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Abstract

We review different aspects of the simulation of spiking raéumetworks. We start by reviewing the
different types of simulation strategies and algorithnad #re currently implemented. We next review the
precision of those simulation strategies, in particularéees where plasticity depends on the exact timing of
the spikes. We overview different simulators and simulagavironments presently available (restricted to
those freely available, open source and documented). Ebrsgaulation tool, its advantages and pitfalls are
reviewed, with an aim to allow the reader to identify whicimslator is appropriate for a given task. Finally,
we provide a series of benchmark simulations of differepesyof networks of spiking neurons, includ-
ing Hodgkin-Huxley type, integrate-and-fire models, iatging with current-based or conductance-based
synapses, using clock-driven or event-driven integratteategies. The same set of models are implemented
on the different simulators, and the codes are made availdlle ultimate goal of this review is to provide
a resource to facilitate identifying the appropriate imédipn strategy and simulation tool to use for a given
modeling problem related to spiking neural networks.
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Introduction

The growing experimental evidence that spike timing mayrbpartant to explain neural computations has
motivated the use of spiking neuron models, rather thanréftitional rate-based models. At the same time, a
growing number of tools have appeared, allowing the sirmaradf spiking neural networks. Such tools offer
the user to obtain precise simulations of a given computatiparadigm, as well as publishable figures in a
relatively short amount of time. However, the range of cotaponal problems related to spiking neurons is
very large. It requires in some cases to use detailed biogdly®presentations of the neurons, for example
when intracellular electrophysiological measuremengstatbe reproduced (e.g., see Destexhe and Sejnowski,
2001). In this case, one uses conductance-based modelsasube Hodgkin and Huxley (1952) type of
models. In other cases, one does not need to realisticaltyieathe spike generating mechanisms, and simpler
models, such as the integrate-and-fire (IF) model are sefficilF type models are also very fast to simulate,
and are particularly attractive for large-scale networkiigations.

There are two families of algorithms for the simulation ofired networks: synchronous or “clock-driven”
algorithms, in which all neurons are updated simultangoaslevery tick of a clock, and asynchronous or
“event-driven” algorithms, in which neurons are updatety evhen they receive or emit a spike (hybrid strate-
gies also exist). Synchronous algorithms can be easilyccadd apply to any model. Because spike times are
typically bound to a discrete time grid, the precision ofs¢hraulation can be an issue. Asynchronous algorithms
have been developed mostly for exact simulation, which ssiibe for simple models. For very large networks,
the simulation time for both methods scale as the total nurobgpike transmissions, but each strategy has its
own assets and disadvantages.

In this paper, we start by providing an overview of differsmhulation strategies, and outline to which extent
the temporal precision of spiking events impacts on nedidyraamics of single as well as small networks of IF
neurons with plastic synapses. Next, we review the cugr@whilable simulators or simulation environments,
with an aim to focus only on publically-available and nonveoercial tools to simulate networks of spiking
neurons. For each type of simulator, we describe the simulatrategy used, outline the type of models which
are most optimal, as well as provide concrete examples. [fineate goal of this paper is to provide a resource
to enable the researcher to identify which strategy or satoulto use for a given modeling problem related to
spiking neural networks.

1 Simulation strategies

This discussion is restricted to serial algorithms for biyevi he specific sections of NEST and SPLIT contain
additional information on concepts for parallel computing

There are two families of algorithms for the simulation otired networks: synchronous or “clock-driven”
algorithms, in which all neurons are updated simultangoaslevery tick of a clock, and asynchronous or
“event-driven” algorithms, in which neurons are updatety avhen they receive or emit a spike. These two
approaches have some common features that we will firstidesioy expressing the problem of simulating
neural networks in the formalism of hybrid systems, i.dfedéntial equations with discrete events (spikes). In
this framework some common strategies for efficient reprasion and simulation appear.

Since we are going to compare algorithms in terms of comiouiat efficiency, let us first ask ourselves
the following question: how much time can it possibly takedayood algorithm to simulate a large network?
Suppose there afé neurons whose average firing ratd=iand average number of synapse®.idf all spike
transmissions are taken into account, then a simulatidim¢ass (biological time) must procebsx px F spike
transmissions. The goal of efficient algorithm design isetach this minimal number of operations (of course,
up to a constant multiplicative factor). If the simulati@not restricted to spike-mediated interactions, e.g. if
the model includes gap junctions or dendro-dendritic attons, then the optimal number of operations can
be much larger, but in this review we chose not to addressrtitdgm of graded interactions.
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1.1 A hybrid system formalism

Mathematically, neurons can be describechglsrid systemsthe state of a neuron evolves continuously ac-
cording to some biophysical equations, which are typicdifferential equations (deterministic or stochastic,
ordinary or partial differential equations), and spikeseieed through the synapses trigger changes in some of
the variables. Thus the dynamics of a neuron can be desaibtdliows:

dx
= = f(X
at (X)

X — g(X) upon spike from synapse i

whereX is a vector describing the state of the neuron. In theoryngakto account the morphology of the
neuron would lead to partial differential equations; hogrein practice, one usually approximates the dendritic
tree by coupled isopotential compartments, which alscsléad differential system with discrete events. Spikes
are emitted when some threshold condition is satisfiednkiance/,, > 0 for integrate-and-fire models (where
Vm is the membrane potential and would be the first componenéabvX), and/ordV,/dt > 6 for Hodgkin-
Huxley type models. This can be summarized by saying thaika spemitted whenever some conditisne A
is satisfied. For integrate-and-fire models, the membratenpal, which would be the first component Xf
is reset when a spike is produced. The reset can be integnateithe hybrid system formalism by considering
for example that outgoing spikes act ¥rthrough an additional (virtual) synapsé:«— go(X).

With this formalism, it appears clearly thspike times need not be storekcept of course if transmission
delays are included), even though it would seem so from mibea@menological formulations. For example,
consider the following integrate-and-fire model (desatibi example in Gitig and Sompolinsky (2006)):

V(t) = Z(.Oi Z K(t—t) + Vrest

whereV (t) is the membrane potentidles; is the rest potentiaky is the synaptic weight of synapset; are

the timings of the spikes coming from synapsandK(t —t;) = exp(—(t —t;)/1) —exp(—(t —ti) /Ts) is the
post-synaptic potential (PSP) contributed by each incgrmapike. The model can be restated as a two-variables
differential system with discrete events as follows:

dv
TE = Viest—V +1J
dJ
s = —J
*dt
-1 : .
J «— J+ W upon spike from synapse i

Virtually all post-synaptic potentials or currents delsed in the literature (e.gi-functions, bi-exponential
functions) can be expressed this way. Several authors lesegilded the transformation from phenomenological
expressions to the hybrid system formalism for synapticdootances and currents (Destexhe et al, 1994a,
1994b, Rotter and Diesmann, 1999, Giugliano, 2000), dleont- synaptic depression (Giugliano et al, 1999),
and spike-timing-dependent plasticity (Song et al, 200®)ynany cases, the Spike Response Model (Gerstner
and Kistler, 2002) is also the integral expression of a ltybyistem. To derive the differential formulation of
a given post-synaptic current or conductance (PSC), oneisviysee the latter as the impulse response of a
linear time-invariant system (which can be seen as a filtatk@ et al, 1998)) and use transformation tools from
signal processing theory such as the Z-transform (Kohn abdyWiter, 1998; see also Sanchez, 2001) or the
Laplace transform (the Z-transform is the equivalent oflthplace transform in the digital time domain, i.e.,
for synchronous algorithms).

1.2 Using linearities for fast synaptic simulation

In general, the number of state variables of a neuron (leofytfector X) scales with the number of synapses,
since each synapse has its own dynamics. This fact coestiauimajor problem for efficient simulation of
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neural networks, both in terms of memory consumption andpedation time. However, several authors have
observed that all synaptic variables sharing the samerlishg@amics can be reduced to a single one (Wilson
and Bower, 1989, Bernard et al, 1994, Lytton, 1996 and Sord, @000). For example, the following set of
differential equations, describing an integrate-and+fiael withn synapses with exponential conductances:

¥ - VoV TGOV -y

don
TSE = 01

d
g <« Og+Ww upon spike arriving at synapse

is mathematically equivalent to the following set of twofeiential equations:

dav

Ca = Vo—V+ot)(V-Es)
dg

o — 9

g <« g+w upon spike arriving at synapse

whereg is the total synaptic conductance. The same reductionegpfii synapses with higher dimensional
dynamics, as long as it is linear and the spike-triggerecigbs ¢; < g; +w;) are additive and do not depend
on the state of the synapse (e.g. the gile- g, +w; * f(gi) would cause a problem). Some models of spike-
timing dependent plasticity (with linear interactionsweén pairs of spikes) can also be simulated in this way
(see e.g. Abbott and Nelson (2000)). However, some impbhmphysical models are not linear and thus
cannot benefit from this optimization, in particular NMDAenliated interactions and saturating synapses.

1.3 Synchronous or “clock-driven” algorithms

In a synchronous or “clock-driven” algorithm (see pseuddecin figure 1), the state variables of all neurons
(and possibly synapses) are updated at every tick of a cl¥¢k) — X(t 4+ dt). With non-linear differen-

tial equations, one would use an integration method suchus Br Runge-Kutta (Press et al, 1993) or, for
Hodgkin-Huxley models, implicit methods (Hines, 1984). uxens with complex morphologies are usually
spatially discretized and modelled as interacting conmpants: they are also described mathematically by cou-
pled differential equations, for which dedicated integmatmethods have been developed (for details see e.g.
the specific section of Neuron in this review). If the diffietial equations are linear, then the update operation
X(t) — X(t+dt) is also linear, which means updating the state variablesiatagimply to multiplyingX by a
matrix: X (t+dt) = AX(t) (Hirsch and Smale, 1974; see also Rotter and Diesmann (1998) application to
neural networks), which is very convenient in vector-basgdntific softwares such as Matlab or Scilab. Then,
after updating all variables, the threshold condition isaed for every neuron. Each neuron that satisfies
this condition produces a spike which is transmitted toatget neurons, updating the corresponding variables
(X < @i(X)). For integrate-and-fire models, the membrane potentialefy spiking neuron is reset.

Computational complexity

The simulation time of such an algorithm consists of twosat) state updates and 2) propagation of spikes.
Assuming the number of state variables for the whole netvgoedes with the number of neurohsin the
network (which is the case when the reduction describeddticsel.2 applies), the cost of the update phase is
of orderN for each step, so it i©®(N/dt) per second of biological timel{ is the duration of the time bin). This
component grows with the complexity of the neuron modelsthadgrecision of the simulation. Every second
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(biological time), an average &f x N spikes are produced by the neuroRgg the average firing rate), and each
of these needs to be propagatedottarget neurons. Thus, the propagation phase consigts<ilN x p spike
propagations per second. These are essentially additfomeightsw; to state variables, and thus are simple
operations whose cost does not grow with the complexity ®htlodels. Summing up, the total computational
cost per second of biological time is of order

Update + Propagation

CUx% + cpxFxNxp ()
wherecy is the cost of one update amg is the cost of one spike propagation; typically, is much higher
thancp but this is implementation-dependent. Therefore, for \@@gse networks, the total is dominated by
the propagation phase and is linear in the number of synap$ésh is optimal. However, in practice the first
phase is negligible only when the following condition is met

C
—P><F><p><dt>>l
Cu

For example, the average firing rate in the cortex might bewaskF = 1 Hz (Olshausen and Field, 2005), and
assumingp = 10,000 synapses per neuron atid= 0.1 ms, we geF x px dt= 1. In this case, considering that
each operation in the update phase is heavier than in thegatpn phase (especially for complex models),
i.e.,cp < ¢y, the former is likely to dominate the total computationadtcd hus, it appears that even in networks
with realistic connectivity, increases in precision (skerailt, see section 2) can be detrimental to the efficiency
of the simulation.

Delays

For the sake of simplicity, we ignored transmission delay$he description above. However it is not very
complicated to include them in a synchronous clock-drivigorithm. The straightforward way is to store the
future synaptic events in a circular array. Each elemenhefarray corresponds to a time bin and contains a
list of synaptic events that are scheduled for that time ésgeMorrison et al, 2005). For example, if neution
sends a spike to neurgrwith delayd (in units of the time birdt), then the synaptic eveni - j” is placed in
the circular array at positiop+ d, wherep is the present position. Circularity of the array means thditen
p+dis modular (p+d) modn, wheren is the size of the array — which corresponds to the largestydel
the system).

What is the additional computational cost of managing d&tayn fact, it is not very high and does not
depend on the duration of the time bin. Since every synapéotd] — |) is stored and retrieved exactly once,
the computational cost of managing delays for one secondblafdical time is

o xFxNxp

wherecp is the cost of one store and one retrieve operation in thaleirarray (which is low). In other words,
managing delays increases the cost of the propagation phageation(x) by a small multiplicative factor.

Exact clock-driven simulation

The obvious drawback of clock-driven algorithms as desctiabove is that spike timings are aligned to a
grid (ticks of the clock), thus the simulation is approximaven when the differential equations are computed
exactly. Other specific errors come from the fact that tholeslconditions are checked only at the ticks of
the clock, implying that some spikes might be missed (setose2). However, in principle, it is possible to
simulate a network exactly in a clock-driven fashion whea ithinimum transmission delay is larger than the
time step. It implies that the precise timing of synapticragds stored in the circular array (as described in
Morrison et al, 2006). Then within each time bin, synaptieras for each neuron are sorted and processed in
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the right order, and when the neuron spikes, the exact spikag is calculated. Neurons can be processed
independently in this way only because the time bin is smé#fian the smallest transmission delay (neurons
have no influence on each other within one time bin).

Some sort of clock signals can also be used in general evimedhlgorithms without the assumption of a
minimum positive delay. For example, one efficient datacstme used in discrete event systems to store events
is a priority queue known as “calendar queue” (Brown, 1988)ich is a dynamic circular array of sorted lists.
Each “day” corresponds to a time bin, as in a classical arcalray, and each event is placed in the calendar at
the corresponding day; all events on a given day are sortemtding to their scheduling time. If the duration
of the day is correctly set, then insertions and extractaires/ents take constant time on average. Note that, in
contrast with standard clock-driven simulations, theestairiables are not updated at ticks of the clock and the
duration of the days depends neither on the precision ofitiation or on the transmission delays (it is rather
linked to the rate of events) — in fact, the management of ti@ify queue is separated from the simulation
itself.

Note however that in all these cases, state variables ndeelupdated at the time of every incoming spike
rather than at every tick of the clock in order to simulateribvork exactly (e.g. simple vector-based updates
X + AX are not possible), so that the teawent-drivermay be a better description of these algorithms (the
precise terminology may vary between authors).

Noise in synchronous algorithms

Noise can be introduced in synchronous simulations by @afigriwo means: 1) adding random external
spikes; 2) simulating a stochastic process.

Suppose a given neuron receidesandom spikes per second, according to a Poisson process thé
number of spikes in one time bin follows a Poisson distrioutwith meanF x dt. Thus one can simulate
random external spike trains by letting each tick of the kltsigger a random number of synaptic updates. If
F x dtis low, the Poisson distribution is almost a Bernouilli diastion (i.e., there is one spike with probability
F x dt). Itis straightforward to extend the procedure to inhommagelis Poisson processes by allowihdo
vary in time. The additional computational cost is propmrél toFey x N, WhereFqy is the average rate of
external synaptic events for each neuron &h the number of neurons. Note thai; can be quite large
since it represents the sum of firing rates of all externatarei(for example it would be 1000 Hz for 10000
external synapses per neuron with rate 1 Hz).

To simulate a large number of external random spikes, it aadvantageous to simulate directly the
total external synaptic input as a stochastic process,\eltte or colored noise (Ornstein-Uhlenbeck). Lin-
ear stochastic differential equations are analyticalllyaue, therefore the updaté(t) — X(t +dt) can be
calculated exactly with matrix computations (Arnold, 1p74(t + dt) is, conditionally toX(t), a normally dis-
tributed random variable whose mean and covariance mairixe calculated as a functionXft)). Nonlinear
stochastic differential equations can be simulated usppyaimation schemes, e.g. stochastic Runge-Kutta
(Honeycutt, 1992).

1.4 Asynchronous or “event-driven” algorithms

Asynchronous or “event-driven” algorithms are not as wideded as clock-driven ones because they are sig-
nificantly more complex to implement (see pseudo-code irrdi@) and less universal. Their key advantages
are a potential gain in speed due to not calculating manylsrpdate steps for a neuron in which no event
arrives and that spike timings are computed exactly (bubsémwv for approximate event-driven algorithms);
in particular, spike timings are not aligned to a time grigranre (which is a source of potential errors, see
section 2).

The problem of simulating dynamical systems with discretenes is a well established research topic in
computer science (Ferscha, 1996; Sloot et al, 1999; Fuinki00; Zeigler et al, 2000; see also Rochel and
Martinez, 2003 and Mayrhofer et al, 2002), with appropr@déa structures and algorithms already available to
the computational neuroscience community. We start byrib#sg the simple case when synaptic interactions
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are instantaneous, i.e., when spikes can be produced dimyest of incoming spikes (no latency); then we will
turn to the most general case.

Instantaneous synaptic interactions

In an asynchronous or “event-driven” algorithm, the sirtiata advances from one event to the next event.
Events can be spikes coming from neurons in the network ermet spikes (typically random spikes described
by a Poisson process). For models in which spikes can be peddoy a neuron only at times of incoming
spikes, event-driven simulation is relatively easy (semugds-code in figure 2). Timed events are stored in a
queue (which is some sort of sorted list). One iteration x&$n 1) extracting the next event; 2) updating the
state of the corresponding neuron (i.e., calculating e stccording to the differential equation and adding the
synaptic weight) 3) checking if the neuron satisfies thestioéd condition, in which case events are inserted in
the queue for each downstream neuron.

In the simple case of identical transmission delays, the staticture for the queue can be just a FIFO queue
(first in, first out), which has fast implementations (Corne¢al, 2001). When the delays take values in a small
discrete set, the easiest way is to use one FIFO queue fordeda value, as described in Mattia and Del
Giudice (2000). It is also more efficient to use a separat®©Fkjteue for handling random external events (see
paragraph about noise below).

