Cycle Crossover for Permutations with Repetitions
Application to Graph Partitioning

Technical Report CSM-454

Alberto Moraglio!, Yong-Hyuk Kim?, Yourim Yoon?,
Byung-Ro Moon?, and Riccardo Polit

L Comp. Sci. Dept., University of Essex, UK
{amoragn, rpoli}@essex.ac.uk
2 Comp. Sci. Sch. & Eng., Seoul National University, Korea
{yhdfly,yryoon,moon}@soar.snu.ac.kr

Abstract. Geometric crossover is a representation-independent gener-
alisation of the traditional crossover defined using the distance of the
solution space. By choosing a distance firmly rooted in the syntax of the
solution representation as basis for geometric crossover, one can design
new crossovers for any representation. In previous work, we have applied
geometric crossover to simple permutations. In this paper, we design a new
geometric crossover for permutations with repetitions that naturally suits
partition problems and test it on the graph partitioning problem. Our new
crossover outperforms all previous ones.

Keywords: Geometric crossover, cycle crossover, permutations with
repetitions, graph partitioning.

1 Introduction

Geometric crossover [8] is a representation-independent operator defined over the
distance of the search space. Informally, geometric crossover requires the offspring
to lie between parents. The formal definition of geometric crossover can be used to
guide the design of new specific crossover operators for non-standard representations
using as base for geometric crossover distances rooted on the specific representation
(e.g., edit distances) [10]. Geometric crossover generalises many pre-existing search
operators for the major representations used in evolutionary algorithms, such as bi-
nary strings and real vectors [8], permutations [10], syntactic trees [9] and, sequences
[11].

Traditional crossover for binary strings is geometric crossover under Hamming
distance. Differently from binary strings where a single, natural definition of dis-
tance is normally used, for permutations many notions of edit distance are equally
natural (based on swaps, adjacent swaps, insertions, reversals, transpositions, and
other edit moves). This leads to a number of natural notions of geometric crossover
for permutations. Geometric crossovers are intimately connected with the notion of
sorting algorithm: offspring are on the shortest path between parents, hence they
are on the minimal sorting trajectory between parents using a specific edit move. In-
terestingly, this allows to implement geometric crossovers for permutations by using
traditional sorting algorithms such as bubble sort, selection sort, and insertion sort.
Many pre-existing recombination operators are geometric crossovers. For example,

PMX and Cycle crossover are geometric under swap distance. Interestingly, Cycle
crossover is geometric also under Hamming distance restricted to permutations.

Permutations with repetitions are a natural generalisation of simple permuta-
tions. In this paper, we start studying the application of geometric crossover to
permutations with repetitions. In particular, we propose a new geometric crossover
for permutations with repetitions that is a natural generalisation of Cycle crossover.

Grouping problems are interesting and NP-hard. When applying evolutionary
algorithms to grouping problems, the standard solution encoding is highly redun-
dant. This affects badly the performance of traditional crossover. In previous work
[6], we developed a geometric crossover for the graph partitioning problem based on
a labeling-independent distance that filters the inherent redundancy of the solution
encoding that performed very well.

A second difficulty with grouping problems is that traditional recombination
does not preserve feasibility of offspring: recombining parents with the same group-
ing structures does not lead in general to offspring with the same structure, requiring
a repairing mechanism to be applied to the offspring. Per se, the repairing mech-
anism is not necessarily negative as it can be interpreted as a form of mutation.
However, when the extent of change in the offspring is not small, the repairing mech-
anism degenerates into macro-mutation with deleterious effect on performance.

In general, a much preferred way to deal with this problem is to design a re-
combination operator that naturally transmits parent feasibility to offspring. In this
paper, we show that the new cycle crossover for permutation with repetitions nat-
urally applies to grouping problems allowing to search only the space of feasible
solutions without the need of any repairing mechanism. We then combine cycle
crossover and labeling-independent crossover obtaining a new geometric crossover
with both advantages that suits very well grouping problems with redundant encod-
ing. We tested experimentally the new geometric crossovers on graph partitioning
and report remarkable performance improvement.

