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Coupled oscillators interact via mutual adjustment of their 
amplitudes and phases. When coupling is weak, amplitudes 
are relatively constant and the interactions could be 
described by phase models.  

Phase of oscillation  

Many physical, chemical, and biological systems can 
produce rhythmic oscillations (Winfree 2001), which can 
be represented mathematically by a nonlinear dynamical 
system  

 

 

having a periodic orbit . Let  be an arbitrary point on , then any other point on the periodic orbit can be 
characterized by the time, , since the last passing of ; see Fig.1. The variable  is called phase of 
oscillation, and it is bounded by the period of oscillation . The phase is often normalized by  or , so 
that it is bounded by  or , respectively.  

The phase of oscillation can also be defined outside  using the notion of isochrons. The change of variables 
 transforms the nonlinear system in a neighborhood of  into an equivalent but simpler phase 

model  
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Figure 1: Phase of oscillation (denoted by  in the 
rest of the article) of the FitzHugh-Nagumo model 
with I=0.5. The phase here is measured in units of 

time. The zero-phase point  is chosen to 
correspond to the peak of the potential (the peak of 

spike). 
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Such a change of variables removes the amplitude but saves the phase of oscillation (Ermentrout 1986). It is often 

convenient to assume that the phase  is defined on the unit circle .  

The phase of oscillation could also be defined for chaotic systems (Pikovsky et al. 2001) using the observation 
that many chaotic attractors, as in Rossler oscillator, look like smeared limit cycles.  

 
Weak forcing  

The same change of variables transforms a weakly forced 
oscillator  

 

 

into the phase model of the form  

 

 

where, the term  denotes a weak time-dependent (and 
possibly -dependent) input, e.g., from other oscillators in 
a network; the dot, " ", denotes the scalar (dot) product of 
two vectors; The function , illustrated in the Fig.2, is 
called linear response function, sensitivity function, or 
infinitesimal PRC. This impulse response function, kernel, 
or Green's function can then be convolved with the actual 
input received by each oscillator in order to compute the 
total phase resetting of the oscillator received over one 
cycle of the network oscillation.  satisfies three 
equivalent conditions (Izhikevich 2007):  

� Winfree:  is a normalized phase response 
curve (PRC) to infinitesimal pulsed perturbations. 
That is, one measures PRC of the oscillator  by perturbing each component of state vector  
with brief pulses of small amplitude with area of the pulse , and then takes PRC  in the limit 

.  

� Kuramoto: grad , where  is the isochron function defined in a neighborhood of the 
periodic orbit . That is, one starts from every point  in a neighborhood of  and determines its 
asymptotic phase, , relative to the phase of the solution starting with .  

� Malkin:  is the solution to the adjoint problem  with the 

normalization condition  for any . That is, one determines the Jacobian matrix 
 along the periodic orbit and then solves, usually numerically, the adjoint problem.  

Malkin's condition, though least intuitive, is the most useful in applications.  

Examples of reduction  

 

Figure 2: Examples of function  
for Andronov-Hopf oscillator 

 and van der Pol 

oscillator , ; modified 

from Izhikevich (2007). 
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The infinitesimal PRC function  can be found analytically in a few simple cases. 
 

Phase oscillators  

A nonlinear phase oscillator  with periodic phase variable  and  has 
. Indeed, the function can be found from Malkin's normalization condition 
.  

SNIC oscillators  

A system near saddle-node on invariant circle (SNIC) bifurcation has  proportional to . 

 

Andronov-Hopf oscillators  

A system near supercritical Andronov-Hopf bifurcation has  proportional to , where  is a 
constant phase shift.  

Other interesting cases  

Izhikevich (2000) derived the phase model for weakly coupled relaxation oscillators. Brown et al. (2004) consider 
other interesting cases, including homoclinic oscillators. Coupled bursters are considered by Izhikevich (2007). 
Pulse coupled oscillators provide many other analytically solvable examples.  

Weakly coupled oscillators  

Let us treat  in  as the input from the network, and consider weakly coupled oscillators 

 

 

 

The corresponding phase model  

 

 

has the form  

 

 

where  describes the influence of phase of the j-th oscillator on the i-th oscillator, and each  has 
its own period .  

The implicit assumption of weak coupling is that the relative position (phase) of the oscillators changes slowly 
with respect to their motion around the limit cycle (absolute phase). This implies slow convergence to a steady 
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state phase locking. If the coupling is not sufficiently weak but is pulsatile in nature, the methods for pulse-
coupled oscillators can be utilized, otherwise there are no general methods.  

Phase model  

Introducing phase deviation variables , one can transform the system above into the form 

 

 

 

This system can be averaged to the phase model  

 

 

where each function  

 

 

describes the interaction between oscillators. This function is just a constant unless the oscillators have nearly 
resonant periods, i.e., the ratio  is -close to a low-order rational number  (  is small). Since the 
dynamics of two coupled non-resonant oscillators is described by an uncoupled phase model ( const), such 
oscillators cannot phase lock. That is, the phase of one of them cannot change the phase of the other one even on 
the long time scale of order .  

Computational neuroscience provides an important application of phase models. In this case, the state variables 
 and  describe activities of the post-synaptic (forced) and pre-synaptic (forcing) periodically firing neurons, 

and the function  describes the time course of synaptic input. The phase variables  and  describe the 

timings of firings of the neurons, and the function  describes normalized phase resetting curve (Netoff et al 
2005).  