In the case of arbitrary delays, one needs a more complexstraigture. In computer science, efficient
data structures to maintain an ordered list of time-stangyetits are grouped under the napnierity queues
(Cormen et al, 2001). The topic of priority queues is denskvaell documented; examples are binary heaps,
Fibonacci heaps (Cormen et al, 2001), calendar queues (B®88, Claverol et al, 2002) or van Emde Boas
trees (van Emde Boas et al, 1976; see also Connolly et al {20@a&ich various priority queues are compared).
Using an efficient priority queue is a crucial element of adyegent-driven algorithm. It is even more crucial
when synaptic interactions are not instantaneous.

Non-instantaneous synaptic interactions

For models in which spike times do not necessarily occunagdiof incoming spikes, event-driven simulation
is more complex. We first describe the basic algorithm witldelays and no external events (see pseudo-code
in figure 3). One iteration consists in 1) finding which neui®the next one to spike; 2) updating this neuron;
3) propagating the spike, i.e., updating its target neurdhs general way to do that is to maintain a sorted list
of the future spike timings of all neurons. These spike tgsiare only provisory since any spike in the network
can modify all future spike timings. However, the spike wikvest timing in the list is certified. Therefore,
the following algorithm for one iteration guarantees therectness of the simulation (see figure 3): 1) extract
the spike with lowest timing in the list; 2) update the statdhe corresponding neuron and recalculate its
future spike timing; 3) update the state of its target nesirdih recalculate the future spike timings of the target
neurons.

For the sake of simplicity, we ignored transmission delaythe description above. Including them in an
event-driven algorithm is not as straightforward as in &lcldriven algorithm, but it is a minor complication.
When a spike is produced by a neuron, the future synaptid®eea stored in another priority queue in which
the timings of events are non-modifiable. The first phase @fallgorithm (extracting the spike with lowest
timing) is replaced by extracting the next event, which carelther a synaptic event or a spike emission. One
can use two separate queues or a single one. External eaene hiandled in the same way. Although delays
introduce complications in coding event-driven algorighrthey can in fact simplify the management of the
priority queue for outgoing spikes. Indeed, the main difficin simulating networks with non-instantaneous
synaptic interactions is that scheduled outgoing spikedeacanceled, postponed or advanced by future incom-
ing spikes. If transmission delays are greater than somiévyeogaluetyn, then all outgoing spikes scheduled
in [t,t 4+ Tmin] (t being the present time) are certified. Thus, algorithms caioé the structure of delays to
speed up the simulation (Lee and Farhat, 2001).
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Computational complexity

Putting aside the cost of handling external events (whichiir), we can subdivide the computational cost of
handling one outgoing spike as follows (assumjng the average number of synapses per neuron):

e extracting the event (in case of non-instantaneous synigédractions)

updating the neuron and its targeps+ 1 updates;

insertingp synaptic events in the queue (in case of delays);

updating the spike times gf+ 1 neurons (in case of non-instantaneous synaptic interedfi

inserting or rescheduling+ 1 events in the queue (future spikes for non-instantanegmepsc interac-
tions).

Since there aré x N spikes per second of biological time, the number of opeanatie approximately propor-
tional toF x N x p. The total computational cost per second of biological totaa be written concisely as
follows:

Update + Spike + Queue
(cu + ©€ + cq) xFxNxp

wheregy is the cost of one update of the state variabtess the cost of calculating the time of the next spike
(non-instantaneous synaptic interactions) egds the average cost of insertions and extractions in theifyrio
queue(s). Thus, the simulation time is linear in the numbeyoapses, which is optimal. Nevertheless, we note
that the operations involved are heavier than in the pramagahase of clock-driven algorithms (see previous
section), therefore the multiplicative factor is likelylie larger. We have also assumed tis O(1), i.e., that

the dequeue and enqueue operations can be done in congeageatime with the data structure chosen for the
priority queue. In the simple case of instantaneous synaggractions and homogeneous delays, one can use
a simple FIFO queue (First In, First Out), in which inseriand extractions are very fast and take constant
time. For the general case, data structures for which degaad enqueue operations take constant average
time (O(1)) exist, e.g. calendar queues (Brown, 1988, Claverol etQfl2p however they are quite complex,
l.e.,Cq is a large constant. In simpler implementations of priogitieues such as binary heaps, the dequeue and
enqueue operations tak¥logm) operations, whermis the number of events in the queue. Overall, it appears
that the crucial component in general event-driven algor# is the queue management.

What models can be simulated in an event-driven fashion?

Event-driven algorithms implicitly assume that we can ghlte the state of a neuron at any given time, i.e., we
have an explicit solution of the differential equationst(bee below for approximate event-driven simulation).
This would not be the case with e.g. Hodgkin-Huxley modelgsiBes, when synaptic interactions are not
instantaneous, we also need a function that maps the cutegatof the neuron to the timing of the next spike
(possibly+o if there is none).

So far, algorithms have been developed for simple puls@leduintegrate-and-fire models (Watts, 1994,
Claverol et al, 2002, Delorme and Thorpe, 2003) and more &ognes such as some instances of the Spike
Response Model (Makino, 2003, Marian et al, 2002, Gerstndrkistler, 2002) (note that the SRM model
can usually be restated in the differential formalism oftisecl.1). Recently, Rudolph and Destexhe (2006)
introduced several integrate-and-fire models with sygapinductances which are suitable for event-driven
simulation. Algorithms were also recently developed byt®réo simulate exactly integrate-and-fire models
with exponential synaptic currents (Brette, 2006a) andlootances (Brette, 2006b), and Tonnelier et al (2006,
submitted) extended this work to the quadratic model (Etroeih and Kopell, 1986). However, there are
still efforts to be made to design suitable algorithms forencomplex models (for example the two-variable
integrate-and-fire models of Izhikevich (2003) and Brettd &erstner (2005)), or to develop more realistic
models that are suitable for event-driven simulation.
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Noise in event-driven algorithms

As for synchronous algorithms, there are two ways to inteechibise in a simulation: 1) adding random external
spikes; 2) simulating a stochastic process.

The former case is by far easier in asynchronous algorithinsimply amounts to adding a queue with
external events, which is usually easy to implement. Fomgte, if external spikes are generated according
to a Poisson process with refee the timing of the next event if random variable with expaiedrdistribution
with 1/F. If n neurons receive external spike trains given by indepeniéeisison processes with rdte then
the time of the next event is exponentially distributed withan ¥ (nF) and the label of the neuron receiving
this event is picked at random {1, 2,...,n}. Inhomogeneous Poisson processes can be simulated dreatly
similar way (Daley and Vere-Jones, 1988)x (If) is the instantaneous rate of the Poisson process and isédund
by M (r(t) < M), then one way to generate a spike train according to thissBoiprocess in the intervid, T]
is as follows: generate a spike train[l) T| according to a homogeneous Poisson process withTratd; for
each spike at timg, draw a random numbeg from a uniform distribution irfO, M]; select all spikes such that
X <r(t).

Simulating directly a stochastic process in asynchrondgsrithms is much harder because even for the
simplest stochastic neuron models, there is no closed tisaljormula for the distribution of the time to the
next spike (see e.g. Tuckwell (1988)). It is however possibluse precalculated tables when the dynamical
systems are low dimensional (Reutimann et al, 2003) (ia.mrore than 2 dimensions). Note that simulating
noise in this way introduces provisory events in the sameasgapr non-instantaneous synaptic interactions.

Approximate event-driven algorithms

We have described asynchronous algorithms for simulatugai networks exactly. For complex neuron mod-
els of the Hodgkin-Huxley type, Lytton and Hines (2005) hdegeloped an asynchronous simulation algorithm
which consists in using for each neuron an independent tiepevghose width is reduced when the membrane
potential approaches the action potential threshold.

2 Precision of different simulation strategies

As shown in this paper, a steadily growing number of neurattation environments does endow computational
neuroscience with tools which, together with the steadyrowgment of computational hardware, allow to
simulate neural systems with increasing complexity, naggrom detailed biophysical models of single cells
up to large-scale neural networks. Each of these simul&tiols pursues the quest for a compromise between
efficiency in speed and memory consumption, flexibility ia tiipe of questions addressable, and precision or
exactness in the numerical treatment of the latter. In akbsathis quest leads to the implementation of a specific
strategy for numerical simulations which is found to be gt given the set of constraints set by the particular
simulation tool. However, as shown recently (Hansel etl&98; Lee and Farhat, 2001; Morrison et al, 2006),
quantitative results and their qualitative interpretatsdrongly depend on the simulation strategy utilized, and
may vary across available simulation tools or for differsettings within the same simulator. The specificity
of neuronal simulations is that spikes induce either a diicoity in the dynamics (integrate-and-fire models)
or have very fast dynamics (Hodgkin-Huxley type models).eWvhsing approximation methods, this problem
can be tackled by spike timing interpolation in the formesecéHansel et al., 1998; Shelley and Tao, 2001)
or integration with adaptive time step in the latter casdtfityand Hines, 2005). Specifically in networks of
integrate-and-fire neurons, which to date remain almodtsixely the basis for accessing dynamics of large-
scale neural populations (but see Section 3.7), cruci&rdifices in the appearance of synchronous activity
patterns were observed, depending on the temporal resolotithe neural simulator or the integration method
used.
In this section we address this question using one of the siogile analytically solvable LIF neuron
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model, namely the classic leaky integrate-and-fire newtesgribed by the state equation

dm(t

Tm m(t) +m(t) =0, (N

dt

wheret,,, = 20 ms denotes the membrane time constant agd@it) < 1. Upon arrival of a synaptic event
at timetp, m(t) is updated by a constadim =0.1 (Am = 0.0085 in network simulations) after which it decays

according to (ot
m(t) = m(to) exp[—r_—o] . )

m
If mexceeds a thresholtihes= 1, the neuron fires and is afterwards reset to a restingrstatie= 0 in which it
stays for an absolute refractory peripgt = 1 ms. The neurons were subject to non-plastic or plastiaja
interactions. In the latter case, spike timing dependenggtjc plasticity was used according to a model by
Song and Abbott (2001). In this case, upon arrival of a syoamput at timetpre, Synaptic weights are changed
according to

g < g+ F(At) Omaxs (3)

where
F(At) = £A. exp{£At/14} 4)

for At = tpre —tpost < 0 @andAt > 0, respectively. Herepost denotes the time of the nearest postsynaptic spike,
A, quantify the maximal change of synaptic efficacy, anddetermine the range of pre- to postsynaptic spike
intervals in which synaptic weight changes occur. Compggasimulation strategies at the both ends of a wide
spectrum, namely a clock-driven algorithm (see Sectioh dn8@ event-driven algorithm (see Section 1.4), we
evaluate to which extent the temporal precision of spikimgnés impacts on neuronal dynamics of single as
well as small networks. These results support the argurhabthe speed of neuronal simulations should not
be the sole criteria for evaluation of simulation tools, butst complement an evaluation of their exactness.

2.1 Neuronal systems without STDP

In the case of a single LIF neuron with non-plastic synapsegest to a frozen synaptic input pattern drawn
from a Poisson distribution with ratg,, = 250 Hz, differences in the discharge behavior seen in efissien
simulations at different resolutions (0.1 ms, 0.01 ms, 0.88) and event-driven simulations occurred already
after short periods of simulated neural activity (Fig. 4Ahese deviations were caused by subtle differences in
the subthreshold integration of synaptic input events duerporal binning, and “decayed” with a constant
which depended on the membrane time constant. Howeversiooiag synaptic drive, subthreshold deviations
could accumulate and lead to marked delays in spike timegedation of spikes or occurrence of additional
spikes.

Although differences at the single cell level remained Widmnstrained and did not lead to changes in
the statistical characterization of the discharge agtmwiben long periods of neural activity were considered,
already small differences in spike times of individual reng can lead to crucial differences in the population
activity, such as synchronization (see Hansel et al., 1888;and Farhat, 2001), if neural networks are con-
cerned. We investigated this possibility using a small wekvwof 15x15 LIF neurons with all-to-all excitatory
connectivity with fixed weights and not distance-dependsmiaptic transmission delay (0.2 ms), driven by a
fixed pattern of superthreshold random synaptic inputs ¢h eauron (average rate 250 Hz; weidinh = 0.1).

In such a small network, the activity remained primarilyven by the external inputs, i.e. the influence of in-
trinsic connectivity is small. However, due to small difaces in spike times due to temporal binning could had
severe effects on the occurrence of synchronous networkswéere all (or most) cells discharge at the same
time. Such events could be delayed, canceled or generapeshdiag on the simulation strategy or temporal
resolution utilized (Fig. 4B).
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2.2 Neuronal systems with STDP

The above described differences in the behavior of neurstesys simulated by using different simulation
strategies remain constrained to the observed neuronalntiga and are minor if some statistical measures,
such as average firing rates, are considered. More sevexdseffan be expected if biophysical mechanism
which depend on the exact times of spikes are incorporatedhe neural model. One of these mechanism is
short-term synaptic plasticity, in particular spike-timgidependent synaptic plasticity (STDP). In this case, the
self-organizing capability of the neural system considesd! yield different paths along which the systems
will develop, and, thus, possibly lead to a neural behavibictv not only quantitatively but also qualitatively
may differ across various tools utilized for the numeridaiidation.

To explain why such small differences in the exact timing wérés are crucial if models with STDP are
considered, consider a situation in which multiple syr@ipiput events arrive in between two state updatés at
andt +dt in a clock-driven simulation. In the latter case, the timethese events are assigned to the end of the
interval (Fig. 5A). In the case these inputs drive the ceirdiring threshold, the synaptic weights of all three
synaptic input channels will be facilitated by the same amh@gcording to the used STDP model. In contrast,
if exact times are considered, the same input pattern caudeca discharge already after only two synaptic
inputs. In this case the synaptic weights liked to thesetspill be facilitated, whereas the weight of the input
arriving after the discharge will be depressed.

Although the chance for the occurrence of situations sucthese described above may appear small,
already one instance will push the considered neural systéma different path in its self-organization. The
latter may lead to systems whose qualitative behavior miggr aome time, markedly vary from a system
with the same initial state but simulated by another, te@lpomore or less precise simulation strategy. Such a
scenario was investigated by using a single LIF neutgr=(4.424 ms) with 1,000 plastic synapsés = 0.005,
A_/A; =1.051, =20 ms,T_ = 20 mS,gmax = 0.4) driven by the same pattern of Poisson-distributedaan
inputs (average rate 5 HAmM =0.1). Simulating only 1,000 s neural activity led to marlditierences in
the temporal development of the average rate between didedn simulations with a temporal resolution of
0.1 ms and event-driven simulations (Fig. 5B). Considethngyaverage firing rate over the whole simulated
window, clock-driven simulations led to an about 10 % high&lue compared to the event-driven approach,
and approached the value observed in event-driven siransatinly when the temporal resolution was increased
by two orders of magnitude. Moreover, different simulatgirategies and temporal resolutions led also to a
significant difference in the synaptic weight distributiatndifferent times (Fig. 5C).

Both findings show that the small differences in the preaigsibsynaptic events can have a severe impact
even on statistically very robust measures, such as avesitger weight distribution. Considering the temporal
development of individual synaptic weights, both dep@ssind facilitation were observed depending on the
temporal precision of the numerical simulation Indeed, léter could have severe impact on the qualitative
interpretation of the temporal dynamics of structured oeks, as this result suggests that synaptic connections
in otherwise identical models can be strengthened or weakdoe to the influence of the utilized simulation
strategy or simulation parameters.

In conclusion, the results presented in this section sughes the strategy and temporal precision used
for neural simulations can severely alter simulated nedyabmics. Although dependent on the neural system
modeled, observed differences may turn out to be cruciah®mualitative interpretation of the result of nu-
merical simulations, in particular in simulations invaigi biophysical processes depending on the exact order
or time of spike events (e.g. as in STDP). Thus, the searchrfaptimal neural simulation tool or strategy
for the numerical solution of a given problem should be gdidet only by its absolute speed and memory
consumption, but also its numerical exactness.
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3 Overview of simulation environments

3.1 NEURON
3.1.1 NEURON's domain of utility

NEURON is a simulation environment for creating and usingiicelly-based models of biological neurons
and neural circuits. Initially it earned a reputation forgewell-suited for conductance-based models of cells
with complex branched anatomy, including extracellulateptial near the membrane, and biophysical prop-
erties such as multiple channel types, inhomogeneous ehdistribution, ionic accumulation and diffusion,
and second messengers. In the early 1990s, NEURON wasabieed) used in some laboratories for network
models with many of thousands of cells, and over the pastdgeitdhas undergone many enhancements that
make the construction and simulation of large-scale nétwardels easier and more efficient.

To date, more than 600 papers and books have described NEURENIs that range from a membrane
patch to large scale networks with tens of thousands of atindae-based or artificial spiking célldn 2005,
over 50 papers were published on topics such as mechanisteslying synaptic transmission and plastic-
ity (Banitt et al. 2005), modulation of synaptic integratiby subthreshold active currents (Prescott and De
Koninck 2005), dendritic excitability (Day et al. 2005) ethole of gap junctions in networks (Migliore et al.
2005), effects of synaptic plasticity on the developmeidk gperation of biological networks (Saghatelyan et al.
2005), neuronal gain (Azouz 2005), the consequences opsgrand channel noise for information processing
in neurons and networks (Badoual et al. 2005), cellular atdork mechanisms of temporal coding and recog-
nition (Kanold and Manis 2005), network states and osailtest (Wolf et al. 2005), effects of aging on neuronal
function (Markaki et al. 2005), cortical recording (Mofféthd Mcintyre 2005), deep brain stimulation (Grill et
al. 2005), and epilepsy resulting from channel mutatioritk¢\et al. 2005) and brain trauma (Houweling et al.
2005).

