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ABSTRACT

This paper presents the guidelines of an ongoing project
of the "Movement Dynamics" team in the “Movement and
perception” Lab, UMR6152, Marseille.

We address the question of Hebbian learning in large
recurrent networks. The aim of this research is to present
new functional models of learning, through the use of well
known methods in a context of high non-linearity and intri-
cate neuronal dynamics.

KEY WORDS
Hebbian Learning, Motor Control, Recurrent Neural Net-
works, Reinforcement Learning, Chaotic Dynamics

1 Introduction

The Hebbian learning framework [1] is one of the foun-
dations of the computational neurosciences domain, since
it lies at the crossroad of neurobiology and optimiza-
tion/parametric adjustment methods. Despite its compu-
tational limitations', increasing evidence of its biological
plausibility comes from observations [2, 3, 4]. In order to
overcome this apparent paradox (the tremendous efficacy
of real brains is not to be proven), Hebbian approaches of
learning should thus be tested in more realistic frameworks.
In real life indeed, Hebbian learning processes take place
all lifetime long, without notable saturation effects. The
problem is thus to define a framework where realistic and
long time running Hebbian processes could allow artificial
agents to increase their ability to handle their environment,
without (or with limited) saturation effects.

We couple this question with another fundamental as-
pect of brain organization: its intrinsic recurrent organiza-
tion. A large majority of its activity is indeed an internal
self-sustained activity 2. The stimuli are somewhat “far”
from the actions, i.e. the current action as much depends
on the history of the internal signals than on the current
stimulus.

'Well-known for their ability to capture the structure of spatial pat-
tern or spatio-temporal patterns in auto-associative networks, the Hebbian
rules are also known to have their capacity to linearly depend on the size
of the network, where saturation leads to “catastrophic forgetting”.

2Some figures say for instance that 80% of the signal treated by the
thalamus comes from the cortex itself.
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We present in the following several tracks that relate
to the application of a Hebbian process in networks where
the internal activity can dominate the sensory signal. The
idea is of course to give evidence that a local Hebbian pro-
cess can be associated with a global behaviour improve-
ment. Under that approach, formal or rigorous results are
still lacking. Our study of the properties of the learning pro-
cesses will thus mainly rely on intensive simulation work.
Simple setups imply an agent (body and surroundings) and
an internal controller made of a random recurrent neural
network. In such a context, as the parameter space is vaste,
a careful methodology must be followed for the results to
be properly established.

2 Simulated environments

In order to model realistic learning conditions, we define
here several constraints that make the simulations close to
learning situations that a small animal could, for instance,
encounter in an experimental setup. Those conditions seem
natural to follow, but most of them are broken in classical
learning paradigms:

e closed loop interaction: the actions of the agent have
direct consequences on its perceptions. The agent in-
ternal processes and its environment evolve in parallel
and continuously influence each other.

e realistic environments: real-valued coordinates, con-
tinuous movements, realistic processing times be-
tween perception and action (no discrete mazes or
block environments).

e Jocality: the learning rule only uses informations
available in the vicinity of the neuron cell.

e continually running simulation: there is no possibil-
ity to re-play the trajectories. No resetting or reini-
tialization of the system (even if the system goes in a
dead-end).

e on-line learning : the adaptation of the system param-
eters takes place immediately every time a new rein-
forcement signal occurs. There is no distinction be-
tween an exploration phase and an exploitation phase.



3 Building networks

The controller is composed of a neural network, and some
interfaces that translate the external states to tractable sen-
sory signals, and the internal activity to motor commands.
The neural network is made of several interacting neuron
populations with random couplings. The distribution of
the synaptic weights and thresholds follow several Gaus-
sian or uniform distributions whose mean and variance are
the global parameters of the network.

The networks are built on simple architectures with
one or two layers, and inhomogeneous (non symmetric)
connections. As the size of the networks are taken suffi-
ciently large for the mean level of activity to be predictable,
we can choose different levels of spatial and temporal res-
olution: (a) the low resolution systems use simple binary
neurons with homogeneous delays; the temporal resolution
is of the order of 10 ms; (b) the high resolution systems
use integrate and fire (I&F) neurons with inhomogeneous
delays; the temporal resolution is of the order of 1 ms.

