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Abstract 
 

Grid is an exciting buzzword in the computing world today, mainly in the scientific area. It is usually 
defined as the exploitation of a varied set of networked computing resources, including large or small computers, 
PDAs, file servers and graphics devices. The emerging Internet based peer-to-peer Grid infrastructures, which 
are based on a “flat” organization allowing seamless discovery, access to, and interactions among resources and 
services, have complex and highly dynamic computational and interaction behaviors, and when combined with 
the uncertainty of the underlying Internet infrastructure, result in significant development and management 
challenges. Accordingly, in this paper, we propose a multi-agent based Peer-to-Peer Grid computing architecture 
based on swarm intelligence and precisely on the ant-colony meta-heuristic, to map the solution capability of 
social insects to the peer node interaction and resource scheduling problem. The main characteristics of this 
architecture are highlighted by its promising performance and scalability, and its adaptive resource management 
and scheduling mechanisms. It is completely decentralized, allowing every node in the system to act as a client 
and a runtime server, by generating new jobs, submitting them to the network and participating, by running 
several jobs, to the overall computational resource sharing. A Grid infrastructure designed in this way may be 
interesting for individual peer entities that want to share their resources through the Internet within a large 
community in order to exploit the resulting computing power effectively. Neither class of current Grids is 
capable of scaling up to a so large user base, with a wide variety of applications and a plethora of user profiles. 
This will force distributed application designers to look for alternative, more suitable computational models and 
architectures. 
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1. Introduction 
In today's incredibly sophisticated world of 

computation, with the emerging very high speed 
machine processing capabilities, complex data 
storage methods, evolutionary operating systems and 
services, and extremely advanced optical networking 
services capabilities - we are entering a new era of 
truly distributed computing. A growing number of 
high-performance scientific and industrial 
applications, ranging from real-time particle physics 
or radio astronomical experiments to complex 
weather forecast, and financial modeling, are 
increasingly taking advantage from large 
geographically distributed computing, network 
infrastructures and data management resources, 
commonly referred to as “Grids”, named after the 
analogy with electricity grid. Like an electrical power 
grid, the Grid will aim to provide a steady, reliable 
source of computing power. A Grid also offers a 
uniform and often transparent interface to its 
resources such that an unaware user can submit jobs 
to the Grid just as if he/she was handling a large 
virtual supercomputer, so that large computing 
endeavors, consisting of one or more related jobs, are 
then transparently distributed over the network on the 
available computing resources, and scheduled to 
fulfill requirements with the highest possible 
efficiency. The emerging domain of Grid computing 
solutions has yielded a wide variety of network 

infrastructures with very different capabilities and 
features. At one extreme, based on transparent optical 
communication and Wavelength Division 
Multiplexing technologies, we can find very high 
performance, dedicated fiber-based infrastructures, 
such as the lambda-Grid [1] that is able to couple 
traditional distributed Grid resources with reserved 
lambdas or wavelengths, with 1-10 Gbps per link, 
and hundreds of lambdas per optical fiber. At the 
other extreme, we can find another class of Grid 
infrastructures, called Peer-to-peer Grids, inspired by 
the cycle sharing peer to peer applications, where the 
underlying transport infrastructure is the standard 
ubiquitous Internet, offering no specific support for 
the Grid applications, and often resulting in a rather 
poor network efficiency and conflicts with ”normal” 
internet traffic. The greatest enabling factor for 
peer-to-peer Grid architectures is the widespread 
availability of high-end desktop PC or Workstation 
always connected to the Internet that at the state of 
the art offer a computational capacity of 3-5 GFlops, 
that is expected to become in the order of 100 GFlops 
within the same time frame. Such a great processing 
power that makes it possible to execute extremely 
demanding applications (at least by today’s standards) 
is largely unused (at least for the most part of the 
day). This opens up a very interesting window for 
computational resource sharing, also sustained by the 
current trend of growth of the bandwidth availability 
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on the average and high-end Internet connections 
(doubling each year) making ubiquitous 
Internet-based peer-to-peer Grid computing one of 
the most valid options available in the computing 
arena. For example, in the Seti@Home project [2], 
the enormous amount of radio signals registered by 
radio telescopes are subdivided into a large number 
of data sets, that can be independently distributed 
through the Internet and analyzed in the search for 
evidence of extra-terrestrial intelligence; 
Distributed.net [3] is an umbrella for several 
distributed computing projects, including 
cryptography challenges in which brute-force attacks 
are performed by subdividing key spaces into 
independent portions; the Anthrax Project [4] is an 
effort designed to help scientists to find a treatment 
for the Anthrax toxin, by performing screening 
analysis of large sets of molecules.  

For the majority of grid systems and particularly 
for peer-to-peer Grids, scheduling of customer jobs 
on the available computational resources is one of the 
most important topics. In the simplest case, 
scheduling of jobs can be done in a blind way by 
simply assigning the tasks to the compatible 
resources according to their availability. Nevertheless, 
it is much more profitable to use more advanced and 
sophisticated distributed scheduling policies capable 
to react to the dynamics of the grid system, typically 
by evaluating and fairly balancing the current load of 
the Grid resources, for better coping with unexpected 
peaks of activity. Computing tasks are assigned to 
each resource available on the peer-to-peer Grids 
through a typical request/grant cycle handled by job 
schedulers (also called grid resource brokers) running 
on specific “master” nodes. These job schedulers 
attempt to distribute the demands across the Grid as 
optimally as possible, based on application profile 
and resource availability. However this can be viewed 
essentially as a master-slave architecture, in which 
only few properly designated master nodes, often 
becoming bottlenecks in very large environments, are 
enabled to assign new jobs and the large amount of 
slave machines distributed on the Internet are 
relegated to a role of mere executors, thus in some 
sense betraying the peer-to-peer philosophy.  

