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tOrdinary representations of permutations in Geneti
 Algorithms (GA) is hand-i
apped with produ
ing o�spring whi
h are not permutations at all. The 
onven-tional solution for 
rossover and mutation operations of permutations is to devi
e`spe
ial' operators. Unfortunately these operators su�er from violating the nature of
rossover. Namely, 
onsidering the gene positions on the 
hromosome, these methodsdo not allow n-point 
rossover te
hniques whi
h are known to favour building-blo
kformations. In this work, an inversion sequen
e is proposed as the representation of apermutation. This sequen
e allows repetitive values and hen
e is robust under ordi-nary (n-point) 
rossover. There is a one-to-one mapping from ordinary permutationrepresentation to the inversion sequen
e representation.The proposed method is used for solving TSPs and is 
ompared to the well knownPMX spe
ial 
rossover method. It is observed that this method outperforms PMXin 
onvergen
e rate by a fa
tor whi
h 
an be as high as 11.1 times, on a 
ost ofobtaining slightly worse solutions on average.Key Words: geneti
 algorithms, permutation representation, traveling salesmanproblem, 
rossover, partially mapped Crossover, PMX, TSP1 Introdu
tionA well known 
omputational problem is the Traveling Salesman Problem (TSP) whi
h isknown to be NP-
omplete. Here is the wording of it:N points (`
ities'), as well as the 
ost of traveling between every pair of them is given.Assume that a salesperson, starting from a given 
ity, has to visit ea
h 
ity exa
tlyon
e and hen
e make a round-trip. The aim is to �nd an optimal tour in whi
h thetotal 
ost of the round-trip is minimized.More formally, the TSP 
an be formulated as a problem of graph theory: Given a graphG on a set of N verti
es (
ities), a 
losed sequen
e of edges in G (i.e. a 
y
le) whi
h passesthrough ea
h vertex of G exa
tly on
e is 
alled a Hamiltonian Cy
le. Given a 
ompleteweighted graph G on a set of N verti
es the TSP is then the problem of �nding theshortest Hamiltonian Cy
le through G. From the 
omputational point of view this meansthe determination of the parti
ular permutation of the non-repeating sequen
e 1; 2; : : : ; Nwhere the 
ities are numbered 
onse
utively from 1 to N and the permutation representsthe visiting order for whi
h the weight sum is minimized.The sear
h spa
e 
ontains N ! permutations and sin
e TSP is NP-
omplete, the 
orre-sponding optimization problem is NP-hard. The best known algorithms have exponential(deterministi
) run time 
omplexity. Su
h 
ombinatorial optimization problems are in the1



domain of Geneti
 Algorithms interest. In the next se
tion, the most popular methodamong 
onventional GA solutions of TSP will be reviewed. In se
tion 3 an alternativesolution will be introdu
ed. A 
omparative experimental study will be 
overed in se
tion4 whi
h is followed by the 
on
lusion.2 Conventional Approa
hThe �rst GA approa
h on TSP was by Brady [1℄ whi
h was then followed by Grefenstetteet al. [4℄; Goldberg and Linge [6℄ and Oliver et al. For a detailed dis
ussion on TSP a goodreferen
e is the study of Lawler et al. [11℄. A perfe
t review arti
le on GA for TSP is byLarranaga et al. [10℄.In the 
onventional approa
h a 
hromosome whi
h is devised to represent a solution
onstitutes of N (
ount of the 
ities) genes. Ea
h gene holds a number whi
h is a label ofa 
ity. So the n th gene holds the label of the 
ity whi
h is visited n th. In other words,the 
hromosome is a dire
t 
oding of a permutation of the sequen
e 1; 2; : : : ; N .The problem with this representation is obvious. Starting with a population of valid
hromosomes, ordinary 
rossover and mutation operators 
ause problems. This is so, be-
ause o�spring generated by means of the ordinary operators have a high 
han
e of beinginvalid with some 
ities missing, and others repeated. A variety of methods that handleproblems of this sort are introdu
ed throughout the literature.Solutions are observed to fall into one of the following three 
ategories:� Disquali�
ation: The idea is to allow the generation of invalid 
hromosomes but assignsu
h a low �tness values that they got eliminated in the forth
oming sele
tion pro
ess.This simple method has a disadvantage of being time 
onsuming. The geneti
 enginespends most of its time generating invalid 
hromosomes and then eliminating them.� Repairing: In this approa
h invalid 
hromosomes are generated but then fed into anintermediate pro
ess where they are transformed into valid ones. Here the key ideais to do the least modi�
ation su
h that the merits of 
rossover are preserved. Thistype of methods are also time 
onsuming.� Inventing Spe
ialized Operators: Instead of 
reating invalid 
hromosomes the GAoperators are modi�ed to generate only valid 
hromosomes.The idea of disquali�
ation proves itself to be extremely ineÆ
ient. Attempts for re-pairing 
an be found in Lidds study [12℄.Falling into the third 
ategory and 
on
erning permutation-respe
ting path 
rossoveroperators, the following operators are worth to mention:Partially - Mapped Crossover (PMX) Goldberg and Lingle (1985) [6℄Order - Crossover (OX1) Davis (1985) [2℄Order Based Crossover (OX2) Syswerda (1991) [17℄Position Based Crossover (POS) Syswerda (1991) [17℄Heuristi
 Crossover (HX) Grefenstette (1987) [5℄Edge Re
ombination Crossover (ER) Whitley et al. (1989) [18℄Sorted Mat
h Crossover (SMX) Brady (1985) [1℄Maximal Preservative Crossover (MPX) M�uhlenbein et al. (1988) [13℄Voting Re
ombination Crossover (VR) M�uhlenbein (1989) [14℄Alternating - Position Crossover (AP) Larranaga et al. (1996) [9℄