Our setup aims to establish a functional link between
the variability of the internal dynamics and some percep-
tion/action processes. Three interface modules must thus
be carefully defined: (1) the sensory module: one must
check that: (i) the sensory signals significantly reflects the
environment state; (ii) the sensory signal is somewhat “or-
thogonalized” through various filters (edge detection, fea-
ture extraction...); (iii) the level of the input signal is conve-
niently balanced with the level of the internal self-sustained
signal; (2) the reinforcement module: (i) the reinforcement
signals must rely on sensory features that are directly per-
ceptible. One can not use global “fitness function”; (ii) as
we use continuously running simulations, there is no final
reward, but a series of reinforcements that punctually oc-
cur during the experiment; (iii) the balance between posi-
tive and negative rewards must be checked, for instance by
giving more credit to a positive reinforcement occuring in a
context of negative performance; (3) the action module: (i)
the motor command may be extracted from a mean activity
(mean over several neurons activity, mean of one neuron
over time...) in order to avoid hectic outputs; (ii) the mo-
tor activity is closely related to the activity of the recurrent
layer. In some cases, the controller can thus produce spon-
taneous movements without being directly stimulated. The
recurrent layer can be functionnaly seen as a CPG (Central
Pattern Generator);

4 Hebbian traces

Depending on the model, various Hebbian rules can be
tested from simple co-activation rules toward more elab-
orate STDP rules. Once again, the use of a reinforcement
learning paradigm (also called reward learning or operant
conditionning) aims to make the simulations as close as
possible to real-world situations. The reinforcement learn-
ing paradigm is indeed considered as one of the most prim-
itive adaptation mechanism, as the reward mechanism is

easy to realize (through dopamine or other neurotransmitter
release). It has been observed, for instance, in very simple
invertebrates [5].

The experimental setup we have defined favours the
use of direct reinforcement mechanisms (direct policy
learning) [6], without any explicit or implicit model of the
environment. Bartlett and Baxter, in [7], give a plausible
interpretation of direct policy learning in terms of local
synaptic adaptation. Their main innovation (to our knowl-
edge) is their interpretation of the classical TD()\) trace
in terms of local synaptic traces which store the most re-
cent co-activations between the pre-synaptic and the post-
synaptic neurons. This trace doesn’t take effect immedi-
ately on the synaptic value. When a reward occurs, the
synaptic weight is modified according to the trace in a pos-
itive or negative way, depending on the reward sign.

We are about to generalize the use of synaptic traces
in the case of random recurrent neural networks controllers.
Some succesful applications of that principle are given in
[8]. The question of the plausibility of such traces remains,
as their existence is not proven at the present time.

S Learning at the edge of chaos

One of the starting point of this study was the question of
the role of chaos in neural processing [9]. On the contrary
to simple feed-forward networks, we must indeed take into
account the nature of the dynamical regime taking place in-
side the network during the learning process. This regime
may vary from a mere fixed point toward a random-like
chaotic activity. The way the neuronal activities self or-
ganize in a context of highly frustrated non-symmetrical
couplings is not yet fully understood, even if some inter-
pretations in terms of linear response can be given [10].
The study of the mean field of random recurrent neural net-
works helps to define parametric domains where chaotic
regimes can be found [11, 12, 13], knowing the character-
istics of the sensory signals.

The most unanimously admitted point is the reduction
of the variability of the initial dynamics through Hebbian
processes. This point has been observed throughout vari-
ous models of neurons and various implementations of the
Hebb’s rule [9, 14]. Those results are moreover compatible
with the hypotheses of the neurophysiologist W. Freeman
[15], who first suggested that a link could be established
between a reduction of the variability of the dynamics and
perception processes.

Moreover, in a context of reinforcement learning, it
can be shown that the application of a positive and a nega-
tive Hebb’s rule have opposite effects on the dynamics: the
Hebb’s rule tends to lower the complexity while the anti-
Hebb rule tends to increase the complexity [16].

However, in a real learning context, keeping the bal-
ance between order and chaos is difficult, as some satura-
tion effects tend to take place in the long term. A possi-
ble way of preventing this, or at least to reduce the conse-
quences, is to use a regulation principle, inspired by synap-



tic scaling, which modify the ratio between synaptic po-
tentiation and depression in order to keep the postsynaptic
neuron’s frequency in the desired window. Such a regula-
tion mechanism is given in [16].

