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Abstract

This paper is the result of a literature study carried out by the authors. It is a review of the different
attempts made to solve the Travelling Salesman Problem with Genetic Algorithms. We present crossover
and mutation operators, developed to tackle the Travelling Salesman Problem with Genetic Algorithms
with different representations such as: binary representation, path representation, adjacency represen-
tation, ordinal representation and matrix representation. Likewise, we show the experimental results
obtained with different standard examples using combination of crossover and mutation operators in

relation with path representation.
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1 Introduction

In nature, there exist many processes which seek a stable state. These processes can be seen as natural
optimization processes. Over the last 30 years several attempts have been made to develop global optimiza-
tion algorithms which simulate these natural optimization processes. These attempts have resulted in the

following optimization methods:

e Simulated Annealing, based on natural annealing processes.

e Artificial Neural Networks, based on processes in central nervous systems.

e FEvolutionary Computation, based on biological evolution processes.

The algorithms inspired by Evolutionary Computation are called evolutionary algorithms. These evolu-
tionary algorithms may be divided into the following branches: genetic algorithms (Holland 1975), evolution-
ary programming (Fogel 1962), evolution strategies (Bremermann et al. 1965), classifier systems (Holland
1975), genetic programming (Koza 1992) and other optimization algorithms based on Darwin’s evolution
theory of natural selection and “survival of the fittest”.

In this paper we will only examine one of the above mentioned types of algorithms: genetic algorithms,
although some of the exposed mutation operators have been developed in relation to evolutionary program-
ming. We consider these algorithms in combination with the Travelling Salesman Problem (TSP). The TSP
objective is to find the shortest route for a travelling salesman who, starting from his home city, has to visit
every city on a given list precisely once and then return to his home city. The main difficulty of this problem
is the immense number of possible tours: (n — 1)!/2 for n cities.

Artificial Intelligence can be applied to different problems in diferent domains such as: scheduling, cryp-
toanalysis, molecular biology, Bayesian networks, clustering, etc. Some of the problems are in someway
related to what we will discuss here (see Section 3.2). For this reason, this revision could be of interest, not
only to people interested in the TSP, but also, to people interested in the application of Artificial Intelligence
techniques in any of the topics mentioned above.

The structure of this paper is as follows. In Section 2 we introduce genetic algorithms. Next, we give

a brief introduction on the Travelling Salesman Problem. In Section 4 we describe several representations



which may be used for a problem instance of the TSP, and we introduce operators with which they can be
combined. We look at how we can include local search in an evolutionary algorithm in Section 5. In Section 6
we present, some experimental results carried out with different combinations between some of the crossover

and mutation operators developed for the path representation. Lastly, conclusions are given in Section 7.

2 Genetic Algorithms

Evolutionary algorithms are probabilistic search algorithms which simulate natural evolution. They were
proposed about 30 years ago (Bremermann et al. (1965) and Rechenberg (1973)). Their application to
combinatorial optimization problems, however, only recently became an actual research topic. In recent
years numerous papers and books on the evolutionary optimization of NP-hard problems have been pub-
lished, in very different application domains such as biology, chemistry, computer aided design, crytpoanaly-
sis, identification of sytems, medicine, microelectronics, pattern recognition, production planning, robotics,
telecommunications, etc.

Holland (1975) introduced genetic algorithms. In these algorithms the search space of a problem is
represented as a collection of individuals. These individuals are represented by character strings (or matrices,
see Section 4.6, which are often referred to as chromosomes. The purpose of using a genetic algorithm is to
find the individual from the search space with the best “genetic material”’. The quality of an individual is
measured with an evaluation function. The part of the search space to be examined is called the population.

Roughly, a genetic algorithm works as follows (see Pseudocode 1).

First, the initial population is chosen, and the quality of this population is determined. Next, in every
iteration parents are selected from the population. These parents produce children, which are added to the
population. For all newly created individuals of the resulting population a probability near to zero exists
that they will “mutate”, i.e. that they will change their heriditary distinctions. After that, some individuals
are removed from the population according to a selection criterion in order to reduce the population to its
initial size. One iteration of the algorithm is referred to as a generation.

The operators which define the child production process and the mutation process are called the crossover



BEGIN AGA
Make initial population at random.
WHILE NOT stop DO
BEGIN
Select parents from the population.
Produce children from the selected parents.
Mutate the individuals.
Extend the population adding the children to it.
Reduce the extended population.
END
Output the best individual found.

END AGA

Figure 1: The pseudo-code of the Abstract Genetic Algorithm (AGA)

operator and the mutation operator respectively. Mutation and crossover play different roles in the genetic
algorithm. Mutation is needed to explore new states and helps the algorithm to avoid local optima. Crossover
should increase the average quality of the population. By choosing adequate crossover and mutation oper-
ators, the probability that the genetic algorithm results in a near-optimal solution in a reasonable number
of iterations is increased. There can be various criterias for stopping AGA. For example, if it is possible
to determine previously the number of iterations needed. But the stopping criteria should normally take
into account the uniformity of the population, the relationship between the average objective function with
respect to the objective function of the best individual, as well as not producing an increase in the objective
function of the best individual during a fixed number of cycles. Further description of genetic algorithms

can be found in Goldberg (1989) and Davis (1991).



3 The Travelling Salesman Problem

3.1 Introduction

As already started, in Section 1 the Travelling Salesman Problem is, given a collection of cities, in order
to determine the shortest route which visits each city precisely once and then returns to its starting point.
More mathematically we may define the TSP as follows:

TSP

Given an integer n > 3 and an n x n matrix C' = (¢;;), where each ¢;; is a nonnegative integer. Which
cyclic permutation 7 of the integers from 1 to n minimizes the sum Z?:] Cin(i) !

The Travelling Salesman Problem is a relatively old problem: it was documented as early as 1759 by
Euler (though not by that name), whose interest was in solving the knights’ tour problem. A correct solution
would have a knight visit each of the 64 squares of a chessboard exactly once on its tour. The term "travelling
salesman’ was first used in 1932, in a German book written by a veteran travelling salesman. The TSP was
introduced by the RAND Corporation in 1948. The Corporation’s reputation helped to make the TSP a
well known and popular problem. The TSP also became popular at that time due to the new subject of
linear programming and attempts to solve combinatorial problems.

Through the years the Travelling Salesman Problem has occupied the thoughts of numerous researchers.
There are several reasons for this. Firstly, the TSP is very easy to describe, yet very difficult to solve. No
polynomial time algorithm is known with which it can be solved. This lack of any polynomial time algorithm
is a characteristic of the class of NP-complete problems, of which the TSP is a classic example. Second, the
TSP is broadly applicable to a variety of routing and scheduling problems. Thirdly, since a lot of information
is already known about the TSP, it has become a kind of “test” problem; new combinatorial optimization
methods are often applied to the TSP so that an idea can be formed of their usefulness. Finally, a great
number of problems actually treated with heuristic techniques in Artificial Intelligence are related with the
search of the best permutation of n elements, as we will explain in the next paragraph..

Numerous heuristic algorithms have been developed for the TSP. Many of them are described in Lawler



et al. (1985). Kirkpatrick et al. (1983) were the first who tried to solve the TSP with simulated annealing.
The first researcher to tackle the Travelling Salesman Problem with genetic algorithms was Brady (1985).
His example was followed by Grefenstette et al. (1985); Goldberg and Lingle (1985) ; Oliver et al. (1987) and
many others. Other evolutionary algorithms have been applied to the TSP, amongst others, Fogel (1988);
Banzhaf (1990) and Ambati et al. (1991).

For an extensive discussion on the TSP we refer you to Lawler et al. (1985). Problem instances of the
Travelling Salesman Problem, with parts of the optimal solutions, can be found in a TSP library which is

available via ftp from:

ftp sfi.santafe.edu

Name (sfi.santafe.edu: foobar): anonymous
Password: < e-mail address >

ftp> cd pub/EC/etc/data/ TSP

ftp> type binary

ftp> get tsplib-1.2.tar.gz

This library was compiled by G. Reinelt. More information about it can be found in Reinelt (1991).