On the other side, the communication pattern 
between the components of the distributed 
applications is also highly differentiating in Grid 
environments. The advent of large-scale computation 
and data sharing in wide-area Grids and peer-to-peer 
applications is driving an evolution in communication 
patterns from point-to-point connections to 
multipoint-to-point and multipoint-to-multipoint 
structures. Examples include many widely deployed 
Peer to Peer content delivery networks, in which 
multiple replicated data repositories are 
simultaneously accessible for remote visualization or 

computation at much higher aggregate speed. 
Starting from the above considerations, this 

paper proposes a novel multi-agent based Grid 
paradigm based on the concept of real Peer to Peer 
resource sharing by direct exchange between peer 
nodes (i.e., nodes having same role and responsibility) 
aiming to extend distributed computation through the 
Internet to the general public. Distributed information 
exchange, needed for scheduling and control will be 
based on swarm intelligence [5] that is the collective 
behavior from a group of social insects, namely ants, 
that communicate interactively either directly or 
indirectly in a distributed problem-solving manner. 
Such behavior can be easily modeled as a multi-agent 
system where all the agents communicate each other 
through the network and cooperate through stigmergy 
according to ant-like multipoint-to-multipoint local 
interactions. The intrinsic nature of multi-agent 
technology, explicitly oriented to model high 
dynamic and complex systems [6], seems to be well 
suited to provide support to peer-to-peer Grid 
computing needs. Moreover, the adoption of agent 
technology could bring to Grid users and 
administrators more friendly and understandable 
interfaces to interact with the system. The resources 
that can be exchanged through this new Grid 
infrastructure would include content, as in popular 
Peer to Peer file sharing applications, and storage 
capacity or CPU cycles. The peer nodes will operate 
as both clients, by submitting jobs to the Grid, and 
runtime or management servers, by sharing their 
computational power and participating through 
swarm intelligence to the resource scheduling and 
Grid management. The proposed architecture, while 
rather complex from the control logic point of view 
will introduce some undeniable benefits in the overall 
Grid infrastructure. First, it will allow distributed 
applications to reach out to harness the outer edges of 
the Internet and consequently will involve scales that 
were previously unimaginable. Second, being 
inherently based on the peer to peer paradigm by 
definition, it excludes any form of centralized 
structure, requiring scheduling and control to be 
completely decentralized. Finally, and most 
importantly, the environments in which these new 
Grid applications will be deployed exhibit extreme 
fault tolerance, dynamism in structure and load. 
Extensive simulation results obtained upon different 
experimental Grid topologies clearly indicate that our 
ant-colony based approach is highly adaptive, robust 
and effective in handling the distributed resource 
discovery and scheduling in Internet-scale 
peer-to-peer Grids. 

 
2. A new approach to Grid computing 

The traditional and peer-to-per Grids have been 
analyzed to examine their strengths and weaknesses. 
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Then an evolutionary approach with all its basic 
theoretical concepts and building blocks can be 
proposed to help in addressing some of these 
concerns, enabling seamless integration of distributed 
computing systems allowing decentralized control, 
large-scale and extreme dynamism in the peer-to-peer 
Grid environment. 

 
2.1 Traditional vs. peer to peer Grids  

While computing Grids have been widely used 
in computational science, Peer-to-Peer computing has 
achieved wide prominence in the context of 
multimedia file exchange. It uses the computing 
power at the edge of a connection rather than within 
the network. The client/server architecture does not 
exist in a peer-to-peer system. Instead, peer nodes act 
as both clients and servers - their roles are determined 
by the characteristics of the tasks and the status of the 
system. This architecture minimizes the workload per 
node, and maximizes the utilization of the overall 
computing resources among the network. Today, the 
shear numbers of desktop systems make the potential 
advantages of interoperability between desktops and 
servers into a single Grid system quite compelling. 
However, the peer-to-peer systems have significantly 
different properties than the conventional 
client/server-based Grid systems. The modern 
peer-to-peer Grid infrastructures attempt to collect 
resources from a variety of providers that are 
managed in a totally distributed fashion, and are able 
to handle from hugest to relatively small jobs. Their 
strength lies in the capability of offering a generic 
service based on a large number of distributed 
resources, thus able to allow a wider variety of 
applications. Conceptually, as all the known 
Peer-to-peer systems these new computing 
infrastructures are characterized by decentralized 
control, large-scale and extreme dynamism of their 
environment. They are usually highly autonomous 
and heterogeneous systems and their availability 
varies from time to time. Their main requirement 
becomes the Internet-wide scalability for all the 
control and management services such as resource 
management, co-allocation, and scheduling.  

On the other side, the traditional approaches, 
very common in early production grids, are based on 
a service-oriented computing architecture with a 
super-local resource management and scheduling 
strategy. In detail, the overall control logic is based 
on a certain number of centralized managers, often 
called resource brokers, that are the only entities with 
a complete view of the resources available on the 
whole Grid or on their own local management 
domain. Each broker selects computing resources 
based on actual job requirements and a number of 
criteria identifying the available resources and their 
location with the aim to minimize the total time to 

delivery for the individual application, and performs 
job distribution on them. This is clearly not 
applicable in modern peer-to-peer grid computing 
where both the network and the computing 
infrastructure itself lack of a fixed structure. In fact 
the service oriented architecture has poor adaptability 
in terms of performance, availability, and scalability, 
since no facility has been provided by the Grid 
control systems to allow automatic deployment of the 
services according to the clients’ requests and the 
load of the Grid. The dependence on the schedulers 
increases the complexity of application programming 
in the Grid environment, as it is difficult to provide 
the various local schedulers with a uniform 
programming interface that supports task 
decomposition, state persistence, and inter-task 
communications. The overall resource management 
and scheduling strategy intensively relies on the 
client-server hierarchical approach. This two-level 
process leads to more complex handling on resource 
discovering, selection, and allocation compared with 
a one-level process. The lack of a distributed 
management policy of the computing nodes can 
cause unsuitable selection of resources, and 
unbalanced loads, and therefore limits the overall 
performance. Consequently, a peer-to-peer interaction 
strategy between the Grid nodes, operating in a “flat” 
organization, seems to be the most promising 
approach to provide scalable and adaptive services 
for the next generation Grids. 
 