3.1.2 How NEURON differs from other neurosimulators

The chief rationale for domain-specific simulators overaggahpurpose tools lies in the promise of improved
conceptual control, and the possibility of exploiting theusture of model equations for the sake of com-
putational robustness, accuracy, and efficiency. Someekdly differences between NEURON and other
neurosimulators are embodied in the way that they apprdesetgoals.

Conceptual control

The cycle of hypothesis formulation, testing, and revisiwhich lies at the core of all scientific research,
presupposes that one can infer the consequences of a hsigotfibe principal motivation for computational
modeling is its utility for dealing with hypotheses whosesequences cannot be determined by unaided intu-
ition or analytical approaches. The value of any model asansor evaluating a particular hypothesis depends
critically on the existence of a close match between modelhypothesis. Without such a match, simulation
results cannot be a fair test of the hypothesis. From thésugewpoint, the first barrier to computational mod-
eling is the difficulty of achieving conceptual control,.i.making sure that a computational model faithfully
reflects one’s hypothesis.

NEURON has several features that facilitate conceptuatralrand it is acquiring more of them as it
evolves to meet the changing needs of computational neergsts. Many of these features fall into the gen-
eral category of "native syntax” specification of model mdjes: that is, key attributes of biological neurons
and networks have direct counterparts in NEURON. For imgaNEURON users specify the gating properties
of voltage- and ligand-gated ion channels with kinetic sebg or families of Hodgkin-Huxley style differential
equations. Another example is that models may includereleict circuits constructed with the LinearCircuit-
Builder, a GUI tool whose palette includes resistors, capias; voltage and current sources, and operational
amplifiers. NEURON’s most striking application of nativenggx may lie in how it handles the cable prop-
erties of neurons, which is very different from any othernosimulator. NEURON users never have to deal

Thttp://www.neuron.yale.edu/neuron/bib/usednrn.html
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directly with compartments. Instead, cells are represehyeunbranched neurites, called sections, which can
be assembled into branched architectures (the topologynuddel cell). Each section has its own anatomi-

cal and biophysical properties, plus a discretization mpatar that specifies the local resolution of the spatial
grid. The properties of a section can vary continuously @glitslength, and spatially inhomogeneous variables
are accessed in terms of normalized distance along eadbrs¢@tines and Carnevale 2001), chapter 5 in

(Carnevale and Hines 2006)). Once the user has specifietbpelbgy, and the geometry, biophysical proper-

ties, and discretization parameter for each section, NENNR@omatically sets up the internal data structures
that correspond to a family of ODEs for the model’s disceddizable equation.

Computational robustness, accuracy, and efficiency

NEURON's spatial discretization of conductance-based ehadurons uses a central difference approxi-
mation that is second order correct in space. The disctistizaarameter for each section can be specified by
the user, or assigned automatically according to thenabda rule (see (Hines and Carnevale 2001), chapters 4
and 5 in (Carnevale and Hines 2006)).

For efficiency, NEURON’s computational engine uses algarg that are tailored to the model system
equations (Hines 1984, 1989; Hines and Carnevale 2004)dvianae simulations in time, users have a choice
of built-in clock driven (fixed step backward Euler and Craiikholson) and event driven methods (global
variable step and local variable step with second ordeshinle detection); the latter are based on CVODES
and IDA from SUNDIALS (Hindmarsh et al. 2005). Networks ofificial spiking cells are solved analytically
by a discrete event method that is several orders of magnfagler than continuous system simulation (Hines
and Carnevale 2004). NEURON fully supports hybrid simolagi, and models can contain any combination of
conductance-based neurons and analytically computatifieial spiking cells. Simulations of networks that
contain conductance-based neurons are second ordertdbadaptive integration is used (Lytton and Hines
2005).

Synapse and artificial cell models accept discrete evertsimput stream specific state information. It is
often extremely useful for artificial cell models to sendmgeto themselves in order to implement refractory
periods and intrinsic firing properties; the delivery tinfdtese "self events” can also be adjusted in response
to intervening events. Thus instantaneous and non-irgstantis interactions of section 1.4 are supported.

Built-in synapses exploit the methods described in secti@n Arbitrary delay between generation of an
event at its source, and delivery to the target (includingelay events), is supported by a splay-tree queue
(Sleator and Tarjan 1983) which can be replaced at configaréime by a calendar queue. If the minimum
delay between cells is greater than 0, self events do nothesgueue and parallel network simulations are
supported. For the fixed step method, when queue handlihg ite limiting step, a bin queue can be selected.
For the fixed step method with parallel simulations, whekespkchange is the rate limiting step, six-fold spike
compression can be selected.

3.1.3 Creating and using models with NEURON

Models can be created by writing programs in an interpretedjdage based on hoc (Kernighan and Pike
1984), which has been enhanced to simplify the task of reptegy the properties of biological neurons and
networks. Users can extend NEURON by writing new functiod biophysical mechanism specifications in
the NMODL language, which is then compiled and dynamicaiikdd ((Hines and Carnevale 2000), chapter 9
in (Carnevale and Hines 2006). There is also a powerful GUtémveniently building and using models; this
can be combined with hoc programming to exploit the strengftboth (Fig. 6).

The past decade has seen many enhancements to NEURON'slitapdr network modeling. First
and most important was the addition of an event deliveryesyghat substantially reduces the computational
burden of simulating spike-triggered synaptic transmissand enabled the creation of analytic integrate-and-
fire cell models which can be used in any combination with cotehce-based cells. Just in the past year the
event delivery system was extended so that NEURON can nowlaienmodels of networks and cells that are
distributed over parallel hardware (see NEURON in a pdratgironment below).

The GUI
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The GUI contains a large number of tools that can be used tstreant models, exercise simulations, and
analyze results, so that no knowledge of programming isssecg for the productive use of NEURON. In ad-
dition, many GUI tools provide functionality that would baitp difficult for users to replicate by writing their
own code. Some examples are:

Model specification tools

e Channel Builder—specifies voltage- and ligand-gated i@mnokls in terms of ODEs (HH-style, including
Borg-Graham formulation) and/or kinetic schemes. Chastees and total conductance can be sim-
ulated as deterministic (continuous in time), or stocka@&ountably many channels with independent
state transitions, producing abrupt conductance changes)

e Cell Builder—-manages anatomical and biophysical propeif model cells.

e Network Builder—prototypes small networks that can be mhiftg reusable code to develop large-scale
networks (chapter 11 in (Carnevale and Hines 2006)).

e Linear Circuit Builder—specifies models involving gap jtions, ephaptic interactions, dual-electrode
voltage clamps, dynamic clamps, and other combinationgfans and electrical circuit elements.

Model analysis tools

e Import3D—converts detailed morphometric data (Eutedlieurolucida, and SWC formats) into model
cells. It automatically fixes many common errors, and hefgssiidentify complex problems that require
judgment.

e Model View—automatically discovers and presents a summfnyodel properties in a browsable textual
and graphical form. This aids code development and maintenand is increasingly important as code
sharing grows.

e Impedance—compute and display voltage transfer ratipsitiand transfer impedance, and the electro-
tonic transformation.

Simulation control tools

e Variable Step Control-automatically adjusts the stat@béer error tolerances that regulate adaptive in-
tegration.

e Multiple Run Fitter—optimizes function and model paramgte

3.1.4 NEURON in a parallel environment

NEURON supports three kinds of parallel processing.

1.Multiple simulations distributed over multiple process each processor executing its own simulation.
Communication between master processor and workers usgigtirbboard method similar to Linda (Carriero
and Gelernter 1989).

2.Distributed network models with gap junctions.

3.Distributed models of individual cells (each processandies part of the cell). At present, setting up
distributed models of individual cells requires consitiégaeffort; in the future it will be made much more
convenient.

The four benchmark simulations of spiking neural networkese(Appendix 2) were implemented under
NEURON. Figure 7A demonstrates the speedup that NEURON daie\ee with distributed network models
of the four types (conductance-based, current-based, Kitodtuxley, event-based — see Appendix 2) on a
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Beowulf cluster (dashed lines are "ideal’—run time invirgeoportional to number of CPUs—and solid symbols
are actual run times). Figure 7B shows that performancedugonent scales with the number of processors and
the size and complexity of the network; for this figure we raeges of tests using a NEURON implementation
of the single column thalamocortical network model desdiby Traub et al. (2005) on the Cray XT3 at the
Pittsburgh Supercomputer Center. Similar performance lgas been documented in extensive tests on parallel
hardware with dozens to thousands of CPUs, using publistoe@is of networks of conductance based neurons
(Migliore et al., 2006). Speedup is linear with the numbe€&Us, or even superlinear (due to larger effective
high speed memory cache), until there are so many CPUs tblatoee is solving fewer than 100 equations.

3.1.5 Future plans

NEURON undergoes a continuous cycle of improvement angimyi much of which is devoted to aspects of
the program that are not immediately obvious to the user,iggrovement of computational efficiency. More
noticeable are new GUI tools, such as the recently addedr@h&uilder. Many of these tools exemplify a
trend toward "form-based” model specification, which isesed to continue. The use of form-based GUI tools
increases the ability to exchange model specifications etithr simulators through the medium of XML. With
regard to network modeling, the emphasis will shift awayrfrdeveloping simulation infrastructure, which is
reasonably complete, to the creation of new tools for ndtwiesign and analysis.

3.1.6 Software development, support, and documentation

Michael Hines directs the NEURON project, and is respossfbl almost all code development. The other
members of the development team have varying degrees afngijlity for activities such as documentation,
courses, and user support. NEURON has benefited from sigmiftontributions of time and effort by members
of the community of NEURON users who have worked on specijordthms, written or tested new code, etc..
Since 2003, user contributions have been facilitated bytolo of an "open source development model” so
that source code, including the latest research threadsyecaccessed from an on-line reposifory

Support is available by email, telephone, and consultatitsers can also post questions and share informa-
tion with other members of the NEURON community via a mailistjand The NEURON Foruf Currently
the mailing list has more than 700 subscribers with ”live"aginaddresses; the Forum, which was launched in
May, 2005, has already grown to 300 registered users anddd$8d messages.

Tutorials and reference material are availdbl@he NEURON Book (Carnevale and Hines 2006) is the
authoritative book on NEURON. Four books by other authok&lmade extensive use of NEURON (Destexhe
and Sejnowski 2001; Johnston and Wu 1995; Lytton 2002; MaaceStuart 2000), and several of them have
posted their code online or provide it on CD with the book.

Source code for published NEURON models is available at mveW\V sites. The largest code archive is
ModelDB®, which currently contains 238 models, 152 of which were enpénted with NEURON.

3.1.7 Software availability

NEURON runs under UNIX/Linux/OS X, MSWin 98 or later, and oarallel hardware including Beowulf
clusters, the IBM Blue Gene and Cray XT3. NEURON source codkimstallers are provided free of chatge
and the installers do not require "third party” software eTdurrent standard distribution is version 5.9.39. The
alpha version can be used as a simulator/controller in dimalmmp experiments under real-time Lirfuxith

a National Instruments M series DAQ card.

’http://www.neuron.yale.edu/neuron/install.html
Shttps://www.neuron.yale.edu/phpBB2/index.php
“http://www.neuron.yale.edu/neuron/docs/docs.html
Shttp://senselab.med.yale.edu/senselab/ModelDB
Shttp://www.neuron.yale.edu

"http://rtai.org
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3.2 GENESIS
3.2.1 GENESIS Capabilities and Design Philosophy

GENESIS (the GEneral NEural SImulation System) was give&natme because it was designed, at the outset,
be an extensible general simulation system for the realistideling of neural and biological systems (Bower
and Beeman, 1998). Typical simulations that have been qeeid with GENESIS range from subcellular
components and biochemical reactions (Bhalla, 2004) toptexmmodels of single neurons (De Schutter and
Bower, 1994), simulations of large networks (Nenadic et2003), and systems-level models (Stricanne and
Bower, 1998). Here, "realistic models” are defined as thosdats that are based on the known anatomical and
physiological organization of neurons, circuits and neksdBower, 1995). For example, realistic cell models
typically include dendritic morphology and a large varietiyionic conductances, whereas realistic network
models attempt to duplicate known axonal projection paster

Parallel GENESIS (PGENESIS) is an extension to GENESISthrest on almost any parallel cluster, SMP,
supercomputer, or network of workstations where MP1 anBl# is supported, and on which serial GENESIS
itself is runnable. It is customarily used for large netwsitaulations involving tens of thousands of realistic
cell models (for example, see Hereld et al., 2005).

GENESIS has a well-documented process for users themdelwgend its capabilities by adding new
user-defined GENESIS object types (classes), or scriptiggcommands without the need to understand or
modify the GENESIS simulator code. GENESIS comes alreadyppgd with mechanisms to easily create
large scale network models made from single neuron modaldhitve been implemented with GENESIS.

While users have added, for example, the Izhikevich (20B8plgied spiking neuron model (now built in
to GENESIS), and they could also add IF or other forms of abstieuron models, these forms of neurons are
not realistic enough for the interests of most GENESIS nadelFor this reason, GENESIS is not normally
provided with IF model neurons, and no GENESIS implemenmtatihave been provided for the IF model
benchmarks (see Appendix 2). Typical GENESIS neurons atecompartmental models with a variety of
Hodgkin-Huxley type voltage- and/or calcium-dependemdiactances.

3.2.2 Modeling with GENESIS

GENESIS is an object-oriented simulation system, in whislmaulation is constructed of basic building blocks
(GENESIS elements). These elements communicate by passissages to each other, and each contains the
knowledge of its own variables (fields) and the methodsdas)iused to perform its calculations or other duties
during a simulation. GENESIS elements are created as ireians of a particular precompiled object type that
acts as a template. Model neurons are constructed from lizssée components, such as neural compartments
and variable conductance ion channels, linked with messageurons may be linked together with synaptic
connections to form neural circuits and networks. This cbfgiented approach is central to the generality
and flexibility of the system, as it allows modelers to easitghange and reuse models or model components.
Many GENESIS users base their simulation scripts on the pkamthat are provided with GENESIS or in the
GENESIS Neural Modeling Tutorials package (Beeman, 2005).

GENESIS uses an interpreter and a high-level simulatiogdage to construct neurons and their networks.
This use of an interpreter with pre-compiled object typesher than a separate step to compile scripts into
binary machine code, gives the advantage of allowing thetasateract with and modify a simulation while it
is running, with no sacrifice in simulation speed. Commandsy be issued either interactively to a command
prompt, by use of simulation scripts, or through the graghitterface. The 268 scripting language commands
and the 125 object types provided with GENESIS are powerfough that only a few lines of script are needed
to specify a sophisticated simulation. For example, the 6EI$ “cell reader” allows one to build complex
model neurons by reading their specifications from a data file

GENESIS provides a variety of mechanisms to model calciuimsion and calcium-dependent conduc-
tances, as well as synaptic plasticity. There are also a aunfiidevice objects” that may be interfaced to a
simulation to provide various types of input to the simwdat{pulse and spike generators, voltage clamp cir-



Brette et al., J. Computational Neurosci., in press (2007) 17

cuitry, etc.) or measurements (peristimulus and inteespikerval histograms, spike frequency measurements,
auto- and cross-correlation histograms, etc.). Objeadyqre also provided for the modeling of biochemical
pathways (Bhalla and lyengar, 1999). A list and descriptibihe GENESIS object types, with links to full doc-
umentation, may be found in tt@bjectssection of the hypertext GENESIS Reference Manual, dovaalbke

or viewable from the GENESIS web site.

3.2.3 GENESIS Graphical User Interfaces

Very large scale simulations are often run with no GUI, wiite simulation output to either text or binary format
files for later analysis. However, GENESIS is usually coexpito include its graphical interface XODUS,
which provides object types and script-level commands fidding elaborate graphical interfaces, such as the
one shown in Fig. 8 for the dual exponential variation of tHd benchmark simulation (Benchmark 3 in
Appendix 2). GENESIS also contains graphical environméntsuilding and running simulations with no
scripting, such as Neurokit (for single cells) and Kindtigfor modeling biochemical reactions). These are
themselves created as GENESIS scripts, and can be extendsatidied. This allows for the creation of the
many educational tutorials that are included with the GENESstribution (Bower and Beeman, 1998).

3.2.4 Obtaining GENESIS and User Support

GENESIS and its graphical front-end XODUS are written in @ amne known to run under most Linux or
UNIX-based systems with the X Window System, as well as MaéXChd MS Windows with the Cygwin
environment. The current release of GENESIS and PGENE®ISZ\3, March 17, 2006) is available from the
GENESIS web sittunder the GNU General Public License. The GENESIS sourdghuiton contains full
source code and documentation, as well as a large numbedpaatiand example simulations. Documentation
for these tutorials is included along with online GENESI$phi#es and the hypertext GENESIS Reference
Manual. In addition to the source distribution, precongiténary versions are available for Linux, Mac OS/X,
and Windows with Cygwin. The GENESIS Neural Modeling Tuitsi(Beeman, 2005) are a set of HTML
tutorials intended to teach the process of constructingpgically realistic neural models with the GENESIS
simulator, through the analysis and modification of prodidgample simulation scripts. The latest version of
this package is offered as a separate download from the GENEED site.

Support for GENESIS is provided through emailgenesis@genesis-sim.org, and through the GEN-
ESIS Users Group, BABEL. Members of BABEL receive announeeisi and exchange information through
a mailing list, and are entitled to access the BABEL web pdges serves as a repository for the latest con-
tributions by GENESIS users and developers, and contaipsrtext archives of postings from the mailing
list.

Rallpacks are a set of benchmarks for evaluating the spegdesuracy of neuronal simulators for the
construction of single cell models (Bhalla, et al., 1992pweéver, it does not provide benchmarks for network
models. The package contains scripts for both GENESIS andR@N, as well as full specifications for
implementation on other simulators. It is included withive tGENESIS distribution, and is also available for
download from the GENESIS web site.

