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An equilibrium (or equilibrium point) of a dynamical system 
generated by an autonomous system of ordinary differential 
equations (ODEs) is a solution that does not change with time. 
For example, each motionless pendulum position in Fig.1 
corresponds to an equilibrium of the corresponding equations of 
motion, one is stable, the other one is not. Geometrically, 
equilibria are points in the system's phase space.  

More precisely, the ODE  

 

 

has an equilibrium solution  if . Finding 
equilibria, i.e., solving the equation  is easy only in a 
few special cases.  

Equilibria are sometimes called fixed points or steady states. 
Most mathematicians refer to equilibria as time-independent 
solutions of ODEs, and to fixed points as time-independent 
solutions of iterated maps .  

Jacobian Matrix 

The stability of typical equilibria of smooth ODEs is determined by the sign of real part of eigenvalues of the 
Jacobian matrix. These eigenvalues are often referred to as the 'eigenvalues of the equilibrium'. The Jacobian 
Matrix of a system of smooth ODEs is the matrix of the partial derivatives of the right-hand side with respect to 
state variables  
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Figure 1: Illustration of a stable and unstable 

equilibrium point. 
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where all derivatives are evaluated at the equilibrium point . Its eigenvalues determine linear stability 
properties of the equilibrium.  

An equilibrium is asymptotically stable if all eigenvalues have negative real parts; it is unstable if at least one 
eigenvalue has positive real part.  

Hyperbolic Equilibria 

The equilibrium is said to be hyperbolic if all eigenvalues of the Jacobian matrix have non-zero real parts.  

Hyperbolic equilibria are robust: Small perturbations of order , i.e., , do not change 
qualitatively the phase portrait near the equilibria, but only displace equilibria by a small amount proportional to 

.  

Moreover, local phase portrait of a hyperbolic equilibrium of a non-linear system is equivalent to that of its 
linearization. This statement has a mathematically precise form known as the Hartman-Grobman Theorem. It says 
that solutions of  

 

 

in a small neighborhood of a hyperbolic equilibrium can be mapped with a homeomorphism (i.e., continuous map 
with a continuous inverse) onto solutions of the linear system  

, 

 

where  is the Jacobian matrix at the equilibrium. One says that these systems are locally topologically conjugate 
(equivalent). That is, adding nonlinear terms to a linear system at a hyperbolic equilibrium may distort but does 
not change qualitatively the phase portrait near the equilibrium.  

If at least one eigenvalue of the Jacobian matrix is zero or has zero real part, then the equilibrium is said to be 
non-hyperbolic. Non-hyperbolic equilibria are not robust (i.e., the system is not structurally stable): Small 
perturbations can result in a local bifurcation of a non-hyperbolic equilibrium, i.e., it can change stability, 
disappear, or split into many equilibria. Some refer to such an equilibrium by the name of the bifurcation, e.g., 
saddle-node equilibrium.  

In practice, one often has to consider non-hyperbolic equilibria with all eigenvalues having negative or zero real 
parts. These equilibria are sometimes referred to as being critical. Their stability cannot be determined from the 
signs of the eigenvalues of the Jacobian matrix; it depends on the nonlinear terms of .  

Types of Equilibria 

One-Dimensional Space 

Consider a one-dimensional (scalar) dynamical system  

(1) 
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, 

  

with a differentiable 
(smooth) function 

. Its equilibria 
are the zeros of the 
function , as 
illustrated in Fig.2. The 
Jacobian matrix at each 
equilibrium is . An equilibrium is asymptotically stable when ; that is, the slope of  is 
negative. It is unstable when . The left two equilibria in the figure are hyperbolic ( ), the 
others are non-hyperbolic because the slope (eigenvalue) is zero. Nevertheless, a non-hyperbolic equilibrium of a 
one-dimensional system is stable if the function changes the sign from positive to negative at the equilibrium.  

Two-Dimensional Space 

Consider a two-dimensional (planar) system with smooth right-hand side  

 

 

.  

The Jacobian matrix has the form  

. 

