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1 Introdu
tionIn nature, there exist many pro
esses whi
h seek a stable state. These pro
esses 
an be seen as naturaloptimization pro
esses. Over the last 30 years several attempts have been made to develop global optimiza-tion algorithms whi
h simulate these natural optimization pro
esses. These attempts have resulted in thefollowing optimization methods:� Simulated Annealing, based on natural annealing pro
esses.� Arti�
ial Neural Networks, based on pro
esses in 
entral nervous systems.� Evolutionary Computation, based on biologi
al evolution pro
esses.The algorithms inspired by Evolutionary Computation are 
alled evolutionary algorithms. These evolu-tionary algorithms may be divided into the following bran
hes: geneti
 algorithms (Holland 1975), evolution-ary programming (Fogel 1962), evolution strategies (Bremermann et al. 1965), 
lassi�er systems (Holland1975), geneti
 programming (Koza 1992) and other optimization algorithms based on Darwin's evolutiontheory of natural sele
tion and \survival of the �ttest".In this paper we will only examine one of the above mentioned types of algorithms: geneti
 algorithms,although some of the exposed mutation operators have been developed in relation to evolutionary program-ming. We 
onsider these algorithms in 
ombination with the Travelling Salesman Problem (TSP). The TSPobje
tive is to �nd the shortest route for a travelling salesman who, starting from his home 
ity, has to visitevery 
ity on a given list pre
isely on
e and then return to his home 
ity. The main diÆ
ulty of this problemis the immense number of possible tours: (n� 1)!=2 for n 
ities.Arti�
ial Intelligen
e 
an be applied to di�erent problems in diferent domains su
h as: s
heduling, 
ryp-toanalysis, mole
ular biology, Bayesian networks, 
lustering, et
. Some of the problems are in somewayrelated to what we will dis
uss here (see Se
tion 3.2). For this reason, this revision 
ould be of interest, notonly to people interested in the TSP, but also, to people interested in the appli
ation of Arti�
ial Intelligen
ete
hniques in any of the topi
s mentioned above.The stru
ture of this paper is as follows. In Se
tion 2 we introdu
e geneti
 algorithms. Next, we givea brief introdu
tion on the Travelling Salesman Problem. In Se
tion 4 we des
ribe several representations2



whi
h may be used for a problem instan
e of the TSP, and we introdu
e operators with whi
h they 
an be
ombined. We look at how we 
an in
lude lo
al sear
h in an evolutionary algorithm in Se
tion 5. In Se
tion 6we present some experimental results 
arried out with di�erent 
ombinations between some of the 
rossoverand mutation operators developed for the path representation. Lastly, 
on
lusions are given in Se
tion 7.2 Geneti
 AlgorithmsEvolutionary algorithms are probabilisti
 sear
h algorithms whi
h simulate natural evolution. They wereproposed about 30 years ago (Bremermann et al. (1965) and Re
henberg (1973)). Their appli
ation to
ombinatorial optimization problems, however, only re
ently be
ame an a
tual resear
h topi
. In re
entyears numerous papers and books on the evolutionary optimization of NP-hard problems have been pub-lished, in very di�erent appli
ation domains su
h as biology, 
hemistry, 
omputer aided design, 
rytpoanaly-sis, identi�
ation of sytems, medi
ine, mi
roele
troni
s, pattern re
ognition, produ
tion planning, roboti
s,tele
ommuni
ations, et
.Holland (1975) introdu
ed geneti
 algorithms. In these algorithms the sear
h spa
e of a problem isrepresented as a 
olle
tion of individuals. These individuals are represented by 
hara
ter strings (or matri
es,see Se
tion 4.6, whi
h are often referred to as 
hromosomes. The purpose of using a geneti
 algorithm is to�nd the individual from the sear
h spa
e with the best \geneti
 material". The quality of an individual ismeasured with an evaluation fun
tion. The part of the sear
h spa
e to be examined is 
alled the population.Roughly, a geneti
 algorithm works as follows (see Pseudo
ode 1).First, the initial population is 
hosen, and the quality of this population is determined. Next, in everyiteration parents are sele
ted from the population. These parents produ
e 
hildren, whi
h are added to thepopulation. For all newly 
reated individuals of the resulting population a probability near to zero existsthat they will \mutate", i.e. that they will 
hange their heriditary distin
tions. After that, some individualsare removed from the population a

ording to a sele
tion 
riterion in order to redu
e the population to itsinitial size. One iteration of the algorithm is referred to as a generation.The operators whi
h de�ne the 
hild produ
tion pro
ess and the mutation pro
ess are 
alled the 
rossover3



BEGIN AGAMake initial population at random.WHILE NOT stop DOBEGINSele
t parents from the population.Produ
e 
hildren from the sele
ted parents.Mutate the individuals.Extend the population adding the 
hildren to it.Redu
e the extended population.ENDOutput the best individual found.END AGA Figure 1: The pseudo-
ode of the Abstra
t Geneti
 Algorithm (AGA)operator and the mutation operator respe
tively. Mutation and 
rossover play di�erent roles in the geneti
algorithm. Mutation is needed to explore new states and helps the algorithm to avoid lo
al optima. Crossovershould in
rease the average quality of the population. By 
hoosing adequate 
rossover and mutation oper-ators, the probability that the geneti
 algorithm results in a near-optimal solution in a reasonable numberof iterations is in
reased. There 
an be various 
riterias for stopping AGA. For example, if it is possibleto determine previously the number of iterations needed. But the stopping 
riteria should normally takeinto a

