Journal of Information Technology and Applications
Vol. 1 No. 4 March, 2007, pp. 249-260

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

Francesco Palmieri
CSI, Federico II University - Via Cinthia 5, 80126 Napoli, Italy
Francesco.Palmieri@unina.it

Abstract

Grid is an exciting buzzword in the computing world today, mainly in the scientific area. It is usually
defined as the exploitation of a varied set of networked computing resources, including large or small computers,
PDA:s, file servers and graphics devices. The emerging Internet based peer-to-peer Grid infrastructures, which
are based on a “flat” organization allowing seamless discovery, access to, and interactions among resources and
services, have complex and highly dynamic computational and interaction behaviors, and when combined with
the uncertainty of the underlying Internet infrastructure, result in significant development and management
challenges. Accordingly, in this paper, we propose a multi-agent based Peer-to-Peer Grid computing architecture
based on swarm intelligence and precisely on the ant-colony meta-heuristic, to map the solution capability of
social insects to the peer node interaction and resource scheduling problem. The main characteristics of this
architecture are highlighted by its promising performance and scalability, and its adaptive resource management
and scheduling mechanisms. It is completely decentralized, allowing every node in the system to act as a client
and a runtime server, by generating new jobs, submitting them to the network and participating, by running
several jobs, to the overall computational resource sharing. A Grid infrastructure designed in this way may be
interesting for individual peer entities that want to share their resources through the Internet within a large
community in order to exploit the resulting computing power effectively. Neither class of current Grids is
capable of scaling up to a so large user base, with a wide variety of applications and a plethora of user profiles.
This will force distributed application designers to look for alternative, more suitable computational models and

architectures.

Keyword: Peer-to-Peer Grids, Ant Colony Optimization, Multi-Agent Systems

1. Introduction

In today's incredibly sophisticated world of
computation, with the emerging very high speed
machine processing capabilities, complex data
storage methods, evolutionary operating systems and
services, and extremely advanced optical networking
services capabilities - we are entering a new era of
truly distributed computing. A growing number of
high-performance scientific and industrial
applications, ranging from real-time particle physics
or radio astronomical experiments to complex
weather forecast, and financial modeling, are
increasingly taking advantage from large
geographically distributed computing, network
infrastructures and data management resources,
commonly referred to as “Grids”, named after the
analogy with electricity grid. Like an electrical power
grid, the Grid will aim to provide a steady, reliable
source of computing power. A Grid also offers a
uniform and often transparent interface to its
resources such that an unaware user can submit jobs
to the Grid just as if he/she was handling a large
virtual supercomputer, so that large computing
endeavors, consisting of one or more related jobs, are
then transparently distributed over the network on the
available computing resources, and scheduled to
fulfill requirements with the highest possible
efficiency. The emerging domain of Grid computing
solutions has yielded a wide variety of network

infrastructures with very different capabilities and
features. At one extreme, based on transparent optical
communication and Wavelength Division
Multiplexing technologies, we can find very high
performance, dedicated fiber-based infrastructures,
such as the lambda-Grid [1] that is able to couple
traditional distributed Grid resources with reserved
lambdas or wavelengths, with 1-10 Gbps per link,
and hundreds of lambdas per optical fiber. At the
other extreme, we can find another class of Grid
infrastructures, called Peer-to-peer Grids, inspired by
the cycle sharing peer to peer applications, where the
underlying transport infrastructure is the standard
ubiquitous Internet, offering no specific support for
the Grid applications, and often resulting in a rather
poor network efficiency and conflicts with “normal”
internet traffic. The greatest enabling factor for
peer-to-peer Grid architectures is the widespread
availability of high-end desktop PC or Workstation
always connected to the Internet that at the state of
the art offer a computational capacity of 3-5 GFlops,
that is expected to become in the order of 100 GFlops
within the same time frame. Such a great processing
power that makes it possible to execute extremely
demanding applications (at least by today’s standards)
is largely unused (at least for the most part of the
day). This opens up a very interesting window for
computational resource sharing, also sustained by the
current trend of growth of the bandwidth availability

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

on the average and high-end Internet connections
(doubling each year) making ubiquitous
Internet-based peer-to-peer Grid computing one of
the most valid options available in the computing
arena. For example, in the Seti@Home project [2],
the enormous amount of radio signals registered by
radio telescopes are subdivided into a large number
of data sets, that can be independently distributed
through the Internet and analyzed in the search for
evidence of extra-terrestrial intelligence;
Distributed.net [3] is an umbrella for several
distributed computing projects, including
cryptography challenges in which brute-force attacks
are performed by subdividing key spaces into
independent portions; the Anthrax Project [4] is an
effort designed to help scientists to find a treatment
for the Anthrax toxin, by performing screening
analysis of large sets of molecules.

For the majority of grid systems and particularly
for peer-to-peer Grids, scheduling of customer jobs
on the available computational resources is one of the
most important topics. In the simplest case,
scheduling of jobs can be done in a blind way by
simply assigning the tasks to the compatible
resources according to their availability. Nevertheless,
it is much more profitable to use more advanced and
sophisticated distributed scheduling policies capable
to react to the dynamics of the grid system, typically
by evaluating and fairly balancing the current load of
the Grid resources, for better coping with unexpected
peaks of activity. Computing tasks are assigned to
each resource available on the peer-to-peer Grids
through a typical request/grant cycle handled by job
schedulers (also called grid resource brokers) running
on specific “master” nodes. These job schedulers
attempt to distribute the demands across the Grid as
optimally as possible, based on application profile
and resource availability. However this can be viewed
essentially as a master-slave architecture, in which
only few properly designated master nodes, often
becoming bottlenecks in very large environments, are
enabled to assign new jobs and the large amount of
slave machines distributed on the Internet are
relegated to a role of mere executors, thus in some
sense betraying the peer-to-peer philosophy.

On the other side, the communication pattern
between the components of the distributed
applications is also highly differentiating in Grid
environments. The advent of large-scale computation
and data sharing in wide-area Grids and peer-to-peer
applications is driving an evolution in communication
patterns from point-to-point connections to
multipoint-to-point and multipoint-to-multipoint
structures. Examples include many widely deployed
Peer to Peer content delivery networks, in which
multiple replicated data repositories are
simultaneously accessible for remote visualization or

computation at much higher aggregate speed.

