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State space is the set of all possible states of a dynamigsiesn; each
state of the system corresponds to a unique poithtei state space. For
example, the state of an idealized pendulum isuetigdefined by its
angle and angular velocity, so the state spadeisdt of all possible pai

"(angle, velocity)", which form the cylinde S* x B | asfig.1.

In general, any abstract set could be a state sjfamme dynamical
system. A state space couldfbete, consisting of just a few points. It
could befinite-dimensional, consisting of an infinite number of points
forming a smooth manifold, as usually the caserdinary differential
equations and mappings. Such a state space isaaited aphase space.
A state space could befinite-dimensional, as in partial differential
equations and delay differential equations. In sgictdynamics it is a
Cantor set, which izero-dimensional.

The number oflegr ees of freedom of a dynamical system is the
dimension of its phase space, i.e., the numbeanébles the modeler

feels is needed to completely describe the sydtethe context of
Hamiltonian systems, the number of degrees of treeis the number of v
pairs of state variables.

Figure 1: Phase portrait of a damped
Contents pendulum with a torque (see VCON).
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Phase portrait
Dynamical regimes, such as a resting state or gerascillation correspond to geometric objects, such as a

or a closed curve, in the phase space. Evolutiandyinamical system corresponds to a trajectorarasrbit) in
the phase space. Different initial states resutlifferent trajectories. The set of of all traje¢s forms thephase
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portrait of a dynamical system, though in practice, onfyreésentative trajectories are considered. Sinise it
usually impossible to derive an explicit formula ftbe solution of a nonlinear equation, the analg$iphase
portraits provides an extremely useful way for gi&ing and understanding qualitative featuresobfitions.

Phaseline

When the state of a dynamical system can be spddify a scalar val. r B!  then the system is one-
dimensional. Often, only a subset of fitease line i corresponds to physically meaningful states ef th

system, and it is often more natural to consider-dimensional phase spaces in the form of interaadkcircles.
For example, the system could be a chemical reactiaracterized by the concentration of a reageahdrC-
circuit characterized by the voltage across theciapr. Notice that the former case, only non-niegatalues of
B! can be used, so the phase spa|[0,00)

One-dimensional systems are often given by thenarglidifferential equation (ODE) of the form
' = flz),

wherer’ = dz/dt is the derivative of the state variczz e hwéispect to tim? . This ODE is autonomous,
i.e., f does not explicitly depend on the tit e

The phase line of a
one-dimensional ODE
is partitioned by the
equilibria (points
where f(z) =0)and
trajectories that
connect the equilibria,

as in Fig.2. The i
stability of the phase line IZ~  (reproduced from equilibrium).

f(x)

unstable

unstable unstable unstable

Figure 2: Phase portrait = _ff;r') depicts equilibria &ypical trajectories on the the

equilibria are

determined by the .

directions of trajectories, which depend on thesiithe right-hand side functic f(z) . One does nethi®
solve this equation, or even know the exact detditbe functior flz) to predict the dynamics of thetsyn
and its dependence on the initial condition; agarent from the phase portrait.

One-dimensional systems can also be given by ¢hatédd mapping in the form

Lip1 = }Cflt.:',
where the state at tint + 1 is a function of the stiaitémet . Phase portraits of such systems canite g
complicated, especially when the dynamics is cba@the-dimensional state spaces can also be more
complicated, like graphs or dendrites.
Phase plane
Phase planes typically

arise in the context of
two-dimensional autonomous ODEs, which can be @riih the form
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system, or Figure 3: The phase plane. The right hand sidaefwo-dimensional dynamical system
concentrations of two defined a vector field. Solutions of the equatidefine curves or trajectories in the phase

. plane. The vector field always points in the diil@tthat the trajectories are flowing.
reagents in a

homogeneous chemicau
reaction.

If (z(t),y(t))is a solution of the system, then at each tt =p, [z (p),y(p)) defines a point in the phase
plane. The point changes with time, so the entiteton, (z(t),¥(t])), traces out a curve, wajectory, in the
phase plane.

Of course, not every arbitrarily drawn curve in gfease plane represents a solution. What is spaoialt

solution trajectories is that the velocity vectbeach point along the trajectory is given by tightrhand side of
the differential equation above. That is, the viyoeector of the trajector (z(t),¥(t)) ata poi(z(p), y(p))

is given by (z',v") = (f(z(p),v(p)),g(z(p),y(p))). This geometric property -- that the vector
(f(z,v),q9(z,¥)) always points in the direction that the solutisfldwing -- completely characterizes the
solution trajectories (considered as subsets optfase space). The function that ass (f [z, v),a(z,u)) to
(z,u) is called thevector field.

Equilibrium points of the two-dimensional dynamisgiktem are where bof =0 ag =0 . Note that if
(zq, ¥a) is an equilibrium, the (z(t),y(t)) = (zq,%) for all time is a (congasolution of the system.
Equilibria can be either stable or unstable.