6 A simple example

In order to give an intuitive view of the learning mecha-
nisms we plan to implement, we present here a simple se-
quence classification experiment (see figure 1). The net-
work is made of I&F neurons. The delays are inhomo-
geneous, and the mean transmission time is 10 ms. The
temporal resolution is 0.5 ms. The network is composed
of 3 layers : the first layer is composed of 4 neurons that
receive a discontinuous input signal. The internal layer is
composed of 200 neurons, whose interconnection pattern
is a centered Normal law. The output layer is composed of
2 neurons. The output links are initially excitatory and ho-
mogeneous (while the delays are inhomogeneous), and the
two output neurons are mutually inhibitive.

The input signal is composed of elementary steps that
last 10 ms, whose amplitude is such that one spike is emit-
ted for one step (see figure). The network is supposed to
classify 4 periodic sequences in 2 categories, namely the
sequences (A,B,C,D) and (B,A,D,C) belong to the category
"0", and the sequences (A,B,D,C) and (B,A,C,D) belong to
the category "1" (see figure 1a). This task has been named
the "temporal XOR" 3. Those sequences have been chosen

3Indeed, if we reduce (A,B) and (C,D) to 0, and (B,A) and (D,C) to 1,
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Figure 1. Temporal XOR task (see text).
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for the response not to rely on one elementary step. At least
one previous element must have been memorized for a cor-
rect response to be given. The network is forced to exploit
its own internal activity to emit a proper answer.

Starting from a quiet network, a given sequence is
repeteadly presented until a first spike is emitted on the out-
put neurons. If the answer is correct, a positive symmetri-
cal STDP rule is applied on the internal and output links,
with learning rate oy . If the answer is wrong, the opposite
rule is applied on the same links (anti-STDP), with learn-
ing rate a—. The learning rates are adaptive and follow the
right and wrong response statistics, namely avy ~ 1—7 and
a_ ~ r, where r is the rate of correct answers according
to the last 20 responses. The most "rare" events (success or
failure) thus receive more credit. During a learning session,
the sequences are chosen randomly (one for each trial) with
equal probability.

Under this setup, the networks need about 500 trials
to find the appropriate answers (see figure 1b). The time
necessary to produce one answer is of the order of 60 ms
(not shown), as this answer only relies on the internal ac-
tivity (the network is initially quiescent).

7 Done and to be done

A question underlying this presentation is the status of sim-
ulation work in computational neurosciences studies. The
more intricate and realistic is the model, the less it can be
tackled in a rigorous way. This remark, which holds even
for simple Hebbian learning in random networks of contin-
uous neurons, becomes drastically true in the case of STDP
learning in networks of integrate and fire neurons.

The increasing computational power gives access to

then the four input sequences reduce to (0,0), (0,1), (1,0) and (1,1).
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Figure 2. Saccade adaptation project. FEF: Frontal Eye Field;
SC: Superior Colliculus (Neural Field model); PMN: Pre-Motor
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more realistic simulators, allowing to design models that
take into account the full chain of learning, from the
body/environment constraints to the characteristics of the
particular neurons. A realistic model of the saccade adapta-
tion is for instance currently under development (see figure
2). This "holistic" approach, even growing on weak theo-
retical ground, may however help to validate (or invalidate)
some functional hypotheses, and thus, in the very end, help
to understand the functions (or misfunctions) of the brain
memory mechanisms. This approach is however delicate,
as the success of a particular simulated mechanism does
not give account for its biological plausibility. It may obvi-
ously be validated by real observations.

The several points which have been outlined here
have already been partially realized. The origin of this
study lies in the "Chaotic Neural Network" group of ON-
ERA in Toulouse, composed of Bruno Cessac, Bernard
Doyon, Mathias Quoy and Manuel Samuelides. This group
studied in the years 1992-1995 both practically and theoret-
ically the properties of large random neural networks under
both dynamic and statistic approaches. The properties of
Hebbian learning mechanisms have been studied later on,
in the case of a generalization to multi-populations models
by Emmanuel Daucé, Olivier Moynot, Bernard Doyon and
Manuel Samuelides. The application of random recurrent
neural networks to motor control has been tested in sev-
eral ways. First in year 2000 on a real robotic platform in
the ETIS team (Cergy Pontoise) [17]. In parallel, some ad-
vances have been obtained by the PRISMA team of INSA-
Lyon with I&F neurons in simulations and on real robotic
platforms. We owe them the "learning at the edge of chaos"
motto [18]. The Hebbian trace approach of reinforcement
learning is given in [8], and new developments are under
redaction.

This study was supported from 2002 to 2006 by the
DYNN ACI (Dynamical Neural Networks).
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