The remainder of this paper is organised as follows. In Section 2, we introduce
the geometric framework and review previous work on permutations. In Section 3,
we introduce the multiway graph partitioning problem and a previous geometric
crossover based on the labeling-independent distance. In Section 4, we introduce a
new geometric crossover, extending the cycle crossover to permutations with repeti-
tions, that preserves the sizes of repetition classes. In Section 5, we recast the graph
partitioning problem in terms of permutations with repetitions and motivate the
use of cycle crossover. We then combine cycle crossover and labeling-independent
crossover into a new geometric crossover with both characteristics. In Section 6, we
present experimental setting and results, and we draw conclusions in Section 7.

2 Geometric Framework

In this section, we report the essential concepts behind a theoretical framework of
recent introduction that allows to analyze and design new crossover operators for
any solution representation tailored to the problem at hand [8].

The term distance or metric denotes any real valued function that conforms
to the axioms of identity, symmetry, and triangular inequality. A simple connected
graph is naturally associated with a metric space via its path metric: the distance
between two vertices in the graph is the length of a shortest path between the
vertices. Given a set of editing operations (edit moves) well-defined over a set of
syntactic objects, the edit distance between two syntactic objects is the minimum
number of edit moves needed to transform one into the other. When the edit moves

are reversible and every object can be transformed into any other using the edit
moves available, the edit distance is a metric.

In a metric space (S,d), a closed ball is the set of the form B(z;d) = {y €
S | d(xz,y) < 6} where x € S and 0 is a positive real number called the radius of
the ball. A line segment (or closed interval) is the set of the form [x,yls = {2z €
S| d(z,z) + d(z,y) = d(z,y)} where z,y € S are called extremes of the segment.
Metric ball and metric segment generalise the familiar notions of ball and segment
in the Euclidean space to any metric space through distance redefinition. These
generalised objects look quite different under different metrics. Notice that a metric
segment does not coincide with a shortest path connecting its extremes (geodesic) as
in an Euclidean space. In general, there may be more than one geodesic connecting
two extremes; the metric segment is the union of all geodesics.

We assign a structure to the solution set by endowing it with a notion of distance
d. M = (S,d) is therefore a solution space and L = (M, g) is the corresponding
fitness landscape, where g is the fitness function over S.

The following definition is representation-independent whereby crossover is well-
defined for any representation. It is only function of the metric d associated with
the search space being based on the notion of metric segment.

Definition 1 (Geometric crossover) A binary operator CX is a geometric
crossover under the metric d if all offspring are in the segment between their parents,
i.e., Vr,y: CX(z,y) € [z,y]q-

A number of general properties for geometric crossover and mutation have been
derived in [8]. The traditional crossover for K-ary vectors with n crossover points
is geometric under Hamming distance [8].

In previous work, we have studied various crossovers for permutations, reveal-
ing that PMX, a well-known crossover for permutations, is geometric under swap
distance. Also, we found that Cycle crossover , another traditional crossover for
permutations, is geometric under swap distance and under Hamming distance . Fi-
nally, we showed that geometric crossovers for permutations based on edit moves
are naturally associated with sorting algorithms.

3 Graph Partitioning and Labeling-Independent Crossover

3.1 Multiway Graph Partitioning

Graph partitioning is an important problem that arises in various fields of computer
science, such as sparse matrix factorisation, VLSI circuit placement, network par-
titioning, and so on. Good partitioning of a system not only significantly reduces
the complexity involved in the design process, but can also improve the timing
performance as well as its reliability.

Let G = (V, E) be an unweighted undirected graph, where V' is the set of vertices
and FE is the set of edges. K-way partition is a partitioning of the vertex set V into
K disjoint subsets {C4,Cs,...,Ck}. A K-way partition is said to be balanced if the
difference of cardinalities between the largest and the smallest subsets is at most
one. The cut size of a partition is defined to be the number of edges with endpoints
in different subsets of the partition. The K -way partitioning problem is the problem
of finding K-way balanced partition with minimum cut size.

Since the K-way partitioning problem is NP-hard, attempts to solve partitioning
problems have focused on finding heuristics which yield approximate solutions in
polynomial time.