Starting from the above considerations, this
paper proposes a novel multi-agent based Grid
paradigm based on the concept of real Peer to Peer
resource sharing by direct exchange between peer
nodes (i.e., nodes having same role and responsibility)
aiming to extend distributed computation through the
Internet to the general public. Distributed information
exchange, needed for scheduling and control will be
based on swarm intelligence [5] that is the collective
behavior from a group of social insects, namely ants,
that communicate interactively either directly or
indirectly in a distributed problem-solving manner.
Such behavior can be easily modeled as a multi-agent
system where all the agents communicate each other
through the network and cooperate through stigmergy
according to ant-like multipoint-to-multipoint local
interactions. The intrinsic nature of multi-agent
technology, explicitly oriented to model high
dynamic and complex systems [6], seems to be well
suited to provide support to peer-to-peer Grid
computing needs. Moreover, the adoption of agent
technology could bring to Grid wusers and
administrators more friendly and understandable
interfaces to interact with the system. The resources
that can be exchanged through this new Grid
infrastructure would include content, as in popular
Peer to Peer file sharing applications, and storage
capacity or CPU cycles. The peer nodes will operate
as both clients, by submitting jobs to the Grid, and
runtime or management servers, by sharing their
computational power and participating through
swarm intelligence to the resource scheduling and
Grid management. The proposed architecture, while
rather complex from the control logic point of view
will introduce some undeniable benefits in the overall
Grid infrastructure. First, it will allow distributed
applications to reach out to harness the outer edges of
the Internet and consequently will involve scales that
were previously unimaginable. Second, being
inherently based on the peer to peer paradigm by
definition, it excludes any form of centralized
structure, requiring scheduling and control to be
completely decentralized. Finally, and most
importantly, the environments in which these new
Grid applications will be deployed exhibit extreme
fault tolerance, dynamism in structure and load.
Extensive simulation results obtained upon different
experimental Grid topologies clearly indicate that our
ant-colony based approach is highly adaptive, robust
and effective in handling the distributed resource
discovery and scheduling in Internet-scale
peer-to-peer Grids.

2. A new approach to Grid computing
The traditional and peer-to-per Grids have been
analyzed to examine their strengths and weaknesses.

Then an evolutionary approach with all its basic
theoretical concepts and building blocks can be
proposed to help in addressing some of these
concerns, enabling seamless integration of distributed
computing systems allowing decentralized control,
large-scale and extreme dynamism in the peer-to-peer
Grid environment.

2.1 Traditional vs. peer to peer Grids

While computing Grids have been widely used
in computational science, Peer-to-Peer computing has
achieved wide prominence in the context of
multimedia file exchange. It uses the computing
power at the edge of a connection rather than within
the network. The client/server architecture does not
exist in a peer-to-peer system. Instead, peer nodes act
as both clients and servers - their roles are determined
by the characteristics of the tasks and the status of the
system. This architecture minimizes the workload per
node, and maximizes the utilization of the overall
computing resources among the network. Today, the
shear numbers of desktop systems make the potential
advantages of interoperability between desktops and
servers into a single Grid system quite compelling.
However, the peer-to-peer systems have significantly
different properties than the conventional
client/server-based Grid systems. The modern
peer-to-peer Grid infrastructures attempt to collect
resources from a variety of providers that are
managed in a totally distributed fashion, and are able
to handle from hugest to relatively small jobs. Their
strength lies in the capability of offering a generic
service based on a large number of distributed
resources, thus able to allow a wider variety of
applications. Conceptually, as all the known
Peer-to-peer systems these new computing
infrastructures are characterized by decentralized
control, large-scale and extreme dynamism of their
environment. They are usually highly autonomous
and heterogeneous systems and their availability
varies from time to time. Their main requirement
becomes the Internet-wide scalability for all the
control and management services such as resource
management, co-allocation, and scheduling.

On the other side, the traditional approaches,
very common in early production grids, are based on
a service-oriented computing architecture with a
super-local resource management and scheduling
strategy. In detail, the overall control logic is based
on a certain number of centralized managers, often
called resource brokers, that are the only entities with
a complete view of the resources available on the
whole Grid or on their own local management
domain. Each broker selects computing resources
based on actual job requirements and a number of
criteria identifying the available resources and their
location with the aim to minimize the total time to

Journal of Information Technology and Applications

Vol. 1 No. 4 March, 2007, pp. 249-260

delivery for the individual application, and performs
job distribution on them. This is clearly not
applicable in modern peer-to-peer grid computing
where both the network and the computing
infrastructure itself lack of a fixed structure. In fact
the service oriented architecture has poor adaptability
in terms of performance, availability, and scalability,
since no facility has been provided by the Grid
control systems to allow automatic deployment of the
services according to the clients’ requests and the
load of the Grid. The dependence on the schedulers
increases the complexity of application programming
in the Grid environment, as it is difficult to provide
the various local schedulers with a uniform
programming interface that supports task
decomposition, state persistence, and inter-task
communications. The overall resource management
and scheduling strategy intensively relies on the
client-server hierarchical approach. This two-level
process leads to more complex handling on resource
discovering, selection, and allocation compared with
a one-level process. The lack of a distributed
management policy of the computing nodes can
cause unsuitable selection of resources, and
unbalanced loads, and therefore limits the overall
performance. Consequently, a peer-to-peer interaction
strategy between the Grid nodes, operating in a “flat”
organization, seems to be the most promising
approach to provide scalable and adaptive services
for the next generation Grids.

2.2 Ant-based peer to peer organizations

A key issue in the development and
management of the peer-to-peer Grid infrastructures
is the coordination of the distributed autonomous
computing elements. The defining characteristics of
these emerging systems include:

e heterogeneity, Grid environments and
applications aggregate large numbers of
computational and information resources;

e dynamism, the computation, communication and
information environment is continuously
changing during the lifetime of an application,
including the availability and state of resources
and services;

e uncertainty caused by multiple factors, including
dynamism, which introduces unpredictable and
changing behaviors that can only be detected and
resolved at runtime, failures, which have an
increasing probability of occurrence as the
system scales increase, and incomplete
knowledge of global system state.