3.2 Problems in Artificial Intelligence related with the TSP

Similar types of problems in relation to the TSP could be the ordering of genes on a chromosome
(Gunnels et al. 1994), problems in cryptoanalysis, such as the discovery of a key of a simple substitution
cipher (Spillmann et al. 1993), or the breaking of transposition ciphers in cryptographic systems (Matthews
1993). In addition work carried out on systems identification, specifically those related with induction of
stochastic models, could benefit on the information about the genetic operators compiled in this revision.
Likewise, on the topic of Bayesian networks, a problem of evidence propagation according to Lauritzen and

Spiegelhalter’s algorithm (1988), can use this revision thanks to the search of the optimal order of elimination



of vertexes that cause triangularization of moral graph associated to the Bayesian network. Optimality is
defined according to the weight of the triangulated graph (Larranaga et al. 1996a). See also Larranaga et
al. (1996b) for an approximation to the problem of learning the optimal Bayesian network structure.

In another classic problem in Statistics, called Cluster Analysis, which consists of obtaining the optimal
classification of a set of individuals characterized by any number of variables, Lozano et al. (1996) developed
one method which uses the genetic crossover and mutation operators, related with path representation (see

Section 4).

4 Representations and Operators

4.1 Introduction

There have been many different representations used to solve the TSP problem using the Genetic Algo-
rithms. Some of them, such as binary representation (Section 4.2) and matrix representation (Section 4.6),
use binary alphabets for the tour’s representation. Although these binary alphabets constitute the standard
way of representation in Genetic Algorithms, in the TSP the problem is that the crossover and mutation
operators don’t constitute closed operations, that is that the results obtained using the above mentioned
operators are not valid tours. This is the reason why repair operators have been designed.

The most natural representation of one tour is denominated by path representation (See Section 4.3). In
this representation, the n cities that should be visited are put in order according to a list of n elements, so
that if the city ¢ is the j-th element of the list, city 7 is the j-th city to be visited. This representation has
allowed a great number of crossover and mutation operators to have been developed. We can affirm that
nowadays most of the TSP approximations using Genetic Algorithms, are realized using this representation.
Fundamental reason lie in its intuitive representation as well as in the good results obtained with it.

From a historic perspective the problems appear to carry out a schemata analysis, a theoretic element

for the study of Genetic Algorithm’s behavior, which is based on the concept of schema. A schema is a chain

formed by any characters, apart from the elements of the original alphabet, amplified by the symbol * which



can be interpreted as a lack of information. From a geometric point of view, a schema is equivalent to a
hyperplane in the search space. The objective of schemata analysis is to proportion the lower bound of the
expected number of individuals that in the following generation will be associated with a determined schema.
This was what inspired Grefenstette et al. (1985) to develop two new representations: adjacency represen-
tation and ordinal representation. The adjacency representation (Section 4.4) allows schemata analysis,
although the empirical results obtained with this representation have been poor. The ordinal representation
(Section 4.5) presents the advantage that classics crossover and mutation operators can be used without the
necessity of designing new operators. However just as with the previous representation, experimental results
obtained have been generally poor.

Table I shows the names of representations and crossover and mutation operators which are explained in

the rest of this section.

4.2 Binary Representation

In a binary representation of the n-cities TSP, each city is encoded as a string of [log,n] bits, an
individual is a string of n[log, n] bits. For example, in the 6-cities TSP the cities are represented by 3-bit
strings (see Table II).

Following the binary representation defined in Table II, the tour 1 —2 —3 —4 — 5 — 6 is represented by

(000001010011 100101).

Note that there exist 3-bit strings which do not correspond to any city: the strings are 110 and 111.

4.2.1 Classical Crossover

The classical crossover operator was proposed by Holland (1975). It works as follows. Consider, for

example, the following two solutions of the 6-cities TSP:

(000001010011100101) and



Summary of representations and operators.

Representation Operators Authors
Binary
Classical + repair operator Lidd (1991)
Path
Partially - Mapped Crossover Goldberg and Lingle (1985)
Order - Crossover Davis (1985)
Order Based Crossover Syswerda (1991)
Position Based Crossover Syswerda (1991)
Heuristic Crossover Grefenstette (1987b)
Edge Recombination Crossover Whitley et al. (1989)
Sorted Match Crossover Brady (1985)
Maximal Preservative Crossover ~ Miihlenbein et al. (1988)
Voting Recombination Crossover ~Miihlenbein (1989)
Alternating - Position Crossover —Larranaga et al. (1996a)
Displacement Mutation Michalewicz (1992)
Exchange Mutation Banzhaf (1990)
Insertion Mutation Fogel (1988)
Simple Inversion Mutation Holland (1975)
Inversion Mutation Fogel (1990)
Scrmable Mutation Syswerda (1991)
Adjacency
Alternanting Edge Crossover Grefenstette et al. (1985)
Subtour Chunks Crossover Grefenstette et al. (1985)
Heuristic Crossover 1 Grefenstette et al. (1985)
Heuristic Crossover 2 Jog et al. (1989)
Heuristic Crossover 3 Suh and Van Gucht (1987)
Ordinal
Classical operators Grefenstette et al. (1985)
Matrix

Intersection Crossover Operator

Tnion Croccover Operator

Fox and Mc Mahon (1987)

Fox and Mec Mahon (10R7)



Binary representation of the 6-cities TSP.

i | cityi | i | cityi

1| 000 | 4| 011

2| 001 | 5| 100

31 010 {6 101

(101100011 010001 000).

Randomly a crossover point is selected, where the strings are broken into separate parts. Suppose, for

example, that we choose the crossover point to be between the ninth and the tenth bit. Hence,
(000001010]011100101) and
(101100011 | 010001 000).
Recombinating the different parts results in
(000001 010010001 000) and

(101100011011100101),

which do not represent legal tours. To change the created offspring into legal tours we need some sort of
repair algorithm. From a general point of view, a repair algorithm is one that transfers those individuals

that do not belong to the search space into individuals of that search space.

4.2.2 Classical Mutation

The classical mutation operator was also developed by Holland (1975). It alters one or more bits with a
probability equal to the mutation rate, which is close to zero. For example, consider again the following

string which represents the tour 1 —2 -3 -4 -5 —6:
(000001010011 100101).

Suppose that the first and the second bit are selected for mutation. Hence, these bits change from a 0 into

a 1. The result is

(110001010011 100 101),

10



which does not represent a tour.
Lidd (1991) applied a binary vector approach for the TSP. However, although he managed to get some
high quality results for small TSPs (his largest test case consisted of 100 cities), the binary representation is

not considered to be very appropriate for the TSP as commented by Whitley et al. (1989):

7 Unfortunately, there is no practical way to encode a TSP as a binary string that does not
have ordering dependencies or to which operators can be applied in a meaningful fashion. Sim-
ply crossing strings of cities produces duplicates and omissions. Thus, to solve this problem
some variation on standard genetic crossover must be used. The ideal recombination operator
should recombine critical information from the parent structures in a non-destructive, meaningful

manner.”

4.3 Path Representation

The path representation is probably the most natural representation of a tour. Again a tour is represented
as a list of n cities. If city i is the j-th element of the list, city i is the j-th city to be visited. Hence, the

tour 3—2—-4—-1-7—-5—8—6 is simply represented by
(32417586).

Since for the TSP in combination with the path representation the classical operators are also not suit-

able, other crossover and mutation operators have been defined.

4.3.1 Partially-Mapped Crossover (PMX)

The partially-mapped crossover operator (Figure 2) was suggested by Goldberg and Lingle (1985). It
passes on ordering and value information from the parent tours to the offspring tours. A portion of one
parent’s string is mapped onto a portion of the other parent’s string and the remaining information is

exchanged. Consider, for example the following two parent tours:
(12345678) and

11



(123456]78) (375(16824)
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offl: (423[16875) off2(37845621)

Figure 2: Partially-mapped crossover operator (PMX)

(37516824).

The PMX operator creates an offspring in the following way. First, it selects uniformly at random two
cut points along the strings, which represent the parent tours. Suppose that the first cut point is selected
between the third and the fourth string element, and the second one between the sixth and the seventh
string element. For example,

(123]456|78) and

(375]168]24).

