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Abstract

The persistent modification of synaptic efficacy as a function of the rela-
tive timing of pre- and postsynaptic spikes is a phenomenon known as spike-
timing-dependent plasticity (STDP). Here we show that the modulation of STDP
by a global reward signal leads to reinforcement learning. We first derive an-
alytically learning rules involving reward-modulated spike-timing-dependent
synaptic and intrinsic plasticity, by applying a reinforcement learning algo-
rithm to the stochastic Spike Response Model of spiking neurons. These rules
have several features common to plasticity mechanisms experimentally found
in the brain. We then demonstrate in simulations of networks of integrate-
and-fire neurons the efficacy of two simple learning rules involving modulated
STDP. One rule is a direct extension of the standard STDP model (modulated
STDP), while the other one involves an eligibility trace stored at each synapse
that keeps a decaying memory of the relationships between the recent pairs of
pre- and postsynaptic spike pairs (modulated STDP with eligibility trace). This
latter rule permits learning even if the reward signal is delayed. The proposed
rules are able to solve the XOR problem with both rate coded and tempo-
rally coded input and to learn a target output firing rate pattern. These learn-
ing rules are biologically-plausible, may be used for training generic artificial
spiking neural networks, regardless of the neural model used, and suggest the
experimental investigation in animals of the existence of reward-modulated
STDP.

Edited version appeared in Neural Computation 19 (6), pp. 1468-1502, 2007.
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1 Introduction

The dependence of synaptic changes on the relative timing of pre- and postsynap-
tic action potentials has been experimentally observed in biological neural systems
(Markram et al., 1997; Bi and Poo, 1998; Dan and Poo, 2004). A typical example of
spike-timing-dependent plasticity (STDP) is given by the potentiation of a synapse
when the postsynaptic spike follows the presynaptic spike within a time window
of a few tens of milliseconds, and the depression of the synapse when the order of
the spikes is reversed. This type of STDP is sometimes called Hebbian, because it is
consistent with the original postulate of Hebb that predicted the strengthening of
a synapse when the presynaptic neuron causes the postsynaptic neuron to fire. It
is also antisymmetric, because the sign of synaptic changes varies with the sign of
the relative spike timing. Experiments have also found synapses with anti-Hebbian
STDP (where the sign of the changes is reversed, in comparison to Hebbian STDP),
as well as synapses with symmetric STDP (Dan and Poo, 1992; Bell et al., 1997; Eg-
ger et al., 1999; Roberts and Bell, 2002).

Theoretical studies have mostly focused on the computational properties of
Hebbian STDP, and have shown its function in neural homeostasis, unsupervised
and supervised learning. This mechanism can regulate both the rate and the vari-
ability of postsynaptic firing, and may induce competition between afferent synapses
(Kempter et al., 1999, 2001; Song et al., 2000). Hebbian STDP can also lead to unsu-
pervised learning and prediction of sequences (Roberts, 1999; Rao and Sejnowski,
2001). Plasticity rules similar to Hebbian STDP were derived theoretically by opti-
mizing the mutual information between the presynaptic input and the activity of
the postsynaptic neuron (Toyoizumi et al., 2005; Bell and Parrara, 2005; Chechik,
2003), by minimizing the postsynaptic neuron’s variability to a given input (Bohte
and Mozer, 2005), by optimizing the likelihood of postsynaptic firing at one or sev-
eral desired firing times (Pfister et al., 2006), or by self-repairing a classifier network
(Hopfield and Brody, 2004). It was also shown that by clamping the postsynaptic
neuron to a target signal, Hebbian STDP can lead, under certain conditions, to
learning a particular spike pattern (Legenstein et al., 2005). Anti-Hebbian STDP
is, at a first glance, not as interesting as the Hebbian mechanism, as it leads, by
itself, to an overall depression of the synapses towards zero efficacy (Abbott and
Gerstner, 2005).

Hebbian STDP has a particular sensitivity to causality: if a presynaptic neu-
ron contributes to the firing of the postsynaptic neuron, the plasticity mechanism
will strengthen the synapse, and thus the presynaptic neuron will become more
effective in causing the postsynaptic neuron to fire. This mechanism can deter-
mine a network to associate a stable output to a particular input. But let us imag-
ine that the causal relationships are reinforced only when this leads to something
good (for example, if the agent controlled by the neural network receives a positive
reward), while the causal relationships that lead to failure are weakened, to avoid
erroneous behavior. The synapse should feature Hebbian STDP when the reward
is positive, and anti-Hebbian STDP when the reward is negative. In this case, the
neural network may learn to associate a particular input not to an arbitrary out-
put, determined, e.g., by the initial state of the network, but to a desirable output,
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as determined by the reward.
Alternatively, we may consider the theoretical result that, under certain con-

ditions, Hebbian STDP minimizes the postsynaptic neuron’s variability to a given
presynaptic input (Bohte and Mozer, 2005). An analysis analogous to the one per-
formed in that study can show that anti-Hebbian STDP maximizes variability. This
kind of influence of Hebbian/anti-Hebbian STDP on variability has also been ob-
served at network level in simulations (Daucé et al., 2005; Soula et al., 2005). By
having Hebbian STDP when the network receives positive reward, the variability of
the output is reduced and the network could exploit the particular configuration
that led to positive reward. By having anti-Hebbian STDP when the network re-
ceives negative reward, the variability of the network’s behavior is increased and it
could thus explore various strategies until it finds one that leads to positive reward.

It is thus tempting to verify whether the modulation of STDP with a reward sig-
nal can lead indeed to reinforcement learning, and the exploration of this mecha-
nism is the subject of this paper.

This hypothesis is supported by a series of studies on reinforcement learning in
non-spiking artificial neural networks, where the learning mechanisms are qualita-
tively similar to reward-modulated STDP, by strengthening synapses when reward
correlates with both presynaptic and postsynaptic activity. The aforementioned
studies have focused on networks composed of binary stochastic elements (Barto,
1985; Barto and Anandan, 1985; Barto and Anderson, 1985; Barto and Jordan, 1987;
Mazzoni et al., 1991; Pouget et al., 1995; Williams, 1992; Bartlett and Baxter, 1999b,
2000b) or threshold gates (Alstrøm and Stassinopoulos, 1995; Stassinopoulos and
Bak, 1995, 1996). These previous results are promising and inspiring, but they do
not investigate biologically-plausible reward-modulated STDP, and they use mem-
oryless neurons and work in discrete time.

Another study showed that reinforcement learning can be obtained by corre-
lating fluctuations in irregular spiking with a reward signal, in networks composed
of neurons firing Poisson spike trains (Xie and Seung, 2004). The resulted learn-
ing rule qualitatively resembles reward-modulated STDP as well. However, the re-
sults of the study highly depend on the Poisson characteristic of the neurons. Also,
this learning model presumes that neurons respond instantaneously, by modulat-
ing their firing rate, to their input. This partly ignores the memory of the neural
membrane potential, an important characteristic of spiking neural models.

Reinforcement learning has also been achieved in spiking neural networks by
reinforcement of stochastic synaptic transmission (Seung, 2003). This biologically
plausible learning mechanism has several common features with our proposed
mechanism, as we will show later, but it is not directly related to STDP. Another
existing reinforcement learning algorithm for spiking neural networks requires a
particular feed-forward network architecture with a fixed number of layers and is
not related to STDP, as well (Takita et al., 2001; Takita and Hagiwara, 2002, 2005).