3.2.5 GENESIS Implementation of the HH Benchmark

The HH benchmark network model (Benchmark 3 in Appendix 8yjgles a good example of the type of model
that should probably NOT be implemented with GENESIS. Thgeéle and Abbott (2005) integrate-and-fire
network on which it is based is an abstract model designedutdy she propagation of signals under very
simplified conditions. The identical excitatory and inkdoy neurons have no physical location in space, and
no distance-dependent axonal propagation delays in theections. The benchmark model simply replaces
the IF neurons with single-compartment cells containirg $mdium and delayed rectifier potassium channels

8http://www.genesis-sim.org/GENESIS
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that fire tonically and display no spike frequency adaptat®uch models offer no advantages over IF cells for
the study of the situation explored by Vogels and Abbott.

Nevertheless, it is a simple matter to implement such a modeENESIS, using a simplification of existing
example scripts for large network models, and the perfoomgrenalty for “using a sledge hammer to crack a
peanut” is not too large for a network of this size. The simafascript for this benchmark illustrates the power
of the GENESIS scripting commands for creating networkge&lbasic commands are used for filling a region
with copies of prototype cells, making synaptic connediwnith a great deal of control over the connectivity,
and setting propagation delays.

The instantaneous rise in the synaptic conductances miisea very efficient model to implement with
a simulator specialized for IF networks, but such a nonelgjimlal conductance is not normally provided by
GENESIS. Therefore, two implementations of the benchmasletbeen provided. The Dual Exponential VA
HH Model script implements synaptic conductances with d éyponential form having a 2 msec time-to-
peak, and the specified exponential decay times of 5 msegdaatry connections and 10 msec for inhibitory
connections. The Instantaneous Conductance VA HH Modgiltases a user-addeslynchanobject type that
can be compiled and linked into GENESIS to provide the theifipd conductances with an instantaneous rise
time. There is little difference in the behavior of the twasiens of the simulation, although the Instantaneous
Conductance model executes somewhat faster.

Figure 8 shows the implementation of the Dual ExponentiaH¥ Model with a GUI that was created by
making small changes to the exampl&net.gprotodefs.g andgraphics.gscripts, which are provided in the
GENESIS Modeling Tutorial (Beeman, 2005) sect@reating Large Networks with GENESIS

These scripts and the tutorial specify a rectangular griekoftatory neurons. An exercise suggests adding
an additional layer of inhibitory neurons. The GENESIS iempéentations of the HH benchmark use a layer
of 64 x 50 excitatory neurons and a layer of 825 inhibitory neurons. A change of one line in the example
RSnet.ggscript allows the change from the nearest-neighbor coivitgcdf the model to the required infinite-
range connectivity with 2% probability.

The identical excitatory and inhibitory neurons used inrtevork are implemented as specified in App. 2.
For both versions of the model, Poisson-distributed randpilke inputs with a mean frequency of 70 Hz were
applied to the excitatory synapses of the all excitatoryrorest The the simulation was run for 0.05 sec, the
random input was removed, and it was then run for an additib8& sec.

The Control Panel at the left is used to run the simulationtarskt parameters such as maximal synaptic
conductances, synaptic weight scaling, and propagatitaysleThere are options to provide current injection
pulses, as well as random synaptic activation. The ploteémiddle show the membrane potentials of three
excitatory neurons (0, 1536, and 1567), and inhibitory aeud. The netview displays at the right show the
membrane potentials of the excitatory neurons (top) anibiiainy neurons (bottom). With no propagation
delays, the positions of the neurons on the grid are irrale\devertheless, this two-dimensional representation
of the network layers makes it easy to visualize the numbeelts firing at any time during the simulation.

Figure 9 shows the plots for the membrane potential of theesagnrons as those displayed in Fig. 8, but
produced by the Instantaneous Conductance VA HH Modeltscripe plot at the right shows a zoom of the
interval between 3.2 and 3.4 sec.

In both figures, excitatory neuron 1536 has the lowest rdt@xaitatory to inhibitory inputs of the four neu-
rons plotted. It fires only rarely, whereas excitatory neudpwhich has the highest ratio, fires most frequently.

3.2.6 Future Plans for GENESIS

The GENESIS simulator is now undergoing a major redevelopmtort, which will result in GENESIS 3. The
core simulator functionality is being reimplemented in Qising an improved scheme for messaging between
GENESIS objects, and with a platform-independent and beodgendly Java-based GUI. This will result in
not only improved performance and portability to MS Windoavel non-UNIX platforms, but will also allow
the use of alternate script parsers and user interfaceslbasithe ability to communicate with other modeling
programs and environments. The GENESIS development tepartisipating in the NeuroML (Goddard et
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al., 2001; Crook et al., 2005) projéctlong with the developers of NEURON. This will enable GENES to
export and import model descriptions in a common simulatdependent XML format. Development versions
of GENESIS are available from the Sourceforge GENESIS deveént sité®.

Shttp://www.neuroml.org
Pnttp://sourceforge.net/projects/genesis-sim
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3.3 NEST
3.3.1 The NEST initiative

The problem of simulating neuronal networks of biologigakalistic size and complexity has long been un-
derestimated. This is reflected in the limited number of jpaltions on suitable algorithms and data structures
in high-level journals. The lack of awareness of reseasched funding agencies of the need for progress in
simulation technology and sustainability of the investisanay partially originate from the fact that a mathe-
matically correct simulator for a particular neuronal netkvmodel can be implemented by an individual in a
few days. However, this has routinely resulted in a cyclensfoalable and unmaintainable code being rewritten
in unmaintainable fashion by novices, with little progresthe theoretical foundations.

Due to the increased availability of computational resesycsimulation studies are becoming ever more
ambitious and popular. Indeed, many neuroscientific quesire presently only accessible through simulation.
An unfortunate consequence of this trend is that it is bengreiver harder to reproduce and verify the results
of these studies. The ad hoc simulation tools of the pastatgmovide us with the appropriate degree of
comprehensibility. Instead we require carefully craftedidated, documented and expressive neuronal network
simulators with a wide user community. Moreover, the curpgngress towards more realistic models demands
correspondingly more efficient simulations. This holdseeslly for the nascent field of studies on large-scale
network models incorporating plasticity. This researclensirely infeasible without parallel simulators with
excellent scaling properties, which is outside the scopadohoc solutions. Finally, to be useful to a wide
scientific audience over a long time, simulators must be tagyaintain and to extend.

On the basis of these considerations, the NEST initiative fmanded as a long term collaborative project
to support the development of technology for neural syste&msilations (Diesmann et al., 2002). The NEST
simulation tool is the reference implementation of thisiative. The software is provided to the scientific com-
munity under an open source license through the NEST inifatwebsitél. The license requests researchers
to give reference to the initiative in work derived from thigmal code and, more importantly, in scientific re-
sults obtained with the software. The website also providésrences to material relevant to neuronal network
simulations in general and is meant to become a scientifomres of network simulation information. Support
is provided through the NEST website and a mailing list. Adgemt NEST is used in teaching at international
summer schools and in regular courses at the Universityebéirg.

3.3.2 The NEST simulation tool

In the following we give a brief overview of the NEST simutatitool and its capabilities.

Domain and design goals

The domain of NEST is large neuronal networks with biololijyceealistic connectivity. The software eas-
ily copes with the threshold network size of°Ii®eurons (Morrison et al., 2005) at which each neuron can be
supplied with the natural number of synapses and simultesste@ realistic sparse connectivity can be main-
tained. Typical neuron models in NEST have one or a small murabcompartments. The simulator supports
heterogeneity in neuron and synapse types. In networksabi$tie connectivity the memory consumption and
work load is dominated by the number of synapses. Therefooeh emphasis is placed on the efficient rep-
resentation and update of synapses. In many applicatiamgorieconstruction has the same computational
costs as the integration of the dynamics. Consequently,TN#a&allelizes both. NEST is designed to guarantee
strict reproducibility: the same network is required to giexte the same results independent of the number of
machines participating in the simulation. It is consideaedmportant principle of the project that the develop-
ment work is carried out by neuroscientists operating orird fmde base. No developments are made without
the code being directly tested in neuroscientific researgjegts. This implements an incremental and iterative
development cycle. Extensibility and long-term maintaitiey are explicit design goals.

Infrastructure

Uhttp://www.nest-initiative.org
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The primary user interface is a simulation language ineggoiwhich processes a rather high level expressive
language with an extremely simple syntax which incorparaeterogeneous arrays, dictionaries, and pure (i.e.
unnamed) functions and is thus suited for interactive wdrkere is no built-in graphical user interface as it
would not be particularly helpful in NEST’'s domain: netwagecification is procedural, and data analysis is
generally performed off-line for reasons of convenienag efficiency. The simulation language is used for data
pre- and post-processing, specification of parametersfaaride compact description of the network structure
and the protocol of the virtual experiment. The neuron nm®@eld synapse types are not expressed in the
simulation language as this would result in a slower perforoe. They are implemented as derived classes on
the C++ level such that all models provide the same minimattionality and are thus easily interchangeable
on the simulation language level. A mechanism for error haggropagates errors messages through all levels
of the software. Connections between nodes (i.e. neur@mgrgtors and recording devices) are checked for
consistency at the time of creation. User level documemtas provided in a browsable format (the “helpdesk”)
and is generated directly from source code.

The code of NEST is modularized to facilitate the developnoémew neuron models that can be loaded at
run time and to decouple the development of extensions frepeaific NEST release. In the framework of the
FACETS project a Python interface and a “facetsmodule” leanlzreated. In addition to providing an interface
between user-defined modules and the core code, NEST cdadatevith other software - for example, in order
to provide a graphical user interface. The primary straieggd is interpreter-interpreter interaction, whereby
each interpreter emits code that the other interpretemeess its native language. This approach minimizes
the need to define protocols and the dependency of NEST oigiidibraries.

Kernel

There is a common perception that event-driven algoritimageact and time-driven algorithms are approx-
imate. We have recently shown that both parts of this peimepire generally false; it depends on the dynamics
of the neuron model whether an event-driven algorithm cahdmexact solution, just as it does for time-driven
algorithms (Morrison et al., 2006b). NEST is designed fogéescale simulations where performance is a crit-
ical issue. We have therefore argued that when comparifeyelitt integration strategies, one should evaluate
the efficiency, i.e. the simulation time required to achiavgven integration error, rather than the plain simu-
lation time (Morrison et al., 2006b). This philosophy is eeted in the simulation kernel of NEST. Although it
implements a globally time-driven algorithm with respexttie ordering of neuron updates and the delivery of
events, spike times are not necessarily constrained toisheste time grid. Neuron implementations treating
incoming and outgoing spikes in continuous time are seafyl@stegrated into the time-driven infrastructure
with no need for a central event queue. This permits a gresbiliey in the range of neuron models which
can be represented, including exactly solvable contintimesneuron models, models requiring approximation
techniques to locate threshold passing and models withogmdtrained dynamics and spike times.

The simulation kernel of NEST supports parallelization byltirthreading and message passing, which
allows distribution of a simulation over multiple processof an SMP machine or over multiple machines in a
cluster. Communication overhead is minimized by only comirating in intervals of the minimum propaga-
tion delay between neurons, and communication bulk is magthby storing synapses on the machine where
the post-synaptic neuron is located (Morrison et al., 200%5)s results in supra-linear speed-up in distributed
simulations; scaling in multi-threaded simulations iss@@able, but more research is required to understand and
overcome present constraints. The user only needs to previerial script, as the distribution is performed
automatically. Interactive usage of the simulator is pnégeonly possible in purely multi-threaded operation.
Reproducibility of results independent of the number of hiraes/processors is achieved by dividing a simula-
tion task into a fixed number of abstract (virtual) processbich are distributed amongst the actual machines
used (Morrison et al., 2005).

3.3.3 Performance

The supplementary material contains simulation scriptsafbof the benchmarks specified in Appendix 2.
Considering the domain of NEST, the benchmarks can only dstrate NEST’s capabilities in a limited way.
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Therefore, a fifth benchmark is included which is not onlynffigantly larger than the other benchmarks (three
times as many neurons and forty times as many synapses)isbuheorporates spike-timing dependent plas-
ticity in its excitatory-excitatory synapses. The neuroodel for this benchmark is the same as for benchmark
2. All the benchmarks were simulated on a Sun Fire V40z eguippith four dual core AMD Opteron 875
processors at.2 GHz and 32 Gbytes RAM running Ubuntu 6.06.1 LTS with kernél 25-26-amd64-server.
Simulation jobs were bound to specific cores usingtthekset command. The simulations were performed
with a synaptic propagation delay ofloms and a computation time step o1 @ns unless otherwise stated.

Fig. 10A shows the simulation time for one biological secohBenchmarks 1 3. To compare the bench-
marks fairly despite their different firing rates, the spikiwas suppressed in all three benchmarks by removing
the initial stimulus, and in the case of Benchmark 2, thdnaic firing was suppressed by setting the resting
potential to be lower than the threshold. For networks agrate-and-fire neuons of this size and activity, the
delivery of spikes does not contribute significantly to tirawgation times, which are dominated by the neu-
ron updates. If the spiking is not suppressed, the simuldiines for Benchmarks 1 and 2 are less than 10%
longer. The simulation time for Benchmark 3 is about 15% &rgecause of the computational cost associated
with the integration of the action potential. Benchmark @rfent-based integrate-and-fire neuron model) is
significantly faster than the other two as its linear sulsthoédd dynamics permits the use of exact integration
techniques (see Rotter and Diesmann, 1999). The non-lshgamics of the conductance based integrate-
and-fire neuron model in Benchmark 1 and the Hodgkin-Huxkyron in benchmark 3 are propagated by one
global computation time step by one or more function callth®standard adaptive time stepping method of
the GNU Scientific Library (GSL; Galassi et al., 2001) withesjuired accuracy of vV . The ODE-solver
used is the embedded Runge-Kutta-Fehllid:&) provided by the GSL , but this is not a constraint of NEST
- a neuron model may employ any method for propagating itadycs. In a distributed simulation, processes
must communicate in intervals of the minimum synaptic détagrder to preserve causality (Morrison et al.,
2005). It is therefore more efficient to simulate with re@disynaptic delays than with unrealistically short
delays, as can be seen in Fig. 10A. The simulation times tob#dmchmark networks incorporating a synaptic
delay of 15 ms are in all cases significantly shorter than the simulaiines for the networks if the synaptic
delay is assumed to belOms.

Benchmark 4 (integrate-and-fire neuron model with voltagag synapses) is ideal for an event-driven
simulation, as all spike times can be calculated analyyicathey occur either when an excitatory spike is
received, or due to the relaxation of the membrane potenotthk resting potential, which is above the threshold.
Therefore the size of the time steps in which NEST updatesélneon dynamics plays no role in determining
the accuracy of the simulation. The primary constraint eandtep size is that it must be less than or equal to
the minimum synaptic delay between the neurons in the n&twkig. 10B shows the simulation time for one
biological second of Benchmark 4 on two processors as aiiamof the minimum synaptic delay. Clearly, the
simulation time is strongly dependent on the minimum detathis system. At a realistic value of 1 ms, the
network simulation is approximately a factor oBkslower than real time; at a delay ofl@5 ms the simulation
is approximately B times slower than real time. In the case of neuron modelsenthe synaptic time course is
not invertible, the computational time step determinesatt®iracy of the calculation of the threshold crossing.
For a discussion of this case and the relevant quantitaéwetimarks, see Morrison et al. (2006b).

Fig. 10C shows the scaling of an application which lies indbenain of neural systems for which NEST
is primarily designed. The simulated network contains D1@8&urons, of which 9000 are excitatory and 2250
inhibitory. Each neuron receives 900 inputs randomly chdsem the population of excitatory neurons and
225 inputs randomly chosen from the inhibitory populatiobhe scaling is shown for the case that all the
synapses are static, and for the case that the excitatoita®xy synapses implement multiplicative spike-
timing dependent plasticity with an all-to-all spike pagischeme (Rubin et al., 2001). For implementation
details of the STDP, see Morrison et al. (2006a), for furtietwork parameters, see the supplementary material.
The network activity is in the asynchronous irregular regjiat 10 Hz. Both applications scale supra-linearly
due to the exploitation of fast cache memory. When usingtgigitessors, the static network is a factor ¢&f 6
slower than real time and the plastic network is a factor o$lddver. Compared to Benchmark 2, the network
contains 3 times as many neurons, 40 times as many synap#éseafiring rate is increased by a factor of 2.
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However, using the same number of processors (2), the stttieork simulation is only a factor of 17 slower,
and the plastic network simulation is only a factor of 32 sfawThis demonstrates that NEST is capable of
simulating large, high-connectivity networks with comgidnally expensive synaptic dynamics with a speed
suitable for interactive work. Although for this networketlpresence of the STDP synapses increases the
simulation time by a factor of two, this factor generally dags on the number of synapses and the activity.

3.3.4 Perspectives

Future work on NEST will focus on an interactive mode for distted computing, an improvement of perfor-
mance with respect to modern multi-core computer clustard,a rigorous test and validation suite. Further
information on NEST and the current release can be founceadlEEST web sit€.