The substrings between the cut points are called the mapping sections. In our example they define the
mappings 4 <+ 1, 5 & 6 and 6 +< 8. Now the mapping section of the first parent is copied into the second

offspring, and the mapping section of the second parent is copied into the first offspring, growing;:

offspring 1: (zzz|168|zz) and

offspring 2: (zx2[456 |z x).

Then offspring i (i = 1,2) is filled up by copying the elements of the i-th parent. In case a city is already
present in the offspring it is replaced according to the mappings. For example, the first element of offspring
1 would be a 1 like the first element of the first parent. However, there is already a 1 present in offspring
1. Hence, because of the mapping 1 <+ 4 we choose the first element of offspring 1 to be a 4. The second,
third and seventh elements of offspring 1 can be taken from the first parent. However, the last element of

offspring 1 would be an 8, which is already present. Because of the mappings 8 <> 6, and 6 < 5, it is chosen

12



to be a 5. Hence,

offspring 1: (423|168 75).

Analogously, we find

offspring 2: (378|456]|21).

Note that the absolute positions of some elements of both parents are preserved.

A variation of the PMX operator is described in Grefenstette (1987b): given two parents the offspring is
created as follows. First, the second parent string is copied onto the offspring. Next, an arbitrary subtour
is chosen from the first parent. Lastly, minimal changes are made in the offspring necessary to achieve the

chosen subtour. For example, consider parent tours

(12345678) and

(15372468),

and suppose that subtour (345) is chosen. This gives offspring

(13457268).

4.3.2 Cycle Crossover (CX)

The cycle crossover operator (Figure 3) was proposed by Oliver et al. (1987). It attempts to create an

(12345678) (24687531

d

Fm;:::ijj‘/zzgg?/

Secondcyclee (126 47538)

Figure 3: Cycle crossover (CX)

offspring from the parents where every position is occupied by a corresponding element from one of the

13



parents. For example, consider again the parents

(12345678) and

(24687531).

Now we choose the first element of the offspring equal to be either the first element of the first parent
tour or the first element of the second parent tour. Hence, the first element of the offspring has to be a 1 or
a 2. Suppose we choose it to be 1,

(1 % % % % % %),

Now, consider the last element of the offspring. Since this element has to be chosen from one of the
parents, it can only be an 8 or a 1. However, if a 1 were selected, the offspring would not represent a legal
tour. Therefore, an 8 is chosen,

(1 % % % % % x8).

Analogously, we find that the fourth and the second element of the offspring also have to be selected
from the first parent, which results in

(12 x4 % % % 8).

The positions of the elements chosen up to now are said to be a cycle. Now consider the third element
of the offspring. This element we may choose from any of the parents. Suppose that we select it to be from
parent 2. This implies that the fifth, sixth and seventh elements of the offspring also have to be chosen from

the second parent, as they form another cycle. Hence, we find the following offspring;:

(12647538).

The absolute positions of on average half of the elements of both parents are preserved. Oliver et al.
(1987) concluded from theoretical and empirical results that the CX operator gives better results for the

Travelling Salesman Problem than the PMX operator.

4.3.3 Order Crossover (0X1)

14



The order crossover operator (Figure 4) was proposed by Davis (1985). The OX1 exploits a property

of the path representation, that the order of cities (not their positions) are important. It constructs an

(12/345678) (246/87531

offl: (45678123) off2(87345126)

Figure 4: Order crossover (OX1)

offspring by choosing a subtour of one parent and preserving the relative order of cities of the other parent.

For example, consider the following two parent tours:
(12345678) and

(24687531)

and suppose that we select a first cut point between the second and the third bit and a second one between

the fifth and the sixth bit. Hence,

(12|1345|678) and
(24|687[531).

The offspring are created in the following way. First, the tour segments between the cut point are copied
into the offspring, which gives
(* x |345] % %) and
(% % |687T] % xx%).
Next, starting from the second cut point of one parent, the rest of the cities are copied in the order in
which they appear in the other parent, also starting from the second cut point and omitting the cities that

are already present. When the end of the parent string is reached, we continue from its first position. In our

example this gives the following children:
(871345|126) and
(45]687]123).

15



4.3.4 Order Based Crossover (0X2)

The order based crossover operator (Syswerda 1991) selects at random several positions in a parent tour,
and the order of the cities in the selected positions of this parent is imposed on the other parent. For

example, consider again the parents

(12345678) and
(24687531)

3

and suppose that in the second parent the second, third, and sixth positions are selected. The cities in these
positions are city 4, city 6 and city 5 respectively. In the first parent these cities are present at the fourth,

fifth and sixth positions. Now the offspring is equal to parent 1 except in the fourth, fifth and sixth positions:

(123 % % x 78).

We add the missing cities to the offspring in the same order in which they appear in the second parent
tour. This results in

(12346578).

Exchanging the role of the first parent and the second parent gives, using the same selected positions,

(24387561).

4.3.5 Position Based Crossover (POS)

The position based operator (Syswerda 1991) also starts by selecting a random set of positions in the
parent tours. However, this operator imposes the position of the selected cities on the corresponding cities

of the other parent. For example, consider the parent tours

(12345678) and

(24687531),
and suppose that the second, third and the sixth positions are selected. This leads (Figure 5) to the following

16



offl: (14623578) offz2(423

Figure 5: Position based crossover (POS)

offspring;:

(14623578) and

(42387651).

4.3.6 Heuristic Crossover

Grefenstette (1987b) developed a class of heuristic crossover operators which emphasize edges. These

operators create an offspring in the following way:
1. They first select at random a city to be the current city of the offspring.

2. Second, they consider the four (undirected) edges incident to the current city. Over these edges a
probability distribution is defined based on their cost. The probability associated with an edge incident

to a previously visited city is equal to zero.

3. An edge is selected on this distribution. (If none of the parental edges leads to an unvisited city a

random edge is selected.)
4. The steps 3 and 4 are repeated until a complete tour has been constructed.

In case a uniform probability distribution is chosen, the offspring inherits about 30% of the edges of every
parent, and about 40% of the edges are randomly selected. The operator described above was also used by

Liepins et al. (1987).

4.3.7 Genetic Edge Recombination Crossover (ER)

17



The genetic edge recombination crossover operator was developed by Whitley et al. (1989, 1991).

It is an operator which is suitable for the symmetrical TSP; it makes the assumption that only the values
of the edges are important, not their direction. In accordance with this assumption, the edges of a tour can
be seen as the carriers of the heriditary information. The ER operator attempts to preserve the edges of the
parents in order to pass on a maximum amount of information to the offspring. The breaking of edges is
seen as unwanted mutation.

The problem that normally occurs with operators which follow an edge recombination strategy, is that
they often leave cities without a continuing edge (Grefenstette 1987). These cities become isolated and new
edges have to be introduced. The ER operator tries to avoid this problem by first choosing cities which have
few unused edges. Of course, there has to be a connection with a city before it can be selected. The only
edge that the ER operator fails to enforce is the edge from the final city to the initial city. Therefore, a
limited amount of mutation may occur. The mutation rate will be at most 1/n, where n is the number of
cities. In practice the mutation rate turned out to be between 1 — 5% .

Now, how does the ER operator work? It uses a so-called “edge map”, which gives for each city the edges

of the parents that start or finish in it. Consider for example these tours:

(123456) and

(243156).

The edge map for these tours is shown in Table III.

The genetic edge recombination operator works according to the following algorithm:

1. Choose the initial city from one of the two parent tours. (It can be chosen at random or according to

criteria outlined in step 4). This is the “current city”.

2. Remove all occurrences of the “current city” from the left-hand side of the edge map. (These can be

found by referring to the edge list for the current city).

3. If the current city has entries in its edge list go to step 4; otherwise, go to step 5.

4. Determine which of the cities in the edge list of the current city has the fewest entries in its own edge

18



5.

The edge map for the tours (123456) and (243156).

city | connected cities
1 2,6,3,5
2 1,3,4,6
3 2,4, 1
4 3,5,2
5 4,6,1
6 1,5,2

list. The city with the fewest entries becomes the “current city”. Ties are broken at random. Go to

step 2.

If there are no remaining “unvisited” cities, then STOP. Otherwise, choose at random an “unvisited”

city and go to step 2.

For our example tours we get:

1.

The

The new child tour is initialized with one of the two initial cities from its parents. Initial cities 1 and

2 both have four edges; randomly choose city 2.