Two other previous studies seem to consider STDP as a reinforcement learn-
ing mechanism, but in fact they do not. Strösslin and Gerstner (2003) developed a
model for spatial learning and navigation based on reinforcement learning, having
as inspiration the hypothesis that eligibility traces are implemented using dopamine-
modulated STDP. However, the model does not use spiking neurons, and repre-

3



sents just the continuous firing rates of the neurons. The learning mechanism re-
sembles just qualitatively to modulated STDP, by strengthening synapses when re-
ward correlates with both presynaptic and postsynaptic activity, as in some other
studies already mentioned above. Rao and Sejnowski (2001) have shown that a
temporal difference (TD) rule used in conjunction with dendritic backpropagating
action potentials reproduces Hebbian STDP. TD learning is often associated with
reinforcement learning, where it is used to predict the value function (Sutton and
Barto, 1998). But, in general, TD methods are used for prediction problems, and
thus implement a form of supervised learning (Sutton, 1998). In the case of the
study of Rao and Sejnowski (2001), the neuron learns to predict its own membrane
potential, hence it can be interpreted as a form of unsupervised learning since the
neuron provides its own teaching signal. In any case, that work does not study
STDP as a reinforcement learning mechanism, as there is no external reward sig-
nal.

In a previous preliminary study, we have derived analytically learning rules in-
volving modulated STDP for networks of probabilistic integrate-and-fire neurons
and tested them and some generalizations of them in simulations, in a biologically-
inspired context (Florian, 2005). We have also previously studied the effects of Heb-
bian and anti-Hebbian STDP in oscillatory neural networks (Florian and Mureşan,
2006). Here we study in more depth reward-modulated STDP and its efficacy for
reinforcement learning. We first derive analytically, in Section 2, learning rules
involving reward-modulated spike-timing-dependent synaptic and intrinsic plas-
ticity by applying a reinforcement learning algorithm to the stochastic Spike Re-
sponse Model of spiking neurons, and discuss the relationship of these rules with
other reinforcement learning algorithms for spiking neural networks. We then in-
troduce, in Section 3, two simpler learning rules based on modulated STDP and
study them in simulations, in Section 4, to test their efficacy for solving some bench-
mark problems and to explore their properties. The results are discussed in Section
5.

In the course of our study, we found that two other groups have observed in-
dependently, through simulations, the reinforcement learning properties of mod-
ulated STDP. Soula et al. (2004, 2005) have trained a robot controlled by a spiking
neural network to avoid obstacles, by applying STDP when the robot moves for-
ward and anti-Hebbian STDP when the robot hits an obstacle. Farries and Fairhall
(2005a,b) have studied a two layer feedforward network where the input units are
treated as independent inhomogeneous Poisson processes and output units are
single-compartment conductance-based models. The network learned to have a
particular pattern of output activity through modulation of STDP by a scalar eval-
uation of performance. This latter study has been published in abstract form only,
and thus the details of the work are not known. In contrast to these studies, in the
present paper we also present an analytical justification for introducing reward-
modulated STDP as a reinforcement learning mechanism, and we also study a
form of modulated STDP that includes an eligibility trace that permits learning
even with delayed reward.
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2 Analytical derivation of a reinforcement learning al-
gorithm for spiking neural networks

In order to motivate the introduction of reward-modulated STDP as a reinforce-
ment learning mechanism, we will derive analytically a reinforcement learning al-
gorithm for spiking neural networks.

2.1 Derivation of the basic learning rule

The algorithm is derived as an application of the OLPOMDP reinforcement learn-
ing algorithm (Baxter et al., 1999, 2001), an online variant of the GPOMDP algo-
rithm (Bartlett and Baxter, 1999a; Baxter and Bartlett, 2001). GPOMDP assumes
that the interaction of an agent with an environment is a partially observable Markov
decision process (POMDP), and that the agent chooses actions according to a prob-
abilistic policy µ that depends on a vector w of several real parameters. GPOMDP
was derived analytically by considering an approximation to the gradient of the
long-term average of the external reward received by the agent with respect to
the parameters w. Results related to the convergence of OLPOMDP to local max-
ima have been obtained (Bartlett and Baxter, 2000a; Marbach and Tsitsiklis, 1999,
2000).

It was shown that applying the algorithm to a system of interacting agents that
seek to maximize the same reward signal r (t ) is equivalent to applying the algo-
rithm independently to each agent i (Bartlett and Baxter, 1999b, 2000b). OLPOMDP
suggests that the parameters wi j (components of the vector wi of agent i ) should
evolve according to

wi j (t +δt ) = wi j (t )+γ0 r (t +δt ) z0
i j (t +δt ) (1)

z0
i j (t +δt ) =β z0

i j (t )+ζi j (t ) (2)

ζi j (t ) = 1

µi
fi (t )

∂µi
fi (t )

∂wi j
, (3)

where δt is the duration of a timestep (the system evolves in discrete time), the
learning rate γ0 is a small constant parameter, z0 is an eligibility trace (Sutton and
Barto, 1998), ζ is a notation for the change of z0 resulted from the activity in the
last timestep, µi

fi (t ) is the policy-determined probability that agent i chooses action

fi (t ), and fi (t ) is the action actually chosen at time t . The discount factor β is a
parameter that can take values between 0 and 1.

To accommodate future developments, we made the following changes to stan-
dard OLPOMDP notation:

β= exp(−δt/τz ) (4)

γ0 = γ δt/τz (5)

z0
i j (t ) = zi j (t ) τz , (6)
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with τz being the time constant for the exponential decay of z.
We thus have:

wi j (t +δt ) = wi j (t )+γ δt r (t +δt ) zi j (t +δt ) (7)

zi j (t +δt ) =β zi j (t )+ζi j (t ) /τz (8)

The parameters β and γ0 should be chosen such that δt/(1−β) and δt/γ0 are
large compared to the mixing time τm of the system (Baxter et al., 2001; Baxter and
Bartlett, 2001; Bartlett and Baxter, 2000a,c). With our notation and for δt ¿ τz ,
these conditions are met if τz is large compared to τm and if 0 < γ< 1. The mixing
time can be defined rigourously for a Markov process and can be thought of as
the time from the occurrence of an action until the effects of that action have died
away.

We apply this algorithm to the case of a neural network. We consider that at
each timestep t , a neuron i either fires ( fi (t ) = 1) with probability pi (t ), or does not
fire ( fi (t ) = 0) with probability 1−pi (t ). The neurons are connected through plastic
synapses with efficacies wi j (t ), where i is the index of the postsynaptic neuron.
The efficacies wi j can be either positive or negative (corresponding to excitatory
and inhibitory synapses, respectively). The global reward signal r (t ) is broadcast
to all synapses.

By considering each neuron i as an independent agent and the firing/non-
firing probabilities of the neuron as determining the policy µi of the corresponding
agent (µi

1 = pi , µi
0 = 1−pi ), we get the following form of ζi j :

ζi j (t ) =


1

pi (t )

∂pi (t )

∂wi j
, if fi (t ) = 1

− 1

1−pi (t )

∂pi (t )

∂wi j
, if fi (t ) = 0,

(9)

The last equation, together with Eqs. 7 and 8, establishes a plasticity rule that
updates the synapses such as to optimize the long term average of the reward re-
ceived by the network.