Furthermore, complex job scheduling and
composition/decomposition should be supported
since in many cases a single available element might
not address specific application requirements, and
composing several cooperating elements to form a

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

unit with integrated computing functionalities is
necessary to support the most computational
power-hungry applications. The resource discovery,
paradigms together with such scheduling and job
composition/decomposition criteria, enable
applications or parts of them to be dynamically
executed on a virtual computing environment
composed from discrete elements to meet the
changing requirements and system behaviors, deal
with element failures, optimize performance, address
QoS constraints, etc. However, such a distributed
coordination strategy is very difficult in large Grid
environments where all the computing elements are
available in a totally dynamic on-demand manner.
Challenges include element descriptions, their
discovery, and their dynamic and adaptive
composition, interaction and coordination. Thus the
critical components of an implementation
infrastructure for autonomic composition include an
efficient, scalable and flexible discovery mechanism,
and a high-level integration mechanism. The
discovery mechanism enables the selection of
appropriate elements while the integration
mechanism enables selected elements to be composed
coherently, without conflicts in element dependencies
and interactions. At our advice, autonomic
self-organization strategies inspired by biological
systems, as embraced by the modern
multi-autonomous agent technology and the
ant-colony meta-heuristic intelligence, aiming to map
the solution capability of social insects to the above
distributed scheduling and management scenario,
seem to be the most promising approaches to address
these challenges. More specifically, the simple
observation of the phenomenon of a group of ants in
a natural environment, which can dynamically and
adaptively find and collect foraging objects into their
nest without any master or central authority driving
them, gives a significant clue to solve our distributed
control and scheduling problem. The ants work
together to achieve an optimal solution and move
towards the optimal solution by sharing their own
knowledge with their neighbors. Such behavior can
be easily modeled as a multi-agent system where all
the agents communicate each other through the
network and cooperate through stigmergy according
to ant-like local interactions. Each task is carried by
an ant, realized by an agent. Ants cooperatively
search the less-loaded nodes with sufficient available
resources, and transfer the tasks to be executed to
these nodes. The proposed self-organizing
mechanism does not need a centralized control,
which otherwise might act as a potential bottleneck,
and is an attractive solution for very large, dynamic
and computationally intensive Grid infrastructures
because it is inherently parallel and easy distributable,
with each node running one or more agents
performing search in the solution space or directly

managing the resources available on it. Adding more
agents (or “ants”) generally increases the solution
quality at the cost of a very limited additional
workload

2.3. Multi-Agent Systems

A software agent is an autonomous software
entity able to expose a flexible behavior. Flexibility is
obtained by means of reactivity, pro-activity and
social ability [7]. Reactivity is the ability to react to
environmental changes in a timely fashion while
pro-activity is the ability to show a goal directed
behavior by taking the initiative. Due to their
reactivity agents are also very reliable components to
build fail safe systems, since their autonomous
behavior easily allow recovering from fault
conditions. Social ability, that is the ability to interact
with peers by means of cooperation, negotiation, and
competition, is one of the most important features of
agent oriented programming: agents do their best
when they interoperate. Interaction is obtained by
arranging agents in communities called multi-agent
systems. The intrinsic nature of Agent technology,
explicitly oriented to model high dynamic and
complex systems [6], seems to be well suited to
provide support to Grid computing needs. In
particular, agents can play many different roles into
Grid organization, be organized into dynamic groups,
and be able to migrate between nodes and groups to
support scheduling and load balancing.

2.4. The Ant Colony meta-heuristic

The ant colony optimization (ACO) techniques
are a subset of swarm intelligence meta-heuristics
inspired by the foraging behavior of real biological
networks [8] in finding the paths to food sources and
route around obstacles and consider the ability of
simple individuals to solve complex problems by
cooperation. In biological “networks” or colonies of
ants consisting of thousands and in some cases tens
of thousands of dynamic elements, each ant alone has
relatively little intelligence, while the collective
emergent behavior of the “network” exhibits a great
deal of global intelligence capable of dynamic
near-global optimization of certain tasks. Engineering
models and algorithms based on these biological
systems have the potential to leverage the tremendous
gains made in this century in understanding their
individual and collective colony-based behavior.
Initial work in swarm intelligence has revealed a
great deal of synergy between the routing
requirements of communication networks and certain
tasks that exist in biological swarms. For instance, a
key characteristic of swarm intelligence is the ability
of search agents (ants) to find optimal (or near
optimal) routing (in food gathering operations for
example), where intelligent behavior arises through
indirect communications between the agents. The

latter point is the most interesting: the ants do not
need any direct communication for the solution
process, instead they communicate by stigmergy. The
notion of stigmergy means the indirect
communication of individuals through modifying
their environment. In detail, any ant that leaves its
colony in search of food leaves a trail of chemical
called pheromones on the path that it takes. When an
ant returns from the food source to its nest, it
reinforces the pheromones on the path that it has
used. Pheromones acts to attract other ants to follow a
particular path. When a large number of ants forage
for food, the shortest or however the best available
path to the food source will eventually contain the
highest concentration of pheromones, thereby
attracting all the ants to use that path. Thus, the
concentration of pheromone on a certain path is an
indication of its usage. With time the concentration of
pheromone decreases due to diffusion effects. This
property is important because it is integrating
dynamic into the path searching process. The
following figure shows a scenario with two routes
from the nest to the food place. At the intersection,
the first ants randomly select the next branch. Since
the upper route is shorter than the lower one, the ants
which take this path will reach the food place first.
On their way back to the nest, the ants again have to
select a path. After a short time the pheromone
concentration on the shorter path will be higher than
on the longer path, because the ants using the shorter
path will increase the pheromone concentration
faster. The shortest path, that in this case is
straightforwardly the best one, will thus be identified
and eventually all ants will only use it.

