
SPIKE-TIMING DEPENDENT PLASTICITY AND REGIME TRANSITIONS
IN RANDOM RECURRENT NEURAL NETWORKS

Frédéric Henry
Movement Sciences Institute (UMR 6233)

University of the Mediterranean
163, avenue de Luminy, CP910

13288 Marseille Cedex 9, France
email: frederic.henry@etumel.univmed.fr

Emmanuel Daucé
Centrale Marseille/UMR 6233

Technopôle de Château-Gombert
13383 Marseille Cedex 13, France

email: edauce@ec-marseille.fr

ABSTRACT

In this paper, we investigate how Spike-Timing De-
pendent Plasticity, when applied to a random recurrent net-
work of leaky integrate-and-fire neurons, can affect its dy-
namical regime. We show that in an autonomous network
with self-sustained activity, STDP has a regularization ef-
fect and simplifies the dynamics.

We then look at two different ways to present stimuli
to the network: potential-based input and current-based in-
put. We show that in the first case STDP can lead to either
synchronous or asynchronous periodical activity, depend-
ing on the network’s internal parameters. However, in the
latter case, synchronization can only appear when the in-
put is presented to a fraction of the neurons instead of the
whole.
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1 Introduction

The Spike-Timing Dependent Plasticity (STDP) rule comes
from biological observations showing that the conductance
of a synapse is modified according to the precise timing be-
tween the presynaptic and postsynaptic spikes [1, 2, 3]. In
most observed cases, on excitatory synapses, the synapse
is potentiated if the EPSP (Excitatory Post-Synaptic Poten-
tial) is shortly followed by the emission of an action poten-
tial at the soma, and depressed in the opposite case (when
the AP is followed by the EPSP).

The role of this plasticity rule is still conjectural. De-
pending on the network structure and activity, the effects
on the global response varies. In feedforward networks,
STDP is found to reduce the latency of a neuron’s response
to a given input [4, 5]. In the brain, however, most of the
neuron inputs come from recurrent connections. This is
why we mostly insist here on the properties of recurrent
neural networks, since they can display various dynamical
regimes, and as such various qualitative responses. Accord-
ing to [6, 7], the dynamical regimes of random recurrent
networks of spiking neurons can be classified in four cat-

egories (synchronous/asynchronous, regular/irregular), de-
pending on the initial network parameters (balance between
excitation and inhibition, gain of the cells responses...).
The degree of synchrony a neural network can display is
supposed to play a prominent role both in the local trans-
mission of sensory information [8] and in the formation of
large-scale patterns of activity [9]. The question remains
how recurrent neural networks may regulate their degree of
synchrony in order to adapt their response to various sen-
sory situations.

We suggest here that STDP may participate to such a
regulation and we address the question of STDP-induced
regime transitions. It has been shown for instance that
STDP could have a decoupling effect in a synchronized
neural network, whereas anti-STDP made the activity
switch to a synchronized regime [10]. It has also been
shown, both in simulation [11] and in biology [8] that
STDP could enhance and stabilize the synchronous trans-
mission of an already synchronized input in feed-forward
neural networks. Those contradictory results suggest to
investigate further the putative effect of STDP on the dy-
namical regimes, despite few rigorous results exist on that
matter. In order to decipher this question, we propose here
a simple simulation setup in order to test various condi-
tions in which synchronous and/or periodical regimes can
emerge in a network where the initial activity is aperiodical
and asynchronous. We then address the question of STDP-
related perception and sensory coding in recurrent neural
networks.

2 Random recurrent neural networks
framework

We simulate random and recurrent neural networks, imple-
mented with discrete leaky integrate-and-fire neurons.

Consider a set of neurons labelled by indexes i ∈
{1, ..., N}. The neuron activity {Si(s)}s<t is defined as a
sum of Diracs corresponding to the series of spikes emitted
up to the time t (see [12]). Taking into account the abso-
lute refractory period τr, the firing threshold θ, the current



Figure 1. Activity of a recurrent neural network with self-
sustained activity. σJ = 3.0 ; τr = 2 ms. Raster plot with
time on x-axis and neuron index on y-axis. A vertical black bar
appears when a neuron fires.

activity Si(t) is defined the following way:

Si(t) =
{
δ(0) if maxs∈[t−τr,t[(Si(s)) = 0 and Vi(t) ≥ θ;
0 elsewhere

(1)
where δ(0) is a Dirac impulse and Vi(t) is the neu-
ron’s membrane potential, defined according to the Leaky
Integrate-and-Fire (LIF) differential scheme:{

Vi(t) = V ini (t) + V exti (t)
dV in

i
dt

= −V in
i (t)

τm
− Si(t)V ini (t) +

∑N

j=1
JijSj(t− τij) + Iexti (t)

(2)
where V exti is a superimposed potential. The transmission
delay is τij , Jij is the synaptic weight from neuron j to
neuron i, τm is the membrane time constant and Iexti is an
external current.