ount the uniformity of the population, the relationship between the average obje
tive fun
tion withrespe
t to the obje
tive fun
tion of the best individual, as well as not produ
ing an in
rease in the obje
tivefun
tion of the best individual during a �xed number of 
y
les. Further des
ription of geneti
 algorithms
an be found in Goldberg (1989) and Davis (1991).
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3 The Travelling Salesman Problem3.1 Introdu
tionAs already started, in Se
tion 1 the Travelling Salesman Problem is, given a 
olle
tion of 
ities, in orderto determine the shortest route whi
h visits ea
h 
ity pre
isely on
e and then returns to its starting point.More mathemati
ally we may de�ne the TSP as follows:TSPGiven an integer n � 3 and an n� n matrix C = (
ij), where ea
h 
ij is a nonnegative integer. Whi
h
y
li
 permutation � of the integers from 1 to n minimizes the sum Pni=1 
i�(i) ?The Travelling Salesman Problem is a relatively old problem: it was do
umented as early as 1759 byEuler (though not by that name), whose interest was in solving the knights' tour problem. A 
orre
t solutionwould have a knight visit ea
h of the 64 squares of a 
hessboard exa
tly on
e on its tour. The term 'travellingsalesman' was �rst used in 1932, in a German book written by a veteran travelling salesman. The TSP wasintrodu
ed by the RAND Corporation in 1948. The Corporation's reputation helped to make the TSP awell known and popular problem. The TSP also be
ame popular at that time due to the new subje
t oflinear programming and attempts to solve 
ombinatorial problems.Through the years the Travelling Salesman Problem has o

upied the thoughts of numerous resear
hers.There are several reasons for this. Firstly, the TSP is very easy to des
ribe, yet very diÆ
ult to solve. Nopolynomial time algorithm is known with whi
h it 
an be solved. This la
k of any polynomial time algorithmis a 
hara
teristi
 of the 
lass of NP-
omplete problems, of whi
h the TSP is a 
lassi
 example. Se
ond, theTSP is broadly appli
able to a variety of routing and s
heduling problems. Thirdly, sin
e a lot of informationis already known about the TSP, it has be
ome a kind of \test" problem; new 
ombinatorial optimizationmethods are often applied to the TSP so that an idea 
an be formed of their usefulness. Finally, a greatnumber of problems a
tually treated with heuristi
 te
hniques in Arti�
ial Intelligen
e are related with thesear
h of the best permutation of n elements, as we will explain in the next paragraph..Numerous heuristi
 algorithms have been developed for the TSP. Many of them are des
ribed in Lawler5



et al. (1985). Kirkpatri
k et al. (1983) were the �rst who tried to solve the TSP with simulated annealing.The �rst resear
her to ta
kle the Travelling Salesman Problem with geneti
 algorithms was Brady (1985).His example was followed by Grefenstette et al. (1985); Goldberg and Lingle (1985) ; Oliver et al. (1987) andmany others. Other evolutionary algorithms have been applied to the TSP, amongst others, Fogel (1988);Banzhaf (1990) and Ambati et al. (1991).For an extensive dis
ussion on the TSP we refer you to Lawler et al. (1985). Problem instan
es of theTravelling Salesman Problem, with parts of the optimal solutions, 
an be found in a TSP library whi
h isavailable via ftp from: ftp s�.santafe.eduName (s�.santafe.edu: foobar): anonymousPassword: < e-mail address >ftp> 
d pub/EC/et
/data/TSPftp> type binaryftp> get tsplib-1.2.tar.gzThis library was 
ompiled by G. Reinelt. More information about it 
an be found in Reinelt (1991).3.2 Problems in Arti�
ial Intelligen
e related with the TSPSimilar types of problems in relation to the TSP 
ould be the ordering of genes on a 
hromosome(Gunnels et al. 1994), problems in 
ryptoanalysis, su
h as the dis
overy of a key of a simple substitution
ipher (Spillmann et al. 1993), or the breaking of transposition 
iphers in 
ryptographi
 systems (Matthews1993). In addition work 
arried out on systems identi�
ation, spe
i�
ally those related with indu
tion ofsto
hasti
 models, 
ould bene�t on the information about the geneti
 operators 
ompiled in this revision.Likewise, on the topi
 of Bayesian networks, a problem of eviden
e propagation a

ording to Lauritzen andSpiegelhalter's algorithm (1988), 
an use this revision thanks to the sear
h of the optimal order of elimination6



of vertexes that 
ause triangularization of moral graph asso
iated to the Bayesian network. Optimality isde�ned a

ording to the weight of the triangulated graph (Larra~naga et al. 1996a). See also Larra~naga etal. (1996b) for an approximation to the problem of learning the optimal Bayesian network stru
ture.In another 
lassi
 problem in Statisti
s, 
alled Cluster Analysis, whi
h 
onsists of obtaining the optimal
lassi�
ation of a set of individuals 
hara
terized by any number of variables, Lozano et al. (1996) developedone method whi
h uses the geneti
 
rossover and mutation operators, related with path representation (seeSe
tion 4).4 Representations and Operators4.1 Introdu
tionThere have been many di�erent representations used to solve the TSP problem using the Geneti
 Algo-rithms. Some of them, su
h as binary representation (Se
tion 4.2) and matrix representation (Se
tion 4.6),use binary alphabets for the tour's representation. Although these binary alphabets 
onstitute the standardway of representation in Geneti
 Algorithms, in the TSP the problem is that the 
rossover and mutationoperators don't 
onstitute 
losed operations, that is that the results obtained using the above mentionedoperators are not valid tours. This is the reason why repair operators have been designed.The most natural representation of one tour is denominated by path representation (See Se
tion 4.3). Inthis representation, the n 
ities that should be visited are put in order a