T e

'f n.h..- -
————*[
Nest swonsnen * snsnse Food
—_—— N\ ;- AN R it

\

i
- W

Figure 1. The ant path searching behavior

Algorithms modeled according to this behavior,
have historically been used to solve shortest path
problems and problems that can be reduced to a kind
of shortest path problems but have also been
successful in attacking various popular combinatorial
optimization problems such as the traveling salesman
problem (TSP), the quadratic assignment problem
(QAP) and the job-shop scheduling problem (JSP)
[9]. Furthermore, almost all the results obtained to
date in developing swarm-based path searching or
combinatorial optimization algorithms exhibits the
following potential benefits:

Journal of Information Technology and Applications

Vol. 1 No. 4 March, 2007, pp. 249-260

e Dynamic “online” optimization using local
information

e No or very limited exchange
information for solution determination

e Inherent scalable nature, resulting in graceful
builds and degradations

e Characteristics leading to adaptivity and
robustness under most contingencies

of global

The solution to a combinatorial optimization
problem is a set S = {c,c5 ... ¢}, where ¢;, with
1<i<n, are known as the solution components. The
Ant Colony optimization techniques are inherently
iterative in their behavior. During each iteration, an
ant constructs a solution starting from the empty
solution S=2 Solution components are
incrementally added, one at a time, to the partial
solution until a complete, feasible solution is formed.
At the end of an iteration, the candidate solutions
constructed by the ants will be evaluated using a
problem specific objective function f. After that, each
ant will update the artificial pheromone associated to
each component that is found within its constructed
solution. Components that appear frequently in good
candidate solutions will have higher pheromone
values. The search process in subsequent iterations
will then be biased towards these favorable
components. The search process can stop if for
example the number of maximum iterations has been
met. In any case, the five main characterizing
elements of the above techniques are identified
below:

e A heuristic function #, which will guide the ants’
search with problem specific information.

e A pheromone trail definition, which states what
information is to be stored in the pheromone
trail. This allows the ants to share information
about good solutions.

e The pheromone update rule, this defines the way
in which good solutions are reinforced in the
pheromone trail.

e A fitness function which determines the quality
of a particular ant’s solution.

e A construction procedure that the ants follow as
they build their solutions (this also tends to be
problem specific).

Although the ACO method is a fairly novel
approach, it can be viewed as something of an
amalgam of other techniques. The ants essentially
perform an adaptive greedy search of the solution
space. Greedy search methods have been used for
many problems, and are often good at finding
reasonable results fast. The greedy search takes into
account information provided in the pheromone trail,
and this information is reinforced after each iteration.
Because a population of ants is used, ACO also has
similarities with evolutionary approaches such as

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

genetic algorithms (GAs). GAs use a population of
solutions which share useful information about good
ones, and probabilistically use this information to
build new solutions. They do this in a rather different
way, however, since a GA “stores” its information in
the population at each iteration whereas the ants store
it in the pheromone trail. So, while the specific
details of an ACO algorithm are new and the
techniques used are combined in a novel way, the
ACO approach implicitly uses several proven
problem solving strategies.

3. Architectural details

In a traditional Grid architecture there are two
kinds of participating entities: the clients submitting
computing tasks to the Grid and the computing nodes
(often called servers). A client is implemented as a
generic computing device that requests services from
the Grid by using properly designed web interfaces
(service portals) and middleware services, usually
implemented through the Web Services standards,
that assist grid users in finding suitable resource to
run their jobs. A computing node is the place where
tasks are executed and computing occurs. Each
computing node runs the runtime and management
environment for jobs and services.

In our peer to peer model a generic computing
device participating to the Grid can serve as a client
and a peer at the same time. There are no super-local
resource brokers or privileged nodes and the
management of all the grid resources requires new
and smarter technologies to implement a totally
distributed and highly dynamic scheduling
environment to allow scalable, failure-safe and
improved resource utilization. Accordingly, an
ant-like self-organizing mechanism can be used to
perform efficient resource management on the Grid
nodes through a collection of very simple local
multipoint-to-multipoint interactions. This can be
achieved by heuristically determining a scheduling
solution that distributes the jobs on the Grid resources
minimizing the overall Grid Makespan, that is the
maximum completion time of all the job instances in
the schedule, and Flowtime, referring to the response
time to the user petitions for task executions. The
above process can result in an indirect coarse-grained
load balancing effect since each task tends to be
dispatched to a grid resource that has less workload
and can meet the application execution deadline.

3.1 The agent-based distribution model
The multi-agent technology has features well
fitting for distributed communication, and is
particularly robust for the interaction, negotiation and
scheduling processes. We consider that such
characteristics are important fundamentals for a
suitable solution to the problem in question. In a

distributed agent framework, we conceptualize a
dynamic community of agents, where multiple agents
contribute services to the community by cooperating
like individuals in a social organization, such as an
ant colony. The appeal of such architectures depends
on the ability of populations of agents to organize
themselves and adapt dynamically to changing
circumstances without top-down control from a
central control logic. Although agents have been
applied to computing load balancing for many years,
only some attempts to apply intelligent agents in
realizing the Grid vision have been made by
academic researchers in the last few years. Anyway,
the agent’s social ability, the autonomous and flexible
behavior could play an important role for the
communication and the interaction with different
nodes, for example, in the exchange of information
about the resources available on each node.

3.2 Management and discovery

The proposed resource management and
discovery framework for peer-to-peer Grids can be
implemented as a multi-agent system where each
agent is a representative of a local grid resource
(resource management agent) or of an independent
execution request from an user (search agent),
associated with explicit computational requirements.
Each node on the networks supplies the same service
and each search agent must be served by one node
through one of its resource management agents. Each
resource management agent, that must be present on
each node participating to the peer-to-peer grid, is
used to manage all the applications within “one”
computing resource which could be a PC, a
workstation, or a cluster of computers, and is
responsible to schedule this computing resource. This
kind of agent should have knowledge about the
hardware performance of this computing resource,
and all applications installed with it as well as the
performance of these applications in this particular
hardware environment. Jobs are submitted to the grid
through the resource management agents that
cooperate to identify the candidate resource
(computing node) on which the task will be executed.
When a job is received by the resource management
agent, a job-related search agent will be created. This
agent will be in charge of finding candidate resource
management agents through the proposed ACO-based
interactions, and finally selecting the best resource
agents to execute the job. The search agent lives until
the associated job executes and will be dissolved
when the job is finished and the results are sent to the
end user (or may also be saved in a secure storage
resource). The search agent must be resource-aware
and be able to express its resource needs to the
system, and be able to negotiate for system resources.
Once scheduled, the search agent must also be
notified if the system state has changed in a way that