3.2 Geometric Crossover for Unlabeled Partitions

The standard representation of a solution for K-way graph partitioning is a vec-
tor r of size |V| such as 7, = j = v; € C;. Since the specific mapping of indices
to partitions does not change how the graph is partitioned, each solution has K!
representations. Traditional crossover, that is geometric under Hamming distance,
does not perform well on redundant encodings. In fact, for this encoding, Ham-
ming distance between two solutions is unnatural because it depends on the specific
mapping between indices and partitions that is completely arbitrary. We proposed
a distance measure, the labeling-independent distance, that eliminates this depen-
dency completely [5]. In [6], we proposed a new geometric crossover (LI-GX) for
graph partitioning based on a labeling-independent distance associated with Ham-
ming distance that filters the redundancy of the encoding. We showed that LI-GX
can be implemented efficiently by using the Hungarian method [7] to normalise the
labeling on the second parent to that of the first parent and then applying tra-
ditional crossover. LI-GX can be thought as restricting the search to the space of
unlabeled-partitions only. It outperforms by far the traditional crossover (H-GX)
that searches the whole space of labeled-partitions.

cycle 33 2 1 1

W
—
w

parent A ‘

puenca [1]2]2]3]1]3] Lol
parentB‘Z‘l‘Z‘l‘S‘?r‘parentB‘Z//‘l‘Z‘l‘S‘S‘
(@)
cycle 11 cycle 33 2 1 1 4
pmentA‘1‘2‘2‘3\‘l‘3‘ paremA‘l‘Z‘2‘3‘l‘3‘
pwens (21 [2 013]3] s [2]112] 1]]3]
(b) (e
mask’ B B B A A A
cycle 2 1 1 cycle 33 2 1 1 4

_
N
N
[|
=]
[|

pmentA‘1‘2‘2‘3‘1‘3‘ PafemA‘

RIEIERE

[]
]
N
]
o |
| |

parent B

]

parent B

(3]
N
o |
]

offspring

(© ®

Fig. 1. Cycle Crossover step by step

4 Cycle Crossover for Permutations with Repetitions

Permutations with repetitions In a permutation, every element occurs exactly
once, e.g., (21453). In a permutation with repetitions, the same value may occur
more than once, e.g., (214154232), where 1 occurs twice, 2 occurs 3 times, 3 occurs
once, 4 twice, and 5 once. Two permutations with repetitions in which elements
have the same number of repetitions are said to belong to the same repetition class.
All simple permutations (without repetitions) belong to the same repetition class.

The extension of the cycle crossover we propose produces offspring of the same
repetition class of the parents. This crossover has two phases: (i) finding cycles and
(ii) mixing cycles. We explain these below by means of an example.

PHASE I (FINDING CYCLES):

Let us consider two parents of the same repetition class (1 x 2,2 x 2, and 3 X 2) in
fig 1.a. In order to identify cycles, we proceed as follows.

(1) Pick a random position in parent A, e.g., position 5. In this position in parent
A, we have the element 1 corresponding in parent B (at the same position) to the
element 3: 1 — 3. Mark position 5 as taken.

(2) Consider the corresponding element in parent B and pick at random any of its
occurrence in parent A (among non-taken positions). In our example, pick any 3 in
parent A, let us pick the one at position 4. The corresponding element in parent B
is 1: 3 — 1. Mark position 4 as taken.

(3) Continue this procedure until you get an element of parent B that is the first
element you considered in parent A. When this happens, we have found a cycle. In
our example, the last element we got in parent B is 1 that is the same as the first
element we considered in parent A. So we found the cycle: 1 — 3,3 — 1. This is
shown in fig. 1.b. Notice that the cycle involves the same number of repetitions in
both parents. In our example, 1 x 1 and 3 x 1. Excluding the elements of cycle 1 from
the two parents leave the remaining elements with the same number of repetitions
in the two parents. So the “leftover” permutations are still of the same repetition
class. In our example, the leftover repetition class is: 1 x 1, 2 x 2, and 3 x 1.

(4) Repeat loop (1)—(3) to find more cycles until all position have been marked with
a cycle tag.

Continuing our example: (1’) Pick one free position in parent A at random. Say
position 3. We have a 2. (2') Corresponding element in parent B: 2 — 2. (3') We
already found a cycle: 2 — 2 (fig. 1.c).