Among these PMX, ER and POS are quoted to be the fastest operators as far as thenumber of ne
essary iterations to rea
h 
onvergen
e is 
on
erned [10, 16℄. The 
onvergen
erates of these three operators are observed to be similar. Literature also mentions that ERis observed to produ
e the best quality solutions [10, 18℄.In this work we pi
k PMX among these and 
laim that our proposed 
rossover methodprodu
es slightly worse quality solution at a 
onvergen
e rate whi
h is faster then PMXby a fa
tor of 3-5.How does PMX fun
tion?Given two parents s and t, PMX randomly pi
ks a 
rossover point { like 1-point 
rossover.The 
hild is then 
onstru
ted in the following way. Starting with a 
opy of s, the positionsbetween the 
rossover points are, one by one, set to the values of t in these positions. Tokeep the string a valid 
hromosome the 
ities in these positions are not just overwritten.To set position p to 
ity 
, the 
ity in position p and 
ity 
 swap positions. Below you seean example of this 
oding and spe
ial 
rossover te
hnique for two sample permutations:5; 7; 1; 3; 6; 4; 2 and 4; 6; 2; 7; 3; 1; 5
2 3 1 54 6

7 1 6 4 25

7

3 6 1 7 5 24 3

2 3 1 54 6

7 1 6 4 25

7

3

2 3 1 55 7 6

Second offspring:

First offspring:

2 3 1 54 6

7 1 6 5 24

7

3

2 3 1 54 6 7

6 2 7 5 14 3

2 3 1 45 6

7 1 6 4 25

7

3 7 1 6 4 25 3

1 3 55 7 6 1The resulting 
hild has1. between the 
rossover points, the same 
ities in the same positions as t, and2. outside the 
rossover interval, the same 
ities in the same positions as s, where thisis not in 
on
i
t with (1).This idea 
an very easily be generalized to n-point 
rossover. Mutation is done by ex-
hanging gene values in pairs (in a 
hromosome).This method has the following draw ba
ks:1. The 
hanges in the 
hromosomes are not 
on�ned to the ex
hanged portions. There-fore the building-blo
ks me
hanism of EC [7℄ is damaged.2. Mutations are not performed at single points.3. Simple bit-string 
rossover and mutation implementations will not work.