2.2 Ant-based peer to peer organizations  

A key issue in the development and 
management of the peer-to-peer Grid infrastructures 
is the coordination of the distributed autonomous 
computing elements. The defining characteristics of 
these emerging systems include:  
• heterogeneity, Grid environments and 

applications aggregate large numbers of 
computational and information resources;  

• dynamism, the computation, communication and 
information environment is continuously 
changing during the lifetime of an application, 
including the availability and state of resources 
and services; 

• uncertainty caused by multiple factors, including 
dynamism, which introduces unpredictable and 
changing behaviors that can only be detected and 
resolved at runtime, failures, which have an 
increasing probability of occurrence as the 
system scales increase, and incomplete 
knowledge of global system state. 

Furthermore, complex job scheduling and 
composition/decomposition should be supported 
since in many cases a single available element might 
not address specific application requirements, and 
composing several cooperating elements to form a 
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unit with integrated computing functionalities is 
necessary to support the most computational 
power-hungry applications. The resource discovery, 
paradigms together with such scheduling and job 
composition/decomposition criteria, enable 
applications or parts of them to be dynamically 
executed on a virtual computing environment 
composed from discrete elements to meet the 
changing requirements and system behaviors, deal 
with element failures, optimize performance, address 
QoS constraints, etc. However, such a distributed 
coordination strategy is very difficult in large Grid 
environments where all the computing elements are 
available in a totally dynamic on-demand manner. 
Challenges include element descriptions, their 
discovery, and their dynamic and adaptive 
composition, interaction and coordination. Thus the 
critical components of an implementation 
infrastructure for autonomic composition include an 
efficient, scalable and flexible discovery mechanism, 
and a high-level integration mechanism. The 
discovery mechanism enables the selection of 
appropriate elements while the integration 
mechanism enables selected elements to be composed 
coherently, without conflicts in element dependencies 
and interactions. At our advice, autonomic 
self-organization strategies inspired by biological 
systems, as embraced by the modern 
multi-autonomous agent technology and the 
ant-colony meta-heuristic intelligence, aiming to map 
the solution capability of social insects to the above 
distributed scheduling and management scenario, 
seem to be the most promising approaches to address 
these challenges. More specifically, the simple 
observation of the phenomenon of a group of ants in 
a natural environment, which can dynamically and 
adaptively find and collect foraging objects into their 
nest without any master or central authority driving 
them, gives a significant clue to solve our distributed 
control and scheduling problem. The ants work 
together to achieve an optimal solution and move 
towards the optimal solution by sharing their own 
knowledge with their neighbors. Such behavior can 
be easily modeled as a multi-agent system where all 
the agents communicate each other through the 
network and cooperate through stigmergy according 
to ant-like local interactions. Each task is carried by 
an ant, realized by an agent. Ants cooperatively 
search the less-loaded nodes with sufficient available 
resources, and transfer the tasks to be executed to 
these nodes. The proposed self-organizing 
mechanism does not need a centralized control, 
which otherwise might act as a potential bottleneck, 
and is an attractive solution for very large, dynamic 
and computationally intensive Grid infrastructures 
because it is inherently parallel and easy distributable, 
with each node running one or more agents 
performing search in the solution space or directly 

managing the resources available on it. Adding more 
agents (or “ants”) generally increases the solution 
quality at the cost of a very limited additional 
workload 

 
2.3. Multi-Agent Systems 

A software agent is an autonomous software 
entity able to expose a flexible behavior. Flexibility is 
obtained by means of reactivity, pro-activity and 
social ability [7]. Reactivity is the ability to react to 
environmental changes in a timely fashion while 
pro-activity is the ability to show a goal directed 
behavior by taking the initiative. Due to their 
reactivity agents are also very reliable components to 
build fail safe systems, since their autonomous 
behavior easily allow recovering from fault 
conditions. Social ability, that is the ability to interact 
with peers by means of cooperation, negotiation, and 
competition, is one of the most important features of 
agent oriented programming: agents do their best 
when they interoperate. Interaction is obtained by 
arranging agents in communities called multi-agent 
systems. The intrinsic nature of Agent technology, 
explicitly oriented to model high dynamic and 
complex systems [6], seems to be well suited to 
provide support to Grid computing needs. In 
particular, agents can play many different roles into 
Grid organization, be organized into dynamic groups, 
and be able to migrate between nodes and groups to 
support scheduling and load balancing. 