Up to now, we have followed a derivation also performed by Bartlett and Baxter
(1999b, 2000b) for networks of memoryless binary stochastic units, although they
called them spiking neurons. Unlike these studies, we consider here spiking neu-
rons where the membrane potential keeps a decaying memory of past inputs, as in
real neurons. In particular, we consider the Spike Response Model (SRM) for neu-
rons, that reproduces with high accuracy the dynamics of the complex Hodgkin-
Huxley neural model while being amenable to analytical treatment (Gerstner, 2001;
Gerstner and Kistler, 2002). According to the Spike Response Model, each neuron
is characterized by its membrane potential u that is defined as

ui (t ) = ηi (t − t̂i )+∑
j

wi j
∑
F t

j

εi j (t − t̂i , t − t f
j ), (10)

where t̂i is the time of the last spike of neuron i , ηi is the refractory response due

to this last spike, t f
j are the moments of the spikes of presynaptic neuron j emitted
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prior to t , and wi j εi j (t − t̂i , t − t f
j ) is the postsynaptic potential induced in neu-

ron i due to an input spike from neuron j at time t f
j . The first sum runs over all

presynaptic neurons, and the last sum runs over all spikes of neuron j prior to t
(represented by the set F t

j ).

We consider that the neuron has a noisy threshold and that it fires stochasti-
cally, according to the escape noise model (Gerstner and Kistler, 2002). The neu-
ron fires in the interval δt with probability pi (t ) = ρi (ui (t )−θi ) δt , where ρi is a
probability density, also called firing intensity, and θi is the firing threshold of the
neuron. We note

∂ρi

∂(ui −θi )
= ρ′

i , (11)

and we have:
∂pi (t )

∂wi j
= ρ′

i (t )
∂ui (t )

∂wi j
δt . (12)

From Eq. 10 we get
∂ui (t )

∂wi j
=∑

F t
j

εi j (t − t̂i , t − t f
j ), (13)

hence Eq. 9 can be rewritten as

ζi j (t ) =


1

ρi (t )
ρ′

i (t )
∑

F t
j
εi j (t − t̂i , t − t f

j ), if fi (t ) = 1

− δt

1−ρi (t ) δt
ρ′

i (t )
∑

F t
j
εi j (t − t̂i , t − t f

j ), if fi (t ) = 0,

(14)

Together with Eqs. 7 and 8, this defines the plasticity rule for reinforcement learn-
ing.

We consider that δt ¿ τz and we rewrite Eq. 8 as

τz
zi j (t +δt )− zi j (t )

δt
=−zi j (t )+ξi j (t )+O (

δt

τz
) zi j (t ), (15)

where we noted

ξi j (t ) = ζi j (t )

δt
. (16)

By taking the limit δt → 0 and using Eqs. 7, 14, 15 and 16, we finally get the rein-
forcement learning rule for continuous time:

dwi j (t )

dt
= γ r (t ) zi j (t ) (17)

τz
dzi j (t )

dt
=−zi j (t )+ξi j (t ) (18)

ξi j (t ) =
(
Φi (t )

ρi (t )
−1

)
ρ′

i (t )
∑
F t

j

εi j (t − t̂i , t − t f
j ) (19)
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where Φi (t ) =∑
Fi
δ(t −t f

i ) represents the spike train of the postsynaptic neuron as
a sum of Dirac functions.

We see that, when a postsynaptic spike emitted at t f
i follows a presynaptic spike

emitted at t f
j , z undergoes a sudden growth at t f

i with

∆z = 1

τz

ρ′
i (t f

i )

ρi (t f
i )

εi j (t f
i − t̂i , t f

i − t f
j ) (20)

that will decay exponentially with a time constant τz . On long term, after the com-
plete decay, this event leads to a total synaptic change

∆w =
∫ ∞

t
f
i

γ r (t )∆z exp(− t − t f
i

τz
) dt (21)

If r is constant, this is ∆w = γ r ∆z τz . Hence, if r is positive, the algorithm sug-
gests that the synapse should undergo a spike-timing-dependent potentiation, as
in experimentally-observed Hebbian STDP. We always have ρ ≥ 0 since it is a prob-
ability density and ρ′ ≥ 0 since the firing probability increases with a higher mem-
brane potential.

The spike-timing dependence of the potentiation depends on ε and is approx-
imately exponential, as in experimentally-observed STDP, since ε models the ex-
ponential decay of the postsynaptic potential after a presynaptic spike (for more
details, see Gerstner and Kistler, 2002). The amplitude of the potentiation is also

modulated by ρ′
i (t f

i )/ρi (t f
i ), in contrast to standard STDP models, but being con-

sistent with the experimentally observed dependence of synaptic modification not
only on relative spike timings, but also on inter-spike intervals (Froemke and Dan,
2002), on which ρi depends indirectly.

Unlike in Hebbian STDP, the depression of z suggested by the algorithm (and
the ensuing synaptic depression, if r is positive) is non-associative, as each presy-
naptic spike decreases z continuously.

In general, the algorithm suggests that synaptic changes are modulated by the
reinforcement signal r (t ). For example, if the reinforcement is negative, a poten-
tiation of z due to a postsynaptic spike following presynaptic spikes will lead to a
depression of the synaptic efficacy w .

In the case of constant negative reinforcement, the algorithm implies associa-
tive spike-timing-dependent depression and non-associative potentiation of the
synaptic efficacy. This type of plasticity has been experimentally discovered in the
neural system of the electric fish (Han et al., 2000).

2.2 A neural model for bidirectional associative plasticity for re-
inforcement learning

Since typical experimentally-observed STDP involves only associative plasticity, it
is interesting to investigate in which case a reinforcement learning algorithm based
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on OLPOMDP would lead to associative changes determined by both pre-after-
post and post-after-pre spike pairs. It turns out that this happens when presynaptic
neurons homeostatically adapt their firing thresholds to keep the average activity
of the postsynaptic neurons constant.

To see this, let us consider that not only pi , but also the firing probability p j

of presynaptic neuron j depends on the efficacy wi j of the synapse. We apply the
OLPOMDP reinforcement learning algorithm to an agent formed by neuron i and
all presynaptic neurons j that connect to i . As in the previous case, the policy
is parameterized by the synaptic efficacies wi j . However, the policy should now
establish the firing probabilities for all presynaptic neurons, as well as for the post-
synaptic neuron. Since the firing probabilities depend only on neuronal potentials
and thresholds, each neuron decides independently if it fires or not. Hence, the

probability of having a given firing pattern fi , { f j } factorizes as µ fi ,{ f j } =µi
fi

∏
j µ

j
f j

,

where µk
fk

is the probability of neuron k to choose action fk ∈ {0,1}. Only µi
fi

and

µ
j
f j

depend on wi j and thus

ζi j (t ) = 1

µ fi ,{ f j }

∂µ fi ,{ f j }

∂wi j
= 1

µi
fi

∏
j µ

j
f j

∂
(
µi

fi

∏
j µ

j
f j

)
∂wi j

= 1

µi
fi
µ

j
f j

∂
(
µi

fi
µ

j
f j

)
∂wi j

(22)

The particular form of ζi j depends on the various possibilities for the actions taken
by neurons i and j :

µi
fi
µ

j
f j
=


(1−pi )(1−p j ), if fi = f j = 0

pi (1−p j ), if fi = 1 and f j = 0

(1−pi ) p j , if fi = 0 and f j = 1

(23)