Pnttp://www.nest-initiative.org
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3.4 NCS

The NeoCortical Simulator (NCS), as its name suggests, tisned to model the horizontally dispersed,
vertically layered distribution of neurons charactecisii the mammalian neocortex. NCS development be-
gan in 1997, a time at which fascinating details of synapl@stity and connectivity were being discovered
(Markram et al., 1997a, 1997b) yet available simulatorh1sascGENESIS and NEURON did not offer paral-
lel architectures nor the degree of neuronal compartmeitgllification required for reasonable performance
times. Also emerging at the time were inexpensive clustémserkstations, also known as Beowulf clusters,
operating under the LINUX operating system. Following aZLl88uroscience fellowship with Rodney Douglas
and Kevan Martin at the Institute for Neuroinformatics iarich, Philip Goodman programmed the first NCS
using Matlab in collaboration with Henry Markram (then a& Weizmann Institute, now at the Swiss EPFL)
and Thomas McKenna, Neural Computation Program Officereattls. Office of Naval Research. Preliminary
results led to ONR funding (award N000140010420) in 1999¢ckvifacilitated the subsequent collaboration
with UNR computer scientists Sushil Louis and Frederickridadr. This led to a C++ implementation of NCS
using LINUX MPI on a Beowulf cluster. NCS was first made aval#ato outside investigators beginning in
2000, with further development targeting the following gfieations:

1. Compartmentssampling frequency and membrane compartmental realisficisat to capture biologi-
cal response properties, arbitrary voltage- and ion-seasthannel behaviors, and multicompartmental
models distributed in 3-D (dendritic, somatic, and axoyatems);

2. Synapsesshort-term depression and facilitation (Markram et al.988), augmentation (Wang et al.,
2006) and Hebbian spike-timing dependent plasticity (Market al., 1997b);

3. 3-D Connectionisma layout to easily allocate neurons into subnetwork graymitayers, column, and
sheets separated by real micron- or millimeter spacings, rgalistic propagation distances and axonal
conduction speeds;

4. Parallelisman inherently parallel, efficient method of passing messafsynaptic events among neu-
rons;

5. Reporting:an efficient way to collect, sample and analyze selected aomgental and neuronal behav-
iors;

6. Stimulation:ability to (a) specify fixed, standard neurophysiologidainsilation protocols, (b) port sig-
nals from an external device, and (c) export neuronal resggand await subsequent replies from external
systems (e.g., dynamic clamps, in vitro or in vivo preparaj robotic emulations);

7. Freezelresume system stdtes ability to stop a simulation and hibernate all hardware software pa-
rameters into a binary blob, for unpacking and resumingtir lexperiments;

8. Command filessimplicity in generating and modifying scripts.

As of 2005, NCS developers achieved all the objectives ghasiag an ASCII file based command input
file to define a hierarchy of reusable brain objects (Figur®)1NCS uses a clock-based integrate and fire
neurons whose compartments contain conductance-basaptisytlynamics and Hodgkin-Huxley formulations
of ionic channel gating particléd Although a user-specified active spike template is uswegd for our large
simulations, Hodgkin-Huxley channel equations can beipddor the rapid sodium and delayed rectifier spike
behavior. No nonlinear simplifications, such as the Izhid@formulation, are supported. Compartments are
allocated in 3-D space, and are connected by forward andseegenductances without detailed cable equations.
Synapses are conductance-based, with phenomenologickling of depression, facilitation, augmentation,
and STDP.

Bhttp://brain.unr.edu/publications/thesis.ecw01.pdf
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NCS runs on any LINUX cluster. We run NCS on our 200-CPU hybfig?entium and AMD processors,
and also on the 8,000-CPU Swiss EPFL IBM Blue Brain. NCS canimwsingle-PC mode under LINUX or
LINUX emulation (e.g., Cygwin) and on the new Pentium-baststintosh.

Although NCS was motivated by the need to model the complexitthe neocortex and hippocampus,
limbic and other structures can be modeled by variably psitay layers and specifying the relevant 3-D layouts.
Large-scale models often require repetitive patternstefdonnecting brain objects, which can be tedious using
only the basic ASCII command file. We therefore developedite s efficient Python-based scripting tools
called Brainlab (Drewes, 2005). An Internet-based librang control system was also developed (Waikul et
al., 2002).

NCS delivers reports on any fraction of neuronal cell growgisany specified interval. Reports include
membrane voltage (current clamp mode), current (voltagm), spike-event-only timings (event-triggered),
calcium concentrations, synaptic dynamics parametegsstand any Hodgkin-Huxley channel parameter. Al-
though NCS does not provide any direct visualization saftyweeport files are straightforward to view in any
graphics environment. Two such Matlab-based tools ardadtaifor download from the lab’s web sife

Benchmark. We ran the Vogels and Abbot (2005) benchmarkrihdeonditions specified for the conductance-
based integrate and fire model (see Benchmark 1 in Appengand)obtained the expected irregularly-bursting
sustained pattern (first second shown in Figure 11B). At #feudt 10:1 ratio of inhibitory to excitatory synaptic
conductances, the overall mean firing rate was 15.9 Hz.

The largest simulations to-date have been on the order dfiamsingle-compartment neurons using mem-
brane AHP, M, A-type channels. Neurons were connected bylibrirsynapses using short-term and STDP
dynamics; this required about 30 minutes on 120 CPUs to sitmulne biological second (Ripplinger et al.,
2004). Intermediate-complexity simulations have examhimaltimodal sensory integration and information
transfer'®, and genetic algorithm search for parameter sets whichostifgarning of visual patterns (Drewes
et al., 2004). Detailed work included evaluation of intemmmal membrane channels (Maciokas et al., 2005)
underlying the spectrum of observed firing behaviors (Gept., 2000), and potential roles in speech recog-
nition (Blake and Goodman, 2002) and neuropathology (Kellet al., 1999; Wills et al., 1999; Wiebers et al.,
2003; Opitz and Goodman, 2005). Recent developments fatlB port-based real time input-output of the
"prain” to remotely behaving and learning robts

The UNR Brain Computation Laboratory is presenting colfaktiog with the Brain Mind Institute of the
Swiss EPFL. Their 8,000-CPU Blue Brain clustecurrently runs NCS alone or as in a hybrid configuration as
an efficient synaptic messaging system with CPU-residestamtes of NEURON. The Reno and Swiss teams
are exploring ways to better calibrate simulated to livingnacircuits, and to effect real-time robotic behaviors.
Under continuing ONR support, the investigators and twagate students provide part-time assistance to
external users at no cost through e-mail and online docuatient User manual and programmer specifications
with examples are availabfe

http://brain.unr.edu/publications/neuroplot.m; http://brain.unr.edu/publications/EVALCELLTRACINGS.zip

Bhttp://brain.unr.edu/publications/Maciokas Dissertation_final.zip

http://brain.unr.edu/publications/jcm.hierarch robotics.unr ms_thesis03.pdf;
http://brain.unr.edu/publications/JGKingThesis.pdf (Macera-Rios et al., 2004)

http://bluebrainproject.epfl.ch

Bhttp://brain.unr.edu/ncsDocs
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3.5 CSIM
3.5.1 Feature overview

The Qrcuit SIMulator CSIM is a tool for

simulating heterogeneous networks composed of (spikdiag)ipoint neurons. CSIM is intended to simu-
late networks containing a few neurons, up to networks wfdwathousand neurons and on the order of 2700000
synapses. It was written to do modeling at the network levetder to analyze the computational effects which
can not be observed at the single cell level. To study sirglleomputations in detail we give the advice to use
simulators like GENESIS or NEURON.

Easy to use Matlab interfacd he core of CSIM is written in C++ which is controlled by measf Matlab
(there is no standalone version of CSIM). We have chosendldaihce it provides very powerful graphics and
analysis capabilities and is a widely used programmingudagg in the scientific community. Hence it is not
necessary to learn yet another script language to set upuargimulations with CSIM. Furthermore the results
of a simulation are directly returned as Matlab arrays antt@eny plotting and analysis tools available in
Matlab can easily be applied.

Until now CSIM does not provide a GUI. However one can eassly Matlab powerful GUI builder to make
a GUI for a specific application based on CSIM.

Object oriented designVe adopted an object oriented design for CSIM which is sini the approaches
taken in GENESIS and NEURON. That is there are objects (eLgfReuron object implements the standard
leaky-integrate-and-fire model) which are interconnedtganeans of well defined signal channels. The cre-
ation of objects, the connection of objects and the settfngpeameters of the objects is controlled at the level
of Matlab whereas the actual simulation is done in the C+#.cor

Fast C++ core Since CSIM is implemented in C++ and is not as general as@ENESIS simulations
are performed quite fast. We also implemented some ideas éwent driven simulators which result in a
considerable speedup (up to a factor of three for low firitgsiasee the subsection about implementation
aspects below).

Runs on Windows and Linux (UnixXESIM is developed on Linux (Matlab 6.5 and 7.2, gcc 4.0.2pnfk
the sitewww.lsm.tugraz.at/csmprecompiled versions for Linux and Windows are availabiac& CSIM is
pure C++ it should not be hard to port it to other platformsvitnich Matlab is available.

Different levels of modelindBy providing different neuron models CSIM allows to invigate networks at
different levels of abstraction: sigmoidal neurons witllag output, linear and non-linear leaky-integrate-and-
fire neurons and compartmental based (point) neurons wikingpoutput. A broad range of synaptic models
is also available for both spiking and non-spiking neurordets: starting from simple static synapses ranging
over synapses with short-term plasticity to synapse maogalsh implement different models for long-term
plasticity.

3.5.2 Built-in models

Neuron modetsCSIM provides two different classes of neurons: neurorh amalog output and neurons with
spiking output. Neurons with analog output are useful f@lyzing population responses in larger circuits. For
example CSIM provides a sigmoidal neuron with leaky intdgra However, there are much more different
objects available to build models of spiking neurons:

e Standard (linear) leaky-integrate-and-fire neurons
e Non-linear leaky-integrate-and-fire neurons based on thdets of I1zhikevich

e Conductance based point neurons with and without a spikpléten There are general conductance
based neurons where the user can insert any number of dgadabchannel models to build the neuron
model. On the other hand there is a rich set of predefined peinions available used in several studies.
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Spiking SynapsedAs for the neurons CSIM also implements synapses whiclstn#ranalog values and
spike transmitting synapses. Two types of synapses areimgsited: static and dynamic synapses. While
for static synapses the amplitude of each postsynaptionsgp(current of conductance change) is the same,
the amplitude of an postsynaptic response in the case of anlgrsynapse depends on the spike train that it
has seen so far, i.e. dynamic synapses implement a form dfteinim plasticity (depression, facilitation). For
synapses transmitting spikes the time course of a postsgmapponse is modeled Byx exp(—t/Tsyn), where
Tsynis the synaptic time constant aAds the synaptic strength which is constant for static syessd given
by the model described in (Markram et al., 1998b) for dynasyitapses.

Note that static as well as dynamic synapses are availableeent supplying or conductance based models.
Analog Synapses-or synapses transmitting analog values, such as thetaftawsigmoidal neuron, static
synapses are simply defined by their strength (weight), @edwefor dynamic synapses we implemented a con-

tinuous version of the dynamic synapse model for spikingaoesi(Tsodyks et al. 1998).

Synaptic plasticity CSIM also supports spike time dependent plasticity, STdppBlying a similar model
as in (Song et al., 2000). STDP can be modeled most easily ynghéhe assumption that each pre- and
postsynaptic spike pair contributes to synaptic modificathndependently and in a similar manner. Depending
on the time differencé\t = tpe — tyost between pre- and postsynaptic spike the absolute syndpgiogsh is
changed by an amouh{At). The typical shape for the functidr{At) as found for synapses in neocortex layer
5 (Markram et al., 1997) is implemented. Synaptic strengtiteand weakening are subject to constraints so
that the synaptic strength does not go below zero or abovea@rcenaximum value. Furthermore additional
variants as suggested in (Froemke and Dan, 2002) and (Etidig2003) are also implemented.

3.5.3 Implementation aspects

Network input and outputThere are two forms of inputs which can be supplied to thaukted neural mi-
crocircuit: spike trains and analog signals. To record tipwat of the simulated model special objects called
Recorder are used. A recorder can be connected to any object to rengriiedd of that object.

Simulation StrategyCSIM employees a clock based simulation strategy with afsieulation step width
dt. Typically the exponential Euler integration method isdis& spike which occurs during a simulation time
step is assumed to occur at the end of that time step. Thaieisrplat spikes can only occur at multiplesdof

Efficient processing of spike$n a typical simulation of a neural circuit based on simpéimon models
the CPU time spent in advanciradl the synapses may by larger then the time needed to intedpateetiron
equations. However if one considers the fact that synapseactually “idle” most of the time (at least in low
firing rate scenarios) it makes sense to update during oree dtep only those synapses whose postsynaptic
response is not zero, i.e. are active. CSIM implements digia by dividing synapses into a list of idle and a
list of active synapses where only the latter is updatechduaisimulation time step. A synapse becomes active
(i.e. is moved from the idle list to the active list) if a spitgives. After its postsynaptic response has vanished
the synapse becomes idle again (i.e. is moved back from thve dist to the idle list). This trick can result in
considerable speed up for low firing rate scenarios.

3.5.4 Further information

CSIM ins distributed under the GNU General Public Licensgtiaravailable for downlodd. Support for CSIM
(and its related tools) can be obtained by writing emailda@igi . tu-graz.ac.at

Atthe sitehttp://www.lsm.tugraz.at one can find besides the download area for CSIM (including the
user manual and an object reference manual) a list of pticliawhich used CSIM (and its related tools) and
also the code of published models.

Related toolsFurthermore the sitettp://www.lsm. tugraz.at provides two sets of Matlab scripts and
objects which heavily build on CSIM. Tharcuit tool supports the construction of multi-column circuits by
providing functionality to connect pools of neurons to @of neurons. Théearning toolwas developed

Bhttp://www.lsm.tugraz.at/csim



Brette et al., J. Computational Neurosci., in press (2007) 28

to analyze neural circuits in the spirit of the liquid stataahine (LSM) approach (Maass et al., 2002) and
therefore contains several machine learning methods &schlager et al., 2003) for more information about
this tools).

As of this writing resources are devoted to develop a pdraefission of CSIM called PCSIM which al-
lows distributed simulation of large scale networks. PCSWM have a python interface which allows an
easy implementation of the upcoming PyNN application progning interface (see appendix 1). The current
development version of PCSIM can be obtained from the S&arge sité°.

3.5.5 CSIM implementations of the benchmark simulations

We implemented the benchmark networks 1 to 3 as specified jpreAgtix 2.

The integrate-and-fire benchmark networks (Benchmark 2aace well suited to be simulated with CSIM
and can be implemented by only using built-in objeat®Neuron and StaticSpikingCbSynapse as the
neuron and synapse model for the COBA network afnéilNeuron andStaticSpikingSynapse as neuron
and synapse model for the CUBA network.

To implement Benchmark 3 (HH network) it is necessary to agddesired channel dynamics to CSIM by
implementing it at the C++ level. The user defined neuron m{bemubsHHNeuron) is easily implemented
in C++ (see the filesraubs_hh_channels. [cpp|h] andTraubsHHNeuron. [cpp|h]). After these files are
compiled and linked to CSIM they are available for use in theuation. We refer the user to the CSIM manual
for details on how to add user defined models at C++ level taMCSI

For each benchmark network we provide two implementatidhs: first implementation uses the plain
CSIM interface only while the second implementation makss af thecircuit tool mentioned in the previous
subsection (filename suffik_circuit.m).

To provide the initial stimulation during the first 50 ms oétlimulation we set up a pool of input neurons
(SpikingInputNeuron objects) which provide random spikes to the network.

Results of CSIM simulations of all implemented benchmaiesdepicted in Figure 12. This figures were
produced by the simulation scripts provided for each berrkmsing Matlab’s powerful graphics capabilities
(see the filanake_figures.m) and illustrate the sustained irregular activity desatibgy Vogels and Abbott
(2005) for such networks.

The current development version of PCSIM has been used forpescalability tests based on the CUBA
benchmark (Benchmark 2). The results are summarized inré&it8. For the small 4000 neuron network the
speedup for more than four machines vanishes while for tlgedanetworks a more than expected speedup
occurs up to six machines. This shows that PCSIM is scalaltferagard to the problem size and the number
of available machines. The development version of PCSIMttoey with the python script for the CUBA
benchmark can be obtained from the SourceForgé'site

2Onttp://sourceforge.net/projects/pcsim
2lhttp://sourceforge.net/projects/pcsim
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3.6 XPPAUT

XPPAUT is a general numerical tool for simulating, animating, andlgzing dynamical systems. These can
range from discrete finite state models (McCulloch-Pittsstochastic Markov models, to discretization of
partial differential and integrodifferential equationsSPPAUT was not specifically developed for neural sim-
ulations but because of its ability to provide a complete arioal analysis of the dependence of solutions on
parameters (“bifurcation diagrams”) it is widely used bg tommunity of computational and theoretical neu-
roscientists. There are many online tutorials many of whighgeared to neuroscience. While it can be used
for modest sized networks, it is not specifically designedHha purpose and due to its history, there are limits
on the size of problems which can be solved (about 2000 diffeal equations is the current limit). The bench-
marks were not performed due to this limitation in size, hasvea reduced version is included. Rather than a
pure simulatorXPPAUT is a tool for understanding the equations and the resultgraflating the equations.
XPPAUT uses a highly optimized parser to produce a pseudocode vgicterpreted and runs very fast —
at about half the speed of directly compiled code. Since mopdler is required XPPAUT is a stand alone
program and runs on all platforms which have an X-windowsrfate available (UNIX, MAC OSX, Windows,
etc.) The program is open source and available as sourcessiods binary versions.

XPPAUT can be run interactively (the preferred method) but can lbésoun in batch mode with no GUI
with the results dumped to one or more files. Graphical outpyiostscript, GIF, PBM, and animated GIF
is possible. (There are codecs available for AVI format baise are not generally included in the compiled
versions.) Numerous packages for controlliRBPAUT have been written, some stand-alone such as JigCell
and others using Matlab or PERL. Data from simulations casalved for other types of analysis and or plotting
with other packages. The “state” of the program can be savedell so that users can come back where they
let off.

There are no limits as far as the form of the equations is caedesince the actual equations that you
desire to solve are written down like you would write them ipager. For example the voltage equation for a
conductance-based model would be written as:

dv/dt = (-gl*(v-el) - gna*m~3*h*(v-ena)-gk*n~4x*(v-ek))/cm

There is a method for writing indexed networks as well, sd tree does not have to write every equation.
Special operators exist for speeding up network functidkesdiscrete convolutions and implementation of the
stochastic Gillespie algorithm. Furthermore, the userlicdnthe right-hand sides of differential equations to
external C libraries to solve complex equations (for exampluation-free firing rate models, Laing JCNS
2006). Because it is a general purpose solver, the user catliffierent types of equations for example stochas-
tic discrete time events with continuous ODESs. Event drisiemulations are also possible and can be performed
in such as way that output occurs only when an event happdrere Bire many ways to display the results of
simulations including color-coded plots showing spaogetbehavior, a built-in animation language, and one-
two- and three-dimensional phase-space plots.