 
2.4. The Ant Colony meta-heuristic 

The ant colony optimization (ACO) techniques 
are a subset of swarm intelligence meta-heuristics 
inspired by the foraging behavior of real biological 
networks [8] in finding the paths to food sources and 
route around obstacles and consider the ability of 
simple individuals to solve complex problems by 
cooperation. In biological “networks” or colonies of 
ants consisting of thousands and in some cases tens 
of thousands of dynamic elements, each ant alone has 
relatively little intelligence, while the collective 
emergent behavior of the “network” exhibits a great 
deal of global intelligence capable of dynamic 
near-global optimization of certain tasks. Engineering 
models and algorithms based on these biological 
systems have the potential to leverage the tremendous 
gains made in this century in understanding their 
individual and collective colony-based behavior. 
Initial work in swarm intelligence has revealed a 
great deal of synergy between the routing 
requirements of communication networks and certain 
tasks that exist in biological swarms. For instance, a 
key characteristic of swarm intelligence is the ability 
of search agents (ants) to find optimal (or near 
optimal) routing (in food gathering operations for 
example), where intelligent behavior arises through 
indirect communications between the agents. The 
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latter point is the most interesting: the ants do not 
need any direct communication for the solution 
process, instead they communicate by stigmergy. The 
notion of stigmergy means the indirect 
communication of individuals through modifying 
their environment. In detail, any ant that leaves its 
colony in search of food leaves a trail of chemical 
called pheromones on the path that it takes. When an 
ant returns from the food source to its nest, it 
reinforces the pheromones on the path that it has 
used. Pheromones acts to attract other ants to follow a 
particular path. When a large number of ants forage 
for food, the shortest or however the best available 
path to the food source will eventually contain the 
highest concentration of pheromones, thereby 
attracting all the ants to use that path. Thus, the 
concentration of pheromone on a certain path is an 
indication of its usage. With time the concentration of 
pheromone decreases due to diffusion effects. This 
property is important because it is integrating 
dynamic into the path searching process. The 
following figure shows a scenario with two routes 
from the nest to the food place. At the intersection, 
the first ants randomly select the next branch. Since 
the upper route is shorter than the lower one, the ants 
which take this path will reach the food place first. 
On their way back to the nest, the ants again have to 
select a path. After a short time the pheromone 
concentration on the shorter path will be higher than 
on the longer path, because the ants using the shorter 
path will increase the pheromone concentration 
faster. The shortest path, that in this case is 
straightforwardly the best one, will thus be identified 
and eventually all ants will only use it. 

 

 
Figure 1. The ant path searching behavior 
 
Algorithms modeled according to this behavior, 

have historically been used to solve shortest path 
problems and problems that can be reduced to a kind 
of shortest path problems but have also been 
successful in attacking various popular combinatorial 
optimization problems such as the traveling salesman 
problem (TSP), the quadratic assignment problem 
(QAP) and the job-shop scheduling problem (JSP) 
[9]. Furthermore, almost all the results obtained to 
date in developing swarm-based path searching or 
combinatorial optimization algorithms exhibits the 
following potential benefits: 

• Dynamic “online” optimization using local 
information 

• No or very limited exchange of global 
information for solution determination 

• Inherent scalable nature, resulting in graceful 
builds and degradations 

• Characteristics leading to adaptivity and 
robustness under most contingencies 

The solution to a combinatorial optimization 
problem is a set S = {c1,c2, … cn}, where ci, with 
1≤i≤n, are known as the solution components. The 
Ant Colony optimization techniques are inherently 
iterative in their behavior. During each iteration, an 
ant constructs a solution starting from the empty 
solution S=∅.  Solution components are 
incrementally added, one at a time, to the partial 
solution until a complete, feasible solution is formed. 
At the end of an iteration, the candidate solutions 
constructed by the ants will be evaluated using a 
problem specific objective function f. After that, each 
ant will update the artificial pheromone associated to 
each component that is found within its constructed 
solution. Components that appear frequently in good 
candidate solutions will have higher pheromone 
values. The search process in subsequent iterations 
will then be biased towards these favorable 
components. The search process can stop if for 
example the number of maximum iterations has been 
met. In any case, the five main characterizing 
elements of the above techniques are identified 
below: 

• A heuristic function η, which will guide the ants’ 
search with problem specific information. 

• A pheromone trail definition, which states what 
information is to be stored in the pheromone 
trail. This allows the ants to share information 
about good solutions. 

• The pheromone update rule, this defines the way 
in which good solutions are reinforced in the 
pheromone trail. 

• A fitness function which determines the quality 
of a particular ant’s solution. 

• A construction procedure that the ants follow as 
they build their solutions (this also tends to be 
problem specific). 

Although the ACO method is a fairly novel 
approach, it can be viewed as something of an 
amalgam of other techniques. The ants essentially 
perform an adaptive greedy search of the solution 
space. Greedy search methods have been used for 
many problems, and are often good at finding 
reasonable results fast. The greedy search takes into 
account information provided in the pheromone trail, 
and this information is reinforced after each iteration. 
Because a population of ants is used, ACO also has 
similarities with evolutionary approaches such as 



An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids 

 

genetic algorithms (GAs). GAs use a population of 
solutions which share useful information about good 
ones, and probabilistically use this information to 
build new solutions. They do this in a rather different 
way, however, since a GA “stores” its information in 
the population at each iteration whereas the ants store 
it in the pheromone trail. So, while the specific 
details of an ACO algorithm are new and the 
techniques used are combined in a novel way, the 
ACO approach implicitly uses several proven 
problem solving strategies. 
 

3. Architectural details 
In a traditional Grid architecture there are two 

kinds of participating entities: the clients submitting 
computing tasks to the Grid and the computing nodes 
(often called servers). A client is implemented as a 
generic computing device that requests services from 
the Grid by using properly designed web interfaces 
(service portals) and middleware services, usually 
implemented through the Web Services standards, 
that assist grid users in finding suitable resource to 
run their jobs. A computing node is the place where 
tasks are executed and computing occurs. Each 
computing node runs the runtime and management 
environment for jobs and services. 

In our peer to peer model a generic computing 
device participating to the Grid can serve as a client 
and a peer at the same time. There are no super-local 
resource brokers or privileged nodes and the 
management of all the grid resources requires new 
and smarter technologies to implement a totally 
distributed and highly dynamic scheduling 
environment to allow scalable, failure-safe and 
improved resource utilization. Accordingly, an 
ant-like self-organizing mechanism can be used to 
perform efficient resource management on the Grid 
nodes through a collection of very simple local 
multipoint-to-multipoint interactions. This can be 
achieved by heuristically determining a scheduling 
solution that distributes the jobs on the Grid resources 
minimizing the overall Grid Makespan, that is the 
maximum completion time of all the job instances in 
the schedule, and Flowtime, referring to the response 
time to the user petitions for task executions. The 
above process can result in an indirect coarse-grained 
load balancing effect since each task tends to be 
dispatched to a grid resource that has less workload 
and can meet the application execution deadline.  
 