We do not consider the case fi = f j = 1 since there is a negligibly small probability
to have simultaneous spiking in a very small interval δt . After performing the cal-
culation of ζi j for the various cases and considering that δt → 0, by analogy with
Eq. 9 and the calculation from the previous section, we get:

ξi j (t ) =
(
Φi (t )

ρi (t )
−1

)
∂ρi (t )

∂wi j
+

(
Φ j (t )

ρ j (t )
−1

)
∂ρ j (t )

∂wi j
(24)

Let us consider that the firing threshold of neuron j has the following dependence:

θ j (t ) = θ j

∑
k

wk j

∑
F t

k

χ j (t − t f
k )

 , (25)

where θ j is an arbitrary continuous increasing function, the first sum runs over all
postsynaptic neurons to which neuron j projects and the second sum runs over all
spikes prior to t of postsynaptic neuron k. χ j is a decaying kernel; for example,

χ j (t − t f
k ) = exp

(
−(t − t f

k )/τθ j

)
, which means that θ j depends on a weighed esti-

mate of the firing rate of postsynaptic neurons, computed using an exponential
kernel with time constant τθ j .
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The proposed dependence of presynaptic firing thresholds means that when
the activity of postsynaptic neurons is high, the neuron j increases its firing thresh-
old in order to contribute less to their firing and decrease their activity. The activity
of each neuron k is weighed with the synaptic efficacy wk j , since an increase in the
firing threshold and a subsequent decrease of the activity of neuron j will have a
bigger effect on postsynaptic neurons to which synaptic connections are strong.
This is biologically-plausible, since there are many neural mechanisms that ensure
homeostasis (Turrigiano and Nelson, 2004) and plasticity of intrinsic excitability
(Daoudal and Debanne, 2003; Zhang and Linden, 2003), including mechanisms
that regulate the excitability of presynaptic neurons as a function of postsynaptic
activity (Nick and Ribera, 2000; Ganguly et al., 2000; Li et al., 2004).

The firing intensity of neuron j is ρ j (t ) = ρ j (u j (t )−θ j (t )). We have

∂ρ j (t )

∂wi j
=−ρ′

j (t )
∂θ j (t )

∂wi j
=−ρ′

j (t )θ′j (t )
∑
F t

i

χ j (t − t f
i ). (26)

We finally have

ξi j (t ) =
(
Φi (t )

ρi (t )
−1

)
ρ′

i (t )
∑
F t

j

εi j (t − t̂i , t − t f
j )+

(
−Φ j (t )

ρ j (t )
+1

)
ρ′

j (t ) θ′j (t )
∑
F t

i

χ j (t − t f
i ), (27)

which together with Eqs. 17 and 18 define the plasticity rule in this case.
We have the same associative spike-timing-dependent potentiation of z as in

the previous case, but now we also have an associative spike-timing-dependent

depression of z. The depression corresponding to a presynaptic spike at t f
j follow-

ing a postsynaptic spike at t f
i is

∆z =− 1

τz

ρ′
j (t f

j )

ρ j (t f
j )

θ′j (t f
j )χ j (t f

j − t f
i ), (28)

and the dependence on the relative spike timing is given by χ j . The variation of
z is negative because ρ′

j and θ′j are positive since they are derivatives of increas-

ing functions, ρ j is positive since it is a probability density, and χ j is positive by
definition.

We have thus shown that a bidirectional associative spike-timing-dependent
plasticity mechanism can result from a reinforcement learning algorithm applied
to a spiking neural model with homeostatic control of the average postsynaptic
activity. As previously, the synaptic changes are modulated by the global reinforce-
ment signal r (t ).

As in the previous case, we also have non-associative changes of z: each presy-
naptic spike depresses z continuously, while each postsynaptic spike potentiates z
continuously. However, depending on the parameters, the non-associative changes
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may be much smaller than the spike-timing-dependent ones. For example, the
magnitude of non-associative depression induced by presynaptic spikes is mod-
ulated with the derivative (with respect to the difference between the membrane
potential and the firing threshold) of the postsynaptic firing intensity, ρ′

i . This usu-
ally has a non-negligible value when the membrane potential is high (see the forms
of the ρ function from (Gerstner and Kistler, 2002; Bohte, 2004)) and thus a post-
synaptic spike is probable to follow. When this happens, z is potentiated and the
effect of the depression may be overcome.

2.3 Reinforcement learning and spike-timing-dependent intrin-
sic plasticity

In this section, we consider that the firing threshold θi of the postsynaptic neuron
is also an adaptable parameter that contributes to learning, like the wi j parame-
ters. There is ample evidence that this is the case in the brain (Daoudal and De-
banne, 2003; Zhang and Linden, 2003). The firing threshold will change according
to

dθi (t )

dt
= γθ r (t ) ziθ(t ) (29)

τzθ
dziθ(t )

dt
=−ziθ(t )+ξiθ(t ) (30)

ξiθ(t ) = limδt→0


1

δt

1

pi (t )

∂pi (t )

∂θi
, if fi (t ) = 1

− 1

δt

1

1−pi (t )

∂pi (t )

∂θi
, if fi (t ) = 0,

(31)

by analogy with Eqs. 17, 18, 9 and 19. Since ∂pi (t )/∂θi =−ρ′
i (t ) δt , we have

ξiθ(t ) =
(
−Φi (t )

ρi (t )
+1

)
ρ′

i (t ) (32)

Hence, for positive reward, postsynaptic spikes lead to a decrease of the postsy-
naptic firing threshold (an increase of excitability). This is consistent with experi-
mental results that showed that neural excitability increases after bursts (Aizenman
and Linden, 2000; Cudmore and Turrigiano, 2004; Daoudal and Debanne, 2003).
Between spikes, the firing threshold increases continuously (but very slowly when
the firing intensity, and thus also its derivative with respect to the difference be-
tween the membrane potential and the firing threshold, is low).

This reinforcement learning algorithm using spike-timing-dependent intrinsic
plasticity is complementary with the two other algorithms previously described,
and can work simultaneously with any of them.

2.4 Relationship to other reinforcement learning algorithms for
spiking neural networks

It can be shown that the algorithms proposed here share a common analytical
background with the other two existing reinforcement learning algorithms for generic
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spiking neural networks (Seung, 2003; Xie and Seung, 2004).
Seung (2003) applies OLPOMDP by considering that the agent is a synapse, in-

stead of a neuron, as we did. The action of the agent is the release of a neuro-
transmitter vesicle, instead of the spiking of the neuron, and the parameter that
is optimized is a parameter that controls the release of the vesicle, instead of the
synaptic connections to the neuron. The result is a learning algorithm that is bio-
logically plausible, but for which there exists no experimental evidence yet.

Xie and Seung (2004) do not model in detail the integrative characteristics of
the neural membrane potential, and consider that neurons respond instantaneously
to inputs by changing the firing rate of their Poisson spike train. Their study de-
rives an episodic algorithm that is similar to GPOMDP, and extends it to an online
algorithm similar to OLPOMDP without any justification. The equations determin-
ing online learning, Eqs. 16 and 17 in (Xie and Seung, 2004), are identical, after
adapting notation, to the ones in our paper, Eqs. 17, 18 and 19. By reinterpreting
the current-discharge function f in (Xie and Seung, 2004) as the firing intensity ρ,
and the synaptic current hi j as the postsynaptic kernel εi j , we can see that the al-
gorithm of Xie and Seung is mathematically equivalent to the algorithm derived,
more accurately, here. However, our different interpretation and implementation
of the mathematical framework permits making better connections to experimen-
tally observed STDP and also a straightforward generalization and application to
neural models commonly used in simulations, which the Xie and Seung algorithm
does not permit because of the dependence on the memoryless Poisson neural
model.