ording to a list of n elements, sothat if the 
ity i is the j-th element of the list, 
ity i is the j-th 
ity to be visited. This representation hasallowed a great number of 
rossover and mutation operators to have been developed. We 
an aÆrm thatnowadays most of the TSP approximations using Geneti
 Algorithms, are realized using this representation.Fundamental reason lie in its intuitive representation as well as in the good results obtained with it.From a histori
 perspe
tive the problems appear to 
arry out a s
hemata analysis, a theoreti
 elementfor the study of Geneti
 Algorithm's behavior, whi
h is based on the 
on
ept of s
hema. A s
hema is a 
hainformed by any 
hara
ters, apart from the elements of the original alphabet, ampli�ed by the symbol � whi
h7




an be interpreted as a la
k of information. From a geometri
 point of view, a s
hema is equivalent to ahyperplane in the sear
h spa
e. The obje
tive of s
hemata analysis is to proportion the lower bound of theexpe
ted number of individuals that in the following generation will be asso
iated with a determined s
hema.This was what inspired Grefenstette et al. (1985) to develop two new representations: adja
en
y represen-tation and ordinal representation. The adja
en
y representation (Se
tion 4.4) allows s
hemata analysis,although the empiri
al results obtained with this representation have been poor. The ordinal representation(Se
tion 4.5) presents the advantage that 
lassi
s 
rossover and mutation operators 
an be used without thene
essity of designing new operators. However just as with the previous representation, experimental resultsobtained have been generally poor.Table I shows the names of representations and 
rossover and mutation operators whi
h are explained inthe rest of this se
tion.4.2 Binary RepresentationIn a binary representation of the n-
ities TSP, ea
h 
ity is en
oded as a string of dlog2 ne bits, anindividual is a string of ndlog2 ne bits. For example, in the 6-
ities TSP the 
ities are represented by 3-bitstrings (see Table II).Following the binary representation de�ned in Table II, the tour 1� 2� 3� 4� 5� 6 is represented by(000 001 010 011 100 101):Note that there exist 3-bit strings whi
h do not 
orrespond to any 
ity: the strings are 110 and 111.4.2.1 Classi
al CrossoverThe 
lassi
al 
rossover operator was proposed by Holland (1975). It works as follows. Consider, forexample, the following two solutions of the 6-
ities TSP:(000 001 010 011 100 101) and8



Summary of representations and operators.Representation Operators AuthorsBinary Classi
al + repair operator Lidd (1991)Path Partially - Mapped Crossover Goldberg and Lingle (1985)Order - Crossover Davis (1985)Order Based Crossover Syswerda (1991)Position Based Crossover Syswerda (1991)Heuristi
 Crossover Grefenstette (1987b)Edge Re
ombination Crossover Whitley et al. (1989)Sorted Mat
h Crossover Brady (1985)Maximal Preservative Crossover M�uhlenbein et al. (1988)Voting Re
ombination Crossover M�uhlenbein (1989)Alternating - Position Crossover Larra~naga et al. (1996a)Displa
ement Mutation Mi
halewi
z (1992)Ex
hange Mutation Banzhaf (1990)Insertion Mutation Fogel (1988)Simple Inversion Mutation Holland (1975)Inversion Mutation Fogel (1990)S
rmable Mutation Syswerda (1991)Adja
en
y Alternanting Edge Crossover Grefenstette et al. (1985)Subtour Chunks Crossover Grefenstette et al. (1985)Heuristi
 Crossover 1 Grefenstette et al. (1985)Heuristi
 Crossover 2 Jog et al. (1989)Heuristi
 Crossover 3 Suh and Van Gu
ht (1987)Ordinal Classi
al operators Grefenstette et al. (1985)Matrix Interse
tion Crossover Operator Fox and M
 Mahon (1987)Union Crossover Operator Fox and M
 Mahon (1987)Repair Operators Seniw (1991)Repair Operators Homaifar and Guan (1991)Heuristi
 Inversion Mutation Homaifar and Guan (1991)
9



Binary representation of the 6-
ities TSP.i 
ity i i 
ity i1 000 4 0112 001 5 1003 010 6 101(101 100 011 010 001 000):Randomly a 
rossover point is sele
ted, where the strings are broken into separate parts. Suppose, forexample, that we 
hoose the 
rossover point to be between the ninth and the tenth bit. Hen
e,(000 001 010 j 011 100 101) and(101 100 011 j 010 001 000):Re
ombinating the di�erent parts results in(000 001 010 010 001 000) and(101 100 011 011 100 101);whi
h do not represent legal tours. To 
hange the 
reated o�spring into legal tours we need some sort ofrepair algorithm. From a general point of view, a repair algorithm is one that transfers those individualsthat do not belong to the sear
h spa
e into individuals of that sear
h spa
e.4.2.2 Classi
al MutationThe 
lassi
al mutation operator was also developed by Holland (1975). It alters one or more bits with aprobability equal to the mutation rate, whi
h is 
lose to zero. For example, 
onsider again the followingstring whi
h represents the tour 1� 2� 3� 4� 5� 6:(000 001 010 011 100 101):Suppose that the �rst and the se
ond bit are sele
ted for mutation. Hen
e, these bits 
hange from a 0 intoa 1. The result is (110 001 010 011 100 101);10