3.1 The agent-based distribution model 

The multi-agent technology has features well 
fitting for distributed communication, and is 
particularly robust for the interaction, negotiation and 
scheduling processes. We consider that such 
characteristics are important fundamentals for a 
suitable solution to the problem in question. In a 

distributed agent framework, we conceptualize a 
dynamic community of agents, where multiple agents 
contribute services to the community by cooperating 
like individuals in a social organization, such as an 
ant colony. The appeal of such architectures depends 
on the ability of populations of agents to organize 
themselves and adapt dynamically to changing 
circumstances without top-down control from a 
central control logic. Although agents have been 
applied to computing load balancing for many years, 
only some attempts to apply intelligent agents in 
realizing the Grid vision have been made by 
academic researchers in the last few years. Anyway, 
the agent’s social ability, the autonomous and flexible 
behavior could play an important role for the 
communication and the interaction with different 
nodes, for example, in the exchange of information 
about the resources available on each node. 

 
3.2 Management and discovery 

The proposed resource management and 
discovery framework for peer-to-peer Grids can be 
implemented as a multi-agent system where each 
agent is a representative of a local grid resource 
(resource management agent) or of an independent 
execution request from an user (search agent), 
associated with explicit computational requirements. 
Each node on the networks supplies the same service 
and each search agent must be served by one node 
through one of its resource management agents. Each 
resource management agent, that must be present on 
each node participating to the peer-to-peer grid, is 
used to manage all the applications within “one” 
computing resource which could be a PC, a 
workstation, or a cluster of computers, and is 
responsible to schedule this computing resource. This 
kind of agent should have knowledge about the 
hardware performance of this computing resource, 
and all applications installed with it as well as the 
performance of these applications in this particular 
hardware environment. Jobs are submitted to the grid 
through the resource management agents that 
cooperate to identify the candidate resource 
(computing node) on which the task will be executed. 
When a job is received by the resource management 
agent, a job-related search agent will be created. This 
agent will be in charge of finding candidate resource 
management agents through the proposed ACO-based 
interactions, and finally selecting the best resource 
agents to execute the job. The search agent lives until 
the associated job executes and will be dissolved 
when the job is finished and the results are sent to the 
end user (or may also be saved in a secure storage 
resource). The search agent must be resource-aware 
and be able to express its resource needs to the 
system, and be able to negotiate for system resources. 
Once scheduled, the search agent must also be 
notified if the system state has changed in a way that 
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impacts the job (computing tasks) and perhaps is 
necessary to enter resource re-negotiation and job 
re-scheduling. At this point, the search agent may 
need to adapt job execution to a different set of 
allocated resources. It should be noted that a resource 
agent or a search agent might be involved in several 
negotiations of different types at the same time, 
which is usually called combined negotiation. 
Combined negotiation is another difficult issue, 
particularly in a multi-agent system implemented 
with the proposed adaptive negotiation approach. 
Since cooperation, negotiation, and competition are 
natural activities common in multi-agent systems this 
functionality is naturally obtained by using the agent 
oriented approach. In the same way localization of 
services and coordination within a single node are 
obtained with less effort. All the agents, that in our 
ACO-based model can be viewed as the “ants” are 
generated from nodes on the grid according to their 
specific roles, that is, the system consists of a certain 
number of ants/agents which either handle 
computational resources in various nodes or wander 
on the network, searching for available resources. 
The search agents associated to a task not yet 
assigned to a computing resource for execution 
(pending task) wander on networks driven by the 
ACO meta-heuristic and search proper nodes 
(resource management agents) to join and queuing by 
interacting with the corresponding resource 
management agents. At an higher level of the 
peer-to-peer Grid control logic, agents cooperate with 
each other according to ant-like local interaction to 
manage the overall workload according to the above 
agent-based self-organization performing 
complementary scheduling of the available resources 
on the network-distributed Grid.  

 
3.3 The job scheduling logic 

In our model we consider, for simplicity sake, 
the following basic assumptions in formulating the 
ACO-based scheduling logic: the jobs being 
submitted to the grid are independent and are not 
preemptive, that is, they cannot change the resource 
they has been assigned to once their execution is 
started, unless the resource is dropped from the grid. 
Examples of this scenario in real life grid applications 
arise typically when independent users send their 
tasks to the grid, or in case of applications that can be 
split into independent tasks. Such applications are 
frequently encountered in scientific and academic 
environments. They also appear in intensive 
computing applications and data intensive computing, 
data mining and massive processing of data, etc. 

Our objective is to determine an efficient 
solution to the problem of scheduling a set J of m 
independent jobs J={j1, … jm} each of which have an 

associated predicted running time t(ji) onto a set V of 
n Grid nodes, V={v1, … vn}, for each 1≤i≤n, with a 
specific computing capacity Ci, such that the load 
will be fairly balanced on the available computing 
resources and consequently all the jobs are completed 
as quickly as possible, by optimizing the overall Grid 
performance. Really, this is a multi-objective 
optimization, the two most important objectives 
being the minimization of the makespan and the 
flowtime of the overall grid system. This problem, 
widely simplified, is closely related to a commonly 
known NP-hard combinatorial optimization problem, 
the bin packing problem, where the items to be 
packed are viewed as the jobs and the bins as the 
Grid nodes with their capacity represented by the 
available computing power. Consequently, also our 
multiple variable resource scheduling problem, that is 
inherently more complex, will be NP-hard and thus a 
reasonable heuristic solution, achieving near-optimal 
results is strongly desirable. Accordingly we propose 
an highly adaptive approach that employ a collection 
of ant agents that collaborate to explore the search 
space. A stochastic decision making strategy is 
proposed in order to combine global and local 
heuristics to effectively conduct this exploration. As 
the algorithm proceeds in finding better quality 
solutions, dynamically computed local heuristics are 
utilized to better guide the searching process. In our 
schema an ant’s “life” begins at the originating node 
of each task execution demand. It proceeds until it 
finds the corresponding destination node resource 
management agent offering adequate resources 
available for task execution. At the completion of its 
search, each ant deposits pheromone to mark the 
detected solution and perform its stigmergy-based 
interaction with the other socially-related individuals. 
Thus, the most important factor that influences each 
ant’s decision, and hence the overall heuristic search 
behavior, will be the pheromone.  
 