In the following se
tion a new te
hnique for GA to deal with permutation en
oding, wherethe representation is 
rossover and mutation robust, is introdu
ed. This means that theo�spring generated by 
rossover and mutation are still valid 
hromosomes and no spe-
ial de�nitions for these operators are needed: the 
onventional bit-string 
rossover andmutation operators suÆ
e.3 Proposed MethodThe proposed method is to des
ribe a permutation by means of its inversions [8℄. For apermutation i1; i2; : : : ; iN of the set f1; 2; : : : ; Ng we let aj denote the number of integers inthe permutation whi
h pre
ede j but are greater than j. So, aj is a measure of how mu
hout of order j is. The sequen
e of numbers a1; a2; : : : ; aN is 
alled the inversion sequen
eof the permutation i1; i2; : : : ; iN . For example the inversion sequen
e of the permutation4; 6; 2; 7; 3; 1; 5 is 5; 2; 3; 0; 2; 0; 0. Here, for example, the 2 (whi
h is the 5th element in theinversion sequen
e) is saying that there are exa
tly 2 elements in the permutation whi
hare to the left of 5 and are greater than 5 (Yes this is true, they are: 6; 7).The inversion sequen
e a1; a2; : : : ; aN satis�es the 
onditions0 � ai � N � i for i = 1; 2; : : : ; NAs seen there is no restri
tion on the elements whi
h says ai = aj is forbidden for i 6= j.This is of 
ourse very 
onvenient for the 
rossover and mutation operations in GA.Below two iterative algorithms are given. The �rst generates the inversion sequen
e ofa given permutation and the se
ond does the inverse (generates the 
orresponding permu-tation of a given inversion sequen
e).Input perm : array holding the permutationOutput inv : array holding the inversion sequen
efor i 1::N dof invi  0m 1while permm 6= i dof if permm > i then invi  invi + 1m m + 1 g gInput inv : array holding the inversion sequen
eOutput perm : array holding the permutationUses pos : dummy array for intermediate result1for i N::1 dof for m i + 1::N doif posm � invi + 1 then posm  posm + 1posi  invi + 1 gfor i 1::N do permposi = i1The use of this array 
an be avoided by a more elaborated algorithm but this will not redu
e the time
omplexity.



By this method a 
hromosome or a subse
tion of it, whi
h has to keep a permutation,will 
onsist of a sequen
e of N genes2 where the allele of ea
h element is a natural number.The maximal allele value allowed de
reases by one at ea
h element from the �rst positionof the sequen
e to the last one.In GA appli
ations natural number valued genes are usually represented by bit stringswhi
h are the binary representation of that number. The limitation is very easily 
ontrolledby 
hoosing a restri
ted bit length and/or a modulo operation. Ex
ept this limitation onthe maximal values, whi
h always is the 
ase in GA appli
ations with numeri
al alleles,there is no extra restri
tion or order that has to be preserved throughout the GA opera-tions. Therefore, whatever 
rossover or mutation will produ
e will 
orrespond to a validpermutation. Now there is a question to be answered:What 
hara
teristi
s of the parents will be inherited by the o�spring?Assuming that an ordinary bit-string one-point 
rossover is performed on both 
omponentsof the 
hromosome, we 
an state that the o�spring will inherit 
hara
teristi
s from bothparents. For one of the o�spring, one of the parents, p1, will provide the displa
ementinformation of some of the permutation elements (lets 
all them E 0) and the other parent,p2 will provide a similar information for the remaining permutation elements (E 00). Of
ourse the other o�spring will re
eive the displa
ement information for E 0 and E 00 from p2and p1, respe
tively. Similar properties 
an be stated for mutation.Below is an example 
oding of the two permutations 5; 7; 1; 3; 6; 4; 2 and 4; 6; 2; 7; 3; 1; 5whi
h undergo an ordinary 
rossover that generates two o�spring from them:
2 0 2 0 02 5

3 3 0 1 05 25 7 2 6 3 1 4

4 6 1 3 7 5 22 3 0 1 0

4 6 2 7 3 1 5

7 1 3 6 4 25 2 5

3 0 2 0 05 2

Chromosome representation

O F F S P R I N G

Permutation
(generated)

Chromosome representation

P A R E N T S

Permutation

Crossover point

4 GA Solution of the TSP ProblemBoth methods, PMX and the newly proposed one, are implemented as C programs. Thedi�eren
es are kept as lo
al as possible. As a test bed a problem from the TSPLIB is
hosen. This library is lo
ated athttp://www.iwr.uni-heidelberg.de/groups/
omopt/software/TSPLIB95/provided and maintained by the Resear
h Group on Dis
rete Optimization at HeidelbergUniversity. As it is true for many problems in the TSPLIB pool, the problems used in ourwork have known optimal solutions. These values are quoted in our work. We refer to thegiven URL for further information and referen
es.The three test bed problems are symmetri
 TSPs and two of the data sets 
ome from`Real World problems':2A
tually (N � 1) suÆ
es, sin
e invN is always zero.