The common analytical background of all these algorithms suggests that their
learning performance should be similar.

Pfister et al. (2006) developed a theory of supervised learning for spiking neu-
rons that leads to STDP and that can be reinterpreted in the context of reinforce-
ment learning. They studied in detail only particular, episodic learning scenar-
ios, not the general, online case approached in our paper. However, the analytical
background is again the same one, since in their work synaptic changes depend
on a quantity (Eq. 7 in their paper) that is the integral over the learning episode
of our ξi j (t ), Eq. 19. It is thus not surprising that some of their results are sim-
ilar to ours: they find a negative offset of the STDP function that corresponds to
the non-associative depression suggested by our algorithm for positive reward, and
they derive associative spike-timing dependent depression as the consequence of
a homeostatic mechanism, as we did in a different framework.

3 Modulation of STDP by reward

The derivations in the previous sections show that reinforcement learning algo-
rithms that involve reward-modulated STDP can be justified analytically. We have
also previously tested in simulation, in a biologically-inspired experiment, one of
the derived algorithms, to demonstrate practically its efficacy (Florian, 2005). How-
ever, these algorithms involve both associative spike-timing-dependent synaptic
changes and non-associative ones, unlike standard STDP (Bi and Poo, 1998; Song
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et al., 2000), but in agreement with certain forms of STDP observed experimentally
(Han et al., 2000). Moreover, the particular dynamics of the synapses depends on
the form of the firing intensity ρ, which is a function for which there exists no ex-
perimentally justified model. For these reasons, we chose in the following to study
in simulations some simplified forms of the algorithms derived analytically, that
extend in a straightforward way the standard STDP model. The learning rules that
we propose below can be applied to any type of spiking neural model; their ap-
plicability is not restricted to probabilistic models nor to the SRM model that we
previously used in the analytical derivation.

The proposed rules are just inspired by the analytically derived and experimen-
tally observed ones, and do not follow directly from them. In what follows, we drop
the dependence of plasticity on the firing intensity (which means that the learning
mechanism can also be applied to deterministic neural models commonly used
in simulations), we consider that both potentiation and depression of z are asso-
ciative and spike-timing-dependent (without considering the homeostatic mech-
anism introduced in Section 2.2), we use an exponential dependence of plasticity
on the relative spike timings, and we consider that the effect of different spike pairs
is additive, as in previous studies (Song et al., 2000; Abbott and Nelson, 2000). The
resulting learning rule is determined by Eqs. 17 and 18, which we repeat below for
convenience, and an equation for the dynamics of ξ that takes into account these
simplifications:

dwi j (t )

dt
= γ r (t ) zi j (t ) (33)

τz
dzi j (t )

dt
=−zi j (t )+ξi j (t ) (34)

ξi j (t ) =Φi (t ) A+
∑
F t

j

exp

− t − t f
j

τ+

+Φ j (t ) A−
∑
F t

i

exp

(
− t − t f

i

τ−

)
, (35)

where τ± and A± are constant parameters. The time constants τ± determine the
ranges of interspike intervals over which synaptic changes occur. According to the
standard antisymmetric STDP model, A+ is positive and A− is negative. We call the
learning rule determined by the above equations modulated STDP with eligibility
trace (MSTDPET).

The learning rule can be simplified further by dropping the eligibility trace. In
this case, we have a simple modulation by the reward r (t ) of standard STDP:

dwi j (t )

dt
= γ r (t ) ξi j (t ), (36)

where ξi j (t ) is given by Eq. 35. We call this learning rule modulated STDP (MSTDP).
We remind that, with our notation, the standard STDP model is given by

dwi j (t )

dt
= γ ξi j (t ). (37)

For all these learning rules, it is useful to introduce a variable P+
i j that tracks

the influence of presynaptic spikes and a variable P−
i j that tracks the influence of
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postsynaptic spikes, instead of keeping in memory, in computer simulations, all
past spikes and summing repeatedly their effects (Song et al., 2000). These vari-
ables may have biochemical counterparts in biological neurons. The dynamics of
ξ and P± is then given by:

ξi j (t ) = P+
i j Φi (t )+P−

i j Φ j (t ) (38)

dP+
i j /dt =−P+

i j /τ+ + A+ Φ j (t ) (39)

dP−
i j /dt =−P−

i j /τ− + A− Φi (t ) (40)

If τ± and A± are identical for all synapses, as it is the case in our simulations, then
P+

i j does not depend on i and P−
i j does not depend on j , but we will keep the two

indices for clarity.
If we simulate the network in discrete time with a timestep δt , the dynamics of

the synapses is defined, for MSTDPET, by Eqs. 7 and 8, or, for MSTDP, by

wi j (t +δt ) = wi j (t )+γ r (t +δt ) ζi j (t ), (41)

and by

ζi j (t ) = P+
i j (t ) fi (t )+P−

i j (t ) f j (t ) (42)

P+
i j (t ) = P+

i j (t −δt ) exp(−δt/τ+)+ A+ f j (t ) (43)

P−
i j (t ) = P−

i j (t −δt ) exp(−δt/τ−)+ A− fi (t ), (44)

where fi (t ) is 1 if neuron i has fired at timestep t or 0 otherwise. The dynamics of
the various variables is illustrated in Fig. 1.

As for the standard STDP model, we also apply bounds to the synapses, addi-
tionally to the dynamics specified by the learning rules.

4 Simulations

4.1 Methods

In the following simulations we used networks composed of integrate-and-fire neu-
rons with resting potential ur =−70 mV, firing threshold θ =−54 mV, reset poten-
tial equal to the resting potential, and decay time constant τ= 20 ms (parameters
from (Gütig et al., 2003) and similar to those in (Song et al., 2000)). The network’s
dynamics was simulated in discrete time with a timestep δt = 1 ms. The synaptic
weights wi j represented the total increase of the postsynaptic membrane poten-
tial caused by a single presynaptic spike; this increase was considered to take place
during the timestep following the spike. Thus, the dynamics of the neurons’ mem-
brane potential was given by

ui (t ) = ur + [ui (t −δt )−ur ] exp(−δt/τ)+∑
j

wi j f j (t −δt ) (45)

If the membrane potential surpassed the firing threshold θ, it was reset to ur . Ax-
ons propagated spikes with no delays. More biologically-plausible simulations of
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Figure 1: An illustration of the dynamics of the variables used by MSTDP and MST-
DPET, and the effects of these rules and of STDP on the synaptic strength, for sam-
ple spike trains and reward (see Eqs. 7, 8, 41, 42, 43, 44). We used γ = 0.2; the
values of the other parameters are listed in Section 4.1.
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reward-modulated STDP were presented elsewhere (Florian, 2005); here, we aim
to present the effects of the proposed learning rules using minimalist setups. We
used τ+ = τ− = 20 ms; the value of γ varied from experiment to experiment. Except
where specified, we used τz = 25 ms, A+ = 1 and A− =−1.