3.3.1. The pheromone trail 

There is not an immediately clear definition for 
the pheromone trail in this problem, and so the 
information that will be stored in the pheromone trail 
must be carefully selected. As the problem is 
essentially to allocate jobs to the grid nodes, 
intuitively it seems that the trail could store the 
degree of success associated to assigning a particular 
job to a particular node.  The pheromone value τ(i,j) 
can be therefore selected to represent the overall 
success in finding a feasible solution implied by 
scheduling a particular job i onto a particular node j. 
The pheromone matrix will thus have a single entry 
for each job-node pair in the problem. Furthermore, a 
policy for updating the pheromone trail has been 
established according to the following equation: 
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τ(i,j) = ρ·τ(i,j)  (1) 

where ρ is a parameter which defines the 
pheromone evaporation rate and decays the 
pheromone trail implementing a mean of ‘forgetting’ 
solutions which are not reinforced often.  
 
3.3.2. The ant-driving heuristic 

The heuristic information that the ants use when 
building their solution is also very important, it 
guides their search with problem specific information. 
However, because the ACO approach relies on 
multiple ants building solutions over several 
“generations” the heuristic information must be quick 
to establish, and so only fairly simple heuristic values 
can be used. The heuristic value used by the ants for 
each job j has been defined in our model as: 

)))(((logmin
1)(
10 ii

jt
j =η   (2) 

That is inversely proportional to the minimum 
completion time for the job j on all the available 
nodes, or better stated its completion time on the best 
available node on the grid. To allow this value to be 
effectively controlled with the β parameter, 
determining the extent to which heuristic information 
is used by the ants, it is necessary to “scale” the 
heuristic value up. Therefore in the implementation 
of this function all the η(j) values are computed for 
each job and then the job list is sorted into 
descending order of these values.  
 
3.3.3. Finding a solution 

The set of jobs and nodes will serve as 
components from which each ant will use to 
incrementally construct a solution during each 
iteration of the algorithm. For each ant, an iteration 
consists of a finite number of steps. At step r of 
iteration t, an ant k will select a specific job j to be 
executed on a node vi to be included in its partially 
constructed solution Sk(t,r)={s1,… sj} according to a 
stochastic decision making strategy properly driven 
by the above heuristic and pheromone trail. More 
precisely, let bj the node on which the job j can be 
executed in the minimum completion time, and α  the 
extent to which pheromone information is used as the 
ants build their solution, the probability p(j) of 
selecting job j to schedule next is given by equation: 
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A job is then selected based on this value, and 
the chosen job jc is preferably allocated, on the bjc 
node. The pheromone trail update procedure is then 

used on the iteration best ant. This process is repeated 
until all jobs have been scheduled, a complete 
solution has been built and there is no further 
improvement in the fitness value of the solution. The 
fitness value is determined according to a 
properly-crafted fitness function, whose goal is 
essentially to help the algorithm in discerning 
between high and low quality solutions that in our 
case means obtaining that all the jobs are completed 
as quickly as possible. In other words it implicitly 
means best balancing the load on the available nodes, 
that is, minimizing the makespan and flowtime of the 
solution itself. Makespan and flowtime are both 
strong fitness indicators of the grid system; their 
relation is not trivial at all, in fact they are 
contradictory in the sense that trying to minimize one 
of them could not suit to the other, especially for 
plannings close to optimal ones. Note that makespan 
is an indicator of the general productivity of the grid 
system. Small values of makespan mean that the 
scheduler is providing good and efficient planning of 
tasks to resources. On the other hand, minimizing the 
value of flowtime means reducing the average 
response time of the grid system. For better results, 
the value of mean flowtime, flowtime/M (where M is 
the number of machines in the grid), can be used 
instead of flowtime. Essentially, we want to 
maximize the productivity (throughput) of the grid 
environment through an intelligent load balancing 
and at the same time we want to obtain plannings that 
offer a quality of service acceptable to the users. 
Consequently the fitness function for our assignment 
and balancing problem could simply be the inverse of 
the sum of makespan mkss and mean flowtime fts of 
the solution s, weighted by a properly crafted 
parameter λ, a priori fixed to 0.75 to give more 
priority to makespan, as it is the most important 
parameter. The fitness equation is reported below. 
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The presented ACO-driven scheduling algorithm 
is conceived to be flexible in the sense that the 
number of ants can be adjusted by the launching 
probability of ants to achieve a good performance. 
 
3.4 The agent structure 

In our environment, the specific agents 
described in the previous section will be implemented 
at the Grid middleware level both for managing 
computing resources on each local grid node and 
scheduling incoming tasks, and for discovering 
available resources on the network. Agents provide 
an high-level representation of the corresponding grid 
capability. They also characterize the available 
resources as high performance computing service 
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providers in a wider grid environment. According to 
the convergence of the three major technologies for 
distributed systems - Grid, Agents and Web Services - 
under the umbrella of the Open Grid Service 
Architecture (OGSA) [11], each agent will be 
implemented as a service that conforms to the set of 
conventions for Web Services. Web Services have 
emerged as a set of open standards, defined by the 
World Wide Web consortium, and ubiquitously 
supported by Information Technology suppliers and 
users. A Web Service interacts with its environment 
through a collection of operations that are 
network-accessible through standardized XML 
messaging. A Web Service is described by an 
XML-based service description that covers all the 
details necessary to interact with the service, 
including message formats, transport protocols and 
location. For an application to take advantage of Web 
Services, three operations have to take place: 
publishing service descriptions, looking up service 
descriptions, and binding (or invoking services) using 
such service descriptions. They rely on the above 
XML syntactic framework, the transport layer SOAP 
[12], the XML-based language WSDL [13] to 
describe services, and the service directory UDDI 
[14]. In detail, all the agent ontologies will be defined 
using XML Schema components, and the agent 
behavior will be described as a WSDL interface. The 
benefit is that by publishing agents as service 
descriptions, other Web Services may make an 
effective binding and dynamic invocation of the 
agent seen as a Web Service, regardless of whether it 
is an agent-based computing functionality behind. 