bays29 : The road distan
es that 
onne
t 29 
ities in Bavaria, Germany.berlin52 : Street distan
es of the 
ity of Berlin, Germany.eil101 : An arti�
ial 101 
ity problem 
reated by Eilon and Christo�des.Both methods were run with the same settings of GA dynami
s: 10-point 
rossover, poolsize of 1000 
hromosomes, 15% elitism, 0:007 mutation/gene ex
hange. These values wereset empiri
ally to work well for both methods. Interestingly, while this tuning was per-formed, both PMX and the proposed method rea
ted 
oherently. That means, there wasno spe
ial setting observed whi
h would favour one of the methods.The termination 
riteria was to 
ontinue to run the GA engine until there is no 
hangein the �tness of the best of the pool for max(200; Generation=3) generations. This �gure,namely the 
ount of generations in whi
h no 
hanges o

urred, is subtra
ted from the totalgeneration 
ount. So, in our analysis the generation 
ount of a GA run is taken to be thegeneration in whi
h a 
hange of the �tness (of the best) o

urred for the last time.To avoid the di�eren
es 
oming from the randomization of the initial pool both methodswere run for 1000-5500 times and the 
omparison was made statisti
ally.Of 
ourse neither method 
onverges always to the optimum but rather gets 
aught inlo
al minima whi
h are nearly optimal. Figures 1a, 2a, 3a displays the number distributionof the pool's bests of ea
h of the runs for both the methods are given as histogramsrespe
tively for the test TSPs bays29, berlin52 and eil101. Similarly, �gures 1b, 2b, 3bdisplays the number distribution of the 
ount of iterations of ea
h run for the same testTSPs.Below you �nd tabulated parameters and results for the three test data sets.Data set names bays29 berlin52 eil101Count of 
ities 29 52 101Count of runs 5500 2000 1000Optimal path length 2020 7542 629Best path length found by PMX 2020 10007 10000Best path length found by the proposedmethod 2026 10000 10000Average path length & the standard de-viation (in parenthesis) in path length,found by PMX 2239 (110) 9096 (447) 922 (148)Average path length & the standard de-viation in path length, found by by theproposed method 2261 (100) 10199 (539) 1069 (59)Average iteration 
ount & the standarddeviation in iteration 
ount, found byPMX 247 (48) 657 (229) 3457 (2405)Average iteration 
ount & the standarddeviation in iteration 
ount, found bythe proposed method 112 (17) 201 (21) 311 (29)
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Figure 1a: Histogram of the pool's best over all runs ofthe bays29 problem. Figure 1b: Histogram of the iteration 
ount over allruns of the bays29 problem.
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Figure 2a: Histogram of the pool's best over all runs ofthe berlin52 problem. Figure 2b: Histogram of the iteration 
ount over allruns of the berlin52 problem.
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Figure 3a: Histogram of the pool's best over all runs ofthe eil101 problem. Figure 3b: Histogram of the iteration 
ount over allruns of the eil101 problem.



Observing the results we 
on
lude that:� Regarding the best solution found for ea
h TSP there is no observed systemati
di�eren
e between PMX and the proposed method.� On the average PMX is produ
ing 1%-15% better solutions than the proposed method.The standard deviation of this value varies for both method and is not 
on
lusive.� The proposed method outperforms PMX by fa
tors that range from 2.2 times to 11.1times when the 
onverge rate is 
on
erned. The proposed method 
onverges mu
hfaster than PMX does. Also standard deviation �gures of these values shows thatthe proposed method is mu
h more stable in the iteration 
ount needed to 
onverge.5 Con
lusionA new method for representing permutations as GA 
hromosomes has been introdu
ed. In
ontrast to the 
onventional ones this proposed representation is not handi
apped under
rossover and mutation. The proposed method was used in a TSP test bed and has provenitself to be almost as good as the 
onventional method as far as the solution quality(i.e. �nding the optimum solution) is 
on
erned. The 
omparative study of the resultsshows that the new method outperforms the 
onventional PMX method by a fa
tor whi
h
an be as high as 11:1 in 
onvergen
e rate.Other dis
rete optimization problems, like s
heduling or timetabling problems thatinvolve permutation representations and are attempted to be solved by means of GA ap-proa
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