impacts the job (computing tasks) and perhaps is
necessary to enter resource re-negotiation and job
re-scheduling. At this point, the search agent may
need to adapt job execution to a different set of
allocated resources. It should be noted that a resource
agent or a search agent might be involved in several
negotiations of different types at the same time,
which is wusually called combined negotiation.
Combined negotiation is another difficult issue,
particularly in a multi-agent system implemented
with the proposed adaptive negotiation approach.
Since cooperation, negotiation, and competition are
natural activities common in multi-agent systems this
functionality is naturally obtained by using the agent
oriented approach. In the same way localization of
services and coordination within a single node are
obtained with less effort. All the agents, that in our
ACO-based model can be viewed as the “ants” are
generated from nodes on the grid according to their
specific roles, that is, the system consists of a certain
number of ants/agents which either handle
computational resources in various nodes or wander
on the network, searching for available resources.
The search agents associated to a task not yet
assigned to a computing resource for execution
(pending task) wander on networks driven by the
ACO meta-heuristic and search proper nodes
(resource management agents) to join and queuing by
interacting with the corresponding resource
management agents. At an higher level of the
peer-to-peer Grid control logic, agents cooperate with
each other according to ant-like local interaction to
manage the overall workload according to the above
agent-based self-organization performing
complementary scheduling of the available resources
on the network-distributed Grid.

3.3 The job scheduling logic

In our model we consider, for simplicity sake,
the following basic assumptions in formulating the
ACO-based scheduling logic: the jobs being
submitted to the grid are independent and are not
preemptive, that is, they cannot change the resource
they has been assigned to once their execution is
started, unless the resource is dropped from the grid.
Examples of this scenario in real life grid applications
arise typically when independent users send their
tasks to the grid, or in case of applications that can be
split into independent tasks. Such applications are
frequently encountered in scientific and academic
environments. They also appear in intensive
computing applications and data intensive computing,
data mining and massive processing of data, etc.

Our objective is to determine an efficient
solution to the problem of scheduling a set J of m
independent jobs J={ji, ... j,,} each of which have an

Journal of Information Technology and Applications
Vol. 1 No. 4 March, 2007, pp. 249-260

associated predicted running time #(j;) onto a set J of
n Grid nodes, V={vi, ... v,}, for each /<i<n, with a
specific computing capacity C; such that the load
will be fairly balanced on the available computing
resources and consequently all the jobs are completed
as quickly as possible, by optimizing the overall Grid
performance. Really, this is a multi-objective
optimization, the two most important objectives
being the minimization of the makespan and the
flowtime of the overall grid system. This problem,
widely simplified, is closely related to a commonly
known NP-hard combinatorial optimization problem,
the bin packing problem, where the items to be
packed are viewed as the jobs and the bins as the
Grid nodes with their capacity represented by the
available computing power. Consequently, also our
multiple variable resource scheduling problem, that is
inherently more complex, will be NP-hard and thus a
reasonable heuristic solution, achieving near-optimal
results is strongly desirable. Accordingly we propose
an highly adaptive approach that employ a collection
of ant agents that collaborate to explore the search
space. A stochastic decision making strategy is
proposed in order to combine global and local
heuristics to effectively conduct this exploration. As
the algorithm proceeds in finding better quality
solutions, dynamically computed local heuristics are
utilized to better guide the searching process. In our
schema an ant’s “life” begins at the originating node
of each task execution demand. It proceeds until it
finds the corresponding destination node resource
management agent offering adequate resources
available for task execution. At the completion of its
search, each ant deposits pheromone to mark the
detected solution and perform its stigmergy-based
interaction with the other socially-related individuals.
Thus, the most important factor that influences each
ant’s decision, and hence the overall heuristic search
behavior, will be the pheromone.

3.3.1. The pheromone trail
There is not an immediately clear definition for
the pheromone trail in this problem, and so the
information that will be stored in the pheromone trail
must be carefully selected. As the problem is
essentially to allocate jobs to the grid nodes,
intuitively it seems that the trail could store the
degree of success associated to assigning a particular
job to a particular node. The pheromone value 7(i,j)
can be therefore selected to represent the overall
success in finding a feasible solution implied by
scheduling a particular job i onto a particular node j.
The pheromone matrix will thus have a single entry
for each job-node pair in the problem. Furthermore, a
policy for updating the pheromone trail has been
established according to the following equation:

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

(i,j) = p(i,j) (1)

where p is a parameter which defines the
pheromone evaporation rate and decays the
pheromone trail implementing a mean of ‘forgetting’
solutions which are not reinforced often.

3.3.2. The ant-driving heuristic
The heuristic information that the ants use when
building their solution is also very important, it

guides their search with problem specific information.

However, because the ACO approach relies on
multiple ants building solutions over several
“generations” the heuristic information must be quick
to establish, and so only fairly simple heuristic values
can be used. The heuristic value used by the ants for
each job j has been defined in our model as:

1
- Hliin(logm (t(ji)

1n(j) 2

That is inversely proportional to the minimum
completion time for the job j on all the available
nodes, or better stated its completion time on the best
available node on the grid. To allow this value to be
effectively controlled with the [parameter,
determining the extent to which heuristic information
is used by the ants, it is necessary to “scale” the
heuristic value up. Therefore in the implementation
of this function all the #(j) values are computed for
each job and then the job list is sorted into
descending order of these values.

3.3.3. Finding a solution

The set of jobs and nodes will serve as
components from which each ant will use to
incrementally construct a solution during each
iteration of the algorithm. For each ant, an iteration
consists of a finite number of steps. At step » of
iteration ¢, an ant k£ will select a specific job j to be
executed on a node v; to be included in its partially
constructed solution Sk(z,7)={s1,... sj} according to a
stochastic decision making strategy properly driven
by the above heuristic and pheromone trail. More
precisely, let b; the node on which the job j can be
executed in the minimum completion time, and a the
extent to which pheromone information is used as the
ants build their solution, the probability p(j) of
selecting job j to schedule next is given by equation:

7(j,b,))" -n(j)’

p(j)=-
Z(r(i,b,-)“ (i)’

3)