A non-constant solutio (z(t),¥(t)) of a dynamical
system is periodic i{z(0),¥(0)) = (z(T),y(T)) for
someI’ = 0 . The minimeI" that satisfies this
requirement is called thgeriod. Because

(x(t),u(t)) = (z(t +T),y(t+T)) forall t,a
periodic solution corresponds to a closed curvién

phase plane. Periodic solutions can be eitherestabl :
unstable. Roughly speaking, a periodic soluticstable / 1
if solutions that begin near the closed curve rennaiar ’op
forall t = 0 (this corresponds to orbital stability af A A
periodic orbit). f

:.,g )
It is usually much more difficult to locate periodi i f
solutions than it is to locate equilibria. An edguilum i
point (rg,va) satisfies the equations Figure 4: Periodic solutions correspond to closaues

flza,va) = g(zq, va) = 0 and these equations can in the phase plane.
usually be solved with straightforward numerical
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methods. We also note that an equilibrium is alloca
object -- it is simply one point in phase spacecillzgions or periodic orbits are global objedisey correspond
an entire curve in phase space that retraces. i@l curve may be quite complicated.

Two-dimensional phase spaces also arise in disdyet@amical systems of the form

Lip1 = flzs, yf.j
i1 = alze, ue).

In general, as in the continuous-time case, theg@bpace could be a subse ™ amy surface with or witho
a boundary.

Higher dimensional systems
More generally, consider a systemit f  -first ordéfiedential equations of the form:
u' = F(u), ueR",

The phase space is simjit'  -dimensional Euclideanespnd every solutio ult) | corresponds to a trajgcto
in phase space parametrized by the independemibl@t . As beforeF (u) defines a vector field in thagsh
space; at each poiru(p) ,the vecF (u(p))  must be tartgehe solution curvu(t) . Moreover, equilibria
are whereF' (u) = 0 and periodic solutions correspond tsetl@rbits.

Similarly,  -dimensional phase spaces arise intiégraappings
Uy = Flug), u € R7,
and it is often more natural to consider subse 2" or 12 -dimensional manifolds.

Abstract state spaces

According to the most abstract definitiondynamical system is homomorphism of an Abelian group (or
semigroup) to a group of all automor phisms (endomor phismsin the case of semigroups) of a space -X . The spac
X is the state space of the dynamical system byidefi. It could be any space with any topologynor
topology at all; it could be finite or infinite. Ehabstract state spaces (with no structure) aieatjypconsidered
by iteration theory, probability spaces by the éigaheory,and topological spaces by dynamical systems th
though often the former two theories are included thedynamical systems theory. In applicationghe choice ¢
the state space should reflect the constrainseo$ybtem under consideration and must be as sanpléntuitive
as possible.

Examples
A simple phase portrait
Consider the system

¥ = y—r*+r=r
y = I— 1.
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Note that there are two equilibria; these ar(0,0) and
(2,2). Using the linearization method, we find that
(0,0) is a saddle an(2,2) is a stable node. A usef
way to analyze the phase plane is to draw the Imék.

The = -nullcline is wheriz' = 1 : this is the curve P
y = 1> — 1. Along thex -nullcline, the vector field - (2,2)

points either up or down, depending on the sig y'of
They -nullcline is wheriy’ =0 ; this is the curve

¥ = Along they -nullcline, the vector field points
the left or to the right, depending on the sigi ' f Note
that the nullclines divide the phase plane intcasae
regions; all of the vectors within a given regiair
towards the same quadrant. Once we have located tl
equilibria and have drawn the nuliclines, it is albu

Figure 5: This example phase plane has equililtria a

possible to predict the behavior of the solutiothvgéiome (0,0) and (2,2). The nuliclines are shown with dash
prescribed initial condition. curves and some trajectories are shown with solid
curves.

Figure 6: Phase portrait of the pendulum equation.

The pendulum

The equation for a pendulum can be writterz” 4 sin(z) = 0 & 1 31is the angle from the downward
vertical. In order to use phase plane analysispvite this second order differential equation asfihst order
system:

!

o= u

! = A
y = —sn(x).
Note that there are infinitely many equilibria; $eeare a(z,y) = (kw,0) wherek is any integer. There is no
physical difference between angles that diffe/2z/so we will only consider the equilibria (0,0) a(x,0)
(i.e., we consider the phase plane as the covegage for the cylinder). Using the linearizatiortimoe, we find
that (0, ™) is a saddle; the eigenvalues +1 . The eajees at the origin ai=2 . Since these lie on the
imaginary axis, we cannot determine the stabiligperties of the origin directly from the lineariiman method.

In order to draw the phase portrait, we use thetfat this system is conservative. That is, thalenergy
E(r,y) = ygl_-'f — cos{x) is constant along solution trajectories. This bareasily verified by differentiating
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E(xz(t),y(t)) with respect it and using the differential ecurtiTrajectories in the phase plane then
represent curves of constant energy.
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