. The edge list for city 2 indicates the candidates for the next city are the cities 1, 3, 4 and 6. The cities

3, 4 and 6 all have two edges: the initial three minus the connection with city 2. City 1 now has three

edges and therefore it is not considered. Assume that city 3 is randomly chosen.

City 3 now has edges to city 1 and city 4. City 4 is chosen next, since it has fewer edges.

City 4 only has an edge to city 5, so city 5 is chosen next.

City 5 has edges to the cities 1 and 6, both of which have only one edge left. Randomly choose city 1.

City 1 must now go to city 6.

resulting tour is

(234516),
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and is composed entirely of edges taken from the two parents.

The ER operator does not take into account, the common sequences of the parent tours. Therefore, an
enhancement of the ER operator was developed in which the edges starting from the current city which are
present in both parents have priority above the edges which are unique for one of the parents. There also
exist modifications for making better choices, when random edge selection is necessary (Starkweather et al.
1991).

On the other hand, the edge recombination operator indicates clearly that the path representation might
be too poor to represent important properties of a tour - it is for this reason that it was complemented by
the edge list.

The ER operator was tested by Whitley et. al (1989) on three TSPs with 30, 50, and 75 cities - in all
cases it returned a solution better than the previously ”best known” sequence.

Whitley et al. (1989, 1991) showed that the ER operator may also be used in combination with the
second type of binary representation described in Section 4.2. If we define the ordered list: (1,2), (1,3), (1,4),
(1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), the parents of our example may be
written as

parent 1: 100011000100101,

parent 2: 010100101100001.

In our example, the created offspring is represented by

000111001100100.

It is easy to see that all of the edges of the offspring except its last one are taken from one of the parents:

The edge (5,6) occurred in both parents. However, it was not passed on to the offspring.
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4.3.8 Sorted Match Crossover

The sorted match crossover operator was proposed by Brady (1985). It (see also Miihlenbein et al. 1988)
searches for subtours in both the parent tours which have the same length, which start in the same city, which
end in the same city and which contain the same set of cities. If such subtours are found the cost of these
substrings are determined. The offspring is constructed from the parent which contains the subtour with
the highest cost by substituting this subtour for the subtour with the lowest cost. Consider, for example,
the parent tours

(123456 78) and

(34657281).

The first parent contains the subtour (456 7), and the second parent the subtour (465 7). These subtours
have the same length, both begin in city 4, both end in city 7, and both contain the same cities. Suppose
that the cost of the subtour (456 7) is higher than the cost of the subtour (4657). Then, the following
offspring is created:

(12346578).

Miihlenbein et al. (1988) concluded that the sorted match crossover was useful in reducing the computa-

tion time, but that it is a weak scheme for crossover.

4.3.9 Maximal Preservative Crossover (MPX)

The maximal preservative operator was introduced by Miihlenbein et al. (1988). It works in a similar way
to the PMX operator. It first selects a random substring of the first parent whose length is greater than or
equal to 10 (except for very small problem instances), and smaller than or equal to the problem size divided
by 2. These restrictions on the length of the substring are given to assure that there is enough information
exchange between the parent strings without losing too much information from any of these parents. Next,

all the elements of the chosen substring are removed from the second parent. After this, the substring chosen
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from parent 1 is copied into the first part of the offspring. Finally, the end of the offspring is filled up with

cities in the same order as they appear in the second parent. Hence, if we consider the parent tours

(12345678) and

(24687531),

and we select the substring (345) from the first parent. The MPX operator gives the following offspring

(34526871).

The advantage of the MPX operator is that it only destroys a limited number of edges; the maximum
number of edges which may be destroyed is equal to the length of the chosen substring. Sometimes, at the
beginning of the execution of an algorithm this maximum number might be reached. However, with the
progress of the computation, solutions have more common edges, so that the number of destroyed edges
decreases. Miihlenbein et al. (1988) performed additional mutation in case less than 10% of the edges were

destroyed.

4.3.10 Voting Recombination Crossover (VR)

The voting recombination operator (Mithlenbein 1989) does not originate from biology. It can be seen as
a p-sexual crossover operator, where p is a natural number greater than or equal to 2. It starts by defining a
threshold, which is a natural number smaller than or equal to p. Next, for every i € {1,2,...,n} the set of
i-th elements of all the parents is considered. If in this set an element occurs at least the threshold number

of times, it is copied into the offspring. For example, if we consider the parents (p=4)

(143526),(124356),

(321546),(123456)

and we define the threshold to be equal to 3 we find

(12zxx6).
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The remaining positions of the offspring are filled with mutations. Hence, our example might result in
(124536).

We remark that Miihlenbein (1989) used the voting recombination operator in an evolutionary algorithm
for the Quadratic Assignment Problem (QAP) instead of for the TSP. This is an assignment problem in

which generalizing the conditions, the objective function changes from a lineal one to a quadratic one.

4.3.11 Alternating-Position Crossover (AP)

The alternating position crossover operator ( Larrafiaga et. al (1996a)) simply creates an offspring by
selecting alternately the next element of the first parent and the next element of the second parent, omitting

the elements already present in the offspring. For example, if parent 1 is
(12345678)

and parent 2 is
(37516824)

3

the AP operator gives (Figure 6) the following offspring

(13275468).

(1234567

offl: (13275468)

Figure 6: Alternating-position crossover (AP)

Exchanging the parents results in

(317254638).
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4.3.12 Displacement Mutation (DM)

The displacement mutation operator (Michalewicz 1992) first selects a subtour at random. This subtour

is removed from the tour and inserted in a random place. For example, consider the tour represented by
(12345678),
and suppose that the subtour (34 5) is selected. Hence, after the removal of the subtour we have
(12678).

Suppose that we randomly select city 7 to be the city after which the subtour is inserted. This results in

(Figure 7)

(12]345678)
(1267(3458)

Figure 7: Displacement mutation (DM)

(12673458).

Displacement mutation is also called cut mutation (Banzhaf 1990).

4.3.13 Exchange Mutation (EM)

The exchange mutation operator (Banzhaf 1990) randomly selects two cities in the tour and exchanges

them. For example, consider the tour represented by
(12345678),
and suppose that the third and the fifth city are randomly selected. This results in (Figure 8)

(12543678).
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(12345678)
P
(12543678)

Figure 8: Exchange mutation (EM)

The exchange mutation operator is also referred to as the swap mutation operator (Oliver et al. 1987) , the
point mutation operator (Ambati et al. 1991) , the reciprocal exchange mutation operator (Michalewicz 1992),
or the order based mutation operator (Syswerda 1991). Ambati et al. (1991) used repeated exchange muta-
tion. They choose the probability of the performance of exactly m exchanges equal to p(™—1) (1 — p), where
p was a parameter and p € (0,1). Beyer (1992) also used repeated exchange mutation. He, however, intro-
duced a control parameter s to determine the number of exchanges. Fach individual had its own s-value,
the s-value of an offspring was determined by the s-values of its parents. At the beginning of the algorithm
a high number of exchanges was carried out. Via the algorithm, the number of exchanges was lowered to 1.

This method is adopted from Schwefel (1975).

4.3.14 Insertion Mutation (ISM)

The insertion mutation operator ((Fogel 1988); (Michalewicz 1992)) randomly chooses a city in the tour,

removes it from this tour, and inserts it in a randomly selected place. For example, consider again the tour
(12345678)

3

and suppose that the insertion mutation operator selects city 4, removes it, and randomly inserts it after

city 7. Hence, the resulting offspring is (Figure 9)

(123@5678)

(123567@8)

Figure 9: Insertion mutation (ISM)
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(12356748).

The insertion mutation operator is also called the position based mutation operator (Syswerda 1991).

4.3.15 Simple Inversion Mutation (SIM)

The simple inversion mutation operator (Holland 1975 and Grefenstette 1987) selects randomly two cut
points in the string, and it reverses the substring between these two cut points. For example, consider the
tour

(12345678),

and suppose that the first cut point is chosen between city 2 and city 3, and the second cut point between

the fifth and the sixth city. This results in (Figure 10)

(12[345678)
(12(543678)

Figure 10: Simple inversion mutation (SIM)

(12543678).