We then start searching for a third cycle: (1) Pick one free position in parent
A at random. Say position 1. We have a 1. (2"”) Corresponding element in parent
B: 1 — 2. Pick a 2 in parent A: the only one available is the one at position 2. Its
corresponding element in parent B is: 2 — 1. (3”) We have found another cycle:
1-2,2—1 (fig. 1.d).

We run the process one further time: (1”") The only free position in parent A is
position 6. We have 3. (2"") The corresponding element in parent B is 3. (3"”") We
have found a cycle: 3 — 3 (fig. l.e).

All the positions have been assigned to a cycle, so Phase I is over. Notice that
the last iteration is always guaranteed to terminate with a cycle (and not with a
simple sequence). The last position marked must be the end of the cycle.

PHASE II (MIX CYCLES):

(1) Create a crossover mask with one entry for each cycle by randomly flipping
a coin as many times as the number of cycles detected in the previous phase. In
our example, we have 4 cycles and, say, the crossover mask we generate is mask =
(ABBA). The entries in the mask indicate from which parent each cycle is inherited.

In this example, the offspring will inherit the cycles 1 and 4 from parent A and the
cycles 2 and 3 from parent B.

(2) We convert this “cycle” mask into a standard recombination mask by relabeling
all the entries ¢; in cycle as follows: ¢; — mask(c¢;) obtaining a new mask mask’.
(3) We perform standard mask-based crossover on the two parents using mask’,
obtaining the offspring as shown in fig. 1.f.

Notice that by construction every offspring has the same number of repetitions
of the parents. This is because exchanging any cycle between parents is repetition-
preserving.

The new crossover has the following properties:

1. It preserves repetition class.

2. It is a proper generalisation of Cycle crossover: when applied to simple permu-
tations, it behaves exactly like Cycle crossover.

3. It is geometric under Hamming distance because at any position the element in
the offspring equals the element at the same position of one of the parents.

4. This geometric crossover is defined over the induced sub-metric space obtained
by restricting the original vector space endowed with Hamming distance to the
space of permutations with repetition of the same repetition class. The latter
space is much smaller than the former and it is, hence, quicker to search.

5. Applying this crossover to permutations with repetitions of different repetition
class (with minor modifications), one obtains offspring with intermediate repe-
tition class with respect to the repetition classes of the parents.

5 Cycle Crossovers for Graph Partitioning

5.1 Searching Balanced Partitions

In the multiway graph partitioning problem, one needs to keep the sizes of the parti-
tions balanced. So this is a constrained optimisation problem, where the constraint
is the balancedness. Among all solutions (balanced or not), the feasible ones are
only those that are balanced.

The way we have dealt with it in previous work [6] is searching using a crossover
that searches the space of all solutions and then applying a repairing mechanism,
that can be thought as a mutation, that repairs offspring and makes them feasible
(balanced). There are other ways to deal with constraints and one nice property of
geometric crossover is that it can be used to deal with constraints very naturally.

An alternative method that does not need to use any repairing mechanism is to
have a geometric crossover that searches only the space of balanced solutions. This
is the approach we take here. This reduces the size of the search space considerably
(the set of balanced solutions is a fraction of the whole search space).
Representation: The starting point for restricting the search to balanced-
partitions only is to see the object representing the solution not as a vector of
integer but as a permutation with repetitions. Every position in the permutation
still represents a vertex of the graph and every integer still represents the label of
the group the vertex at that position is assigned to.

A solution is balanced when all the partitions have approximatively the same
number of vertices. This means that in the representation, there will be a similar
number of repetitions of each element (integer).

Equally balanced initial population: In order to restrict the search only to
the space of equally balanced partitions, we need to seed the initial population
with solutions having for the same partition exactly the same size for all solutions

(belonging to the same repetition class). Seeding the population with balanced
solutions is not sufficient.

Balanced crossover=cycle crossover: Cycle crossover preserves repetition class.
Hence given two balanced parents belonging to the same repetition class, it returns
offspring of the same repetition class, hence balanced. So there is no need for re-
pairing mutations.