whi
h does not represent a tour.Lidd (1991) applied a binary ve
tor approa
h for the TSP. However, although he managed to get somehigh quality results for small TSPs (his largest test 
ase 
onsisted of 100 
ities), the binary representation isnot 
onsidered to be very appropriate for the TSP as 
ommented by Whitley et al. (1989):" Unfortunately, there is no pra
ti
al way to en
ode a TSP as a binary string that does nothave ordering dependen
ies or to whi
h operators 
an be applied in a meaningful fashion. Sim-ply 
rossing strings of 
ities produ
es dupli
ates and omissions. Thus, to solve this problemsome variation on standard geneti
 
rossover must be used. The ideal re
ombination operatorshould re
ombine 
riti
al information from the parent stru
tures in a non-destru
tive, meaningfulmanner."4.3 Path RepresentationThe path representation is probably the most natural representation of a tour. Again a tour is representedas a list of n 
ities. If 
ity i is the j-th element of the list, 
ity i is the j-th 
ity to be visited. Hen
e, thetour 3� 2� 4� 1� 7� 5� 8� 6 is simply represented by(3 2 4 1 7 5 8 6):Sin
e for the TSP in 
ombination with the path representation the 
lassi
al operators are also not suit-able, other 
rossover and mutation operators have been de�ned.
4.3.1 Partially-Mapped Crossover (PMX)The partially-mapped 
rossover operator (Figure 2) was suggested by Goldberg and Lingle (1985). Itpasses on ordering and value information from the parent tours to the o�spring tours. A portion of oneparent's string is mapped onto a portion of the other parent's string and the remaining information isex
hanged. Consider, for example the following two parent tours:(1 2 3 4 5 6 7 8) and11



(  1  2  3  4  5  6  7  8  )             (  3  7  5  1  6  8  2  4  )

(  4  2  3  1  6  8  7  5  )     off2: (  3  7  8  4  5  6  2  1  )

4        1
5        6
6        8

b
a

1      4
6      5
8      6b

a

off1:Figure 2: Partially-mapped 
rossover operator (PMX)(3 7 5 1 6 8 2 4):The PMX operator 
reates an o�spring in the following way. First, it sele
ts uniformly at random two
ut points along the strings, whi
h represent the parent tours. Suppose that the �rst 
ut point is sele
tedbetween the third and the fourth string element, and the se
ond one between the sixth and the seventhstring element. For example, (1 2 3 j 4 5 6 j 7 8) and(3 7 5 j 1 6 8 j 2 4):The substrings between the 
ut points are 
alled the mapping se
tions. In our example they de�ne themappings 4 $ 1, 5 $ 6 and 6 $ 8. Now the mapping se
tion of the �rst parent is 
opied into the se
ondo�spring, and the mapping se
tion of the se
ond parent is 
opied into the �rst o�spring, growing:o�spring 1: (xxx j 1 6 8 jxx) ando�spring 2: (xxx j 4 5 6 jxx):Then o�spring i (i = 1; 2) is �lled up by 
opying the elements of the i-th parent. In 
ase a 
ity is alreadypresent in the o�spring it is repla
ed a

ording to the mappings. For example, the �rst element of o�spring1 would be a 1 like the �rst element of the �rst parent. However, there is already a 1 present in o�spring1. Hen
e, be
ause of the mapping 1 $ 4 we 
hoose the �rst element of o�spring 1 to be a 4. The se
ond,third and seventh elements of o�spring 1 
an be taken from the �rst parent. However, the last element ofo�spring 1 would be an 8, whi
h is already present. Be
ause of the mappings 8 $ 6, and 6 $ 5, it is 
hosen12



to be a 5. Hen
e, o�spring 1: (4 2 3 j 1 6 8 j 7 5):Analogously, we �nd o�spring 2: (3 7 8 j 4 5 6 j 2 1):Note that the absolute positions of some elements of both parents are preserved.A variation of the PMX operator is des
ribed in Grefenstette (1987b): given two parents the o�spring is
reated as follows. First, the se
ond parent string is 
opied onto the o�spring. Next, an arbitrary subtouris 
hosen from the �rst parent. Lastly, minimal 
hanges are made in the o�spring ne
essary to a
hieve the
hosen subtour. For example, 
onsider parent tours(1 2 3 4 5 6 7 8) and(1 5 3 7 2 4 6 8);and suppose that subtour (3 4 5) is 
hosen. This gives o�spring(1 3 4 5 7 2 6 8):4.3.2 Cy
le Crossover (CX)The 
y
le 
rossover operator (Figure 3) was proposed by Oliver et al. (1987). It attempts to 
reate an
(  1  2  3  4  5  6  7  8  )             (  2  4  6  8  7  5  3  1  )

           First cycle: (  1  2  -  4  -  -  -  8  )

       Second cycle: (  1  2  6  4  7  5  3  8  )

 a      d      e      c      g      f      h      b                                         a      d      e      c      g     f       h      b