A job is then selected based on this value, and
the chosen job j. is preferably allocated, on the b,
node. The pheromone trail update procedure is then

used on the iteration best ant. This process is repeated
until all jobs have been scheduled, a complete
solution has been built and there is no further
improvement in the fitness value of the solution. The
fitness value is determined according to a
properly-crafted fitness function, whose goal is
essentially to help the algorithm in discerning
between high and low quality solutions that in our
case means obtaining that all the jobs are completed
as quickly as possible. In other words it implicitly
means best balancing the load on the available nodes,
that is, minimizing the makespan and flowtime of the
solution itself. Makespan and flowtime are both
strong fitness indicators of the grid system; their
relation is not trivial at all, in fact they are
contradictory in the sense that trying to minimize one
of them could not suit to the other, especially for
plannings close to optimal ones. Note that makespan
is an indicator of the general productivity of the grid
system. Small values of makespan mean that the
scheduler is providing good and efficient planning of
tasks to resources. On the other hand, minimizing the
value of flowtime means reducing the average
response time of the grid system. For better results,
the value of mean flowtime, flowtime/M (where M is
the number of machines in the grid), can be used
instead of flowtime. Essentially, we want to
maximize the productivity (throughput) of the grid
environment through an intelligent load balancing
and at the same time we want to obtain plannings that
offer a quality of service acceptable to the users.
Consequently the fitness function for our assignment
and balancing problem could simply be the inverse of
the sum of makespan mks, and mean flowtime f#; of
the solution s, weighted by a properly crafted
parameter A, a priori fixed to 0.75 to give more
priority to makespan, as it is the most important
parameter. The fitness equation is reported below.

1
C A-mks, +(1-2)- fi,

/s 4)

The presented ACO-driven scheduling algorithm
is conceived to be flexible in the sense that the
number of ants can be adjusted by the launching
probability of ants to achieve a good performance.

3.4 The agent structure

In our environment, the specific agents
described in the previous section will be implemented
at the Grid middleware level both for managing
computing resources on each local grid node and
scheduling incoming tasks, and for discovering
available resources on the network. Agents provide
an high-level representation of the corresponding grid
capability. They also characterize the available
resources as high performance computing service

providers in a wider grid environment. According to
the convergence of the three major technologies for
distributed systems - Grid, Agents and Web Services -
under the umbrella of the Open Grid Service
Architecture (OGSA) [11], each agent will be
implemented as a service that conforms to the set of
conventions for Web Services. Web Services have
emerged as a set of open standards, defined by the
World Wide Web consortium, and ubiquitously
supported by Information Technology suppliers and
users. A Web Service interacts with its environment
through a collection of operations that are
network-accessible through standardized XML
messaging. A Web Service is described by an
XML-based service description that covers all the
details necessary to interact with the service,
including message formats, transport protocols and
location. For an application to take advantage of Web
Services, three operations have to take place:
publishing service descriptions, looking up service
descriptions, and binding (or invoking services) using
such service descriptions. They rely on the above
XML syntactic framework, the transport layer SOAP
[12], the XML-based language WSDL [13] to
describe services, and the service directory UDDI
[14]. In detail, all the agent ontologies will be defined
using XML Schema components, and the agent
behavior will be described as a WSDL interface. The
benefit is that by publishing agents as service
descriptions, other Web Services may make an
effective binding and dynamic invocation of the
agent seen as a Web Service, regardless of whether it
is an agent-based computing functionality behind.

Agents can be structured according to a layered
model to Dbetter define their architectural
characteristics and ease the overall implementation
tasks, as defined in the following schema [10].

./ \ ;"/ Agent \

Agent
[! r
Local Management Layer Local Management Layer }
=
—qir JIr v JT
Coordination Layer | Coordination Layer
=
T J7 1 JL

Commumnication Layer | | | Commmication Layer

< >

Figure 2. The agent multi-layer architecture

o Communication Layer. Agents in the Grid system
must be able to communicate with each other or
with users using common data models and
communication protocols. The communication
layer provides an agent with an interface to
heterogeneous networks and operating systems.

Journal of Information Technology and Applications

Vol. 1 No. 4 March, 2007, pp. 249-260

Agent-agent interaction is exclusively via SOAP
message passing. Asynchronous message passing
has good scalability characteristics with a
minimum of synchronization between the agents.

Coordination Layer. The request an agent
receives from the communication layer should be
explained and submitted to the coordination layer,
which decides how the agent should act on the
request, during the search space exploration,
according to its own knowledge. For example, if
an agent receives a service request, it must
decide whether it has related service information.
The ant-driven resource scheduling process does
not aim to find the best service for each request,
but endeavors to find an available service
provided by a neighboring agent. While this may
decrease the optimal load balancing effect, the
trade-off is reasonable as grid users prefer to find
a satisfactory resource as fast as possible.

e Local Management Layer. This layer performs
functions of an agent for local and grid resource
management that is participating to scheduling
decisions to handle load distribution between the
local resources (i.e. local processors) and the
overall Grid resources. A local grid resource is
considered to be a cluster of tightly coupled
workstations, i.e. in a blade enclosure, operating
according to a common scheduling policy, or a
multiprocessor system. An agent takes its local
available computational resources as one of its
capabilities. It is also responsible for submitting
local service information to the coordination
layer for agent decision making. Within each
agent, its own service provided by the local grid
resource is evaluated first. Of course, if the
requirement can be met locally, the job execution
can be handled successfully without interaction
with other external agents/nodes.

4. Performance Analysis

To show that the approach has the potential to
become an acceptable distributed framework for
self-management of computational resources in the
next generation peer-to-peer grids, extensive
simulation has been conducted upon four different
Grid scenarios built in a random way upon some
sample grid dimensional characteristics (small: 32
hosts and 512 tasks; average: 64 hosts and 1024 tasks;
large: 128 hosts and 2048 tasks; and very large: 256
hosts and 4096 tasks). The grid networking
topologies, modeled as non-oriented graphs, have
been created using Waxman’s method [15], [16]. In
this method, the probability of the existence of link
between two nodes u and v is given by:

d

P(u,v) = e *)

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

where 0 < @,y < 1 are model parameters, d is the
Euclidean distance between u and v and L is the
maximum Euclidean distance between any two
vertices of the graph. The available computational
resources have been assigned randomly on all the
grid nodes. In all the experiments, we used a dynamic
model in which the job execution requests arrive at
the grid according to a Poisson process with an
arrival rate & (jobs/second). The predicted job
execution time is exponentially distributed with mean
4 (1800 seconds in our tests).