Balanced mutation=swap mutation: We need to use a mutation that keeps a
permutation with repetition within the same repetition class. So that, if a solution
is balanced, the mutated solution is still balanced.

A simple mutation with this characteristic is the swap mutation: you pick any
two (different) elements in the permutation and swap their positions.

Notice that the swap move is a good one for the graph partitioning problem
because it produces a landscape with a smooth trend (solutions one swap away
have very similar fitness).

This move is also a good base for local search to search the space of balanced
grouping only. This move can be used as a base of a more sophisticated muta-
tion that decreases its probability exponentially with the distance from the parent
solution.

An important property of this mutation is that, if one measures the distance
between solutions in the search space as the minimum number of swaps to transform
one into the other, one gets a metric space. The cycle crossover suggested is (almost)
geometric in this metric space as well. Hence, our swap mutation and cycle crossover
are defined over and search the same metric space. This can also be extended to
the local search. Having different operators searching the same space is interesting
because it is then possible to interpret their interactions in a simple geometric way.

5.2 Combining Labeling-Independent Crossover and Cycle Crossover

Combination of relabeling and balanced solutions: Cycle crossover (Cycle H-
GX) searches the space of balanced partitions. LI-GX (see section 3.2) searches the
space of labeling-independent partitions. We combine these two geometric crossovers
obtaining a new geometric crossover with both advantages: it operates fully within
the space of labeling-independent balanced partition space, which is a fraction of
the original space and could produce highly competitive performance. The new
crossover (Cycle LI-GX) consists of a labeling-normalisation phase before applying
cycle crossover.

Geometricity of compound crossover: Cycle LI-GX is still geometric on the
phenotypic space restricted to balanced phenotypes. It is in fact the traditional
mask-based crossover restricted to the subspace of vectors being fixed-size class
permutations with repetitions.

Equally balanced solutions: Relabeling a solution does not affect its balanced-
ness but in general it is not a repetition-class-preserving transformation. If one
applies cycle crossover using the Hungarian method to do the relabeling, one has
to make sure that all the groups have the same size. If the groups have different
sizes, a modified version of cycle crossover which can recombine permutations with
repetitions of different repetition classes should be used.

Inexact balance and cycle crossover: Cycle crossover without normalisation is
able to deal with different partition sizes. Cycle crossover plus normalisation requires
all partitions to have exactly the same size because normalisation changes the given
sizes of partitions. So, when we apply cycle crossover to balanced solutions with
partitions of almost the same size, we do not always find a cycle. We solved this
problem heuristically and considered some non-cycles (paths) as cycles.

6 Experiments

6.1 Genetic Framework

We used the general structure of hybrid steady-state genetic algorithms. In the
following, we describe the framework of genetic algorithm used in our experiments.
Under this framework, we will change only the crossover operator.

— FEncoding: We use a K-ary string for each chromosome to represent a K-way
partition. For example, if vertex v; belongs to partition Cj, the value of the ith
gene is j.

— Initialisation: We randomly create p chromosomes. Fach chromosome satisfies
a balance criterion. We set the population size p to be 50.

— Selection: We use the roulette-wheel-based proportional selection scheme. The
probability that the best chromosome is chosen was set to four times higher
than the probability that the worst chromosome is chosen.

— Mutation: After cycle crossover or normalised cycle crossover, we run the swap
mutation. The mutation parameter p_mut is set to be 0.005. Then, the expected
Hamming distance between chromosomes before and after mutation is approx-
imately 1 percent of the problem size |V]|.

— Local optimisation: Sanchis [12] extended the FM algorithm for K-way par-
titioning. The algorithm considers all possible moves of each vertex from its
home set to any of the others. He showed that this direct multiway partition-
ing approach obtained better solutions compared to the recursive approach for
random networks. As local optimisation engine in our genetic algorithm, we use
its variation proposed in [3]. Its time complexity is O(K|E)|).

— Replacement: If it is superior to the closer parent, the offspring replaces the
closer parent, and if not, the other parent is replaced if the offspring is better.
Otherwise the worst in the population is replaced.

— Stopping criterion: For stopping, we use the number of consecutive fails to re-
place one of the parents. We set the number to be 50.