XPPAUT provides a variety of numerical methods for solving diffégral equations, stochastic systems,
delay equations, Volterra integral equations, and boyadalue problems (BVP). The numerical integrators
are very robust and vary from the simple Euler method to thadstrd method for solving stiff differential
equations, CVODE. The latter allows the user to specify iviethe system is banded and thus can improve
calculation speed by up to two orders of magnitude. The uBd/&fsolvers is rare in neuroscience applications
but they can be used to solve, for example, the steady-sédtavior of Fokker-Planck equations for noisy
neurons and to find the speed of traveling waves in spati&tyilobuted models.

Tools for analysis dynamical properties such as equililmdains of attraction, Lyapunov exponents, Poincare
maps, embedding, and temporal averaging are all availablmenus. Some statistical analysis of simulations
is possible such as power spectra, mean and variance,atmmnefnalysis and histograms are also included in
the package. There is a very robust parameter fitting algor{fMarquardt-Levenburg) which allows the user
to find parameters and initial conditions which best apprate specified data.

One part ofXPPAUT which makes it very popular is the inclusion of the contimuatpackage, AUTO.
This package allows the user to track equilibria, limit @g;land solutions to boundary-value problems as
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parameters vary. The stability of the solutions is irrefg\so that users can track the entire qualitative behavior
of a differential equationXPPAUT provides a simple to use GUI for AUTO which allows the userdaralessly
switch back and forth between simulation and analysis.

XPPAUT is used in many different courses and workshops includiegMithods in Computational Neu-
roscience course at the Marine Biological Laboratory (whewas developed 15 years ago), various European
CNS courses as well as in classroom settings. Since eqaatenwritten for the software as you would write
them on paper, it is easy to teach students how toXRAUT for their own problems. There are many fea-
tures for the qualitative analysis of differential equaticuch as direction fields, nullclines and color coding of
solutions by some property (such as energy or speed).

XPPAUT can be considered a stable mature package. It is developeahantained by the author. While
a list of users is not maintained, a recent Google searclaleye88500 hits and a search on Google Scholar
showed over 250 papers citing the software. In the futuee ptrser will be rewritten so that there will be no
limit to the number of equations and methods for implementarge spatially distributed systems will also
be incorporated. Parts of the analysis cod&XPPAUT may possible be included in NEURON in the near
future. A book has been written on the use of the program (Btroet, 2004) and it comes with 120 pages of
documentation and dozens of examples.
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3.7 SPLIT
3.7.1 Parallel simulators

The development of parallel simulation in computationalmecience has been relatively slow. Today there
are a few publicly available parallel simulators, but theg &ar from as general, flexible, and documented
as commonly used serial simulators such as Neuron (Hine<angevale, 1997) and Genesis ([Bower and
Beeman, 1998). For Genesis there is PGENESIS and the devehdof a parallel version of Neuron has
started. In addition there exists simulators like NEGee Frye, 2005), NEST (Morrison et al., 2005), and our
own parallelizing simulator SPLIT (Hammarlund and Ekeh&@P8). However, they are in many ways still on
the experimental and developmental stage.

3.7.2 The simulator

SPLIT is a tool specialized for efficiently simulating largeale multicompartmental models based on Hodgkin-
Huxley formalism. It should be regarded as experimentainsok for demonstrating the possibility and use-
fulness of very large scale biophysically detailed neuroméwork simulations. Recently, this tool was used
for one of the largest cortex simulations ever performedi@]dt et al., 2005). It supports massive paral-
lelism on cluster computers using MPI. The model is specifig@ C++ program written by the SPLIT user.
This program is then linked with the SPLIT library to obtalretsimulator executable. Currently, there is no
supported graphical interface, although an experimenta/®T-based graphical interface has been developed.
There is no built-in support for analysis of results. Ratls#®?LIT should be regarded as a pure, generic, neu-
ral simulation kernel with the user program adapting it iatsimulator specific to a certain model. Although
this approach is in some sense “raw”, this means that the Inspdeification benefits from the full power of a
general purpose programming language.

SPLIT provides conductance-based synaptic interactidtiissiiort-term plasticity (facilitation and depres-
sion). Long-term plasticity (such as STDP) and integraté-fire formalism have not yet been implemented,
although this is planned for the future.

The user program specifies the model through the SPLIT APthvisi provided by the classplit. The
user program is serial and parallelism is hidden from the. uBlee program can be linked with either a serial
or parallel version of SPLIT. In the parallel case, some bpaits of the program run in a master node on the
cluster while SPLIT internally sets up parallel executioneoset of slave nodes. As an option, parts of the user
program can execute distributed onto each slave via a céllimerface. However, SPLIT provides a set of
tools which ensures that also such distributed code can itlervwvithout explicit reference to parallelism.

The SPLIT API provides methods to dynamically inject spikesan arbitrary subset of cells during a
simulation. Results of a simulation are logged to file. Mdatesvariables can be logged. This data can be
collected into one file at the master node or written down ahedave node. In the latter case, a separate
program might be used to collect the files at each node agesithulation terminates.

3.7.3 Large scale simulations

Recently, Djurfeldt et al., 2005 have described an effodgtmize SPLIT for the Blue Gene/L supercomputer.
BGI/L (Gara et al., 2005) represents a new breed of clustepuaters where the number of processors, instead
of the computational performance of individual process@dhe key to higher total performance. By using
a lower clock frequency, the amount of heat generated deesedramatically. Therefore, CPU chips can be
mounted more densely and need less cooling equipment. Ainadtie BG/L cluster is a true “system on a
chip” with two processor cores, 512 MiB of on chip memory amegrated network logic. A BG/L system can
contain up to 65536 processing nodes.

During this work, simulations of a neuronal network modelegfers 11/111 of the neocortex were performed
using conductance-based multicompartmental model neusased on Hodgkin-Huxley formalism. These

2?http://brain.cse.unr.edu/ncsdocs
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simulations comprised up to 8 million neurons and 4 billignapses. After a series of optimization steps, per-
formance measurements showed linear scaling behavioobdtie Blue Gene/L supercomputer (see Figure 1)
and on a more conventional cluster computer. Optimizatinalsided parallelization of model setup and do-
main decomposition of connectivity meta data. Computdiime was dominated by the synapses which allows
for a “free” increase of cell model complexity. Furthermotemmunication time was hidden by computation.

3.7.4 Implementation aspects

SPLIT has so far been used to model neocortical networksigEreand Lansner, 1998; Lundqvist et al., 2006),
the Lamprey spinal cord (Kozlov et al., 2003; 2006) and tli@otbry cortex (Sandstrom et al., 2006).

The library exploits data locality for better cache-basedgrmance. In order to gain performance on vector
architectures, state variables are stored as sequencesesltechniques such as adjacency lists for compact
representation of projections and AER (Address Event Repitation; Bailey and Hammerstrom, 1988) for
efficient communication of spike events.

Perhaps the most interesting concept in SPLIT is its aspmctus design: On a parallel architecture, each
slave process has its own simulation clock which runs aspmciusly with other slaves. Any pair of slaves
only need to communicate at intervals determined by thelsstadxonal delay in connections crossing from
one slave to the other.

The neurons in the model can be distributed arbitrarily dlerset of slaves. This gives great freedom in
optimizing communication so that densely connected neureside on the same CPU and so that axonal delays
between neurons simulated on different slaves are maxiinidee asynchronous design, where a slave process
does not need to communicate with all other slaves at eaehdiap, gives two benefits: 1. By communicating
more seldom, the communication overhead is reduced. 2.IByial slave processes to run out of phase, to a
degree determined by the mutually smallest axonal delay#iting time for communication is decreased.

3.7.5 Benchmark

The SPLIT implementation of the HH benchmark (Benchmark 3ppendix 2) consists of a C++ program
which specifies what entities are to be part of the simulato@il populations, projections, noise-generators,
plots), makes a call which distributes these objects orgahinster slaves (in the parallel case), sets the param-
eters of the simulation objects, initializes, and simwdaté/hile writing the code, close attention needs to be
payed to which parameters are scalar and which are vealanzs the sets of cells or axons. Channel equations
are pre-compiled into the library, and a choice of which $etquations to use needs to be made. Parameters
are specified using Sl units.

The Benchmark 3 simulation (4000 cells, 5 s of simulated titoek 386 s on a 2 GHz Pentium M machine
(Dell D810). Outputs are written in files on disk and can gasd displayed usingnuplot. Figure 17 shows
a raster of spiking activity in 100 cells during the first sed®f activity. Figure 18 shows membrane potential
traces of 3 of the cells during 5 s (left) and 100 ms (right).

3.7.6 Future plans

Ongoing and possible future developments of SPLIT include:

e arevision of the simulation kernel API

the addition of a Python interpreter interface

compatibility with channel models used in popular simuigtguch as Neuron and Genesis, enabling easy
transfer of neuron models

gap junctions

graded transmitter release
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e better documentation and examples

Currently, SPLIT is developed, in part time, by two peopléefie exists some limited documentation and
e-mail support.
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3.8 Mvaspike
3.8.1 Modelling with events

It has been argued many times that action potentials as pedday many types of neurones can be considered
asevents they consist of stereotypical impulses that appear soypesed on the internal voltage dynamics
of the neurons. As a result, many models of neurons offer wagefining event times associated with each
emitted action potential, often through the definition ofra§ threshold®. Neural simulation tools have taken
advantage of this for a long time, through the usew#nt driven algorithmésee section 1). Indeed, when one
speaks okventdn the context of simulation of neural networleyent-driveralgorithms come to mind and it it
the author impression that the use of events upstream,giimhnmodeling stage, is often understated.

Mvaspike was designed as an event-based modeling and sonuileamework. It is grounded on a well
established set-theoretic modeling approach (DEVS: BisdeVent system Specification (Zeigler and Vahie,
1993; Zeigler et al., 2000). Target models are discretetev@stems: their dynamics can be described by
changes of state variables at arbitrary moments in fin®ne aspect of Mvaspike is to bridge the gap between
the more familiar expression of continuous dynamics, galyem use in the neuroscience community, and
the event-centric use of models in the simulator (see fig@je This is conveniently easy for many simple
models that represent the models of choice in Mvaspike (yniogeégrate-and-fire or phase models, and SRMs).
Watts (1994) already noted that many neuronal propertisbeaexplicitly and easily represented in discrete
event systems. Think of absolute refractpmeriods rising time of PSPs, axonal propagatiaelays these are
notions directly related to time intervals (and therefareents) that are useful to describe many aspects of
the neuronal dynamics. This being obviously quite far frowm well established, more electro-physiologically
correct conductance based models, another aim of Mvaspikeriefore to take into account as much as possible
of these more complex models, through the explicit suppadiszrete-time events, and, possibly, state space

discretization for the integration of continuous or hykatighamics.

The DEVS formalism makes also possible the modeling of [dngerarchical or modular systems (e.g. net-
works of coupled populations of neurons, or micro-cirguitrtical columns etc.), through a well-defined cou-
pling and composition system. This helps modeling largecamaplex networks, but also favor code reusability,
prototyping, and the use of different levels of modeling.dAidnal tools have been implemented in Mvaspike
to take into account e.g. synaptic or axonal propagatioaydethe description of structured or randomly con-
nected networks in an efficient way, through the use of gerigniators to describe the connectivity (Rochel
and Martinez, 2003).

3.8.2 The simulator

The core simulation engine in Mvaspike is event-driven, mregathat is is aimed at simulating networks of
neurons where event-times can be computed efficientlynd-times will then be calculated exactly (in fact, to
the precision of the machine). This does not mean howeveittlsarestricted to models that offer analytical
expressions of the firing times, as numerical approximatman be used in many situations.

Mvaspike consists of a core C++ library, implementing a femeyic classes to describe networks, neurons
and additional input/output systems. It has been desigméx teasy to access from other programming lan-
guages (high level or scripting languages, e.g. Python)eatehsible. Well established simulation algorithms
are provided, based on state of the art priority queue datatstes. They have been found to be sufficiently
efficient on average; however, the object-oriented apprdas been designed to permit the use of dedicated,
optimized sub-simulators when possible.

On top of the core engine lies a library that includes a fewrmam models of neurons, including linear or
quadratic integrate-and-fire (or SRM) neurons, with Dinagagptic interactions, or various forms of piecewise

23The firing threshold here has to be taken in a very broad séwse a simple spike detection threshold in a continuous mg.
Hodgkin-Huxley) to an active threshold that is uses in théhematical expression of the dynamics (integrate-andxfodel)

24as opposed to discrete time systems, in which state chamgessoperiodically, and continuous systems where statagesa
continuously.
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linear and exponential PSPs. Other available ingrediemside plasticity mechanisms (STDP), refractory
periods, input spike trains generation (Poisson). Somaexdivity patterns (e.g. all-to-all, ring, etc) are also
included.

There is no graphical user interface, nor pre- and postgssing tools included, as these are elements of
the modeling and simulation work-flow that we believe to bgyda handle using third-party environments or
high level languages, tailored to the needs and habits afsbe

3.8.3 Benchmarks

The simplest model available in Mvaspike corresponds twttedefined for Benchmark 4 (see Appendix 2).
A straightforward implementation of the correspondingnuek can be done using only available objects from
the library.

The typical output of a Mvaspike simulation is a list of eventorresponding e.g. to spikes emitted (or
received) by the neurons. In particular, the membrane fiatda not available directly. In order to obtain
the voltage trace presented in figure 20, a simple post-psotg stage was necessary in order to obtain values
for the membrane potential at different instants betweeretlent times. To this aim, the differential equation
governing the dynamics between events is used (in a ineghjfatm), together with the values already available
at each event times, to find new intermediary values. Heiejdfas simple as computing the effect of the leak
(exponential) and the refractory period. As this only halsg¢a@one between events, each neuron can be treated
independently of the others. In a sense, this illustrates the hybrid formalism (as presented in section 1.1)
is handled in Mvaspike: the flow of discrete events is the npaimt of interest, continuous dynamics come
second.

3.8.4 Current status and further perspectives

Mvaspike is currently usable for the modeling of medium tmdascale networks of spiking neurons. It is
released under the GPL license, maintained and supportisl imain author and various contributors.

It has been used to model networks of integrate-and-fireomsyifor e.g. modeling the early stages of the
visual system (see eg. Hugues et al., 2002; Wohrer et al§)2@6d more theoretical research on computing
paradigms offered by spiking neurons (for instance, Roahdl Cohen, 2005; Rochel and Vieville, 2006). A
partial parallel implementation was developed and sufastested on small clusters of PCs and parallel
machines (16 processors max), and should be completeddantiakaccount all aspects of the framework and
more ambitious hardware platforms.

Work is ongoing to improve the interface of the simulatorameting input and output data formatting,
through the use of structured data language (XML). Whileapof-concept XML extension has already been
developed, this is not a trivial task, and further work isdembin the context of existing initiatives (such as
NeuroML).

Meanwhile, it is expected that the range of models availablthe user will be extended, for instance
through the inclusion of models of stochastic point proessand generic implementation of state space dis-
cretization methods.
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4 Discussion

We have presented here an overview of different strategidsalgorithms for simulating spiking neural net-
works, as well as an overview of most of the presently avklaimulation environment to implement such
simulations. We also have conceived a set of benchmark ation$ of spiking neural networks (Appendix 2)
and provide as supplementary material (linked to ModelD®)dodes for implementing the benchmarks in the
different simulators. We believe this should constituteea/wseful resource, especially for new researchers in
the field of computational neuroscience.

We voluntarily did not approach the difficult problem of silation speed and comparison of different simu-
lators in this respect. In Table 1 we have tried to enumelegtddatures of every simulator, in particular regard-
ing the models that are implemented, the possibility ofritisted simulation and the simulation environment.
In summary, we can classify the simulators presented in@e8tinto four categories according to their most
relevant range of application: 1) single-compartment nodeSIM, NEST and NCS, 2) multi-compartment
models: NEURON, GENESIS, SPLIT, 3) event-driven simulati?fMVASPIKE, 4) dynamical system analy-
sis: XPP. The simulators NEST, NCS, PCSIM (the new parabdesion of CSIM) and SPLIT are specifically
designed for distributed simulations of very large netwgorkhree simulators (NEURON, GENESIS and XPP)
constitute a complete simulation environment which inekid graphical interface and sophisticated tools for
representation of model structure and analysis of thetsesag well as a complete book for documentation. In
other simulators, analysis and graphical interface araiodd through the use of an external front-end (such as
MATLAB or Python).

Itis interesting to note that the different simulation eamiments are often able to simulate the same models,
but unfortunately the codes are not compatible with eabla+ofThis underlines the need for a more transparent
communication channel between simulators. Related to tihés present efforts with simulator-independent
codes (such as NeuroML, see Appendix 1) constitutes the adrance for a future inter-operability. We
illustrated here that, using a Python-based interface,obtiee benchmarks can be run in either NEURON or
NEST using the same code (see Fig. 24 and Appendix 1).

Thus, future work should focus on obtaining a full compéitipibetween simulation environments and
XML-based specifications. Importing and exporting XML shibenable to convert simulation codes between
simulators, and thereby provide very efficient means of domg existing models. A second direction for
future investigations is to adapt simulation environmeatsurrent hardware constraints, such as parallel com-
putations on clusters. Finally, more work is also neededauifg the differences between simulation strategies
and integration algorithms, which may considerably diffar cases where the timing of spikes is important

(Fig. 4).

Acknowledgments

Research supported by the European Community (FACETSagbydf&T 15879), NIH (NS11613), CNRS and
HFSP. We are also grateful for the feedback and suggestionsusers that have led to improvements of the
simulators reviewed here.



Brette et al., J. Computational Neurosci., in press (2007) 37
Appendix 1: Simulator-independent model specification

As we have seen, there are many freely-available, opercsand well-documented tools for simulation of
networks of spiking neurons. There is considerable overldpe classes of network that each is able to simu-
late, but each strikes a different balance between effigjdlexibility, scalability and user-friendliness, and the
different simulators encompass a range of simulationegjres. This makes the choice of which tool to use for
a particular project a difficult one. Moreover, we argue tlsing just one simulator is an undesirable state of
affairs. This follows from the general principle that sdia results must be reproducible, and that any given
instrument may have flaws or introduce a systematic bias. sithalators described here are complex soft-
ware packages, and may have hidden bugs or unexamined dsswsithat may only be apparent in particular
circumstances. Therefore it is desirable that any givenahsigould be simulated using at least two different
simulators and the results cross-checked.