The simple inversion mutation operator served as the basis for the 2-opt heuristic for the TSP developed

by Lin (1965) and is also used in the application of simulated annealing to the TSP (Kirkpatrick et al. 1983).

4.3.16 Inversion Mutation (IVM)

The inversion mutation (Fogel 1990, 1993) is similar to the displacement operator. It also randomly
selects a subtour, removes it from the tour and inserts it in a randomly selected position. However, the

subtour is inserted in reversed order. Consider again our example tour

(12345678)

3
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and suppose that the subtour (34 5) is chosen, and that this subtour is inserted in reversed order inmediately

after city 7. This gives (Figure 11)

(1267/543]8)

Figure 11: Inversion mutation (IVM)

(12675438).

Banzaf (1990) referred to the insertion mutation operator as the cut-inverse mutation operator.

4.3.17 Scramble Mutation (SM)

The scramble mutation operator (Syswerda 1991) selects a random subtour and scrambles the cities in
it. For example, consider the tour

(12345678)

3

and suppose that the subtour (456 7) is chosen. This might result in (Figure 12)

(12345678)

(123B5674B)

Figure 12: Scramble mutation (SM)

(12356748).

We would like to point out that it was suggested in connection with scheduling problems instead of with
the TSP.
In this section we have included different crossover and mutation operators that had been developed

for the denominated path representation. The majority of the work in which the optimal permutation is

27



obtained uses this representation. However, from a historic point of view, the detection of the problems
done by Grefenstette et al. (1985), problems that appear with this representation in hyperplans analysis,
are those that have caused the introduction of two new representations (ordinal and adjacency) which offer
some of improvements over the path representation.

According to Grefenstette et al. (1985):

”

. there is a problem in applying the hyperplane analysis of GA’s to this representation. The
definition of a hyperplane is unclear in this representation. For example, (a, *, *, * *) appears
to be a first order hyperplane, but it contains the entire space. The problem is that in this
representation, the semantics of an allele in a given position depends on the surrounding alleles.
Intuitively, we hope that GA’s will tend to construct good solutions by identifying good building
blocks and eventually combining these to get larger building blocks. For the TSP, the basic
building blocks are edges. Larger building blocks correspond to larger subtours. The path
representation does not lend itself to the description of edges and longer subtours in ways which

are useful to the GA”.

4.4 Adjacency Representation

In the adjacency representation (Grefenstette et al. 1985) a tour is represented as a list of n cities. City

j is listed in position i if, and only if, the tour leads from city 7 to city 7. Thus, the list

(35764821)

represents the tour

1-3-7-2-5-4-6-8.

Note that any tour has one unique adjacency list representation.

An adjacency list may represent an illegal tour. For example,

(35762418)
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represents the following collection of cycles:

1-3-7,2—5, 4—6 and 8.

It is easy to see that for the adjacency representation the classical crossover operator may result in illegal
tours. A repair algorithm might be necessary. Other crossover operators were defined and investigated for

the adjacency representation. We will describe them one by one.

4.4.1 Alternating Edge Crossover

The alternating edge crossover works as follows (Grefenstette et al. 1985): first it chooses an edge from
the first parent at random. Second, the partial tour created in this way is extended with the appropriate
edge of the second parent. This partial tour is extended by the adequate edge of the first parent, etc. The
partial tour is extended by choosing edges from alternating parents. In case an edge is chosen which would
produce a cycle into the partial tour, the edge is not added. Instead, the operator selects randomly an edge
from the edges which do not produce a cycle.

For example, the result of an alternating edge crossover of the parent

(238791456)

(751692843)

might be

(258791643).

The first edge chosen is (1,2); it is chosen from the first parent. The second edge chosen, edge (2,5), is
selected from the second parent, etc. Note that the only random edge introduced is edge (7,6) instead of
edge (7,8).

Experimental results with the alternanting edges operator have been uniformly discouraging. The obvious
explanation seems to be that good subtours are often disrupted by the crossover operator. Ideally, an operator
ought to promote the development of coadapted alleles, or in the TSP, longer and longer high performance

subtours. The next operator was motivated by the desire to preserve longer parental subtours.
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4.4.2 Subtour Chunks Crossover

Using the subtour chunks operator (Grefenstette et al. 1985), an offspring is constructed from two parent
tours as follows: first it takes a random length subtour of the first parent. This partial tour is extended
by choosing a subtour of random length from the second parent. The partial tour is extended by taking
subtours from alternating parents. If a subtour is selected from one of the parents which would lead to an
illegal tour, it is not added. Instead, an edge is added which is chosen at random from the edges that do not

produce a cycle into the partial tour.

4.4.3 Heuristic Crossover

The heuristic crossover operator (Grefenstette et al. 1985) first selects at random a city to be the starting
point of the offspring’s tour. Then, the edges which start from this city are compared and the shorter of
these two edges is chosen. Next, the city on the other side of the chosen edge is selected as a reference city.
The edges which start from this reference city are compared and the shortest one is added to the partial tour,
etc. If, at some stage, a new edge would introduce a cycle into the partial tour, then the tour is extended

with an edge chosen at random from the remaining edges which do not introduce cycles.

Modifications

Jog et al. (1989) suggested the following modification. In case choosing the shortest edge produces a
cycle into the partial tour, the largest edge is checked. If choosing this edge does not lead to an illegal tour,
it is accepted. Otherwise, the shortest edge from a pool of ¢ randomly selected edges is chosen, where ¢ is
a parameter. This variation of the heuristic operator tries to combine short subpaths of the different parent
tours. However, it might be possible that the operator is not able to remove all undesirable crossings of
edges. Therefore, it is not suitable for fine local tuning.

Suh and Van Gucht (1987) introduced a heuristic crossover operator which is based on the 2-opt algorithm

30



of Lin (1965). This operator selects two random edges, (k,l) and (m,n), and checks whether

d(k,l) +d(m,n) > d(k,n) + d(m,1),

where d(i, j) represents the distance between city i and city j. In case the inequality above is true, the edges
(k) and (m,n) are replaced by the edges (k,n) and (m,l).

The main advantage of the adjacency representation is that it allows hyperplane analysis, also called
schemata analysis (Oliver et al. (1987), Grefenstette et al. (1985) and Michalewicz (1992).

Unfortunately, all the operators described above give poor results. In particular, the experimental results
with the alternating edge operator have been uniformly discouraging. This is because this operator often
destroys good subpaths of the parent tours. Therefore, the subtour chunk operator by choosing subpaths
instead of edges from the parent tours, performs better than the alternating edge operator. However, it
still has quite a low performance, because it does not take into account any information available about the
edges. The heuristic crossover operator on the other hand, selects the better edge of the two possible edges,
and therefore it performs far better than the other two operators. However, the performance of the heuristic
operator is not remarkable either (Grefenstette et al. 1985). Note that also other mutation operators have

to be developed, since the classical mutation operator is only defined for binary strings.

4.5 Ordinal Representation

Also in the ordinal presentation, which was introduced by Grefenstette et al. (1985) a tour is represented
as a list of n cities. The i-th element of the list is a number in the range from 1 to n — i + 1. There exists
an ordered list of cities, which serves as a reference point.

The easiest way to explain the ordinal representation is by giving an example. Assume, for example, that
the ordered list is given by

L=(12345678).

Now the tour 1 —5—-3—-2 -8 —4 — 7 — 6 is represented by

T=(14214121).

31



This should be interpreted as follows. The first number of T is a 1. This means that to get the first city of
the tour we have to take the first element of list L and remove it from L. The partial tour is: 1. The second
element of T is a 4. Therefore, to get the second city of the tour we have to get the fourth element of list L,
which is city 5. We remove city 5 from list L. The partial tour is: 1—5. If we continue in the above described
way until all the elements of L have been removed, we finally find the tour 1 -5 —-3—-2—-8—-4—-7—6.

The advantage of the ordinal presentation is that the classical crossover operator can be used. This
follows from the fact that the i-th element of the tour representation is always a number in the range from
1ton —i+ 1. It is easy to see that partial tours to the left of the crossover point do not change, whereas
partial tours to the right of the crossover point are disrupted in a quite random way.

As predicted by the above consideration of subtour disruptions, experimental results using the ordinal

representation have been generally poor.