6.2 Test Environment

Before showing the experimental results, we first introduce the benchmarks used in
this experiment and test environment. We tested on a total of eight graphs which
consist of two groups of graphs. They are composed of eight graphs with 500 vertices
from [2] (four random graphs G*.* and four random geometric graphs U*.*). The
two classes were used in a number of other graph-partitioning studies [1]. More
detailed description of them is given in [4].

We conducted tests on 32-way and 128-way partitioning. Although the instances
of the test-bed are from standard library, most research have focused on 2-way
partitioning (bi-partitioning). Moreover, many research about multiway partitioning
dealt with circuit partitioning (hyper-graph partitioning). However, we know the
lower bounds for 32-way partitioning instances from previous literature [6].

6.3 Results

We compare the geometric crossover based on Hamming distance (5pt H-GX), the
geometric crossover based on the corresponding labeling-independent distance (5pt
LI-GX), the geometric crossover based on Hamming distance restricted to permuta-
tion with repetitions (Cycle H-GX), and the geometric crossover based on the corre-
sponding labeling-independent distance (Cycle LI-GX). Notice that these crossovers
search different search spaces:

[crossover [search space

5pt H-GX |the space of all labeled partitions
5pt LI-GX |the space of all unlabeled partitions
Cycle H-GX |the space of all labeled
well-balanced partitions

Cycle LI-GX|the space of all unlabeled
well-balanced partitions

Table 1 shows the results of 32-way partitioning. On random graphs, Cycle H-
GX could not dominate 5pt H-GX on averages, but it performed better on the best.
On random geometric graphs, Cycle H-GX performed better than 5pt H-GX both
on averages and the best. Cycle LI-GX and 5pt LI-GX always outperformed Cycle
H-GX and 5pt H-GX. Cycle LI-GX showed more improved performance compared
with 5pt LI-GX. Except on U500.40, it found lower bounds better than or equal to
the best known.

Table 2 shows the results of 128-way partitioning. Cycle LI-GX also performed
best. Except on G500.05 and U500.10, it found the best solution among them. The
performance of Cycle H-GX was better than in the case of 32-way partitioning. On
random geometric graphs, it outperformed 5pt LI-GX. But on random graphs, 5pt
LI-GX performed better. 5pt H-GX was always dominated by others.

In summary, we got visible improvement for all the tested instances. In particu-
lar, for 32-way partitioning on random geometric graphs, there was large improve-
ment.

For small number K, normalisation by the Hungarian method affects computa-
tional time little. In 32-way partitioning, Cycle LI-GX was about 1.2 times slower
than Cycle H-GX. But, normalisation time increases as K increases. In fact, Cycle
LI-GX was about 1.7 times slower than Cycle H-GX in 128-way partitioning. Cycle
crossovers were faster than 5-point crossovers. In results, Cycle H-GX and Cycle LI-
GX were faster than 5pt H-GX and 5pt LI-GX, respectively. Consequently, Cycle
H-GX was fastest among them.

7 Conclusions

In this paper, we have designed a new geometric crossover for permutations with rep-
etitions that generalises cycle crossover and that naturally suits partition problems.
We have then combined this crossover with another geometric crossover, developed
in previous work, that deals well with redundant encoding obtaining a new, much su-
perior geometric crossover that suits partition problems with redundant encodings.
In extensive experimentation, we have demonstrated that this crossover outperforms
previously known methods, either providing new lower bounds or equalling known
best lower bounds in a variety of graph partitioning benchmark problems.

References

1. BarTiTi, R., AND BERTOSSI, A. Greedy, prohibition, and reactive heuristics for graph
partitioning. IEEE Transactions on Computers 48, 4 (1999), 361-385.

2. JOHNSON, D. S., ARAGON, C., McGEOCH, L., AND SCHEVON, C. Optimization by
simulated annealing: An experimental evaluation, Part 1, graph partitioning. Opera-
tions Research 37 (1989), 865—892.

3. Kim, J. P., AND MooN, B. R. A hybrid genetic search for multi-way graph parti-
tioning based on direct partitioning. In Proceedings of the Genetic and Evolutionary
Computation Conference (2001), pp. 408-415.