Analysis  

Two coupled oscillators  

Consider two mutually coupled oscillators with nearly identical periods  

 

 

  

where  are small frequency deviations. Let  denote the phase difference between the 
oscillators, then  
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where  

 

 

and  is the 
frequency mismatch and the anti-symmetric part 
of the coupling, respectively, illustrated in the 
Fig.3, dashed curves. A stable equilibrium of 
this system corresponds to a stable limit cycle of 
the phase model.  

All equilibria of this system are solutions to , provided that  is small enough. Geometrically, the 
equilibria are intersections of the horizontal line  with the graph of . They are stable if the slope of the 
graph is negative at the intersection, i.e., . If oscillators are identical, then  is an odd function 
(i.e., ), and  and  are always equilibria, possibly unstable, corresponding to 
the in-phase and anti-phase synchronized solutions. The in-phase synchronization of coupled oscillators in the 
figure is stable because the slope of  (dashed curves) is negative at . The max and min values of the 
function  determine the tolerance of the network to the frequency mismatch , since there are no equilibria 
outside this range.  

Chains of oscillators  

The behavior of chains of phase models is considerably more complex than that of pairs, even for nearest 
neighbor coupling. The reason for this is that when coupling is local, oscillators at the ends get different inputs 
from those in the middle so that phase locking may not even exist. However, in a large class of models, chains can 
be analyzed either by direct calculation or by letting the size of the chains tend to infinity. In the former case, 
Cohen et al. (1982) examined a linear chain of nearest neighbor oscillators with a frequency gradient:  

 

 

As long as the differences in the frequencies are small enough, there will be a phase-locked solution. 
Interestingly, if the length of the chain is  and the frequency gradient is linear with slope  then 

 as . That is, nearest neighbor chains can support very small gradients when the coupling 
is sinusoidal (and, in fact, any odd periodic function). However, if the coupling function contains any even 
components (that is, replace  with , then frequency gradients as that are  can be supported 
in nearest neighbor chains of coupled phase oscillators. Kopell & Ermentrout (1986,1990) derived a set of 
continuum equations from which general phase-locked solutions could be found.  

Networks of oscillators that are not arranged in a ring have "boundaries" that can lead to patterns of phase 
difference that look like waves. If the coupling is isotropic, the waves take the form of one-dimensional target 
waves, either originating at the center and propagating symmetrically to the edges, or starting at the edges and 
propagating to the center. For example, an array of nearest neighbor-coupled oscillators of the form  

 

 

with no "i-1" term for oscillator 0 and no "i+1" term for oscillator N, will generate a wave with phase which are 
roughly of the form  With anisotropic coupling, the waves are almost straight lines, 

 These results were proven in a series of papers by Ermentrout and Kopell.  

 
Figure 3: Examples of the connection function H; modified from 

Izhikevich (2007). The units on the y-axis are "phase/time". 

Page 5 of 9Phase model - Scholarpedia

12/10/2009file://C:\Documents and Settings\ai\Desktop\Phase model - Scholarpedia.htm



Linear arrays of oscillators  

Now consider a network of  weakly all to all coupled oscillators. To determine the existence and stability 
of synchronized states in the network, we need to study equilibria of the corresponding phase model  

 

 

Existence of one equilibrium of the phase model above implies the existence of the entire circular family of 
equilibria, since translation of all  by a constant phase shift does not change the phase differences  
and hence the form of the phase model. This family corresponds to a periodic orbit, on which all oscillators have 
equal frequencies and constant phase shifts, i.e., they are synchronized, possibly out-of-phase.  

Vector  is an equilibrium when 
 

 for all . 

 

It is stable when all eigenvalues of the linearization matrix (Jacobian) at  have negative real parts, except one 
zero eigenvalue corresponding to the eigenvector along the circular family of equilibria (  plus a phase shift is a 
solution too since the phase shifts  are not affected).  

In general, determining the stability of equilibria is a difficult problem. Ermentrout (1992) found a simple 
sufficient condition. If  

� , and 

 

� the directed graph defined by the matrix  is connected, (i.e., each oscillator is influenced, 
possibly indirectly, by every other oscillator),  

then the equilibrium  is neutrally stable, and the corresponding limit cycle  of the phase model is 
asymptotically stable.  

Another sufficient condition was found by Hoppensteadt and Izhikevich (1997). If the phase model satisfies  

�  (identical frequencies) 

 

�  (pair-wise odd coupling)  

for all  and , then the network dynamics converge to a limit cycle. On the cycle, all oscillators have equal 
frequencies  and constant phase deviations. The proof follows from the observation that the phase model 
is a gradient system in a rotating coordinate system.  

 
2D Arrays of oscillators  

Two-dimensional arrays provide a much richer class of dynamics. Consider the two-dimensional analogues of the 
one-dimensional chain of nearest-neighbor coupled oscillators:  
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It can be shown that the patterns of phase-locked activity are of the form  

 

 

where  are solutions to the one-dimensional chains using  or  respectively. 

 

Beyond these cross product patterns, it is possible to find non-trivial spatial patterns which are not a consequence 
of boundary effects. For example, consider the simple sinusoidal array  

 

 

where  are the 2,3, or 4 nearest neighbors of  in a  array of oscillators. Paullet and 
Ermentrout proved that there is a stable rotating wave solution to this in addition to the stable synchronous 
solution. For example, when N=2, the pattern of phases is:  

 

 

where  This generalizes to any odd interaction function. For non-odd interactions, the rotating 
waves have a twist and look more like classic spiral waves.  
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