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Coupled oscillators interact via mutual adjustmartheir
amplitudes and phases. When coupling is weak, amlpk

are relatively constant and the interactions céeld 15|
described byhase models. - '
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Figure 1: Phase of oscillation (denoted? ;  in the
rest of the article) of the FitzHugh-Nagumo model
Phase of oscillation with 1=0.5. The phase here is measured in units of
time. The zero-phase poi g is chosen to
Many physical, chemical, and biological systems can correspond to the peak of the potential (the péak o
produce rhythmic oscillations (Winfree 2001), whizdn spike).
be represented mathematically by a nonlinear dycami
system
= f(r)

having a periodic orb 7 . Le g be an arbitrary gan -y, then any other point on the periodic orhit be
characterized by the tim? | since the last passfi Ig; see Fig.1. The variab??  is callgldase of
oscillation, and it is bounded by the period of oscillatI"y The phase is often normalized T T'/2x | so
that it is bounded b1l (27 | respectively.

The phase of oscillation can also be defined oe 7y dusing the notion of isochrons. The change ahbées
x(t) =~(?(t)) transforms the nonlinear system in a neighbortafcy into an equivalent but simpler phase
model
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# = 1.

Such a change of variables removes the amplitutsdwes the phase of oscillation (Ermentrout 19863.often
convenient to assume that the pht’;e  is defingdeonnit circle Ch

The phase of oscillation could also be definedcfaotic systems (Pikovsky et al. 2001) using theeolation
that many chaotic attractors, as in Rossler osoilldook like smeared limit cycles.

Wealk for Cing Andronov-Hopf oscillator van der Pol cecillator
The same change of variables transforms a weaktgdo 1 1 Q)
oscillator - o
' = fr)+es(t) 0 0
into the phase model of the form A4 p
1 0 Qf 1 -2 0 of 2

U =1+eQ(d) - s(t),

where, the terns(t) denotes a weak time-dependent
possiblyr -dependent) input, e.g., from other oatolls in

a network; the dot,- ", denotes the scalar (datgpct of

two vectors; The functio@(¥) , illustrated in the Rigis
calledlinear response function, sensitivity function, or

infinitesimal PRC. This impulse response function, kerne O phase,a " ° phass, 8 7
or Green's function can then be convolved withatial Figure 2: Examples of functic@ = (1,22 )
input received by each oscillator in order to cotegthe for Andronov-Hopf oscillator

total phase resetting of the oscillator receivedrane 7 =(141i)2— z|z|" and van der Pol

cycle of the network oscillatiol@(7)  satisfies three _ ; B =1 : modf
equivalent conditions (Izhikevich 2007): oscillators’ =1 — 1" —y .,y = I ;modified
from Izhikevich (2007).

. Winfree: @(7) is a normalized phase response
curve (PRC) to infinitesimal pulsed perturbations.

That is, one measures PRC of the oscill 2" = f(z) btupgng each component of state vecz r
with brief pulses of small amplitude with arealeépulse A , and thentak@? = F/A  inthe limit
A—0,

. Kuramoto: @ () =grac®(z) , where®(x) is the isochron function defined imeighborhood of the
periodic orbity . That is, one starts from everyntir in a neighborhood (7 and determines its
asymptotic phast®(x) |, relative to the phase of theisa starting with g .

. Malkin: @(7) is the solution to the adjoint probled@/d? = —{Df(~(¥))} 7@, withthe

normalization conditiol @ () - f(7(#)) =1 foran? . Thatis, oneatetines the Jacobian matrix
L'f along the periodic orbit and then solves, usualignerically, the adjoint problem.

Malkin's condition, though least intuitive, is thst useful in applications.

Examples of reduction
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The infinitesimal PRC functio ()  can be found ariabity in a few simple cases.

Phase oscillators

A nonlinear phase oscillatd = f(z)  with periodic phaseablex € [0,1] ancf >0 has
(7)) =1/fl~(?)). Indeed, the function can be found from Malkirdsmalization condition

QO fly(9)) =1,

SNIC oscillators
A system near saddle-node on invariant circle (9Ni€ircation has2(¥) proportional ‘1 — cos- 17

Andronov-Hopf oscillators

A system near supercritical Andronov-Hopf bifurcathas@ () proportional tsin (¥ — ¢') , whe?' isa
constant phase shift.

Other interesting cases
Izhikevich (2000) derived the phase model for weaklupled relaxation oscillatarBrown et al. (2004) consid

other interesting cases, including homoclinic datirs. Coupled bursters are considered by Izhate{2007).
Pulse coupled oscillators provide many other aiily solvable examples.