Figure 3: Cy
le 
rossover (CX)o�spring from the parents where every position is o

upied by a 
orresponding element from one of the13



parents. For example, 
onsider again the parents(1 2 3 4 5 6 7 8) and(2 4 6 8 7 5 3 1):Now we 
hoose the �rst element of the o�spring equal to be either the �rst element of the �rst parenttour or the �rst element of the se
ond parent tour. Hen
e, the �rst element of the o�spring has to be a 1 ora 2. Suppose we 
hoose it to be 1, (1 � � � � � � �):Now, 
onsider the last element of the o�spring. Sin
e this element has to be 
hosen from one of theparents, it 
an only be an 8 or a 1. However, if a 1 were sele
ted, the o�spring would not represent a legaltour. Therefore, an 8 is 
hosen, (1 � � � � � � 8):Analogously, we �nd that the fourth and the se
ond element of the o�spring also have to be sele
tedfrom the �rst parent, whi
h results in (1 2 � 4 � � � 8):The positions of the elements 
hosen up to now are said to be a 
y
le. Now 
onsider the third elementof the o�spring. This element we may 
hoose from any of the parents. Suppose that we sele
t it to be fromparent 2. This implies that the �fth, sixth and seventh elements of the o�spring also have to be 
hosen fromthe se
ond parent, as they form another 
y
le. Hen
e, we �nd the following o�spring:(1 2 6 4 7 5 3 8):The absolute positions of on average half of the elements of both parents are preserved. Oliver et al.(1987) 
on
luded from theoreti
al and empiri
al results that the CX operator gives better results for theTravelling Salesman Problem than the PMX operator.4.3.3 Order Crossover (OX1)
14



The order 
rossover operator (Figure 4) was proposed by Davis (1985). The OX1 exploits a propertyof the path representation, that the order of 
ities (not their positions) are important. It 
onstru
ts an
(  1  2  3  4  5  6  7  8  )              (  2  4  6  8  7  5  3  1  )

off1:   (  4  5  6  7  8  1  2  3  )      off2:(  8  7  3  4  5  1  2  6  )Figure 4: Order 
rossover (OX1)o�spring by 
hoosing a subtour of one parent and preserving the relative order of 
ities of the other parent.For example, 
onsider the following two parent tours:(1 2 3 4 5 6 7 8) and(2 4 6 8 7 5 3 1);and suppose that we sele
t a �rst 
ut point between the se
ond and the third bit and a se
ond one betweenthe �fth and the sixth bit. Hen
e, (1 2 j 3 4 5 j 6 7 8) and(2 4 j 6 8 7 j 5 3 1):The o�spring are 
reated in the following way. First, the tour segments between the 
ut point are 
opiedinto the o�spring, whi
h gives (� � j 3 4 5 j � � �) and(� � j 6 8 7 j � � �):Next, starting from the se
ond 
ut point of one parent, the rest of the 
ities are 
opied in the order inwhi
h they appear in the other parent, also starting from the se
ond 
ut point and omitting the 
ities thatare already present. When the end of the parent string is rea
hed, we 
ontinue from its �rst position. In ourexample this gives the following 
hildren: (8 7 j 3 4 5 j 1 2 6) and(4 5 j 6 8 7 j 1 2 3):15



4.3.4 Order Based Crossover (OX2)The order based 
rossover operator (Syswerda 1991) sele
ts at random several positions in a parent tour,and the order of the 
ities in the sele
ted positions of this parent is imposed on the other parent. Forexample, 
onsider again the parents (1 2 3 4 5 6 7 8) and(2 4 6 8 7 5 3 1);and suppose that in the se
ond parent the se
ond, third, and sixth positions are sele
ted. The 
ities in thesepositions are 
ity 4, 
ity 6 and 
ity 5 respe
tively. In the �rst parent these 
ities are present at the fourth,�fth and sixth positions. Now the o�spring is equal to parent 1 ex
ept in the fourth, �fth and sixth positions:(1 2 3 � � � 7 8):We add the missing 
ities to the o�spring in the same order in whi
h they appear in the se
ond parenttour. This results in (1 2 3 4 6 5 7 8):Ex
hanging the role of the �rst parent and the se
ond parent gives, using the same sele
ted positions,(2 4 3 8 7 5 6 1):4.3.5 Position Based Crossover (POS)The position based operator (Syswerda 1991) also starts by sele
ting a random set of positions in theparent tours. However, this operator imposes the position of the sele
ted 
ities on the 
orresponding 
itiesof the other parent. For example, 
onsider the parent tours(1 2 3 4 5 6 7 8) and(2 4 6 8 7 5 3 1);and suppose that the se
ond, third and the sixth positions are sele
ted. This leads (Figure 5) to the following16



        (  1  2  3  4  5  6  7  8  )             (  2  4  6  8  7  5  3  1  )

off1: (  1  4  6  2  3  5  7  8  )     off2: (  4  2  3  8  7  6  5  1  )Figure 5: Position based 
rossover (POS)o�spring: (1 4 6 2 3 5 7 8) and(4 2 3 8 7 6 5 1):4.3.6 Heuristi
 CrossoverGrefenstette (1987b) developed a 
lass of heuristi
 
rossover operators whi
h emphasize edges. Theseoperators 
reate an o�spring in the following way:1. They �rst sele
t at random a 
ity to be the 
urrent 
ity of the o�spring.2. Se
ond, they 
onsider the four (undire
ted) edges in
ident to the 
urrent 
ity. Over these edges aprobability distribution is de�ned based on their 
ost. The probability asso
iated with an edge in
identto a previously visited 
ity is equal to zero.3. An edge is sele
ted on this distribution. (If none of the parental edges leads to an unvisited 
ity arandom edge is sele
ted.)4. The steps 3 and 4 are repeated until a 
omplete tour has been 
onstru
ted.In 
ase a uniform probability distribution is 
hosen, the o�spring inherits about 30% of the edges of everyparent, and about 40% of the edges are randomly sele
ted. The operator des
ribed above was also used byLiepins et al. (1987).4.3.7 Geneti
 Edge Re
ombination Crossover (ER)
17