This is, however, more easily said than done. The configurdiles, scripting languages or graphical
interfaces used for specifying model structure are velfgint for the different simulators, and this, together
with subtle differences in the implementation of conceliyddentical ideas, makes the conversion of a model
from one simulation environment to another an extremelytnioral task; as such it is rarely undertaken.

We believe that the field of computational neuroscience hashrto gain from the ability to easily simulate
a model with multiple simulators. First, it would greatlydteee implementation-dependent bugs, and possible
subtle systematic biases due to use of an inappropriatdatioru strategy. Second, it would facilitate com-
munication between investigators and reduce the currgnégation into simulator-specific communities; this,
coupled with a willingness to publish actual simulation eaadl addition to a model description, would perhaps
lead to reduced fragmentation of research effort and aeased tendency to build on existing models rather
than redevelop them de novo. Third, it would lead to a geniemptovement in simulator technology since
bugs could be more easily identified, benchmarking greathpkfied, and hence best-practice more rapidly
propagated.

This goal of simulator independent model specification meavay off, but some small steps have been
taken. There are two possible approaches (which will prigbpiove to be complementary) to developing
simulator-independent model specification, which mirtar two approaches taken to model specification by
individual simulators: declarative and programmatic. laeative model specification is exemplified by the use
of configuration files, as used for example by NCS. Here theie fixed library of neuron models, synapse
types, plasticity mechanisms, connectivity patterns, eted a particular model is specified by choosing from
this library. This has the advantages of simplicity in sgitup a model, and of well-defined behaviors for
individual components, but has less flexibility than thealative, programmatic model specification. Most
simulators reviewed here use a more or less general purpogemming language, usually an interpreted one,
which has neuroscience specific functions and classesh&geith more general control and data structures.
As noted, this gives the flexibility to generate new struesubeyond those found in the simulator’s standard
library, but at the expense of the very complexity that wenidied above as the major roadblock in converting
models between simulators.

Declarative model specification using NeuroML
The NeuroML projec® is an open-source collaborati§rwhose stated aims are:
1. To support the use of declarative specifications for nitkeheuroscience using XML.

2. To foster the development of XML standards for particalsas of computational neuroscience model-
ing.

The following standards have so far been developed:

2Shttp://www.neuroml.org (Crook et al., 2005)
26http://sourceforge.net/projects/neuroml
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e MorphML : specification of neuroanatomy (i.e. neuronal morphology)
e ChannelML : specification of models of ion channels and receptors (gped-21 for an example)
e Biophysics specification of compartmental cell models, building onrpoVL and ChannelML

e NetworkML : specification of cell positions and connections in a nekwor

The common syntax of these specifications is XML (Extengifiéekup Languag®). This has the advan-
tages of being both human- and machine-readable, and stiirathby an international organization, which in
turn has led to wide uptake and developer participation.

Other XML-based specifications that have been developeéumnoscience and in biology more generally
include BrainM[?® for exchanging neuroscience data, Celffor models of cellular and subcellular pro-
cesses and SBMY for representing models of biochemical reaction networks.

Although XML has become the most widely used technology Herelectronic communication of hierar-
chically structured information, the real standardizatéffort is orthogonal to the underlying technology, and
concerns the structuring of domain-specific knowledge,a.8sting of the objects and concepts of interest in
the domain and of the relationships between them, usingidatdized terminology. To achieve this, NeuroML
uses the XML Schema Languageo define the allowed elements and structure of a NeuroML mheci. The
validity of a NeuroML document may be checked with referetwéhe schema definitions. The NeuroML
Validation servicé? provides a convenient way to do this.

Using NeuroML for specifying network models

In order to use NeuroML to specify spiking neuronal networkd®ls we require detailed descriptions of

1. point spiking neurons (integrate and fire neurons andrgérations thereof),
2. compartmental models with Hodgkin-Huxley-like biopitgs

3. large networks with structured internal connectivithated to a network topology (e.g.: full-connectivity,
1D or 2D map with local connectivity, synfire chains pattemigh/without randomness) and structured
map to map connectivity (e.g., point-to-point, point-teumy, etc.).

At the time of writing, NeuroML supports the second and thiteins, but not the first. However, an ex-
tension to support specification of integrate-and-fireetpeuron models is currently being developed, and will
hopefully be incorporated into the NeuroML standard in teanfuture.

Specification of Hodgkin-Huxley-type models uses the MdfphChannelML and Biophysics standards of
NeuroML (see Fig. 21 for an example. We focus here only oniipation of networks, using the NetworkML
standard.

A key point is that a set of neurons and network connectivigy ine defined either bgxtensior(providing
the list of all neurons, parameters and connections), famgie:

<population name="PopulationA">
<cell_type>CellA</cell_type>
<instances>
<instance id="0"><location x="0" y="0O" z="0"/></instance>
<instance id="1"><location x="0" y="10" z="0"/></instance>
<instance id="2"><location x="0" y="20" z="0"/></instance>

</instances>
</population>

2Thttp://www.w3.org/XML
28nttp://brainml.org
2%http://www.cellml.org

SOhttp://sbml.org
Shttp://www.w3.org/XML/Schema
3%http://morphml.org:8080/NeuroMLValidator
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(note thatCel1Ais a cell model described earlier in the NeuroML documenthyspecificationi.e. an implicit
enumeration, for example:

<population name="PopulationA">
<cell_type>CellA</cell_type>
<pop_location>
<random_arrangement>
<population_size>200</population_size>
<spherical_location>
<meta:center x="0" y="0" z="0" diameter="100"/>
</spherical_location>
</random_arrangement>
</pop_location>
</population>

Similarly, for connectivity, one may define an explicit leftconnections,

<projection name="NetworkConnectionl">
<source>PopulationA</source>
<target>PopulationB</target>
<connections>
<connection id="0">
<pre cell_id="0" segment_id = "0"/>
<post cell_id="1" segment_id = "1"/>
</connection>
<connection id="1">
<pre cell_id="2" segment_id = "0"/>
<post cell_id="1" segment_id = "0"/>
</connection>

</connections>
</projection>

or specify an algorithm to determine the connections:

<projection name="NetworkConnectionl">
<source>PopulationA</source>
<target>PopulationB</target>
<connectivity_pattern>
<num_per_source>3</num_per_source>
<max_per_target>2</max_per_target>
</connectivity_pattern>
</projection>

Using NeuroML with a specific simulator
One very interesting feature of XML is that any language sagNeuroML is not fixed for ever:

e it may be adapted to your owhway of presenting data and models (e.g. words may be writtgour
own native language) as soon as the related logical-steican be translated to/from standard NeuroML

33pragmatic generic coding-rules.There are always several ways to represent information agieal-structure. Here are a few
key ideas to make such choices:
* Maximizing atomicityi.e. structure the data with a maximal decomposition (e¢@mné values must only contain “words” else there
is still a “structure” and is thus to be decomposed itselgimts of elements).
* Maximizing factorization..e. prohibit data redundancy, but use references to ind#ata fragment from another part of the data.
This saves place and time, but also avoid data inconsistency
* Maximizing flat representation.e. avoid complex tree structures, when the data can begepted as uniform lists of data, i.e. tables
with simple records, such as a field-set.
* Maximizing generic description.e. abstract representation, without any reference tddil@at or operating-system syntax: inde-
pendent of how the data is going to be used.
* Maximizing parameterization of functionality.e. specify, as much as possible, the properties (i.e. ackenistics / parameters /
options) of a software module or a function as a static seatd @instead of “putting-it-in-the-code”).
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e add-ons are always easily defined, as soon as they are cobtapaith the original NeuroML specifica-
tions.

Then using NeuroML simply means editing such data-strestwsing a suitable XML editor, validating
them (i.e. verify that the related logical-structures ardlyiormed and valid with respect to the specification,
conditions, etc.) and normalizing them (i.e. translate &n equivalent logical-structure but without redundancy;,
while some factorization simplifies subsequent manipoihgti

Translation from this validated normalized form is efficiamd safe. Translation can be achieved by one
of two methods: Either a simulator may accept a NeuroML daninas input, and translation from NeuroML
elements to native simulator objects is performed by theulsitar, or the XSL Transformation langudfe
may be used to generate native simulator code {eg.or NMODL in the case of NEURON). For example, the
NeuroML Validator service provides translation of Chaieland MorphML files to NEURON and GENESIS
formats.

The process of editing, validating, normalizing and tratis NeuroML data-structures is summarized in
Figure 22.

Future extensions
The NetworkML standard is at an early stage of developmeasirble future extensions include:
e specification of point spiking models, such as the integaaig-fire model.

e more flexible specification of numerical parameters. Nuoatmparameter values are not simple “num-
bers” but satisfy certain standard conditions (paramedfires are physical quantities with a unit, may
take a default value, have values bounded within a certaigeravith minimal/maximal values and are
defined up to a certain precision) or specific conditions éeffiny a boolean expression, and may have
their default value not simply defined by a constant but fronalgebraic expression. In the current Neu-
roML standards all numerical parameters are simple numbadsall units must be consistent with either
a “physiological units” system or the Sl system (they mayb®mixed in a single NeuroML document).

e specifying parameter values as being drawn from a definatbrardistribution.

Programmatic model specification using Python

For network simulations, we may well require more flexipilihan can easily be obtained using a declarative
model specification, but we still wish to obtain simple casuen between simulators, i.e. to be able to write the
simulation code for a model only once, then run the same cadauitiple simulators. This requires first the
definition of an API (Application Programming Interface) meta-language, a set of functions/classes which
provides a superset of the capabilities of the simulatorsvish to run o°. Having defined an API, there are
two possible next stages: (i) each simulator implementsreepavhich can interpret the meta-language; (ii)
a separate program either translates the meta-languagsimulator-specific code or controls the simulator
directly, giving simulator-specific function calls.
In our opinion, the second of these possibilities is thedbethe, since

1. it avoids replication of effort in writing parsers,

2. we can then use a general purpose, state-of-the-arpiiated programming language, such as Python
or Ruby, rather than a simulator-specific language, andlévwesage the effort of outside developers in
areas that are not neuroscience specific, such as dataiarsalgsvisualizatio?f

S4http://www.w3.org/TR/xslt

35Note that since we choose a superset, the system must emihig/arror if the underlying simulator engine does notpupa
particular feature.

36For Python, examples include efficient data storage andfea(HDF5, ROOT), data analysis (SciPy), paralleliza(®ifl), GUI
toolkits (GTK, QT).
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The PyNN project’ has begun to develop both the API and the binding to indiVidiraulation engines,
for both purposes using the Python programming languagee APl has two parts, a low-level, procedu-
ral API (functionscreate (), connect (), set (), record()), and a high-level, object-oriented API (classes
Population andProjection, which have methods likeet (), record(), setWeights(), etc.). The low-
level API is good for small networks, and perhaps gives maitfllity. The high-level API is good for
hiding the details and the book-keeping, and is intendedht@ la one-to-one mapping with NeuroML, i.e. a
population element in NeuroML will correspond toRbpulation object in PyNN.

The other thing that is required to write a model once andtran multiple simulators is standard cell mod-
els. PyNN translates standard cell-model names and paamanhes into simulator-specific names, e.g. stan-
dard modelF_curr_alphaisiaf neuronin NEST andStandardIFin NEURON, whileSpikeSourcePoisson
iS apoisson_generator in NEST and &letStimin NEURON.

An example of the use of the API to specify a simple networkiveigin Figure 23.

Python bindings currently exist to control NEST (PyNE&Tand Mvaspike, and Python can be used as an
alternative interpreter for NEURON (nrnpython), althougk level of integration (how easy it is to access the
native functionality) is variable. Currently PyNN supmRYNEST and NEURON (via nrnpython), and there
are plans to add support for other simulators with Pythowlibigs, initially Mvaspike and CSIM, and to add
support for the distributed simulation capabilities of NREON and NEST.

Example simulations

Benchmarks 1 and 2 (see Appendix 2) have been coded in PyNNMuandsing both NEURON and NEST
(Fig. 24). The results for the two simulators are not idetfisince we used different random number sequences
when determining connectivity, but the distributions ofeirspike intervals (I1SIs) and of the coefficient of
variation of ISI are almost indistinguishable. All the cafid synapse types used in the benchmarks are standard
models in PyNN. Where these models do not come as standar€EWR®N or NEST, the model code is
distributed with PyNN (in the case of NEURON) or with PyNESH the case of NEST). We do not report
simulation times, as PyNN has not been optimized for eitmaulstor.

37pronounced ‘pine’
383 Python interface to NEST
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Appendix 2: Benchmark simulations

In this appendix, we present a series of “benchmark” netveamiulations using both integrate-and-fire (IF)
or Hodgkin-Huxley (HH) type neurons. They were chosen sinett &t least one of the benchmark can be
implemented in the different simulators (the code corradpg to these implementations will be provided in
the ModelDB databasg.

The models chosen were networks of excitatory and inhipiteurons inspired from a recent study (Mogels
and Abbott, 2005). This paper considered two types of nétsvof leaky IF neurons, one with current-based
synaptic interactions (CUBA model), and another one withduwtance-based synaptic interactions (CUBA
model; see below). We also introduce here a HH-based veositre COBA model, as well as a fourth model
consisting of IF neurons interacting through voltage défies (“voltage-jump” synapses).

Network structure

Each model consisted of 4,000 IF neurons, which were segzhrato two populations of excitatory and in-
hibitory neurons, forming 80% and 20% of the neurons, raspyg. All neurons were connected randomly
using a connection probability of 2%.

Passive properties
The membrane equation of all models was given by:

dv

Cm i —o(V—EL) + §t) + G(t), 5)

whereC,, = 1 yF/cn? is the specific capacitanc¥,is the membrane potential, = 5x10°° S/cn? is the leak
conductance density arifl = -60 mV is the leak reversal potential. Together with a cedbaof 20,00Qum?,
these parameters give a resting membrane time constantraf2ihd an input resistance at rest of 100.M
The functionS(t) represents the spiking mechanism &idl) stands for synaptic interactions (see below).
Spiking mechanisms

IF neurons

In addition to passive membrane properties, IF neurons ligich@ threshold of -50 mV. Once the Vm reaches
threshold, a spike is emitted and the membrane potentiasist to -60 mV and remains at that value for a
refractory period of 5 ms.

HH neurons

HH neurons were modified from Traub and Miles (1991) and wesedbed by the following equations:

dv

mgr = OV -E) ~@nam’h(V —Ena) ~ ke (V ~Ex) + G(t) (6)
O = (V) (L)~ BplV) m

o = V) (a-h) V) b

= V) (@) V) 1,

3%http://senselab.med.yale.edu/senselab/ModelDB
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wheregna = 100 m§cn? andgkg = 30 mS/cn? are the maximal conductances of the sodium current and
delayed rectifier with reversal potentials Bf, = 50 mV andEx = —90 mV. m, h, andn are the activation
variables which time evolution depends on the voltage-déget rate constants,, Bm, an, Bn, On and Bn.

The voltage-dependent expressions of the rate constanesmaalified from the model described by Traub and
Miles (1991):

Om = 0.32%(13—V +V7)/[exp((13—V + V1) /4) — 1]

Bm = 0.28%(V —Vr —40)/[exp((V —Vr — 40)/5) — 1]
ap = 0.128+exp((17—V +Vr)/18)
Bn = 4/[1+exp((40—V +V1)/5)]
ap = 0.032+(15-V +Vr)/[exp(15—V +V1)/5) — 1]

Bn = O05xexp((10—V +Vr)/40),

whereVr = -63 mV adjusts the threshold (which was around -50 mV foraiheve parameters).

Synaptic interactions
Conductance-based synapses
For conductance-based synaptic interactions, the memlegumation of neuronwas given by:

dvi
nGi = %M -E) £ S0 - Yaiy )

whereV, is the membrane potential of neurgm; (t) is the synaptic conductance of the synapse from nejiron
to neuroni, andE; is the reversal potential of that synap&g.was of 0 mV for excitatory synapses, or -80 mV
for inhibitory synapses.

Synaptic interactions were implemented as follows: whepilkesoccurred in neuro, the synaptic con-
ductancegj; was instantaneously incremented by a quantum value (6 n67an8 for excitatory and inhibitory
synapses, respectively) and decayed exponentially witihe ¢onstant of 5 ms and 10 ms for excitation and
inhibition, respectively.

Current-based synapses

For implementing current-based synaptic interactiors foéHowing equation was used:

dvi
Cma = —o(Vi—E) + St) — Zgjl (8)

whereV = -60 mV is the mean membrane potential. The conductancet@ueere of 0.27 nS and 4.5 nS for
excitatory and inhibitory synapses, respectively. Theoffarameters are the same as for conductance-based

interactions.
Voltage-jump synapses

For implementing voltage-jump type of synaptic interactipthe membrane potential was abruptly increased
by a value of 0.25 mV for each excitatory event, and it wasekszd by 2.25 mV for each inhibitory event.
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Benchmarks

Based on the above models, the following four benchmarks ineplemented.

Benchmark 1: Conductance-based IF netwoikhis benchmark consists of a network of IF neurons
connected with conductance-based synapses, according patameters above. It is equivalent to
the COBA model described in Vogels and Abbott (2005).

Benchmark 2: Current-based IF networl his second benchmark simulates a network of IF neurons
connected with current-based synapses, which is equivielédhe CUBA model described in Vo-
gels and Abbott (2005). It has the same parameters as abmegptahat every cell needs to be
depolarized by about 10 mV, which was implemented by seffing: -49 mV (see Vogels and
Abbott, 2005).

Benchmark 3: Conductance-based HH netwarkis benchmark is equivalent to Benchmark 1, except
that the HH model was used.