4.1 Building the system model

The ACO meta-heuristic algorithm has been
implemented in Java using the RePast multi-agent
simulation framework. We used the Java version of
Repast in order to take advantage of its great
extensibility, ease of modifiability, portability, strict
math and type definitions (to guarantee duplicatable
results), and object serialization (to checkpoint out
simulations). Repast is a free open source toolkit that
was originally developed at the University of
Chicago [17] and is now managed by the non-profit
volunteer Repast Organization for Architecture and
Development (ROAD). Repast seeks to support the
development of extremely flexible models of living
social agents, but is not limited to modeling living
social entities alone. In short, our RePast simulation
is primarily a collection of agents of both the search
and resource management type and a model that sets
up and controls the execution of these agents'
behaviors according to a schedule. This schedule not
only controls the execution of agent behaviors, but
also actions within the model itself, determined by
the ACO meta-heuristic paradigm.

4.2 Simulation results

All the results presented are taken from 100
iteration runs on 2 GHz HP Proliant DL380 machines
running Linux, and each run was performed 10 times
to collect the average makespan and flowtime values,
that are the most interesting performance parameter
for our evaluation. The proposed framework takes a
comparatively long time to build solutions,
approximately more then 10 seconds per iteration, so
that the whole simulation took some hours. The ACO
algorithm has been allowed to run for so long
because this gives it reasonable time to build up a
useful pheromone trail. The ants need some more
running time to find solutions which significantly
improve on the other solutions. The efficiency of the
proposed solution can be easily observed from the
graph in Fig. 3 below where the Makespan and
Flowtime values measured as the results of the ACO
meta-heuristic in our four typical Grid scenarios have
been compared with the same values obtained by
applying the classic Tabu Search (TS) approach as
showed in [18].

850000000
750000000
650000000
550000000
450000000
350000000
250000000
150000000

[
50000000 :
32512 64/1024 128/2048

Simulation Time

256/4096

—— ACO Makespan (msec) —l— ACO Flowtime (sec)

TS Makespan (msec) TS Flowtime (sec)

Figure 3. Makespan and flowtime performance

When representing both makespan and flowtime
values simultaneously in the same graph we have to
take into account that even though makespan and
flowtime are measured in the same unit (seconds), the
values they can take are in incomparable ranges, due
to the fact that flowtime has a higher magnitude order
over makespan, and its difference increases as more
jobs and machines are considered. Consequently, in
the above graph the makespan values have been
scaled properly in msecs to be representable together
with the flowtime ones. As can be seen, our ACO
approach performs slightly better than the Tabu
Search heuristic, especially in presence of larger
problems, with more grid nodes and presented jobs,
since in these cases the number of ants, or in other
words the agents associated to tasks and nodes
greatly increases. This result shows that the presented
approach is a very good alternative for solving Job
Scheduling in very large peer-to-peer Computational
Grids where more priority is given to the reduction of
Makespan than on immediate job scheduling time.
The setting of the ACO parameters in our model will
also affect the performance of the whole framework.
Due to the time taken for a decent sized run of the
ACO algorithm, and to the inbuilt stochasticity of the
approach, finding the optimal values for these
parameters has been a complex and very
time-consuming task. For each topology used in our
evaluation, the best observed values for the
parameters for pheromone control a and f and p have
been empirically determined through experiences on
simulation results. At first, the pheromone
evaporation parameter p, defining how quickly the
ants “forget” past solutions has been always set to be
in the range 0 < p < 1. A higher value makes for a
more aggressive search; in our tests a value of around
0.8 gave good results. The value of o determining the
extent to which pheromone information is used as the
ants build their solution, showed to be very critical
for the success of the ACO search, and having tested
values between 1-30, it seems that the ant-based
algorithm works best with a relatively high value of

15 for all the topologies. Again, also for the
parameter f, determining the extent to which
heuristic information is used by the ants, all the
values in the range 1-30 were tested, and a value near
10 worked well for all the tests and topologies. Once
again, we observed that an higher f value may
provide good solutions quickly, but a lower value
may provide better results after a longer period of
time. The best-performing values for the ACO model
parameters used in our simulation are reported in the
table 1 below.

Table 1. Best ACO parameters used in simulation

Parameter name Parameter Value
o 15
B 10
p 0.8

The above values as experimentally determined
in our simple tests work well enough, as the observed
results show, but there is undoubtedly room for
further improvement.

5. Related work and discussion

Job Scheduling on Computational Grids has
taken considerable efforts from many researchers.
There are several known meta-heuristics approaches,
which explore the solution space and try to overcome
local optimal solutions. Most of these approaches are
based on a single heuristic method such as Genetic
Algorithms (Braun et al. [19], Martino and Mililotti
[20], Abraham et al. [21], Carretero and Xhafa [22]),
Simulated Annealing (Yarkhan and Dongarra [23],
Abraham et al. [21]), specifically focusing on Genetic
Algorithms to achieve load balancing (Zomaya and
Teh [36]) or using Tabu Search (Abraham et al. [21]).
An hybrid approach based on an ACO algorithm
combined with Tabu search is due to Ritchie and
Levine [24][25]. Our approach is substantially
different since it integrates the ACO technology with
multi-agent systems, commonly recognized, because
of their reactivity and their cooperation, negotiation,
and competition capabilities as the best available
solution to model highly dynamic and complex
systems. What makes such a solution particularly
attractive from the peer-to-peer Grid scheduling
perspective is the fact that global properties like
adaptation, self-organization and resilience are
achieved without explicitly embedding them into the
individual agents. In our model, there are no rules
specific to initial conditions, unforeseen scenarios,
and variations in the environment or presence of
failures. Yet, given large enough agent/ant colonies,
the global behavior is surprisingly adaptive and
resilient. The agents’ behavior, taken individually,
may be easily understood, while the behavior of the
scheduling system as a whole defies simple

Journal of Information Technology and Applications
Vol. 1 No. 4 March, 2007, pp. 249-260

explanation. In other words, the interactions among
agents, in spite of their simplicity, can give rise to
richer and more complex patterns than those
generated by single agents. Finally, while most of the
scheduling schemes used in traditional peer-to-peer
Grids, such as Sethi@home, are specialized in
solving particular problems, our ACO-based
framework aims at providing a general scheduling
support for distributed computing, in which every
independent node is capable of producing new jobs
and introduce them in the network for computation.