Agents can be structured according to a layered 
model to better define their architectural 
characteristics and ease the overall implementation 
tasks, as defined in the following schema [10]. 

 

 
Figure 2. The agent multi-layer architecture 
 

• Communication Layer. Agents in the Grid system 
must be able to communicate with each other or 
with users using common data models and 
communication protocols. The communication 
layer provides an agent with an interface to 
heterogeneous networks and operating systems. 

Agent-agent interaction is exclusively via SOAP 
message passing. Asynchronous message passing 
has good scalability characteristics with a 
minimum of synchronization between the agents. 

• Coordination Layer. The request an agent 
receives from the communication layer should be 
explained and submitted to the coordination layer, 
which decides how the agent should act on the 
request, during the search space exploration, 
according to its own knowledge. For example, if 
an agent receives a service request, it must 
decide whether it has related service information. 
The ant-driven resource scheduling process does 
not aim to find the best service for each request, 
but endeavors to find an available service 
provided by a neighboring agent. While this may 
decrease the optimal load balancing effect, the 
trade-off is reasonable as grid users prefer to find 
a satisfactory resource as fast as possible. 

• Local Management Layer. This layer performs 
functions of an agent for local and grid resource 
management that is participating to scheduling 
decisions to handle load distribution between the 
local resources (i.e. local processors) and the 
overall Grid resources. A local grid resource is 
considered to be a cluster of tightly coupled 
workstations, i.e. in a blade enclosure, operating 
according to a common scheduling policy, or a 
multiprocessor system. An agent takes its local 
available computational resources as one of its 
capabilities. It is also responsible for submitting 
local service information to the coordination 
layer for agent decision making. Within each 
agent, its own service provided by the local grid 
resource is evaluated first. Of course, if the 
requirement can be met locally, the job execution 
can be handled successfully without interaction 
with other external agents/nodes. 

 
4. Performance Analysis 

To show that the approach has the potential to 
become an acceptable distributed framework for 
self-management of computational resources in the 
next generation peer-to-peer grids, extensive 
simulation has been conducted upon four different 
Grid scenarios built in a random way upon some 
sample grid dimensional characteristics (small: 32 
hosts and 512 tasks; average: 64 hosts and 1024 tasks; 
large: 128 hosts and 2048 tasks; and very large: 256 
hosts and 4096 tasks). The grid networking 
topologies, modeled as non-oriented graphs, have 
been created using Waxman’s method [15], [16]. In 
this method, the probability of the existence of link 
between two nodes u and v is given by: 

L
d

evuP χϕ
−

=),(   (5) 
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where 0 < φ,χ ≤ 1 are model parameters, d is the 
Euclidean distance between u and v and L is the 
maximum Euclidean distance between any two 
vertices of the graph. The available computational 
resources have been assigned randomly on all the 
grid nodes. In all the experiments, we used a dynamic 
model in which the job execution requests arrive at 
the grid according to a Poisson process with an 
arrival rate ε (jobs/second). The predicted job 
execution time is exponentially distributed with mean 
µ (1800 seconds in our tests). 
 
4.1 Building the system model 

The ACO meta-heuristic algorithm has been 
implemented in Java using the RePast multi-agent 
simulation framework. We used the Java version of 
Repast in order to take advantage of its great 
extensibility, ease of modifiability, portability, strict 
math and type definitions (to guarantee duplicatable 
results), and object serialization (to checkpoint out 
simulations). Repast is a free open source toolkit that 
was originally developed at the University of 
Chicago [17] and is now managed by the non-profit 
volunteer Repast Organization for Architecture and 
Development (ROAD). Repast seeks to support the 
development of extremely flexible models of living 
social agents, but is not limited to modeling living 
social entities alone. In short, our RePast simulation 
is primarily a collection of agents of both the search 
and resource management type and a model that sets 
up and controls the execution of these agents' 
behaviors according to a schedule. This schedule not 
only controls the execution of agent behaviors, but 
also actions within the model itself, determined by 
the ACO meta-heuristic paradigm. 
 
4.2 Simulation results 

All the results presented are taken from 100 
iteration runs on 2 GHz HP Proliant DL380 machines 
running Linux, and each run was performed 10 times 
to collect the average makespan and flowtime values, 
that are the most interesting performance parameter 
for our evaluation. The proposed framework takes a 
comparatively long time to build solutions, 
approximately more then 10 seconds per iteration, so 
that the whole simulation took some hours. The ACO 
algorithm has been allowed to run for so long 
because this gives it reasonable time to build up a 
useful pheromone trail. The ants need some more 
running time to find solutions which significantly 
improve on the other solutions. The efficiency of the 
proposed solution can be easily observed from the 
graph in Fig. 3 below where the Makespan and 
Flowtime values measured as the results of the ACO 
meta-heuristic in our four typical Grid scenarios have 
been compared with the same values obtained by 
applying the classic Tabu Search (TS) approach as 
showed in [18]. 
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Figure 3. Makespan and flowtime performance 