The geneti
 edge re
ombination 
rossover operator was developed by Whitley et al. (1989, 1991).It is an operator whi
h is suitable for the symmetri
al TSP; it makes the assumption that only the valuesof the edges are important, not their dire
tion. In a

ordan
e with this assumption, the edges of a tour 
anbe seen as the 
arriers of the heriditary information. The ER operator attempts to preserve the edges of theparents in order to pass on a maximum amount of information to the o�spring. The breaking of edges isseen as unwanted mutation.The problem that normally o

urs with operators whi
h follow an edge re
ombination strategy, is thatthey often leave 
ities without a 
ontinuing edge (Grefenstette 1987). These 
ities be
ome isolated and newedges have to be introdu
ed. The ER operator tries to avoid this problem by �rst 
hoosing 
ities whi
h havefew unused edges. Of 
ourse, there has to be a 
onne
tion with a 
ity before it 
an be sele
ted. The onlyedge that the ER operator fails to enfor
e is the edge from the �nal 
ity to the initial 
ity. Therefore, alimited amount of mutation may o

ur. The mutation rate will be at most 1=n, where n is the number of
ities. In pra
ti
e the mutation rate turned out to be between 1� 5% .Now, how does the ER operator work? It uses a so-
alled \edge map", whi
h gives for ea
h 
ity the edgesof the parents that start or �nish in it. Consider for example these tours:(1 2 3 4 5 6) and(2 4 3 1 5 6):The edge map for these tours is shown in Table III.The geneti
 edge re
ombination operator works a

ording to the following algorithm:1. Choose the initial 
ity from one of the two parent tours. (It 
an be 
hosen at random or a

ording to
riteria outlined in step 4). This is the \
urrent 
ity".2. Remove all o

urren
es of the \
urrent 
ity" from the left-hand side of the edge map. (These 
an befound by referring to the edge list for the 
urrent 
ity).3. If the 
urrent 
ity has entries in its edge list go to step 4; otherwise, go to step 5.4. Determine whi
h of the 
ities in the edge list of the 
urrent 
ity has the fewest entries in its own edge18



The edge map for the tours (1 2 3 4 5 6) and (2 4 3 1 5 6).
ity 
onne
ted 
ities1 2, 6, 3, 52 1, 3, 4, 63 2, 4, 14 3, 5, 25 4, 6, 16 1, 5, 2list. The 
ity with the fewest entries be
omes the \
urrent 
ity". Ties are broken at random. Go tostep 2.5. If there are no remaining \unvisited" 
ities, then STOP. Otherwise, 
hoose at random an \unvisited"
ity and go to step 2.For our example tours we get:1. The new 
hild tour is initialized with one of the two initial 
ities from its parents. Initial 
ities 1 and2 both have four edges; randomly 
hoose 
ity 2.2. The edge list for 
ity 2 indi
ates the 
andidates for the next 
ity are the 
ities 1, 3, 4 and 6. The 
ities3, 4 and 6 all have two edges: the initial three minus the 
onne
tion with 
ity 2. City 1 now has threeedges and therefore it is not 
onsidered. Assume that 
ity 3 is randomly 
hosen.3. City 3 now has edges to 
ity 1 and 
ity 4. City 4 is 
hosen next, sin
e it has fewer edges.4. City 4 only has an edge to 
ity 5, so 
ity 5 is 
hosen next.5. City 5 has edges to the 
ities 1 and 6, both of whi
h have only one edge left. Randomly 
hoose 
ity 1.6. City 1 must now go to 
ity 6.The resulting tour is (2 3 4 5 1 6);19



and is 
omposed entirely of edges taken from the two parents.The ER operator does not take into a

ount the 
ommon sequen
es of the parent tours. Therefore, anenhan
ement of the ER operator was developed in whi
h the edges starting from the 
urrent 
ity whi
h arepresent in both parents have priority above the edges whi
h are unique for one of the parents. There alsoexist modi�
ations for making better 
hoi
es, when random edge sele
tion is ne
essary (Starkweather et al.1991).On the other hand, the edge re
ombination operator indi
ates 
learly that the path representation mightbe too poor to represent important properties of a tour - it is for this reason that it was 
omplemented bythe edge list.The ER operator was tested by Whitley et. al (1989) on three TSPs with 30, 50, and 75 
ities - in all
ases it returned a solution better than the previously "best known" sequen
e.Whitley et al. (1989, 1991) showed that the ER operator may also be used in 
ombination with these
ond type of binary representation des
ribed in Se
tion 4.2. If we de�ne the ordered list: (1,2), (1,3), (1,4),(1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), the parents of our example may bewritten as parent 1: 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1;parent 2: 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1:In our example, the 
reated o�spring is represented by0 0 0 1 1 1 0 0 1 1 0 0 1 0 0:It is easy to see that all of the edges of the o�spring ex
ept its last one are taken from one of the parents:parent 1 : 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1;parent 2 : 0 1 01 0 0 1 01 1 0 0 0 0 1;o�spring: 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0:The edge (5,6) o