6. Conclusions

The next generation grid computing
environment must be intelligent and autonomous to
meet requirements of smart self-management.
Accordingly, we presented in this work a new
adaptive strategy to efficiently distribute the jobs
submitted on a grid on the available computational
resources. The proposed approach is based on swarm
intelligence and precisely on the ant colony
optimization meta-heuristic implemented in
multi-agent system scenario. This fascinating family
of algorithms tries to apply the ability of swarms to
mathematical problems and was applied successfully
to several optimization problems, so that they are
widely recognized as one of the major self-organizing
search mechanisms used in nowadays adaptive
applications. One of the most interesting features of
ant colony optimization-based approaches is that it
may allow enhanced efficiency when the
representation of the problem under investigation is
spatially distributed and changing over time. On the
other side, the Multi-Agent technology demonstrated
to be an interesting solution to implement distributed
and dynamic computational environments: agents
confer the needed degree of autonomy to the system
components and simplify the creation of dynamic
relations among them. The agent-based ACO
approach used in our work can be conceived as an
initial attempt towards a distributed framework for
building the next generation intelligent grid
environments. We demonstrated that the above
approach has at least two main advantages:
e first, the coordination and task distribution

policies can rely on the interaction and

self-organization capabilities of the ACO-based

agents since they are high Ilevel system
components which in a swarm-inspired
organization naturally embed negotiation,

competition and cooperation capabilities;

e also, the default services provided by multi-agent
system meet typical peer-to-peer grid computing
requirements; hence the use of a modular and
extensible multi-agent system, simplifies and
improve the efficiency in the Grid architecture
development.

An Ant Colony-based framework for Internet-scale Peer-to-Peer Grids

[1]

[11]

[16]

References
T. De Fanti, C. De Laat, J. Mambretti, K.
Neggers and B. St. Arnaud, “TransLight: A
global-scale LambdaGrid for e-science”,
Communications of the ACM, 47(11), 2003.
D. Anderson, “SETI@home”, in A. Oram,
editor, Peer-to-Peer: Harnessing the Benefits of
a Disruptive Technology, chapter 5. O’Reilly,
2001.
The Anthrax Project, http://www. chem. ox. uk/
anthrax.
Distributed.net
distributed. net.
J. Kennedy, Y. Shi and R.C. Eberhart, “Swarm
Intelligence”, Morgan Kaufmann Publishers,
San Francisco, 2001.
M. Wooldridge, “Intelligent Agents, in
Multi-agent Systems — A Modern Approach to
Distributed Artificial Intelligence”, G. Weiss
Ed., Cambridge, MA, 1999.
G. Weiss, “Multi-agent Systems — A Modern
Approach to Distributed Artificial Intelligence”,
G. Weiss Ed., Cambridge, MA, 1999.
M. Dorigo, G. Di Caro, “The Ant Colony
Optimization Metaheuristic” in D. Corne, M.
Dorigo and F. Glover (eds), New Ideas in
Optimization, McGraw-Hill, 1999.
M. Dorigo and L.M. Gambardella, “Ant colony
System: Optimization by a colony of
cooperating agents”, [EEE Transactions on
Systems, Man, and Cybernetics — Part B, vol. 26,
no. 1, pp 29-41, 1996.
J. Cao , D. P. Spooner , S. A. Jarvis , G R.
Nudd , “Grid load balancing using intelligent
agents”, Future generation computer systems,
vol. 21, n. 1, pp. 135-149, Elsevier, 2005
I. Foster, C. Kesselman, J. Nick, S. Tuecke,
“The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration”, Global Grid Forum, 2002.

Home Page, http://www.

Xml protocol working group,
http://www.w3c.org/2000/xp/Group/.

W3C, WSDL specification,
http://www.w3c.org/TR/wsdl.

Uddi standards, http.//www.uddi.org.

E. W. Zegura, K. L. Calvert, and S.

Bhattacharjee, @ “How to model an
internetwork,” in IEEE Infocom, vol. 2. San
Francisco, CA: IEEE, pp. 594-602, 1996.

B. M. Waxman, “Routing of multipoint
connections,” IEEE Journal on Selected Areas
in Communications, vol. 6, no. 9, pp.
1617-1622, 1988.

[17]

[19]

[22]

[23]

[24]

[26]

E. Tatara, M.J. North, T.R. Howe, N.T. Collier,
and J.R. Vos, “dn Introduction to Repast
Modeling by Using a Simple Predator-Prey
Example”, Proceedings of the Agent 2006
Conference, 2006

T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni,
M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen and R. F.
Freund, “A comparison of eleven static
heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing
systems”, Journal of Parallel and Distributed
Computing, 61(6):810-837, 2001.

T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni,
M. Maheswaran, A.l. Reuther, J.P. Robertson,
M.D. Theys, and B. Yao, “A comparison of
eleven static heuristics for mapping a class of

independent tasks onto heterogeneous
distributed computing systems”, Journal of
Parallel and Distributed Computing,

61(6):810-837, 2001.

V. Di Martino and M. Mililotti, “Sub optimal
scheduling in a grid using genetic algorithms”,
Parallel Computing, 30:553-565, 2004.

A. Abraham, R. Buyya, and B. Nath, “Natures
heuristics for scheduling jobs on computational
grids”, in The 8th IEEE International
Conference on Advanced Computing and
Communications (ADCOM 2000) India, 2000.
J. Carretero and F. Xhafa, “Using genetic
algorithms for scheduling jobs in large scale
grid applications”, in Workshop of the
European Chapter on Metaheuristics EUME
2005, Metaheuristics and Large Scale
Optimization. May 19-21, Vilnius, Lithuania,
2005.

A. YarKhan and J. Dongarra, “Experiments with
scheduling using simulated annealing in a grid
environment”, In GRID2002, pages 232-242,
2002.

AY. Zomaya and Y.H. Teh, “Observations on

using genetic algorithms for dynamic
load-balancing”, [EEE Transactions On
Parallel and Distributed Systems,

12(9):899-911, 2001.

G. Ritchie, “Static multi-processor scheduling
with ant colony optimisation & local search”,
Master’s thesis, School of Informatics,
University of Edinburgh, 2003.

G. Ritchie and J. Levine, “4 hybrid ant
algorithm for scheduling independent jobs in
heterogeneous computing environments”, in
23rd Workshop PLANSIG 2004, 2004.