When representing both makespan and flowtime 
values simultaneously in the same graph we have to 
take into account that even though makespan and 
flowtime are measured in the same unit (seconds), the 
values they can take are in incomparable ranges, due 
to the fact that flowtime has a higher magnitude order 
over makespan, and its difference increases as more 
jobs and machines are considered. Consequently, in 
the above graph the makespan values have been 
scaled properly in msecs to be representable together 
with the flowtime ones. As can be seen, our ACO 
approach performs slightly better than the Tabu 
Search heuristic, especially in presence of larger 
problems, with more grid nodes and presented jobs, 
since in these cases the number of ants, or in other 
words the agents associated to tasks and nodes 
greatly increases. This result shows that the presented 
approach is a very good alternative for solving Job 
Scheduling in very large peer-to-peer Computational 
Grids where more priority is given to the reduction of 
Makespan than on immediate job scheduling time. 
The setting of the ACO parameters in our model will 
also affect the performance of the whole framework. 
Due to the time taken for a decent sized run of the 
ACO algorithm, and to the inbuilt stochasticity of the 
approach, finding the optimal values for these 
parameters has been a complex and very 
time-consuming task. For each topology used in our 
evaluation, the best observed values for the 
parameters for pheromone control α and β and ρ have 
been empirically determined through experiences on 
simulation results. At first, the pheromone 
evaporation parameter ρ, defining how quickly the 
ants “forget” past solutions has been always set to be 
in the range 0 ≤ ρ ≤ 1. A higher value makes for a 
more aggressive search; in our tests a value of around 
0.8 gave good results. The value of α determining the 
extent to which pheromone information is used as the 
ants build their solution, showed to be very critical 
for the success of the ACO search, and having tested 
values between 1-30, it seems that the ant-based 
algorithm works best with a relatively high value of 
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15 for all the topologies. Again, also for the 
parameter β, determining the extent to which 
heuristic information is used by the ants, all the 
values in the range 1-30 were tested, and a value near 
10 worked well for all the tests and topologies. Once 
again, we observed that an higher β value may 
provide good solutions quickly, but a lower value 
may provide better results after a longer period of 
time. The best-performing values for the ACO model 
parameters used in our simulation are reported in the 
table 1 below. 
 

Table 1. Best ACO parameters used in simulation 

Parameter name Parameter Value 
α 15 
β 10 
ρ 0.8 

 
The above values as experimentally determined 

in our simple tests work well enough, as the observed 
results show, but there is undoubtedly room for 
further improvement.  
 

5. Related work and discussion 
Job Scheduling on Computational Grids has 

taken considerable efforts from many researchers. 
There are several known meta-heuristics approaches, 
which explore the solution space and try to overcome 
local optimal solutions. Most of these approaches are 
based on a single heuristic method such as Genetic 
Algorithms (Braun et al. [19], Martino and Mililotti 
[20], Abraham et al. [21], Carretero and Xhafa [22]), 
Simulated Annealing (Yarkhan and Dongarra [23], 
Abraham et al. [21]), specifically focusing on Genetic 
Algorithms to achieve load balancing (Zomaya and 
Teh [36]) or using Tabu Search (Abraham et al. [21]). 
An hybrid approach based on an ACO algorithm 
combined with Tabu search is due to Ritchie and 
Levine [24][25]. Our approach is substantially 
different since it integrates the ACO technology with 
multi-agent systems, commonly recognized, because 
of their reactivity and their cooperation, negotiation, 
and competition capabilities as the best available 
solution to model highly dynamic and complex 
systems. What makes such a solution particularly 
attractive from the peer-to-peer Grid scheduling 
perspective is the fact that global properties like 
adaptation, self-organization and resilience are 
achieved without explicitly embedding them into the 
individual agents.  In our model, there are no rules 
specific to initial conditions, unforeseen scenarios, 
and variations in the environment or presence of 
failures. Yet, given large enough agent/ant colonies, 
the global behavior is surprisingly adaptive and 
resilient. The agents’ behavior, taken individually, 
may be easily understood, while the behavior of the 
scheduling system as a whole defies simple 

explanation. In other words, the interactions among 
agents, in spite of their simplicity, can give rise to 
richer and more complex patterns than those 
generated by single agents. Finally, while most of the 
scheduling schemes used in traditional peer-to-peer 
Grids, such as Sethi@home, are specialized in 
solving particular problems, our ACO-based 
framework aims at providing a general scheduling 
support for distributed computing, in which every 
independent node is capable of producing new jobs 
and introduce them in the network for computation.  
 

6. Conclusions 
The next generation grid computing 

environment must be intelligent and autonomous to 
meet requirements of smart self-management. 
Accordingly, we presented in this work a new 
adaptive strategy to efficiently distribute the jobs 
submitted on a grid on the available computational 
resources. The proposed approach is based on swarm 
intelligence and precisely on the ant colony 
optimization meta-heuristic implemented in a 
multi-agent system scenario. This fascinating family 
of algorithms tries to apply the ability of swarms to 
mathematical problems and was applied successfully 
to several optimization problems, so that they are 
widely recognized as one of the major self-organizing 
search mechanisms used in nowadays adaptive 
applications. One of the most interesting features of 
ant colony optimization-based approaches is that it 
may allow enhanced efficiency when the 
representation of the problem under investigation is 
spatially distributed and changing over time. On the 
other side, the Multi-Agent technology demonstrated 
to be an interesting solution to implement distributed 
and dynamic computational environments: agents 
confer the needed degree of autonomy to the system 
components and simplify the creation of dynamic 
relations among them. The agent-based ACO 
approach used in our work can be conceived as an 
initial attempt towards a distributed framework for 
building the next generation intelligent grid 
environments. We demonstrated that the above 
approach has at least two main advantages:  
• first, the coordination and task distribution 

policies can rely on the interaction and 
self-organization capabilities of the ACO-based 
agents since they are high level system 
components which in a swarm-inspired 
organization naturally embed negotiation, 
competition and cooperation capabilities;  

• also, the default services provided by multi-agent 
system meet typical peer-to-peer grid computing 
requirements; hence the use of a modular and 
extensible multi-agent system, simplifies and 
improve the efficiency in the Grid architecture 
development. 
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