Benchmark 4: IF network with voltage-jump synapsHsis fourth benchmark used voltage-jump synapses,
and has a membrane equation which is analytically solvalplg.can be implemented using event-
driven simulation strategies.

For all four benchmarks, the models simulate a self-susthirregular state of activity, which is easy to
identify: all cells fire irregularly and are characterizeg important subthreshold voltage fluctuations. The
neurons must be randomly stimulated during the first 50 msdardo set the network in the active state.

Supplementary material

The supplementary material to the paper contains the codé@nplementing those benchmarks in the different
simulators reviewed here (see Section 3 for details on p@oiplementations). We provide the codes for those
benchmarks, implemented in each simulator, and this cotade available in the ModelDB datab#se

In addition, we provide a clock-driven implementation ofiBemarks 1 and 2 with Scilab, a free vector-
based scientific software. In this case, Benchmark 1 istiated with Euler method, second order Runge-Kutta
and Euler with spike timing interpolation (Hansel et al, 839vhile Benchmark 2 is integrated exactly (with
spike timings aligned to the time grid). The event-drivempliementation (Benchmark 4) is also possible with
Scilab but very inefficient because the programming langusgnterpreted, and since the algorithms are asyn-
chronous, the operations cannot be vectorized. Finallyals@ provide a C++ implementation of Benchmark 2
and of a modified version of the COBA model (Benchmark 1, wddmiical synaptic time constants for excita-
tion and inhibition).

“Ohttps://senselab.med.yale.edu/senselab/modeldb/ShowModel .asp?mode1=83319 (if necessary,
use "reviewme" as password).
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Question NEURON GENESIS NEST NCS CSIM  XPP SPLIT Mvaspike
HH B.I. B.I. YES B.I. B.I. YES B.I. POSS
leaky IF B.I. POSS YES B.I. B.I. YES POSS** B.l.
Izhikevich IF YES B.I. YES NO B.I. YES POSS* POSS**
Cable egs B.I. B.I. NO NO NO YES B.I. NO

ST plasticity YES B.I. YES B.I. B.I. YES B.I. YES

LT Plasticity YES YES YES B.I. B.I. YES NO** YES
Event-based B.I. NO YES NO NO YES NO YES
exact B.l. - YES - - NO - YES
Clock-based B.I. B.I. YES B.I. YES YES YES POSS**
interpolated B.I. NO YES NO NO YES B.I. POSS
G synapses B.I. B.I. YES B.I. B.I. YES B.I. POSS**
parallel B.I. YES B.I. B.I. NO**  NO B.I. NO**
graphics B.I. B.I. NO(*) NO(*) NO(*) YES NO NO
simple analysis  B.I. B.I. YES NO(*) NO(*) VYES NO NO
complx analysis  B.l. YES NO(*) NO(*) NO(*) VYES NO NO
development YES YES YES YES YES YES YES YES
how many p. 3 2-3 4 2-3 2 1 2 1
support YES YES YES YES YES YES YES YES
type e,p,c e e e e e e e

user forum YES YES YES NO NO YES YES NO
publ list YES YES YES YES YES NO NO NO
codes YES YES YES YES YES YES NO NO
online manual YES YES YES YES YES YES YES YES
book YES YES NO NO NO YES NO NO
XML import NO** POSS NO** NO* NO YES NO NO**
XML export B.I. NO** NO** NO* NO NO NO NO**

web site YES YES YES YES YES YES YES YES
LINUX YES YES YES YES YES YES YES YES
Windows YES YES YES YES YES YES NO NO
Mac-Os YES YES YES NO NO YES NO NO
Interface B.I. B.I. POSS B.I YES POSS POSS POSS
Save option B.I. YES NO**  B.I. NO NO NO NO

Table 1: Comparison of features of the different simulators
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Table caption

Table 1: Comparison of features of the different simulators

Different questions were asked (see below), and for eacstigne the answer is either:
B.l. = Built-in feature, incorporated in the simulator wdtlt need to load additional mechanisms;
YES = feature very easy to simulate or implement (ie., a fewut@s of programming);
POSS = feature possible to implement, but requires a bitafp®gramming;
NO = feature not implemented, would require modifying thdezo
** = feature planned to be implemented in a future versiorhefs$imulator;
(*) graphical interface and analysis possible via frontlefike Python or MATLAB.

The list of questions were:
HH: can it simulate HH models?;
leaky IF: can it simulate leaky IF models?;
Izhikevich IF: can it simulate multivariable IF models, ®xample Izhikevich type?;
Cable egs: can it simulate compartmental models with dersf;
ST plasticity: can it simulate short-term synaptic plastit (facilitation, depression);
LT Plasticity: can it simulate long-term synaptic plagii@i (LTP, LTD, STDP);
Event-based: can it simulate event-based strategies?;
exact: in this case, is the integration scheme exact?;
Clock-based: can it simulate clock-based strategies?, umge-Kutta);
interpolated: in this case, does it use interpolation fikespmes?;
G synapses: can it simulate conductance-based synagradtibns?;
parallel: does it support parallel processing?;
graphics: does it have a graphical interface?;
simple analysis: is it possible to use the interface for gnapalysis? (spike count, correlations, etc);
complx analysis: can more complex analysis be done? (p&eafiténg, fft, matrix operations, ...);
development: is it currently developed?;
how many p.: if yes, how many developers are working on it?;
support: is it supported? (help for users);
type: what type of support (email, phone, consultation?);
user forum: is there a forum of users or mailing list?;
publ list: is there a list of publications of articles thaedst?;
codes: are there codes available on the web of publishedlg®yde
online manual: are there tutorials and reference materaladble on the web?;
book: are there published books on the simulator?
XML import: can it import model specifications in XML?
XML export: can it export model specifications in XML?
web site: is there a web site of the simulator where all carobad? (including help and source codes)
LINUX: does it run on LINUX?
Windows: does it run on Windows? (98, 2K, XP)
Mac-Os: does it run on Mac-OS X?
Interface: Is there a possibility to interface the simuléooutside signals ? (such as a camera, or a real neuron)
Save option: Does it have a "save option”, (different thalkz)t allowing the user to interrupt a simulation,
and continue it later on ? (this feature is important on atelughen simulations must be interrupted)
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t=0
while t<duration
for every neuron State updates
process incoming spikes
advance neuron dynamics by dt
end

for every neuron
if vm>threshold

reset neuron Propagation
for every connection of spikes
send spike
end
end
end
t=t+dt

end

Figure 1: A basic clock-driven algorithm

while queue not empty and t<duration
extract event with lowest timing Process event
(= timing t, target i, weight w)
compute state of neuron i at time t
update state of neuron i (+w)
if vm>threshold
for each connection i->j Propagate spike
insert event in the queue
end
reset neuron i
end
end

Figure 2: A basic event-driven algorithm with instantaresuynaptic interactions
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for every neuron i
compute timing of next spike
insert event in priority queue
end

while queue not empty and t<duration
extract event with lowest timing
(event = timing t, neuron i)
compute state of neuron i at time t
reset membrane potential
compute timing of next spike
insert event in queue

for every connection i->j
compute state of neuron j at time t
change state with weight w(i,j)
compute timing of next spike
insert/change/suppress event in queue
end
end

Initialization

Process spike

Communicate spike

Figure 3: A basic event-driven algorithm with non-instargaus synaptic interactions
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A delay <, B

3l

o= cancallstion

Figure 4: Modelling strategies and dynamics in neuronakesys without STDP.
A: Small differences in spike times can accumulate and leatere delays or even cancellation (see arrows)
of spikes, depending on the simulation strategy utilizetthettemporal resolution within clock-driven strategies
used. B: Rasterplots of spike events in a small neuronalar&tof LIF neurons simulated with event-driven and
clock-driven approaches with different temporal resolugi Observed differences in neural network dynamics

include delays, cancellation or generation of synchronmtsvork events (Figure modified from Rudolph &
Destexhe, 2007).
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Figure 5: Dynamics in neuronal systems with STDP.
A: Impact of the simulation strategy (clock-drivend; event-driven:ed) on the facilitation and depression of
synapses. B: Time course and average rate (inset) in a LIelnvath multiple synaptic input channels for
different simulation strategies and temporal resolutiGnSynaptic weight distribution after 500 s and 1,000 s
(Figure modified from Rudolph & Destexhe, 2007).
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Figure 6: NEURON graphical user interface.
In developing large scale networks, it is helpful to stardepugging small prototype nets. NEURON’s GUI,
especially its Network Builder (shown here), can simpltisttask. Also, at the click of a button the Network
Builder generates hoc code that can be reused as the bulbtiegs for large scale nets (see chapter 11,
Modeling network$n Carnevale and Hines 2006).
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Figure 7: Parallel simulations using NEURON.
A. Four benchmark network models were simulated on 1, 2,8, &)d 12 CPUs of a Beowulf cluster (6 nodes,
dual CPU, 64-bit 3.2 GHz Intel Xeon with 1024 KB cache). Dakliees indicate "ideal speedup” (run time
inversely proportional to number of CPUSs). Solid symboksramn time, open symbols are average computation
time per CPU, and vertical bars indicate variation of corapan time. The CUBA and CUBADV models
execute so quickly that little is gained by parallelizingih The CUBA model is faster than the more efficient
CUBADV because the latter generates twice as many spiké®(spunts are COBAHH 92,219, COBA 62,349,
CUBADYV 39,280, CUBA 15,371). B. The Pittsburgh SuperconmmtCenter's Cray XT3 (2.4 GHz Opteron
processors) was used to simulate a NEURON implementatioineathalamocortical network model of Traub
et al. (2005). This model has 3,560 cells in 14 types, 3,5@0gactions, 5,596,810 equations, and 1,122,520
connections and synapses, and 100 ms of model time it geser&;465 spikes and 19,844,187 delivered
spikes. The dashed line indicates "ideal speedup” and solites are the actual run times. The solid black
line is the average computation time, and the intersectergjoal lines mark the range of computation times
for each CPU. Neither the number of cell classes nor the nuwibeells in each class were multiples of the
number of processors, so load balance was not perfect. Wite@BUs were used, the number of equations per
CPU ranged from 5954 to 8516. Open diamonds are averageesfikange times. Open squares mark average
voltage exchange times for the gap junctions, which mustdne ét every time step; these lie on vertical bars
that indicate the range of voltage exchange times. Thisr@&lgrge primarily because of synchronization time
due to computation time variation across CPUs. The minimaluevis the actual exchange time.
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Figure 8: The GUI for the GENESIS implementation of the HHdienark, using the dual-exponential form
of synaptic conductance.
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A. The entire 5 seconds of the simulation. B. Detail of thenwal 3.2—3.4 sec.
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Figure 10: Performance of NEST on Benchmarks 1-4 and aniadaitbenchmark (5) with spike timing
dependent plasticity (STDP).

A. Simulation time for one biological second of Benchmark3 distributed over two processors, spiking su-
pressed, with a synaptic delay afidns. The horizontal lines indicate the simulation timesli@ benchmarks
with the synaptic delay increased tdoIns. B. Simulation time for one biological second of Bencha#has a
function of the minimum synaptic delay in double logaritemépresentation. The gray line indicates a linear
fit to the data (slope0.8). C. Simulation time for one biological second of Benchkrara network of 11250
neurons and connection probability ol@total number of synapses: T2 10°) as a function of the number of
processors in double logarithmic representation. All pgea static, triangles; excitatory-excitatory synapses
implementing multiplicative STDP with an all-to-all spik®iring scheme, circles. The gray line indicates a
linear speed-up.
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Figure 11: NCS file specifications and example of simulation.
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lab scripting tools are available for repetitive structu(®rewes, 2005). B. 1-second spike rastergram of 100
arbitrarily selected neurons in the benchmark simulation.
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Figure 12: Results of CSIM simulations of the benchmarks 3 (twp to bottom).
The left panels show the voltage traces (in mV) of a seleceedan. For Benchmark 1 (COBA) and Bench-
mark 2 (CUBA) models (top two rows), the spikes superimpasedertical lines. The right panels show the
spike raster for randomly selected neurons for each of tiee thenchmarks.
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Figure 13: Performance of PCSIM.
The time needed to simulate the Benchmark 2 (CUBA) netwonks(&ynaptic delay, 0.1ms time step) for one
second of biological time (solid line) as well as the expedimes (dashed line) are plotted against the number
of machines (Intel Xeon, 3.4 Ghz, 2 Mb cache). The CUBA modsd simulated for three different sizes: 4000
neurons and .2 x 10° synapses (stars), 10000 neurons and1®® synapses (circles), and 20000 neurons and
20x 10° synapses (diamonds).
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Figure 14:XPPAUT interface for a network of 200 excitatory and 50 inhibitorgdgkin-Huxley neurons with
random connectivity, conductance-based dynamical sysaps

Each neuron is also given a random drive. Main window, a tdisensional phase plot, and an array plot are
shown.
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Figure 15: Persistent state in an integrate-and-fire né&twih 400 excitatory and 100 inhibitory cell.
XPPAUT simulation with exponential conductance-based synapsgsarse coupling and random
drive.Excitatory and inhibitory synapses are shown as aglloltages traces from 3 neurons.
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Figure 16: Speedup for model with 4 million cells and 2 billisynapses simulated with SPLIT on BG/L (from
Djurfeldt et al., 2005).
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Figure 17: Raster plot showing spikes of 100 cells duringfife¢ second of activity (SPLIT simulation of
Benchmark 3).
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Figure 18: Plots of the membrane potential for 3 of the 4008.ce
The right plot shows a subset of the data in the left plot, witiher time resolution (SPLIT simulation of
Benchmark 3).
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Figure 19: Neuronal dynamics from a discrete-event dynalnsigstems perspective.
Events (t1-t4), corresponding to the state variable switcfrom the sub-threshold to the firing dynamics, can
occur at any arbitrary point in time. They correspond herehiange of the neuron output that can be passed
to the rest of the systems (e.g. other neurons). Internalgdsa(e.g. end of the refractory period) can also be
described in a similar way.
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Figure 20: Membrane potential of a single neuron, from a Mikesimplementation of Benchmark 4.
Top: membrane potential dynamics (impulses have beenisypesed at firing time to make them more appar-
ent). Bottom: Mvaspike simulation result typically consisf lists of events (here, spiking and reception time,
top and middle panels) and the corresponding state vasiablbese instants (not shown). In order to obtain the
full voltage dynamics, a post-processing stage is useddmad intermediary values between events (bottom
trace).
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<?xml version="1.0" encoding="UTF-8"7>

<channelml xmlns="http://morphml.org/channelml/schema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:meta="http://morphml.org/metadata/schema"
xsi:schemalocation="http://morphml.org/channelml/schema
../../Schemata/v1.1/Level2/ChannelML_v1.1.xsd"
units="Physiological Units">

<ion name="k" default_erev="-77.0" charge="1"/> <!-- phys units: mV -->
<channel_type name="KChannel" density="yes">

<meta:notes>Simple example of K conductance in squid giant axon.
Based on channel from Hodgkin and Huxley 1952</meta:notes>

<current_voltage_relation>
<ohmic ion="k">
<conductance default_gmax="36"> <!-- phys units: mS/cm2-->
<gate power="4">
<state name="n" fraction="1">
<transition>
<voltage_gate>
<alpha>
<parameterised_hh type="linoid" expr="Ax*(k*(v-d))/(1 - exp(-(k*(v-d))))">
<parameter name="A" value="0.1"/>
<parameter name="k" value="0.1"/>
<parameter name="d" value="-55"/>
</parameterised_hh>
</alpha>
<beta>
<parameterised_hh type="exponential" expr="Axexp (k*(v-d))">
<parameter name="A" value="0.125"/>
<parameter name="k" value="-0.0125"/>
<parameter name="d" value="-65"/>
</parameterised_hh>
</beta>
</voltage_gate>
</transition>
</state>
</gate>
</conductance>
</ohmic>
</current_voltage_relation>
</channel_type>
</channelml>

Figure 21: Example of Hodgkin-Huxley Kconductance specified in ChannelML, a component of NeuroML.
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Figure 22: From NeuroML to simulator
cell_params = { ’tau_m’ : 20.0, ’tau_syn’ : 2.0, tau_refrac’: 1.0,

’v_rest’: -65.0, ’v_thresh’: -50.0, ’cm’: 1.0}

populationA = Population((10,), "IF_curr_alpha", cell_params)
populationB = Population((5,5), "IF_curr_alpha", cell_params)
populationA.randomInit (’uniform’, v_reset, v_thresh)

connAtoB = Projection(populationA, populationB, ’fixedProbability’, 0.2)

connAtoA = Projection(populationA, populationA, ’distanceDependentProbability’, "exp(-abs(d))")
connBtoA = Projection(populationB, populationA, ’allToAll’)

connAtoB.setWeights(w_AB)

connAtoA.setWeights (w_AA)

connBtoA.setWeights(w_BA)

populationA.record()
populationB.record()

run(1000.0)

populationA.printSpikes("populationA.spiketimes")
populationB.printSpikes("populationA.spiketimes")

Figure 23: Example of the use of the PyNN API to specify a netwlat can then be run on multiple simulators.
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Figure 24: Same network model run on two different simukatming the same source code.

The model considered was the Vogels-Abbott integratefaadietwork with current-based synapses and dis-
playing self-sustained irregular activity states (benahn2 in Appendix 2). This network implemented with the
PyNN simulator-independent network modelling API, anddated using NEST (left column) and NEURON
(right column) as the simulation engines. The same sequein@dom numbers was used for each simula-
tor, so the connectivity patterns were rigorously idertiCEhe membrane potential trajectories of individual
neurons simulated in different simulators rapidly diverge small numerical differences are rapidly amplified
by the large degree of recurrency of the circuit, but thergpi&e interval (I1SI) statistics of the populations are
almost identical for the two simulators. (Top row) Voltageces for two cells chosen at random from the pop-
ulation. (Second row) Spike raster plots for the first 320raesi in the population. (Third row) Histograms of
ISIs for the excitatory and inhibitory cell populations.affom row) Histograms of the coefficient of variation
(CV) of the ISls.