4.6 Matrix Representation

At least three attempts have been done to use a binary matrix representation.
1. Fox and McMahon (1987) suggested representing a tour as a matrix in which the element in row i and
column j is a 1 if, and only if, in the tour city i is visited before city j. For example, the tour 2 -3 —-1—-4

is represented by the matrix:

0 0 01
101 1
1 0 01
0 0 0O

Suppose that a solution of the n-cities TSP is represented by matrix M. M has the following properties:

LY S myy = e (i,j €{1,2,....n}),
2. mi; =0 (i€ {1,2,...,n}),
3. (mij=1Amj, =1) = my =1 (i,7,k € {1,2,...,n}).
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In case the number of 1’s in the matrix is less than %n(n — 1) and the other requirements are satisfied,
it is possible to complete the matrix in such a way that it represents a legal tour.
For this matrix representation two new crossover operators were developed: the intersection operator

and the union operator. The intersection operator constructs an offspring O from parent P; and P, in the

following way. First, for all i,j € {1,2,...,n} it defines

1 if P1ij = P2.ij = 1,
O,jj =
0 otherwise.
Second, some 1’s which are unique for one of the parents are “added” to O, and the matrix is completed

with the help of an analysis of the sum of rows and columns, in such a way that the result is a legal tour.

For example, the parent tours 2 —3 —1 —4 and 2 — 4 — 1 — 3 which are represented by

0 0 01 0 010
1 011 1 011

and ,
1 0 01 0 00O
00 00 1010

give after the first phase

000 0

1 0 1 1

0 00O

0000

This matrix can be completed in six different ways, since the only restriction on the offspring tour is that

it starts in city 2. One possible offspring is the tour 2 — 1 — 4 — 3 which is represented by:

0 011
1 011
0 0 0O
0 0 10

The union operator divides the set of cities into two disjoint groups. See Fox and McMahon (1987) for a

special method of making this division. For the first group of cities the matrix elements of the offspring are
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taken from the first parent, for the second group they are selected from the second parent. The resulting
matrix is completed by an analysis of the sum of the rows and columns. For example, consider again the
two parents given above, and suppose that we divide the set of cities into {1,2} and {3,4}. Hence, after the

first step of the union operator we have

0 0 = =z
1 0 z =z
zr z 0 0 ,
z z 1 0
which might be completed to
0 0 0O
10 00
1100 7
1110

which represents the tour 4 —3 —2 — 1.

Fox and McMahon did not define a mutation operator.

The experimental results on different topologies of the cities reveal an interesting characteristic of the
union and intersection operators, which allows progress to be made even when the elitism (preserving the
best) option was not used. This was not the case for either ER or PMX operators.

2. Seniw (1991) had another approach. He defined the matrix element in the i-th row and the j-th
column to be 1 if, and only if, in the tour city j is visited inmediately after city i. This implies that a legal
tour is represented by a matrix of which each row and each column contains precisely one 1. We remark
that a matrix which has precisely one 1 in each row and in each column does not necessarily represent a

legal tour. For example, consider the matrices

0 0 01 01 00
00 10 10 00
and ,
1 0 00 0 0 0 1
01 00 0 010

34



where the first matrix represents the tour 2 —3 —1—4, and the second one the set of subtours {1 —2, 3 —4}

Mutation is defined as follows: first several rows and columns are selected. The elements in the intersec-
tions of these rows and columns are removed and randomly replaced, though in such a way that the result
is a matrix of which each row and each column contains precisely one 1. For example, consider again the
matrix representation of the tour 2 — 3 — 1 — 4 and suppose that we select the first and the second row and
the third and the fourth column. First, the matrix elements in the intersections of the rows and columns are

removed. Hence,

0 0 =z =
0 0 z =z
10 0 0
01 0 O
Randomly replacing the elements may give
0 010
0 0 01
1.0 0 0
01 00

Note that this matrix does not represent a legal tour. The crossover operator which was defined creates

an offspring O from parents P, and P, as follows. First, for all 4,5 € {1,2,..., n} it defines

1 if Pi,ij = P2,ij = 1,
Oij =

0 otherwise.

Second, it alternately takes a 1 from one of the parents, which is unique for that parent, and changes the
corresponding matrix element of the offspring from a 0 into a 1. Finally, if any rows in the offspring still do
not contain a 1, 1s are added randomly, though in such a way that the result is a matrix which has precisely

one 1 in each row and in each column. For example, the parent tours 2 -3 —1—4 and 2 —4 — 1 — 3, which
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are represented by

0 0 01 0 010
0 010 0 0 01
and ,
10 00 01 0 0
01 00 10 00
may create the following offspring:

0 0 01

0 010

01 0 0 ,

10 00

which is again not a representation of a legal tour.

We have seen that the defined operators do not necessarily result in legal tours. It is possible that the
operators convert the parent tour(s) into a collection of subtours. These subtours are allowed in the hope
that natural clustering takes place (however, subtours which contain less than ¢ cities are not allowed, where
q is a parameter). After the execution of the genetic algorithm the best solution found is converted into a
legal tour. This is done with the help of a deterministic algorithm which combines pairs of subtours.

This evolution program gave a reasonable performance on several test cases from 30 cities to 512 cities.

3. The last approach based on a binary matrix representation was proposed by Homaifar and Guan (1991).
They used the same representation as Seniw (1991), but in combination with different crossover and mutation
operators. The crossover operators they used exchange all entries of the parent matrices either after a 1-point
crossover or a 2-point crossover. Afterwards, an additional “repair algorithm” is run to assure that the result
is a matrix of which each row and each column contains precisely one 1, and to connect any cycles to produce
a legal tour.

A 1-point crossover can be seen as follows. Consider the representations of the tours 1 — 2 —3 — 4 and
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4 —3—2—1. These are

1

respectively. Suppose, that the crossover point is chosen between the second and the third column.

Hence,

Crossover results in

1

which of course do not represent legal tours.
A 2-point crossover works according to the same idea. Consider again the two parent tours given above,

and suppose that we choose the first crossover point to be between the first and the second column, and the

0

0

0

1

0

and

and

and

0 0 01
10 0 0
01 00
0010

0 0/0 1
1 010 0
0 1]0 0
0 0|1 O
0 0j]0 O
1 01 0
0 10 1
0 0j]0 O

second to be between the third and the fourth column. Hence,

and
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The result of the crossover is

0{0 0]0 0|1 0|1
0{0 0]0 110 110
and ,
0|1 0|1 00 0|0
10 110 00 0|0

which again do not represent legal tours.
The mutation operator used by Homaifar and Guan (1991) was heuristic inversion. This operator reverses
the order of the cities between two randomly chosen cut points. If the distance between two cut points is

large, the operator explores connections between “good” paths, otherwise the operator performs local search.

The reported results (Homaifar et al. 1993) indicate that this approach performed successfully on 30-100

city TSP problems.

5 Hybridization with Local Search

Genetic algorithms can be applied to problems of which very little knowledge is available. However,
Grefenstette (1987b) showed that in many occasions it is possible to incorporate problem-specific knowledge
in these algorithms. One example of incorporated knowledge we have already seen: the heuristic crossover
operator (see Section 4.4.3).

Another opportunity to use problem-specific knowledge is in the determination of the initial population.
The initial population can be chosen at random. However, it is also possible to start with a population
which already has some quality. This is called seeding. Lawler et al. (1985) and Johnson (1990) described
how a population of medium quality can be created. Note that seeding has to be done very carefully, since a
genetic algorithm started with an initial population of little variety may quickly converge to a local optimum.
Banzhaf (1990) and Grefenstette (1987b) defined measures of the population variance. An algorithm which
is frequently used for seeding is the 2-opt algorithm (Lin 1965).

While the genetic algorithms are not well suited for finely tuned local search, Goldberg (1989) suggested
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crossing them with a local search algorithm. In this way the evolutionary algorithm searches for the “hills”,
and the local search algorithm climbs them. Several attempts have been done to implement Goldberg’s
suggestion, amongst others by Ackley (1987); Gorges-Schleuter (1989); Jog et al. (1989); Miihlenbein (1989,
1991); Miihlenbein and Kindermann(1989); Miihlenbein et al. (1987, 1988); Suh and Van Gucht (1987) and

Ulder et al.(1990). They all used algorithms of the following structure:

1. Construct a (random or seeded) initial population.

2. Apply local search to every individual of the initial population and replace every individual by the

better individual (e.g. local optimum), which was reached by applying local search to it.