4.2 Solving the XOR problem: Rate coded input

We first show the efficacy of the proposed rules for learning XOR computation.
Although this is not a biologically-relevant task, it is a classic benchmark prob-
lem for artificial neural network training. This problem was also approached using
other reinforcement learning methods for generic spiking neural networks (Seung,
2003; Xie and Seung, 2004). XOR computation consists in performing the following
mapping between two binary inputs and one binary output: {0,0} → 0 ; {0,1} → 1 ;
{1,0} → 1 ; {1,1} → 0 .

We considered a setup similar to the one in (Seung, 2003). We simulated a feed-
forward neural network with 60 input neurons, 60 hidden neurons and one output
neuron. Each layer was fully connected to the next layer. Binary inputs and out-
puts were coded by the firing rates of the corresponding neurons. The first half of
the input neurons represented the first input, and the rest the second input. The
input 1 was represented by a Poisson spike train at 40 Hz, while the input 0 was
represented by no spiking.

The training was accomplished by presenting the inputs and then delivering
the appropriate reward or punishment to the synapses, according to the activity of
the output neuron. In each learning epoch, the four input patterns were presented
for 500 ms each, in random order. During the presentation of each input pattern,
if the correct output was 1, the network received a reward r = 1 for each output
spike emitted and 0 otherwise. This rewarded the network for having a high output
firing rate. If the correct output was 0, the network received a negative reward
(punishment) r = −1 for each output spike and 0 otherwise. The corresponding
reward was delivered during the timestep following the output spike.

50% of the input neurons coding for either inputs were inhibitory, the rest were
excitatory. The synaptic weights wi j were hard bounded between 0 and 5 mV
(for excitatory synapses) or between -5 mV and 0 (for inhibitory synapses). Ini-
tial synaptic weights were generated randomly within the specified bounds. We
considered that the network learned the XOR function if, at the end of an experi-
ment, the output firing rate for the input pattern {1,1} was lower than the output
rates for the patterns {0,1} or {1,0} (the output firing rate for the input {0,0} was ob-
viously always 0). Each experiment included 200 learning epochs (presentations of
the four input patterns), corresponding to 400 s of simulated time. We investigated
learning with both MSTDP (using γ= 0.1 mV) and MSTDPET (using γ= 0.625 mV).
We found that both rules were efficient for learning the XOR function (Fig. 2). The
synapses changed such as to increase the reward received by the network, by min-
imizing the firing rate of the output neuron for the input pattern {1,1} and max-
imizing the same rate for {0,1} and {1,0}. With MSTDP, the network learned the
task in 99.1% of 1000 experiments, while with MSTDPET learning was achieved in
98.2% of the experiments.
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Figure 2: Learning XOR computation with rate coded input with MSTDP and MST-
DPET. a) Evolution during learning of the total reward received in a learning epoch:
average over experiments and a random sample experiment. b) Average firing rate
of the output neuron after learning (total number of spikes emitted during the pre-
sentation of each pattern in the last learning epoch divided by the duration of the
pattern): average over experiments and standard deviation.
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Figure 3: Learning XOR computation with temporally coded input with MSTDP
and MSTDPET. a) Evolution during learning of the total reward received in a learn-
ing epoch: average over experiments and a random sample experiment. b) Aver-
age firing rate of the output neuron after learning (total number of spikes emitted
during the presentation of each pattern in the last learning epoch divided by the
duration of the pattern): average over experiments and standard deviation.

The performance in XOR computation remained constant, after learning, if the
reward signal was removed and the synapses were fixed.

4.3 Solving the XOR problem: Temporally coded input

Since in the proposed learning rules synaptic changes depend on the precise tim-
ing of spikes, we investigated whether the XOR problem can also be learned if the
input is coded temporally. We used a fully connected feed-forward network with 2
input neurons, 20 hidden neurons and one output neuron, a setup similar to the
one in (Xie and Seung, 2004). The input signals 0 and 1 were coded by two dis-
tinct spike trains of 500 ms in length, randomly generated at the beginning of each
experiment by distributing uniformly 50 spikes within this interval. Thus, to un-
derline the distinction with rate coding, all inputs had the same average firing rate
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of 100 Hz.
Since the number of neurons was low, we did not divide them into excitatory

and inhibitory ones, and allowed the weights of the synapses between input and
the hidden layer to take both signs. These weights were bounded between -10 mV
and 10 mV. The weights of the synapses between the hidden layer and the output
neuron were bounded between 0 and 10 mV. As before, each experiment consisted
in 200 learning epochs, corresponding to 400 s of simulated time. We used γ= 0.01
mV for experiments with MSTDP, and γ= 0.25 mV for MSTDPET.

With MSTDP, the network learned the XOR function in 89.7% of 1000 experi-
ments, while with MSTDPET learning was achieved in 99.5% of the experiments
(Fig. 3). The network learned to solve the task by responding to the synchrony of
the two input neurons. We verified that, after learning, the network solves the task
not only for the input patterns used during learning, but for any pair of random
input signals similarly generated.

4.4 Learning a target firing rate pattern

We have also verified the capacity of the proposed learning rules to allow a network
to learn a given output pattern, coded by the individual firing rates of the output
neurons. During learning, the network received a reward r = 1 when the distance d
between the target pattern and the actual one decreased, and a punishment r =−1
when the distance increased, r (t +δt ) = sign(d(t )−d(t −δt )).

We used a feedforward network with 100 input neurons directly connected to
100 output neurons. Each output neuron received axons from all input neurons.
Synaptic weights were bounded between 0 and wmax = 1.25 mV. The input neurons
fired Poisson spike trains with constant, random firing rates, generated uniformly,
for each neuron, between 0 and 50 Hz. The target firing rates ν0

i of individual out-
put neurons were also generated randomly at the beginning of each experiment,
uniformly between 20 and 100 Hz. The actual firing rates νi of the output neurons
were measured using a leaky integrator with time constant τν = 2 s:

νi (t ) = νi (t −δt ) exp(−δt

τν
)+ 1

τν
fi (t ). (46)

This is equivalent to performing a weighed estimate of the firing rate with an expo-
nential kernel. We measured the total distance between the current output firing

pattern and the target one as d(t ) =
√∑

i [νi (t )−ν0
i ]2. Learning began after the

output rates stabilized after the initial transients.
We performed experiments with both MSTDP (γ = 0.001 mV) and MSTDPET

(γ = 0.05 mV). Both learning rules allowed the network to learn the given output
pattern, with very similar results. During learning, the distance between the tar-
get output pattern and the actual one decreased rapidly (in about 30 s) and then
remained close to 0. Fig. 4 illustrates learning with MSTDP.

19



0 10 20 30 40 50 60
40

45

50

55

60

65

70

Time (s)Time (s)

R
at

e 
(H

z)

D
is

ta
nc

e 
(H

z)

0 10 20 30 40 50 60
0

50

100

150

200

250

a) b)

Figure 4: Learning a target firing rate pattern with MSTDP (sample experiment).
a) Evolution during learning of distance between the target pattern and the actual
output pattern. b) Evolution during learning of the firing rates of two sample out-
put neurons (normal line) toward their target output rates (dotted lines).

4.5 Exploring the learning mechanism

In order to study in more detail the properties of the proposed learning rules, we
repeated the learning of a target firing rate pattern experiment, described above,
while varying the various parameters defining the rules. To characterize learning
speed, we considered that convergence is achieved at time tc if the distance d(t )
between the actual output and the target output did not become lower than d(tc )
for t between tc and tc +τc , where τc was either 2 s, 10 s, or 20 s, depending on
the experiment. We measured learning efficacy as e(t ) = 1−d(t )/d(t0), where d(t0)
is the distance at the beginning of learning; the learning efficacy at convergence is
ec = e(tc ). The best learning efficacy possible is 1, while a value of 0 indicates no
learning. A negative value indicates that the distance between the actual firing rate
pattern and the target has increased with respect to the case when the synapses
have random values.