Weakly coupled oscillators
Letus treas(t) irx’ = f(z)+&s(t) as the input from the networld aonsider weakly coupled oscillators

;rf; = filz;) +¢ ig'z‘jflh ).

j=1

The corresponding phase model

9 =14 Q) igij[’?i[ﬂijj’?j[ﬁjﬂa

j=1

has the form

B=1ted hy(dh,d,),

j=1

where l;; = /;9;; describes the influence of phase of theogttillator on the i-th oscillator, and ee?;  has
its own periocT; .

The implicit assumption of weak coupling is that tielative position (phase) of the oscillators gemnslowly
with respect to their motion around the limit cydsolute phase). This implies slow convergencesteady
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state phase locking. If the coupling is not suéfitly weak but is pulsatile in nature, the methimigulse-
coupled oscillators can be utilized, otherwise ¢hae no general methods.

Phase model
Introducingphase deviation variables ©; =t + ; , one can transform the system above into the form

L

pi=e> hylt +oi t+e).

=1

This system can be averaged to phase model

where each function

1T .
Hy() = Jim = [ hult, 4+ ) at

T —oa

describes the interaction between oscillators. fumstion is just a constant unless the oscillabargenearly
resonant periods, i.e., the ratiﬂ,.-"T}- £ -close to a low-orgaional numbep,.-"q pr+ g ismall). Since th
dynamics of two coupled non-resonant oscillatordeiscribed by an uncoupled phase moH = const, suc
oscillators cannot phase lock. That is, the phasme of them cannot change the phase of the otireeven on
the long time scale of ord1/&

Computational neuroscience provides an importaplicgtion of phase models. In this case, the stat@bles
I; andr; describe activities of the post-synapticaéol) and pre-synaptic (forcing) periodically firingurons,
and the functior 3;; describes the time course of yniénput. The phase variabl ; eV describe the

timings of firings of the neurons, and the functH;; describes normalized phase resetting curve (Ketefl
2005).

Analysis
Two coupled oscillators

Consider two mutually coupled oscillators with gadentical periods

) =1+ cwy + eHias — ©1)

wy =1+ cwy + eHay o1 — va),

wherew; = H;(0) are small frequency deviations. ¥ = @2 — detteephase difference between the
oscillators, then

Y =ew+eH(x),
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where _ .
Andronov-Hopf cecillator van der Pol oscillator
) = r..-Lr'E — Ll.r'l 05 Hl:::.}-’” “1.1 | HI::,h'_:!-‘,"'.I-J---‘.\IL‘Ii

o #Hifn ™ il

and H(x) = Hnl—x) — Hy:(x), isthe ) - S

. . . 05 o . y "
frequency mismatch and the anti-symmetric | |
of the coupling, respectively, illustrated in the o ' ' St o o

phase difference, 3 phase difference, 3

. Figure 3: Examples of the connection function Hgdified from
Izhikevich (2007). The units on the y-axis are "mtime".

Fig.3, dashed curves. A stable equilibrium of
this system corresponds to a stable limit cycl
the phase model.

All equilibria of this system are solutions H(x)=-w ppided thaiw is small enough. Geometrically, the
equilibria are intersections of the horizontal | —w with the graph o . They are stable if the slopthe

graph is negative at the intersection, (H'(x) < 0  stilbators are identical, theH ) is an odd function
(i.e., H(—x)=—-H(x) ,ancx =0 any =7 are always equilibria, possibigtable, corresponding to
the in-phase and anti-phase synchronized solutidms in-phase synchronization of coupled oscilaiorthe
figure is stable because the slop¢H f (dasheckshis negative : x = 0 . The max and min values of the
function H determine the tolerance of the networkhfrequency mismatcw |, since there are no dujiaili
outside this range.

Chains of oscillators

The behavior of chains of phase models is condideraore complex than that of pairs, even for ngtare
neighbor coupling. The reason for this is that wbeunpling is local, oscillators at the ends getedlént inputs
from those in the middle so that phase locking matyeven exist. However, in a large clagsnodels, chains ci
be analyzed either by direct calculation or byirgtthe size of the chains tend to infinity. In foemer case,
Cohen et al. (1982) examined a linear chain ofestareighbor oscillators with a frequency gradient:

H; = L +Silllrﬁ.i+1 - Hf.:l + Sj-.l-l[&i—l - H‘E'.:I'

As long as the differences in the frequencies ar@lsenough, there will be a phase-locked solution.
Interestingly, if the length of the chain v ahe frequency gradient is linear with slcb 2 then
b=0(1/N) asV — oo . Thatis, nearest neighbor chains can suppoytsmall gradients when the coupling
is sinusoidal (and, in fact, any odd periodic fime). However, if the coupling function containsyaven
components (that is, replasinf  wsin(f + 5) | then frequagreglients as that al (1)  che supporte

in nearest neighbor chains of coupled phase osnilaKopell & Ermentrout (1986,1990) derived acfet
continuum equations from which general phase-lodadtions could be found.