urred in both parents. However, it was not passed on to the o�spring.20



4.3.8 Sorted Mat
h CrossoverThe sorted mat
h 
rossover operator was proposed by Brady (1985). It (see also M�uhlenbein et al. 1988)sear
hes for subtours in both the parent tours whi
h have the same length, whi
h start in the same 
ity, whi
hend in the same 
ity and whi
h 
ontain the same set of 
ities. If su
h subtours are found the 
ost of thesesubstrings are determined. The o�spring is 
onstru
ted from the parent whi
h 
ontains the subtour withthe highest 
ost by substituting this subtour for the subtour with the lowest 
ost. Consider, for example,the parent tours (1 2 3 4 5 6 7 8) and(3 4 6 5 7 2 8 1):The �rst parent 
ontains the subtour (4 5 6 7), and the se
ond parent the subtour (4 6 5 7). These subtourshave the same length, both begin in 
ity 4, both end in 
ity 7, and both 
ontain the same 
ities. Supposethat the 
ost of the subtour (4 5 6 7) is higher than the 
ost of the subtour (4 6 5 7). Then, the followingo�spring is 
reated: (1 2 3 4 6 5 7 8):M�uhlenbein et al. (1988) 
on
luded that the sorted mat
h 
rossover was useful in redu
ing the 
omputa-tion time, but that it is a weak s
heme for 
rossover.4.3.9 Maximal Preservative Crossover (MPX)The maximal preservative operator was introdu
ed by M�uhlenbein et al. (1988). It works in a similar wayto the PMX operator. It �rst sele
ts a random substring of the �rst parent whose length is greater than orequal to 10 (ex
ept for very small problem instan
es), and smaller than or equal to the problem size dividedby 2. These restri
tions on the length of the substring are given to assure that there is enough informationex
hange between the parent strings without losing too mu
h information from any of these parents. Next,all the elements of the 
hosen substring are removed from the se
ond parent. After this, the substring 
hosen21



from parent 1 is 
opied into the �rst part of the o�spring. Finally, the end of the o�spring is �lled up with
ities in the same order as they appear in the se
ond parent. Hen
e, if we 
onsider the parent tours(1 2 3 4 5 6 7 8) and(2 4 6 8 7 5 3 1);and we sele
t the substring (3 4 5) from the �rst parent. The MPX operator gives the following o�spring(3 4 5 2 6 8 7 1):The advantage of the MPX operator is that it only destroys a limited number of edges; the maximumnumber of edges whi
h may be destroyed is equal to the length of the 
hosen substring. Sometimes, at thebeginning of the exe
ution of an algorithm this maximum number might be rea
hed. However, with theprogress of the 
omputation, solutions have more 
ommon edges, so that the number of destroyed edgesde
reases. M�uhlenbein et al. (1988) performed additional mutation in 
ase less than 10% of the edges weredestroyed.4.3.10 Voting Re
ombination Crossover (VR)The voting re
ombination operator (M�uhlenbein 1989) does not originate from biology. It 
an be seen asa p-sexual 
rossover operator, where p is a natural number greater than or equal to 2. It starts by de�ning athreshold, whi
h is a natural number smaller than or equal to p. Next, for every i 2 f1; 2; : : : ; ng the set ofi-th elements of all the parents is 
onsidered. If in this set an element o

urs at least the threshold numberof times, it is 
opied into the o�spring. For example, if we 
onsider the parents (p=4)(1 4 3 5 2 6 ); (1 2 4 3 5 6 );(3 2 1 5 4 6 ); (1 2 3 4 5 6 )and we de�ne the threshold to be equal to 3 we �nd(1 2xxx 6):22



The remaining positions of the o�spring are �lled with mutations. Hen
e, our example might result in(1 2 4 5 3 6):We remark that M�uhlenbein (1989) used the voting re
ombination operator in an evolutionary algorithmfor the Quadrati
 Assignment Problem (QAP) instead of for the TSP. This is an assignment problem inwhi
h generalizing the 
onditions, the obje
tive fun
tion 
hanges from a lineal one to a quadrati
 one.4.3.11 Alternating-Position Crossover (AP)The alternating position 
rossover operator ( Larra~naga et. al (1996a)) simply 
reates an o�spring bysele
ting alternately the next element of the �rst parent and the next element of the se
ond parent, omittingthe elements already present in the o�spring. For example, if parent 1 is(1 2 3 4 5 6 7 8)and parent 2 is (3 7 5 1 6 8 2 4);the AP operator gives (Figure 6) the following o�spring(1 3 2 7 5 4 6 8):
(  1  2  3  4  5  6  7  8  )          (  3  7  5  1  6  8  2  4  )

            off1:    (  1  3  2  7  5  4  6  8  )Figure 6: Alternating-position 
rossover (AP)Ex
hanging the parents results in (3 1 7 2 5 4 6 8):23



4.3.12 Displa
ement Mutation (DM)The displa
ement mutation operator (Mi
halewi
z 1992) �rst sele
ts a subtour at random. This subtouris removed from the tour and inserted in a random pla
e. For example, 
onsider the tour represented by(1 2 3 4 5 6 7 8);and suppose that the subtour (3 4 5) is sele
ted. Hen
e, after the removal of the subtour we have(1 2 6 7 8):Suppose that we randomly sele
t 
ity 7 to be the 
ity after whi
h the subtour is inserted. This results in(Figure 7)
(  1  2  3  4  5  6  7  8  )

(  1  2  6  7  3  4  5  8  )Figure 7: Displa
ement mutation (DM)(1 2 6 7 3 4 5 8):Displa
ement mutation is also 
alled 
ut mutation (Banzhaf 1990).4.3.13 Ex
hange Mutation (EM)The ex
hange mutation operator (Banzhaf 1990) randomly sele
ts two 
ities in the tour and ex
hangesthem. For example, 
onsider the tour represented by(1 2 3 4 5 6 7 8);and suppose that the third and the �fth 
ity are randomly sele
ted. This results in (Figure 8)(1 2 5 4 3 6 7 8):24



