 
For example, the system could be a chemical reaction characterized by the concentration of a reagent or an RC-
circuit characterized by the voltage across the capacitor. Notice that the former case, only non-negative values of 

 can be used, so the phase space is .  

One-dimensional systems are often given by the ordinary differential equation (ODE) of the form  

, 

 

where  is the derivative of the state variable  with respect to time . This ODE is autonomous, 
i.e.,  does not explicitly depend on the time .  

The phase line of a 
one-dimensional ODE 
is partitioned by the 
equilibria (points 
where ) and 
trajectories that 
connect the equilibria, 
as in Fig.2. The 
stability of the 
equilibria are 
determined by the 
directions of trajectories, which depend on the sign of the right-hand side function . One does not need to 
solve this equation, or even know the exact details of the function  to predict the dynamics of the system 
and its dependence on the initial condition; it is apparent from the phase portrait.  

One-dimensional systems can also be given by the iterated mapping in the form  

, 

 

where the state at time  is a function of the state at time . Phase portraits of such systems can be quite 
complicated, especially when the dynamics is chaotic. One-dimensional state spaces can also be more 
complicated, like graphs or dendrites.  

Phase plane 

Phase planes typically 
arise in the context of 
two-dimensional autonomous ODEs, which can be written in the form  

 

Figure 2: Phase portrait of  depicts equilibria and typical trajectories on the the 

phase line  (reproduced from equilibrium). 
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.  

Here,  and  are 
given (smooth) 
functions. The two 
variables could 
describe, e.g., the 
position and velocity 
of a particle, the state 
of a predator-prey 
system, or 
concentrations of two 
reagents in a 
homogeneous chemical 
reaction.  

If  is a solution of the system, then at each time ,  defines a point in the phase 
plane. The point changes with time, so the entire solution, , traces out a curve, or trajectory, in the 
phase plane.  

Of course, not every arbitrarily drawn curve in the phase plane represents a solution. What is special about 
solution trajectories is that the velocity vector at each point along the trajectory is given by the right hand side of 
the differential equation above. That is, the velocity vector of the trajectory  at a point  
is given by . This geometric property -- that the vector 

 always points in the direction that the solution is flowing -- completely characterizes the 
solution trajectories (considered as subsets of the phase space). The function that assigns  to 

 is called the vector field.  

Equilibrium points of the two-dimensional dynamical system are where both  and . Note that if 
 is an equilibrium, then  for all time is a (constant) solution of the system. 

Equilibria can be either stable or unstable.  

A non-constant solution  of a dynamical 
system is periodic if  for 
some . The minimal  that satisfies this 
requirement is called the period. Because 

 for all , a 
periodic solution corresponds to a closed curve in the 
phase plane. Periodic solutions can be either stable or 
unstable. Roughly speaking, a periodic solution is stable 
if solutions that begin near the closed curve remain near 
for all  (this corresponds to orbital stability of a 
periodic orbit).  

It is usually much more difficult to locate periodic 
solutions than it is to locate equilibria. An equilibrium 
point  satisfies the equations 

 and these equations can 
usually be solved with straightforward numerical 

 
Figure 3: The phase plane. The right hand side of the two-dimensional dynamical system 
defined a vector field. Solutions of the equations define curves or trajectories in the phase 

plane. The vector field always points in the direction that the trajectories are flowing. 

 
Figure 4: Periodic solutions correspond to closed curves 

in the phase plane. 
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methods. We also note that an equilibrium is a local 
object -- it is simply one point in phase space. Oscillations or periodic orbits are global objects; they correspond to 
an entire curve in phase space that retraces itself. This curve may be quite complicated.  

Two-dimensional phase spaces also arise in discrete dynamical systems of the form  

 

 

.  

In general, as in the continuous-time case, the phase space could be a subset of , or any surface with or without 
a boundary.  

Higher dimensional systems 

More generally, consider a system of -first order differential equations of the form: 

 

. 

 

The phase space is simply -dimensional Euclidean space and every solution, , corresponds to a trajectory 
in phase space parametrized by the independent variable . As before,  defines a vector field in the phase 
space; at each point, , the vector  must be tangent to the solution curve . Moreover, equilibria 
are where  and periodic solutions correspond to closed orbits.  

Similarly, -dimensional phase spaces arise in iterated mappings 
 

, , 

 

and it is often more natural to consider subsets of  or -dimensional manifolds. 

 

Abstract state spaces 

According to the most abstract definition, a dynamical system is homomorphism of an Abelian group (or 
semigroup) to a group of all automorphisms (endomorphisms in the case of semigroups) of a space . The space 

 is the state space of the dynamical system by definition. It could be any space with any topology or no 
topology at all; it could be finite or infinite. The abstract state spaces (with no structure) are typically considered 
by iteration theory, probability spaces by the ergodic theory, and topological spaces by dynamical systems theory, 
though often the former two theories are included into the dynamical systems theory. In applications, the choice of 
the state space should reflect the constrains of the system under consideration and must be as simple and intuitive 
as possible.  

Examples  

A simple phase portrait 

Consider the system  
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Note that there are two equilibria; these are at  and 
. Using the linearization method, we find that 
 is a saddle and  is a stable node. A useful 

way to analyze the phase plane is to draw the nullclines. 
The -nullcline is where ; this is the curve 

. Along the -nullcline, the vector field 

points either up or down, depending on the sign of . 
The -nullcline is where ; this is the curve 

. Along the -nullcline, the vector field points to 
the left or to the right, depending on the sign of . Note 
that the nullclines divide the phase plane into separate 
regions; all of the vectors within a given region point 
towards the same quadrant. Once we have located the 
equilibria and have drawn the nullclines, it is usually 
possible to predict the behavior of the solution with some 
prescribed initial condition.  

The pendulum 

The equation for a pendulum can be written as  where  is the angle from the downward 
vertical. In order to use phase plane analysis, we write this second order differential equation as the first order 
system:  

 

 

Note that there are infinitely many equilibria; these are at  where  is any integer. There is no 
physical difference between angles that differ by  so we will only consider the equilibria at  and  
(i.e., we consider the phase plane as the covering space for the cylinder). Using the linearization method, we find 
that  is a saddle; the eigenvalues are . The eigenvalues at the origin are . Since these lie on the 
imaginary axis, we cannot determine the stability properties of the origin directly from the linearization method.  

In order to draw the phase portrait, we use the fact that this system is conservative. That is, the total energy 

 is constant along solution trajectories. This can be easily verified by differentiating 

 
Figure 5: This example phase plane has equilibria at 
(0,0) and (2,2). The nullclines are shown with dashed 

curves and some trajectories are shown with solid 
curves. 

 
Figure 6: Phase portrait of the pendulum equation. 
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 with respect to  and using the differential equation. Trajectories in the phase plane then 
represent curves of constant energy.  
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