Table 1. The Results of 32-way Partitioning

Graph

Best

5pt H-GX

5pt LI-GX

Cycle H-GX

Cycle LI-GX

Known||Best| Avel [Gen

Best| Ave’ [Gen

Best

Avel

Gen

Best

Avel

Gen

G500.2.5
G500.05
G500.10
G500.20

178
624
1574
4037

182 | 185.18 |1091
626 | 637.25 |1424
1576|1587.23]1984
4040|4049.44|2247

178 | 181.77 {1529 177 | 185.59
624 | 630.07 [2367|| 627 | 637.58
1573(1581.40(2422({1575|1587.38
4034|4044.89|2522||4039|4049.65

1269|| 177 | 180.50
1660|| 623 | 628.63
1987|(1573|1580.53
2198|4035|4043.29

1582
2232
2381
2538

U500.05
U500.10
U500.20
U500.40

113
529
1825
5328

112] 120.65 |1327
534 | 542.75 |1163
1837|1846.30{1123
5363(5389.93|1043

112] 116.75 |1599|| 113 | 120.41
531 | 537.04 [1494| 524 | 539.67
1832(1841.02{1353([1834(1843.80
5353|5380.30(1374|5372|5391.77

1245

999

109 | 112.60
1263|| 523 | 528.50
1170([1825|1831.55
5348(5365.00

2056
2086
1646
1691

T Average over 100

runs.

Table 2. The Results of 128-way Partitioning

Graph

5pt I-GX

5pt LLGX

Cycle H-GX

Cycle LI-GX

Best

Avel [Gen|/Best

AveT [Gen||Best

Avel

Gen

Best

Ave'

Gen

G500.2.
G500.05 | 850
G500.101|1904
(G500.20 (4568

5| 316

320.14 | 844 || 310
853.09 | 869 || 839
1907.78| 932 (/1894
4571.93] 965 ||4560

314.08 | 950 || 311
843.61 [1020(| 839
1898.03|1168||1896
4566.40(1116(|4564

314.54

844.13
1899.32
4567.94

911
977
1033
1004

310
840
1893
4560

313.05

843.19
1896.71
4565.06

964
1058
1191
1164

U500.05 || 697
U500.10{/1679
U500.20 || 3836
U500.40 || 8066

704.06 | 935|| 695
1684.13|913 ({1676
3841.45|890 ||13836
8068.54|853 ||8065

702.90 | 978 || 695
1683.47| 921 ||1673
3841.44| 874 ||3838
8068.77| 831 ||8065

701.40
1682.74
3840.37
8067.74

941
923
864
845

692
1675
3835
8065

698.96
1681.55
3841.15
8068.42

1219
988
887
832

10.

11.

12.

1 Average over 100 runs.

Kim, Y. H., AND MooN, B. R. Lock-gain based graph partitioning. Journal of
Heuristics 10, 1 (January 2004), 37-57.

Kim, Y. H., AND MoON, B. R. New topologies for genetic search space. In Proceedings
of the Genetic and Evolutionary Computation Conference (2005), pp. 1393-1399.
Kim, Y. H., YooN, Y., MORAGLIO, A., MooN, B. R., AND PoLl, R. Geometric
crossover for multiway graph partitioning. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (to appear) (2006).

Kunn, H. W. The Hungarian method for the assignment problem. Naval Res. Logist.
Quart. 2 (1955), 83-97.

. MoracLIO, A., AND PoLI, R. Topological interpretation of crossover. In Proceedings

of the Genetic and Evolutionary Computation Conference (2004), pp. 1377-1388.
MORAGLIO, A., AND PoLI, R. Geometric crossover for the permutation representation.
Technical Report CSM-429 (2005).

MoRAGLIO, A., AND PoL1, R. Topological crossover for the permutation representa-
tion. In GECCO 2005 Workshop on Theory of Representations (2005).

MoracGLiO, A., PoLi, R., AND SEEHUUS, R. Geometric crossover for biological se-
quences. In Proceedings of EuroGP 2006 (to appear) (2006).

SANCHIS, L. A. Multiple-way network partitioning. IEEE Transactions on Computers
38, 1 (1989), 62-81.