4.5.1 Learning rate influence

Increasing the learning rate γ results in faster convergence, but as γ increases, its
effect on learning speed becomes less and less important. The learning efficacy at
convergence decreases linearly with higher learning rates. Fig. 5 illustrates these
effects for MSTDP (with τc = 10 s), but the behavior is similar for MSTDPET.

4.5.2 Non-antisymmetric STDP

We have investigated the effects on learning performance of changing the form of
the STDP window (function) used by the learning rules, by varying the values of
the A± parameters. This permitted the assessment of the contributions to learning
of the two parts of the STDP window (corresponding to positive, and, respectively,
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Figure 5: Influence of learning rate γ on learning a target firing rate pattern with
delayed reward with MSTDP: a) Convergence time tc as a function of γ; b) Learning
efficacy at convergence ec as a function of γ.

negative delays between pre- and postsynaptic spikes). This also permitted the
exploration of the properties of reward-modulated symmetric STDP.

We have repeated the learning of a target firing pattern experiment with vari-
ous values for the A± parameters. Fig. 6 presents the learning efficacy after 25 s of
learning. It can be observed that, for MSTDP, reinforcement learning is possible in
all cases where a postsynaptic spike following a presynaptic spike strengthens the
synapse when the reward is positive, and depresses the synapse when the reward
is negative, thus reinforcing causality. When A+ = 1, MSTDP led to reinforcement
learning irrespective of the value of A−. For MSTDPET, only modulation of stan-
dard antisymmetric Hebbian STDP (A+ = 1, A− = −1) led to learning. Many other
values of the A± parameters maximized the distance between the output and the
target pattern (Fig. 6), instead of minimizing it, which was the task to be learned.
These results suggest that the causal nature of STDP is an important factor for the
efficacy of the proposed rules.

4.5.3 Reward baseline

In previous experiments, the reward was either 1 or -1, thus having a 0 baseline.
We have repeated the learning of a target firing pattern experiment while varying
the reward baseline r0, i.e. giving the reward r (t +δt ) = r0 + sign(d(t )−d(t −δt )).
Experiments showed that a zero baseline is most efficient, as expected. The ef-
ficiency of MSTDP did not change much for a relatively large interval of reward
baselines around 0. The efficiency of MSTDPET proved to be more sensitive to
having a 0 baseline, but any positive baseline still led to learning. This suggests
that for both MSTDP and MSTDPET reinforcement learning can benefit from the
unsupervised learning properties of standard STDP, achieved when r is positive. A
positive baseline that ensures that r is always positive is also biologically relevant,
since changes in the sign of STDP have not yet been observed experimentally and
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Figure 6: Learning a target firing rate pattern with delayed reward, with modified
MSTDP and MSTDPET: learning efficacy e at 25 s after the beginning of learning
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may not be possible to occur in the brain.
Modified MSTDP (with A− being 0 or 1), which has been shown to allow learn-

ing for 0 baseline, is the most sensitive to departures from this baseline, slight de-
viations leading the learning efficacy to negative values (i.e., distance is maximized
instead of being minimized) (Fig. 7).

The poor performance of modified MSTDP at positive r0 is caused by the ten-
dency of all synapses to take the maximum allowed values. At negative r0, the dis-
tribution of synapses is biased more towards small values for modified MSTDP as
compared to normal MSTDP. The relatively poor performance of MSTDPET at neg-
ative r0 is due to a bias of the distribution of synapses toward large values. The
synaptic distribution after learning, for the cases where learning is efficient, is al-
most uniform, for MSTDP and modified MSTDP also having additional small peaks
at the extremities of the allowed interval.

4.5.4 Delayed reward

For the tasks presented until now, MSTDPET had a performance comparable to
MSTDP or poorer. The advantage of using an eligibility trace appears when learn-
ing a task where the reward is delivered to the network with a certain delay σ with
regard to the state or the output of the network that caused it.

To properly investigate the effects of reward delay on MSTDPET learning per-
formance, for various values of τz , we had to factor out the effects of the variation
of τz . A higher τz leads to smaller synaptic changes, since z decays more slowly
and, if reward varies from timestep to timestep and the probabilities of positive
and negative reward are approximately equal, their effects on the synapse, having
opposite signs, will almost cancel out. Hence, the variation of τz results in the
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variation of the learning efficacy and of the convergence time, similarly to the vari-
ation of the learning rate, previously described. In order to compensate for this
effect, we varied the learning rate γ as a function of τz such that the convergence
time of MSTDPET was constant, at reward delay σ= 0, and approximately equal to
the convergence time of MSTDP for γ= 0.001, also at σ= 0. We obtained the cor-
responding values of γ by numerically solving the equation t MSTDPET

c (γ) = t MSTDP
c

using Ridder’s method (Press et al., 1992). For determining convergence, we used
τc = 2 s. The dependence on τz of the obtained values of γ is illustrated in Fig. 8c.

MSTDPET continued to allow the network to learn, while MSTDP and modified
MSTDP (A− ∈ {−1,0,1}) failed in this case to solve the tasks, even for small delays.
MSTDP and modified MSTDP led to learning, in our setup, only if reward was not
delayed. In this case, changes in the strength of the i j synapse were determined
by the product r (t +δt ) ζi j (t ) of the reward r (t +δt ) that corresponded to the net-
work’s activity (postsynaptic spikes) at time t and of the variable ζi j (t ) that was
non-zero only if there were pre- or postsynaptic spikes during the same timestep
t . Even a small extra delay σ = δt of the reward impeded learning. Fig. 8a illus-
trates the performance of both learning rules as a function of reward delay σ, for
learning a target firing pattern. Fig. 8b illustrates the performance of MSTDPET as
a function of τz , for several values of reward delay σ. The value of τz that yields
the best performance for a particular delay increases monotonically and very fast
with the delay. For zero delay or for values of τz larger than optimal, performance
decreases for higher τz . Performance was estimated by measuring the average (ob-
tained from 100 experiments) of the learning efficacy e at 25 s after the beginning
of learning.

The eligibility trace keeps a decaying memory of the relationships between the
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most recent pairs of pre- and postsynaptic spikes. It is thus understandable that
MSTDPET permits learning even with delayed reward, as long as this delay is smaller
than τz . It can be seen from Fig. 8 that, at least for the studied setup, learning effi-
cacy degrades significantly for large delays, even if they are much smaller than τz ,
and there is no significant learning for delays larger than about 7 ms. The maxi-
mum delay for which learning is possible may be larger for other setups.

4.5.5 Continuous reward

In previous experiments, reward varied from timestep to timestep, at a timescale
of δt = 1 ms. In animals, the internal reward signal (e.g., a neuromodulator) varies
more slowly. To investigate learning performance in such a case, we used a contin-
uous reward, varying on a timescale τr , with a dynamics given by

r (t +δt ) = r (t ) exp(−δt

τr
)+ 1

τr
sign(d(t −σ)−d(t −δt −σ)). (47)

Both MSTDP and MSTDPET continue to work when reward is continuous and not
delayed. Learning efficacy decreases monotonically with higher τr (Fig. 9a,b). As
in the case of a discrete reward signal, MSTDPET allows learning even with small
reward delays σ (Fig. 9c), while MSTDP does not lead to learning when reward is
delayed.