3. Create new individuals with the help of genetic operators and add them to the population.

4. Use local search to replace each new created individual in the current population by a better individual

(e.g. local optimum).

5. Reduce the extended population to its original size in accordance with a selection criterion.

6. If it does not comply with a stopping criteria: go to step 3.

The local search in the steps 2 and 4 may be performed with, e.g. the 2-opt algorithm (Lin 1965) or
the Or-opt algorithm (Or 1976 and Lawler et al. 1985). Ulder et al. (1990) used a local search algorithm
based on Lin and Kernighan neighbourhoods (Lin and Kernighan 1973). Lin et al. (1993) even applied
simulated annealing. They worked with neighbourhoods determined by the following swapping strategies:
random 2-exchange and locally adjacent swap. Also a combination of different local search techniques may
be chosen: Prinetto et al. (1993) applied in every generation Or-opt, 2-opt, and Group Optimization with a
probability of 0.5, 0.3 and 0.2 respectively. They also used a combination of several crossover operators.

Instead of using local search in every iteration of a genetic algorithm it is also possible to wait the
algorithm has reached an interesting stage in the search process. Another possibility is to perform local
search only when the genetic algorithm has terminated.

Miihlenbein and Gorges-Schleuter developed a parallel genetic algorithm based on the above described

structure (Gorges-Schleuter 1989; Miihlenbein 1989, 1991 and Miihlenbein et al. 1987, 1988). They called
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their algorithm ASPARAGOS (ASynchronous PARAllel Genetic Optimization Strategy). Another parallel

genetic algorithm for the Travelling Salesman Problem is described in Fogel (1990).

6 Experimental results with the path representation

6.1 Introduction

Faced with the impossibility of carrying out an analytic comparision of the different operators presented
in the previous section, we have carried out an empirical comparision between the different combination of
crossover and mutation operators presented in relation with the path representation.

The Genetic Algorithm that we used follows the principles of GENITOR (Whitely et al. 1989). In
the mentioned algorithm, only one new individual is created in each iteration of the algorithm. This new
individual replaces the worst of the individuals existing in the population, only if its evaluation function is
better. The criteria for stopping the algorithm is double. In this way, if in 1000 successive iterations the
average cost of the population has not decreased, the algorithm will be stoped, not allowing, whatsoever
more than 50000 evaluations in each search. In the experiments presented here the following parameters have
been established: size of population (A = 200), probability of mutation (p,, = 0.01) and selective pressure
(b = 1.90). The last parameter, introduced in GENITOR, is related with the assigning of probability for
the selection of the parents. In short, it indicates the preference of the selection awarded to the best of the
individuals of the population making a comparison with the average individual. In this way, for example,
if b=2 this signifies that the best individual has been assigned the probability of converting itself into the
father which is double that of the average individual.

For each of the 48 (8 x 6) combinations between crossover and mutation operators considered, 10 searches
have been realized. The searches have been realized using the SPARC-server 100 computer , under the Solaris
2.3 operating system. The treatment of the data obtained in the experiments has been realized with the
SPSS package (1988), studing the statistical significance (a = 0.05) of the average results using Kruskal -

3

Wallis test.
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6.2 Results

The following files have been used in the empirical study: Distances in kilometers between the 47 capitals
of the Spanish peninsular provinces, as well as the well known Grétschels24, and Grotschels48, which have
been used previously in empirical comparisons. These are two files that can be obtained via ftp in many sites,
that represent the distances between 24 and 48 imaginary cities. They are oftenly used in TSP problems to
know the fitness of the algorithm we use, and can be defined like a classical experiment in the TSP.

Capitals of the Spanish peninsular provinces

Table IV shows the best results and the average results obtained for each possible combination between
the crossover and mutation parameters considered. Distances in kilometers have been used. They have been
provided by Center of Publications of the General Technical Secretary of the Department of Public Works,
Transport and Environment.

We are not aware of any other work on these characteristics that have been applied to this file, so a
comparison with other references is not possible. The tour with the lowest cost has been evaluated in 6238
Km., which has been obtained ten times (5 of them with ER crossover operator, 4 of them with POS, and
the resting one with OX2). All of the mutation operators have been capable of finding this tour, although
the ISM was the one which found it the most number of times. The statistically significant differences have
been found in relation with average behavior, related with crossover operator likewise with the mutation
operator. The best crossover operators were in the following order: ER, OX1, POS, OX2 and CX, while the
best mutation operators were : IVM, DM, and ISM.

In relation to the speed of the convergence, measured by the number of evaluations made until the
convergence of the algorithm, the fastest crossover operators, were the following: ER, PMX, OX1, POS, and
0X2, likewise the mutation operators were : SIM and SM.

There is a more profound study of the above mentioned data, that work with different sizes of population,
mutation probabilities and selective pressures, which you can refer to in Larrafiaga et al. (1996¢).

Gratschels24

This file, the same as the following one, has been used as a bank of tests in several approximations to
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Tour lengths for capitals of Spanish provinces.

AP CcX ER | OX1 | OX2 | PMX | POS VR
DM best results 7309 | 7552 | 6238 | 6564 | 6333 | 7114 | 6238 | 8256 | 6238
DM average results | 12021 | 10610 | 8644 | 8785 | 9486 | 10407 | 9013 | 15956 | 10615
EM best results 7510 | 7559 | 6238 | 6472 | 6412 | 7666 | 6245 | 8272 | 6238
EM average results | 12195 | 10703 | 8649 | 9175 | 9850 | 11710 | 9331 | 16178 | 10974
ISM best results 7452 | 8240 | 6238 | 6437 | 6238 | 6470 | 6238 | 7826 | 6238
ISM average results | 11950 | 10544 | 8649 | 8850 | 9644 | 10744 | 9112 | 15796 | 10661
IVM best results 7266 | 7964 | 6238 | 6396 | 6558 | 6803 | 6238 | 8064 | 6238
IVM average results | 11944 | 10593 | 8545 | 8883 | 9507 | 10400 | 8922 | 16077 | 10609
SIM best results 10596 | 8813 | 6245 | 6305 | 6364 | 7322 | 6238 | 9685 | 6238
SIM average results | 14763 | 10661 | 9243 | 9831 | 11045 | 13073 | 10188 | 16589 | 11924
SM best results 10364 | 8440 | 6238 | 6311 | 6472 | 7985 | 6388 | 9797 | 6238
SM average results 15014 | 10672 | 9461 | 10085 | 11077 | 13335 | 10189 | 16739 | 12071

7266 | 7552 | 6238 | 6305 | 6238 | 6470 | 6238 | 7826 | 6238

12981 | 10630 | 8865 | 9268 | 10101 | 11612 | 9459 | 16222 | 11142
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TSP using the Genetic Algorithm.

Table V shows the results obtained. The best result, 1272 km, has been achieved with the following
crossover operators: ER, OX1, OX2, PMX and POS. All the mutation operators find the above mentioned
value.

At the average results level, improvements have been reached with the following crossover operators: ER,
0X1, POS, 0X2, and PMX, likewise with the mutation operators: DM and TVM.

Fast crossover operators in this example were: ER, PMX, OX1 and OX2, while SIM likewise SM can be

considered as fast mutation operators.

Tour lengths for the Grotschels24 problem.