Since Si is a sum of Dirac distributions, its presence
in the derivative leads to sudden steps in the membrane po-
tential. Thus, when the neuron fires, the potential is reset to
zero because of the−Si(t)V ini (t) term, whereas presynap-
tic spikes cause sudden increases or decreases correspond-
ing to the synaptic weight.

We set τr ∈ {1, 2, 3} ms, τm = 10 ms and θ = 1. In
the simulations, we use a simple first order integration with
resolution δt = 1 ms.

The individual weights and delays are independent
and strongly heterogeneous.

The synaptic weights are set according to a Gaussian
draw N

(
µJ

N ,
σ2

J

N

)
. We take µJ = 0 so that the excitatory

influences compensate the inhibitory ones (balanced net-
works configuration). The weights sum standard deviation
σJ represents the internal coupling. The axonal transmis-
sion delays are set according to a Poisson draw of expected
value λτ = 10 ms. The simulations take place on rather
small neural networks composed of N = 100 neurons, but
can be extended to larger sizes with the same global param-
eters.

With the range of parameters we choose, the activ-
ity of such networks is irregular (aperiodical and asyn-
chronous), as can be seen on figure 1. First, the asynchrony

of the activity directly results from the balance between the
excitatory and inhibitory influences [6]. Second, the irreg-
ularity of the activity is a well-known feature of recurrent
heterogeneous networks [13, 14].

3 Effects of STDP on the activity

Model The STDP rule is classically implemented as an
anti-symmetrical function of the pre-synaptic/post-synaptic
spike times. It can be applied either to all pairs of spikes
emitted by pre-synaptic and post-synaptic neurons (“all-
to-all” implementation) [4], or only to the “nearest neigh-
bours” (first pre-synaptic spike after the firing of post-
synaptic neuron and first post-synaptic spike after the firing
of pre-synaptic neuron) [15, 16].

Here, in order to have an “all-to-all” implementation
with a low memory cost (see also [17]), we use a local trace
of the most recent spikes εi, whose decay corresponds to
the membrane time constant : τm dεi

dt = −εi + Si(t). This
trace is consistent with the modelling of the PSP Jijεj(t−
τij) taking place at the j → i synapse at time t, and allows
to define a simple additive “all to all” STDP rule:

dJij(t)
dt

= α [Si(t)εj(t− τij)− εi(t)Sj(t− τij)] (3)

Here again the presence of sums of Dirac distributions
in the derivative leads the weight to change suddenly when
there is a pre-synaptic or post-synaptic spike. The left term
corresponds to the potentiation effect of the PSP preced-
ing the post-synaptic spike, and the right term corresponds
to the depression effect of the post-synaptic spike mem-
ory εi(t) when a pre-synaptic spike hits the synapse. The
synapse is thus potentiated when the PSP arrives shortly
before the neuron spike (εj is high when the neuron fires at
t) and depressed in the opposite case. The rule is globally
balanced as the expectation of the two terms is the same if
the mean levels of activities do not vary in time. The rule
only amplifies the transitions (or fluctuations) taking place
in the activity, when a burst of activity takes place either at
the pre-synaptic or at the post-synaptic levels. In a recur-
rent neural network, the global effect of the rule is not easy
to anticipate.

Some trends can however be drawn. For instance,
starting from an irregular regime, the STDP rule tends to
produce more regularity and homogeneity, as measured
thereafter.

Regularization In order to characterize the regularity of
the self-sustained activity, we use an estimation of the ef-
fective number of Degrees of Freedom (#DOF) based on a
Principal Components Analysis [18, 19], see figure 2.

Our data set is composed of the membrane poten-
tials of all the neurons over sliding windows of 100 ms.
A Principal Components Analysis is first applied to the
data set, followed by a calculation of the entropy of the
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Figure 2. -A- Estimated number of degrees of freedom during
the first 5 seconds of simulation (σJ = 3.0 , τr = 2 ms). -B-
Evolution of #DOF when STDP is applied after 5 s of simulation
with a learning coefficient α = 0.1.

Figure 3. Evolution of the average firing rate when STDP is
applied for different values of internal coupling. τr = 2 ms.

normalised principal values pi of the transformation ma-
trix: S = −ΣNi=1piln(pi). This value is considered as an
approximate log count of significant principal components
weighted by their respective size, so that #DOF = eS

is an approximation of the effective number of degrees of
freedom.

When Spike-Timing Dependent Plasticity is applied
to a balanced random recurrent neural network with spon-
taneous, self-sustained activity, the number of degrees of
freedom rapidly decreases (see figure 2B). This corre-
sponds to a strong simplification of the activity, meaning
that every neuron displays a closely similar response.

Homeostatic effect We now test the effect of STDP on
several networks with spontaneous activity and various in-
ternal connection strengths (σJ ).

The effect of STDP on the average firing rate of the
network depends on the internal weights (figure 3). Indeed,
it seems that STDP has an homeostatic effect: networks
with strong connections start with a high activity which is
reduced by STDP, whereas networks with weak connec-
tions and low activity undergo an increase in their mean
firing rate.