4.5.6 Scaling of learning with network size

To explore how the performance of the proposed learning mechanisms scales with
network size, we varied systematically the number of input and output neurons (Ni

and No , respectively). The maximum synaptic efficacies were set to wmax = 1.25 ·
(Ni /100) mV in order to keep the average input per postsynaptic neuron constant
between setups with different numbers of input neurons.

When No varies with Ni constant, learning efficacy at convergence ec dimin-
ishes with higher No , and convergence time tc increases with higher No , because
the difficulty of the task increases. When Ni varies with No constant, convergence
time decreases with higher Ni , because difficulty of the task remains constant, but
the number of ways in which the task can be solved increases, due to the higher
number of incoming synapses per output neuron. The learning efficacy dimin-
ishes, however, with higher Ni , when No is constant.

When both Ni and No vary in the same time (Ni = No = N ), the convergence
time decreases slightly for higher network sizes (Fig. 10a). Again, learning efficacy
diminishes with higher N , which means that one cannot train with this method
networks of arbitrary size (Fig. 10b). The behavior is similar for both MSTDP and
MSTDPET, but for MSTDPET the decrease of learning efficacy for larger networks is
more accentuated. By considering that the dependence of ec on N is linear for N ≥
600 and extrapolating from the available data, it results that learning is not possible
(ec ' 0) for networks with N > Nmax , where Nmax is about 4690 for MSTDP and
1560 for MSTDPET, for the setup and the parameters considered here. For a certain
configuration of parameters, learning efficacy can be improved in the detriment of
learning time by decreasing the learning rate γ (as discussed above, Fig. 5).
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Figure 9: Learning driven by a continuous reward signal with a time scale τr . a),
b) Learning performance as a function of τr . a) MSTDP; b) MSTDPET. c) Learning
performance of MSTDPET as a function of reward delay σ (τz = τr = 25 ms). All
experiments used γ= 0.05 mV.
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Figure 10: Scaling with network size of learning a target firing rate pattern, with
MSTDP and MSTDPET. a) Convergence time tc as a function of network size Ni =
No = N . b) Learning efficacy at convergence ec as a function of N .

4.5.7 Reward-modulated classical Hebbian learning

To further investigate the importance of causal STDP as a component of the pro-
posed learning rules, we have also studied the properties of classical (rate-dependent)
Hebbian plasticity modulated by reward, while still using spiking neural networks.

Under certain conditions (Xie and Seung, 2000), classical Hebbian plasticity can
be approximated by modified STDP when the plasticity window is symmetric, A+ =
A− = 1. In this case, according to the notation in (Xie and Seung, 2000), we have
β0 > 0 and β1 = 0, and thus plasticity depends (approximatively) on the product of
pre- and postsynaptic firing rates and not on their temporal derivatives. Reward-
modulated modified STDP with A+ = A− = 1 was studied above.

A more direct approximation of modulated rate-dependent Hebbian learning
with spiking neurons is the following learning rule:

dwi j (t )

dt
= γ r (t ) P+

i j (t ) P−
i j (t ), (48)

where P±
i j are computed as for MSTDP and MSTDPET, with A+ = A− = 1. It can

be seen that this rule is a reward-modulated version of the classical Hebbian rule,
since P+

i j is an estimate of the firing rate of the presynaptic neuron j , and P−
i j is

an estimate of the firing rate of the postsynaptic neuron i , using an exponential
kernel. Reward can take both signs, and thus this rule allows both potentiation
and depression of synapses; an extra mechanism for depression is not necessary
to avoid synaptic explosion, as for classic Hebbian learning. We have repeated the
experiments presented above, while using this learning rule. We could not achieve
learning with this rule, for values of γ between 10−6 and 1 mV.

4.5.8 Sensitivity to parameters

The results of the simulations presented above are quite robust with respect to
the parameters used for the learning rules. The only parameter that we had to
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tune from experiment to experiment was the learning rate γ, which determined
the magnitude of synaptic changes. A too small learning rate does not change the
synapses rapidly enough to observe the effects of learning during a given exper-
iment duration, while a too large learning rate pushes the synapses towards the
bounds, thus limiting the network’s behavior. Tuning the learning rate is needed
for any kind of learning rule involving synaptic plasticity. The magnitude of the
time constant τz of the decay of the eligibility trace was not essential in experi-
ments without delayed reward, although large values degrade learning performance
(see Fig. 8b). For the relative magnitudes of reward used for positive and, respec-
tively, for negative rewards, we used a natural choice (setting them equal) and did
not have to tune this as in (Xie and Seung, 2004) to achieve learning. The absolute
magnitudes of the reward and of A± are not relevant as their effect on the synapses
is scaled by γ.

5 Discussion

We have derived several versions of a reinforcement learning algorithm for spiking
neural networks, by applying an abstract reinforcement learning algorithm to the
Spike Response Model of spiking neurons. The resulting learning rules are simi-
lar to spike-timing-dependent synaptic and intrinsic plasticity mechanisms exper-
imentally observed in animals, but involve an extra modulation by the reward of
the synaptic and excitability changes. We have also studied in computer simula-
tions the properties of two learning rules, MSTDP and MSTDPET, that preserve the
main features of the rules derived analytically, while being simpler, and also be-
ing extensions of the standard model of STDP. We have shown that the modulation
of STDP by a global reward signal leads to reinforcement learning. An eligibility
trace that keeps a decaying memory of the effects of recent spike pairings allows
learning also in the case that reward is delayed. The causal nature of the STDP win-
dow seems to be an important factor for the learning performance of the proposed
learning rules.

The continuity between the proposed reinforcement learning mechanism and
experimentally observed STDP makes it biologically plausible, and also establishes
a continuity between reinforcement learning and the unsupervised learning ca-
pabilities of STDP. The introduction of the eligibility trace z does not contradict
what is currently known about biological STDP, as it simply implies that synap-
tic changes are not instantaneous, but are implemented through the generation
of a set of biochemical substances that decay exponentially after generation. A
new feature is the modulatory effect of the reward signal r . This may be imple-
mented in the brain by a neuromodulator. For example, dopamine carries a short-
latency reward signal indicating the difference between actual and predicted re-
wards (Schultz, 2002) that fits well our learning model based on continuous reward-
modulated plasticity. It is known that dopamine and acetylcholine modulate clas-
sical (firing rate dependent) long term potentiation and depression of synapses
(Seamans and Yang, 2004; Huang et al., 2004; Thiel et al., 2002). The modulation
of STDP by neuromodulators is supported by the discovery of the amplification of
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spike-timing-dependent potentiation in hippocampal CA1 pyramidal neurons by
the activation of β-adrenergic receptors (Lin et al., 2003, Fig. 6F). As speculated
before (Xie and Seung, 2004), it may be that other studies failed to detect the in-
fluence of neuromodulators on STDP because the reward circuitry may not have
worked during the experiments and the reward signal may have been fixed to a
given value. In this case, according to the proposed learning rules, for excitatory
synapses, if the reward is frozen to a positive value during the experiment, it leads
to Hebbian STDP, otherwise to anti-Hebbian STDP.

The studied learning rules may be used in applications for training generic ar-
tificial spiking neural networks, and suggest the experimental investigation in ani-
mals of the existence of reward-modulated STDP.
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