AP CX | ER | OX1 | OX2 | PMX | POS | VR

DM best results 1349 | 1316 | 1272 | 1272 | 1289 | 1272 | 1272 | 1340 | 1272
DM average results | 1470 | 1416 | 1274 | 1305 | 1322 | 1355 | 1305 | 1777 | 1403
EM best results 1369 | 1388 | 1272 | 1272 | 1289 | 1296 | 1272 | 1380 | 1272
EM average results | 1487 | 1474 | 1274 | 1299 | 1311 | 1416 | 1312 | 1903 | 1434
ISM best results 1300 | 1289 | 1272 | 1272 | 1272 | 1313 | 1272 | 1565 | 1272
ISM average results | 1406 | 1461 | 1272 | 1307 | 1316 | 1368 | 1298 | 1993 | 1428
IVM best results 1301 | 1344 | 1272 | 1272 | 1272 | 1298 | 1272 | 1390 | 1272
IVM average results | 1406 | 1408 | 1277 | 1303 | 1329 | 1369 | 1315 | 1904 | 1414
SIM best results 1421 | 1302 | 1272 | 1272 | 1272 | 1327 | 1289 | 1390 | 1272
SIM average results | 1588 | 1441 | 1276 | 1313 | 1342 | 1393 | 1329 | 1737 | 1428
SM best results 1396 | 1330 | 1272 | 1272 | 1300 | 1306 | 1279 | 1537 | 1272

SM average results 2996 | 1423 | 1277 | 1300 | 1367 | 1388 | 1316 | 1920 | 1623

1300 | 1289 | 1272 | 1272 | 1272 | 1272 | 1272 | 1340 | 1272

1725 | 1437 | 1275 | 1305 | 1331 | 1382 | 1313 | 1872 | 1455

Gritschels/8

In Table VI the average and the best results are shown. The best search corresponds to the tour of 5074
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km., worse than optimal of this problem (5046 Km.). This optimal has been reached using the combination
of the ER + SIM operators relaxing the stopping conditions, and increasing the size of the population.
The statistically significant differences has been found in relation with average behavior, related with
crossover operator, with the best being ER, POS, OX1 and OX2 operators. The best behavior of the
mutation operators were ISM, DM and IVM operators.
The number of necessary iterations to reach the convergence, ER, PMX and POS could be considered as

fast crossover operators, likewise with the mutation operators SIM and SM.

Tour lengths for the Grtschels48 problem.

AP CcX ER | OX1 | OX2 | PMX | POS | VR

DM best results 6403 | 10387 | 5137 | 5142 | 5123 | 5560 | 5186 | 14931 | 5123
DM average results 7082 | 11398 | 5208 | 5368 | 5390 | 6150 | 5459 | 15595 | 7706
EM best results 6606 | 9719 | 5134 | 5194 | 5150 | 6420 | 5168 | 14760 | 5134
EM average results 7220 | 10649 | 5232 | 5458 | 5651 | 7103 | 5361 | 15325 | 7750
ISM best results 6311 | 9514 | 5107 | 5234 | 5080 | 6092 | 5158 | 15228 | 5080
ISM average results | 6905 | 10543 | 5176 | 5422 | 5536 | 6496 | 5401 | 15554 | 7629
IVM best results 6769 | 9905 | 5100 | 5145 | 5169 | 5519 | 5174 | 15267 | 5100
IVM average results | 7276 | 11139 | 5238 | 5436 | 5455 | 6139 | 5395 | 15702 | 7723
SIM best results 9847 | 9356 | 5074 | 5424 | 5097 | 7010 | 5179 | 15205 | 5074
SIM average results | 10304 | 10610 | 5154 | 5538 | 5451 | 7430 | 5493 | 15663 | 8205
SM best results 8802 | 9786 | 5074 | 5280 | 5251 | 6663 | 5164 | 15014 | 5074

SM average results 10220 | 11014 | 5138 | 5516 | 5715 | 7523 | 5413 | 15580 | 8265

6311 | 9356 | 5074 | 5142 | 5080 | 5519 | 5158 | 14760 | 5074

8168 | 10892 | 5191 | 5456 | 5533 | 6807 | 5420 | 15570 | 7880

6.3 Conclusions
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Although we are aware that the experiments made over three tests files don’t allow us to generalize the
results obtained in other TSP problem, a certain uniformity of behavior of the operators in the different
examples can be seen. In this way, the crossover operators ER, OX1, POS and 0X2, likewise the mutation
operators DM, ITVM, and ISM were those which had the best results. If we consider speed related with the
number of evaluations until convergence, the classification for the crossover operators was: ER, PMX, OX1
and POS, likewise for the mutation operators: SIM and SM. The operators of special interest, ie the ones
that had the best results and at the same time were the quickest, are ER, OX1 and POS.

Starkwather et al. (1991) present an empirical comparison of six crossover operators, designed for the
path representation: ER, OX1, 0X2, POS, PMX and CX. Each of the above operators was used to solve the
30 city TSP. None of the operators use mutation. The results obtained indicate how good ER, OX1, 0X2,
and POS operators are.

Although, at the start it was considered that the tasks of sequencing were similar, so only one genetic
operator would be enough for any problem of sequencing, results indicate that the effectiveness of different
operators is dependent on the problem domain; operators which work well in problem where adjacency is
important (e.g. TSP) may not be effective for other types of sequencing problems.

Likewise, for example, in the problem of the search of the optimal permutation with which we have
recently been working in Bayesian networks ((Larrafnaga et al. (1996a) (1996b)) using crossover and mutation
operators developed in relation with path representation, the crossover operators that provided the best
results, in both cases, were: CX, OX2 and POS operators. Comparing this with the results obtained here,
the difference is that the CX operator is included and the ER operator is excluded. Note that in the last two
problems the search is made over the non cyclic permutations of n integer numbers, in contradiction with

TSP, in which the optimal cyclic permutation is to be searched.

7 Conclusions

We have considered several representations and operators which may be used in genetic algorithms

meant to solve the Travelling Salesman Problem. The first representation at which we looked was the binary
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representation. This representation might be useful for small problem instances of the TSP. However, for
larger problem instances the binary strings which represent the tours become unmanageably large. Another
disadvantage of the binary representation is that the classical operators do not necessarily result in legal
offspring tours; repair algorithms would be necessary.

The second representation described, was the path representation. This representation can be seen as the
most natural of those considered. It is also the one that is used most often, and a large variety of operators
have been developed for it. These operators try to pass on two types of information to the offspring: the
absolute position of the cities in the parent tours and the relative order of the cities in the parent tours. Some
operators, e.g. the CX operator and the position based operator, pay most attention to the former type
of information transfer. Other operators, e.g. the order based operator, the ER operator and the heuristic
operator, pay more attention to the latter type. Since the TSP searches for a cycle of which the cost is
independent of the chosen starting city, it can be expected that information about the relative order of the
cities is more important to pass on than the information about the absolute position of the cities.

Few results can be found on the comparison of the performance of the different operators from a math-
ematical point of view. This, amongst other reasons, is due to the fact that, for most operators, schemata
analysis is quite difficult. Some results can be found. Oliver et al. (1987) concluded from theoretical and
empirical results that the OX operator is better than the PMX operator and that the PMX operator is
better than the CX operator. Grefenstette et al. (1985) showed that it was better to use a heuristic crossover
operator. However, Whitley et al. (1989, 1991) showed that their ER operator worked even better than the
heuristic crossover operator. Our results, obtained with 3 different examples, using 48 combinations between
8 crossover operators and 6 mutation operators, show the superiority of the following operators: ER, OX1,
POS and OX2 (crossover operators), and DM, IVM and ISM (mutation operators).

The thrid representation considered was the adjacency representation. We have seen that for this repre-
sentation several crossover operators have been developed. However, unfortunately all the described crossover
operators give a low performance. The created offspring does not inherit enough adequate information from
its parents.

The penultimate representation which we described was the ordinal representation. The advantage of
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this representation is that the classical operators can be used. However, it gives poor results.

The last representation to which we paid attention to was the matrix representation. In fact we did not
consider one matrix representation, but two: the representation used by Fox and McMahon (1987), and the
representation used by Seniw (1991) and by Homaifar and Guan (1991). The main difficulty using these
matrix representations is to define operators which lead to legal offspring. In both the approaches of Seniw
(1991) and Homaifar and Guan (1991), additional repair algorithms are necessary to assure that the offspring

is a legal tour.

Although it may be a bit out of the reach of this paper, we also discussed briefly the hybridization of a
genetic algorithm with local search. We did this since the creation of a good evolutionary algorithm seems

to inevitably include local search techniques.

Another aspect that could be interest is to compare the results obtained with the approximations based
on the Genetic Algorithms examined here, with other techniques included in the Evolutionary Computation
- Evolutionary Programming, Evolutionary Strategies... -, as well as other heuristics of optimization -
Simulated Annealing, Tabu Search, Threshold Accepting,...-.
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