Networks of oscillators that are not arranged iing have "boundarie that can lead to patterns of phase
difference that look like waves. If the couplingsgstropic, the waves take the form of one-dimensidarget
waves, either originating at the center and profpagaymmetrically to the edges, or starting atedges and
propagating to the center. For example, an arrayeafest neighbor-coupled oscillators of the form

H: = Si.llfﬁ.i_l_l - E‘i - I:I..:] +Sill[’ﬂ.i_1 - E‘I.E - ﬂ.:' P = D._,. . ._,_-llll-
with no "i-1" term for oscillator 0 and no "i+1"rt@ for oscillator N, will generate a wave with pkaghich are
roughly of the form8; = a|N/2 — i|. With anisotropic coupling, thaves are almost straight lines,
#; = £ai. These results were proven in a series of papeEmgntrout and Kopell.
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Linear arrays of oscillators

Now consider a network (12 = 2 weakly all to all coupled oscillators. To determihe existence and stability
of synchronized states in the network, we needudysequilibria of the corresponding phase model

i =ewite) Hij(p; — i)

J#

Existence of one equilibrium of the phase modelalimplies the existence of the entire circular ifgrof
equilibria, since translation of e7; by a constphaise shift does not change the phase differew; — 25
and hence the form of the phase model. This fantilyesponds to a periodic orbit, on which all datiirs have
equal frequencies and constant phase shiftsthiey,are synchronized, possibly out-of-phase.

Vector ¢ = (@1,..., @) is an equilibrium when

0= why + Z Hf_jft'ﬂl_j — @f‘:l forall 2.

J#1

It is stable when all eigenvalues of the linear@amatrix (Jacobian) ¢  have negative real pastsept one
zero eigenvalue corresponding to the eigenvectargathe circular family of equilibrie @ plus a pleashift is a
solution too since the phase sh @; — @; are not affiict

In general, determining the stability of equilibigaa difficult problem. Ermentrout (1992) foundiaple
sufficient condition. If

w0y = H:jf@j - @.z'.:' :'_ D, and
« the directed graph defined by the maa = fﬂ.z-}-'_".l is coteabc(i.e., each oscillator is influenced,
possibly indirectly, by every other oscillator),

then the equilibriun@ is neutrally stable, and ¢tberesponding limit cyclz (t + @) ofthe phase model is
asymptotically stable.

Another sufficient condition was found by Hoppemstieand Izhikevich (1997). If the phase model fas

» W) = =uwy =w (identical frequencies)
« Hi;j(—x) = —Hj(x) (pair-wise odd coupling)

forall z andj , then the network dynamics convema limit cycle. On the cycle, all oscillators haagual

frequencies1 +£w  and constant phase deviations. Thaf fotlows from the observation that the phase nhode
is a gradient system in a rotating coordinate syste

2D Arraysof oscillators

Two-dimensional arrays provide a much richer ct#fsgynamics. Consider the two-dimensional analogiid¢be
one-dimensional chain of nearest-neighbor coupsillators:
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0 ; = Hy(0iy15— 0i5) + Hs(Bim1s — 6 5) + He(8: j41 — 0:5) + Hw(8i-1 — 65
It can be shown that the patterns of phase-locksdity are of the form

B;; =W, + P
where?;, T'; are solutions to the one-dimensional chasitsy Hx s or Hz - respectively.
Beyond these cross product patterns, it is postidii@d non-trivial spatial patterns which are motonsequence
of boundary effects. For example, consider the EBramusoidal array

f; =w+ Y sin(fe — 0 )

kel

where (k,1) are the 2,3, or 4 nearest neighbo (2,7 ) 2N = 2N array of oscillators. Paullet and

Ermentrout proved that there is a stable rotatiagensolution to this in addition to the stable sywoous
solution. For example, when N=2, the pattern ofsgisas:

0 T r/2—1 w/2
—I 0 /2 /24
In/24r  3w/2 T T—I
In/2  3Ix/2—z1 w+4=x T

wherecos 2r = 2sin x.  This generalizes to any odd interaction ionc For non-odd interactions, the rotating
waves have a twist and look more like classic $pirves.
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