 

It has two eigenvalues, 
which are either both 
real or complex-
conjugate. A 
hyperbolic equilibrium 
can be a  

� Node when both 
eigenvalues are 
real and of the 
same sign. The 
node is stable 
when the 
eigenvalues are 
negative and 
unstable when 
they are 
positive. For the 
stable node, the 
eigenvalue(s) 
with minimal 
absolute value of the real part is called principle or leading; when the eigenvalues are different, all orbits 
but two tend to the node along the leading eigenvector (the picture is reversed for the unstable node);  

 

Figure 2: Equilibria of a one-dimensional system  are the points where 

. 

 
Figure 3: Classification of equilibria of a two-dimensional dynamical system according to the 
trace ( ) and the determinant ( ) of the Jacobian matrix. The shaded region corresponds to 

stable equilibria. (modified from Izhikevich 2007). 
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� Saddle when eigenvalues are real and of opposite signs. The saddle is always unstable;  
� Focus (sometimes called spiral point) when eigenvalues are complex-conjugate; The focus is stable when 

the eigenvalues have negative real part and unstable when they have positive real part.  

Let  

 

 

be the trace and  

 

 

be the determinant of the Jacobian matrix. Figure 3 summarizes the types of equilibria. The half-axis 
 and the axis  correspond to nonhyperbolic equilibria that arise at Andronov-Hopf and 

Saddle-Node Bifurcation, respectively.  

Three-Dimensional Space 

The Jacobian matrix of a three-
dimensional system has 3 eigenvalues, 
one of which must be real and the other 
two can be either both real or complex-
conjugate. Depending on the types and 
signs of the eigenvalues, there are a few 
interesting cases illustrated in Fig.4. A 
hyperbolic equilibrium can be  

� Node when all eigenvalues are 
real and have the same sign; The 
node is stable (unstable) when 
the eigenvalues are negative 
(positive);  

� Saddle when all eigenvalues are 
real and at least one of them is 
positive and at least one is 
negative; Saddles are always 
unstable;  

� Focus-Node when it has one real 
eigenvalue and a pair of 
complex-conjugate eigenvalues, 
and all eigenvalues have real 
parts of the same sign; The 
equilibrium is stable (unstable) 
when the sign is negative 
(positive);  

� Saddle-Focus when it has one 
real eigenvalue with the sign 
opposite to the sign of the real 
part of a pair of complex-
conjugate eigenvalues; This type 
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of equilibrium is always 
unstable.  

Notice that nodes and focus-nodes 
change stability when time is reversed (i.e., when  is replaced by ), whereas saddles and saddle-foci are 
unstable regardless of the direction of time.  

 
Nonhyperbolic Equilibria 

There are many more types of non-hyperbolic equilibria, i.e., those that have at least 
one eigenvalue with zero real part, since the phase portrait in a small neighborhood of 
such equilibria also depends on the nonlinear terms of . Most of these equilibria 
do not have names or are named after the type of the bifurcation in which they play a 
role. Three examples are depicted in Fig.5.  

� The center equilibrium occurs when a system has only two eigenvalues on the 
imaginary axis, namely, one pair of pure-imaginary eigenvalues. Centers in linear 
systems have families of concentric periodic orbits around them, as in the figure. 
Many refer to centers only in the context of two-dimensional systems or Hamiltonian 
systems. If all other eigenvalues have negative real parts, centers are neutrally stable 
but not asymptotically stable. A pair of pure-imaginary eigenvalues also occurs in 
Andronov-Hopf bifurcation, however due to the nonlinear terms, the neighborhood of 
such an equilibrium looks like a focus; it could be asymptotically stable (supercritical 
Andronov-Hopf bifurcation) or unstable (subcritical Andronov-Hopf bifurcation) 
even if the other eigenvalues have negative real parts.  

� The saddle-node equilibrium occurs in nonlinear systems with one zero eigenvalue 
when the system undergoes the saddle-node bifurcation, where a saddle and a node 
approach each other, coalesce into a single equilibrium (depicted in the figure), and 
then disappear. Saddle-nodes are always unstable.  

� The Bogdanov-Takens equilibrium occurs in nonlinear systems with 2 zero 
eigenvalues, typically when the system undergoes the Bogdanov-Takens bifurcation. 
It is also an unstable equilibrium.  
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Figure 4: Examples of equilibria in .
 

 
Figure 5: Examples of 

non-hyperbolic 

equilibria in . (The 

first and the third 
pictures correspond to 

Hamiltonian 
equations: 

 and 

, 

, 
respectively.) 
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