4 Networks under external stimulation

The most prominent effect of STDP on recurrent neural
networks is the raise of periodicity in the activity. This
periodicity can take several forms, from a purely synchro-
nized regime to asynchronous periodic regime. The final
outcome of the STDP application depends on the initial pa-
rameters, on the level activity, but also on the way external
stimulations are sent to the network.

The inputs we send to the network are distributed
among every neuron. We define a static stimulus P as a
random vector of size N and whose values are randomly
set according to a gaussian draw N (0, σ2

I ).
We actually define two different ways to send a stim-

ulus to a network: the inputs are either directly added to the
neuron potential (potential-based presentation):

V exti (t) = Pi and Iexti (t) = 0 (4)

or to the current (current-based presentation):

V exti (t) = 0 and Iexti (t) = Pi (5)

We use σI = 1 for potential-based input and σI = 0.2
for current-based input (the current input needs to be lower
since it is integrated at each step).

Potential-based inputs First, we examine the case of
potential-based inputs. We find that, in this case, while the
initial activity is still irregular (upper part of the figure 4),
the application of STDP with a strong enough learning co-
efficient always leads to a regularisation of the network’s
activity toward a periodical regime. Two final outcomes
can however be observed: either a synchronization of the
neurons, where they all fire in a short window of time and
remain silent afterward until the next burst of activity (see
figure 4A), or a quasi-periodical “synfire” asynchronous
firing (see figure 4B).

The refractory period and the internal coupling
strength seem to play an important role into the triggering
of a synchronous regime or not, as can be observed in the
figure 5.

High internal coupling leads to asynchrony, while in-
creasing the refractory period enhances synchronization
(synchronization could not be obtained with a refractory
period of τr = 1 ms).

Current-based inputs With a gaussian current-based in-
put presentation, we never observe the apparition of syn-
chrony; the activity is “only” periodical (figure 6A).

However, if we use binary inputs, exciting only 20%
of the neurons so they fire at their maximal frequency, some
form of synchrony can be observed (figure 6B) between the
excited neurons. The neurons which are not excited also
fire in synchrony but in antiphase with the excited neurons,
even if there are a few exceptions of neurons firing in phase
with the “wrong” group.
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Figure 4. Examples of activity, before and after STDP. A black
bar is plotted when a neuron fires at a given time. Neurons are
ordered by their input levels: the first neurons have the highest
input and the last ones have the lowest ones. Upper figures rep-
resent activities before STDP, and the lower figures after STDP.
-A- Asynchronous aperiodical activity before applying STDP and
synchronous periodical answer after STDP. σJ = 2.0 ; τr = 3
ms. -B- Irregular activity before STDP and asynchronous period-
ical activity after. σJ = 5.0 ; τr = 3 ms.

Figure 5. Synchronous outcome depends on the parameters.
Here, the resulting regime is a function of the internal connec-
tion strength and of the refractory period. This figure is based on
observation for 20 different networks.

↓ ↓
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Figure 6. -A- Activity before and after applying STDP to a net-
work with current-based input. σJ = 2.0 ; τr = 3 ms. -B-
Activity before and after applying STDP to a network where the
current-based input only stimulates 20% of the neurons (the bot-
tom ones). σJ = 2.0 ; τr = 3 ms.

Whereas there is synchronisation, we must empha-
size that the emergence of two distinct groups in antiphase
is very different from the synchrony resulting from STDP
with potential-based inputs. Moreover, the initial period is
very different: around 20 ms for current-based input, ver-
sus around 60 ms for potential-based.

5 Discussion

We showed that our implementation of Spike-Timing De-
pendent Plasticity makes possible the transition from a dy-
namical regime to another one, which is more ordered and
periodical. Moreover, whether the resulting answer is syn-
chronized or not seems to depend both on the network’s
parameters (refractory period and weights standard devia-
tion) and on the input presentation type.

The results obtained on the current-based inputs in-
dicate that a form of synchronization appears more easily
if the neurons are explicitely divided in several categories
(excited neurons / non-excited neurons). The potential-
based input presentation naturally creates such categories,
even with gaussian distribution of the input strength, since
neurons receiving enough stimulation on their potential
(i.e., more than the firing threshold) tonically fire at their
maximum rate as long as they do not receive inhibition;
however this distinction between tonic and phasic neurons
could be less effective when the internal coupling is strong
(see 4B versus 4A).

This aim of this study is to give an insight in the com-



plex interactions between the self-sustained activity and the
synaptic adaptation. Despite the strong heterogeneity in
synaptic weights and delays, a regular response is rapidly
obtained in various conditions, but not every response is
interesting in terms of sensory encoding. To our mind,
the most interesting outcome is a selective synchronous
regime, i. e. a fine tuning of the synchrony as a function
of the “relevance” of the input (see also [20]). The con-
ditions under which a selective synchronous response can
be obtained in a balanced neural network (not too strong
internal coupling, contrasted inputs, strong cell refractori-
ness) need more investigation. We need to estimate more
precisely which of those conditions really matter, and then
propose more realistic schemes of sensory encoding in re-
current neural networks, in order to compare with biologi-
cal sensory systems.
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