(  1  2  3  4  5  6  7  8  )

(  1  2  5  4  3  6  7  8  )Figure 8: Ex
hange mutation (EM)The ex
hange mutation operator is also referred to as the swap mutation operator (Oliver et al. 1987) , thepoint mutation operator (Ambati et al. 1991) , the re
ipro
al ex
hange mutation operator (Mi
halewi
z 1992),or the order based mutation operator (Syswerda 1991). Ambati et al. (1991) used repeated ex
hange muta-tion. They 
hoose the probability of the performan
e of exa
tly m ex
hanges equal to p(m�1)(1� p), wherep was a parameter and p 2 (0; 1). Beyer (1992) also used repeated ex
hange mutation. He, however, intro-du
ed a 
ontrol parameter s to determine the number of ex
hanges. Ea
h individual had its own s-value,the s-value of an o�spring was determined by the s-values of its parents. At the beginning of the algorithma high number of ex
hanges was 
arried out. Via the algorithm, the number of ex
hanges was lowered to 1.This method is adopted from S
hwefel (1975).4.3.14 Insertion Mutation (ISM)The insertion mutation operator ((Fogel 1988); (Mi
halewi
z 1992)) randomly 
hooses a 
ity in the tour,removes it from this tour, and inserts it in a randomly sele
ted pla
e. For example, 
onsider again the tour(1 2 3 4 5 6 7 8);and suppose that the insertion mutation operator sele
ts 
ity 4, removes it, and randomly inserts it after
ity 7. Hen
e, the resulting o�spring is (Figure 9)
(  1  2  3  4  5  6  7  8  )

(  1  2  3  5  6  7  4  8  )Figure 9: Insertion mutation (ISM)25



(1 2 3 5 6 7 4 8):The insertion mutation operator is also 
alled the position based mutation operator (Syswerda 1991).4.3.15 Simple Inversion Mutation (SIM)The simple inversion mutation operator (Holland 1975 and Grefenstette 1987) sele
ts randomly two 
utpoints in the string, and it reverses the substring between these two 
ut points. For example, 
onsider thetour (1 2 3 4 5 6 7 8);and suppose that the �rst 
ut point is 
hosen between 
ity 2 and 
ity 3, and the se
ond 
ut point betweenthe �fth and the sixth 
ity. This results in (Figure 10)
(  1  2  3  4  5  6  7  8  )

(  1  2  5  4  3  6  7  8  )Figure 10: Simple inversion mutation (SIM)(1 2 5 4 3 6 7 8):The simple inversion mutation operator served as the basis for the 2-opt heuristi
 for the TSP developedby Lin (1965) and is also used in the appli
ation of simulated annealing to the TSP (Kirkpatri
k et al. 1983).4.3.16 Inversion Mutation (IVM)The inversion mutation (Fogel 1990, 1993) is similar to the displa
ement operator. It also randomlysele
ts a subtour, removes it from the tour and inserts it in a randomly sele
ted position. However, thesubtour is inserted in reversed order. Consider again our example tour(1 2 3 4 5 6 7 8);26



and suppose that the subtour (3 4 5) is 
hosen, and that this subtour is inserted in reversed order inmediatelyafter 
ity 7. This gives (Figure 11)
(  1  2  3  4  5  6  7  8  )

(  1  2  6  7  5  4  3  8  )Figure 11: Inversion mutation (IVM)(1 2 6 7 5 4 3 8):Banzaf (1990) referred to the insertion mutation operator as the 
ut-inverse mutation operator.4.3.17 S
ramble Mutation (SM)The s
ramble mutation operator (Syswerda 1991) sele
ts a random subtour and s
rambles the 
ities init. For example, 
onsider the tour (1 2 3 4 5 6 7 8);and suppose that the subtour (4 5 6 7) is 
hosen. This might result in (Figure 12)
(  1  2  3  4  5  6  7  8  )

(  1  2  3  5  6  7  4  8  )Figure 12: S
ramble mutation (SM)(1 2 3 5 6 7 4 8):We would like to point out that it was suggested in 
onne
tion with s
heduling problems instead of withthe TSP.In this se
tion we have in
luded di�erent 
rossover and mutation operators that had been developedfor the denominated path representation. The majority of the work in whi
h the optimal permutation is27



obtained uses this representation. However, from a histori
 point of view, the dete
tion of the problemsdone by Grefenstette et al. (1985), problems that appear with this representation in hyperplans analysis,are those that have 
aused the introdu
tion of two new representations (ordinal and adja
en
y) whi
h o�ersome of improvements over the path representation.A

ording to Grefenstette et al. (1985):"... there is a problem in applying the hyperplane analysis of GA's to this representation. Thede�nition of a hyperplane is un
lear in this representation. For example, (a, *, *, *, *) appearsto be a �rst order hyperplane, but it 
ontains the entire spa
e. The problem is that in thisrepresentation, the semanti
s of an allele in a given position depends on the surrounding alleles.Intuitively, we hope that GA's will tend to 
onstru
t good solutions by identifying good buildingblo
ks and eventually 
ombining these to get larger building blo
ks. For the TSP, the basi
building blo
ks are edges. Larger building blo
ks 
orrespond to larger subtours. The pathrepresentation does not lend itself to the des
ription of edges and longer subtours in ways whi
hare useful to the GA".4.4 Adja
en
y RepresentationIn the adja
en
y representation (Grefenstette et al. 1985) a tour is represented as a list of n 
ities. Cityj is listed in position i if, and only if, the tour leads from 
ity i to 
ity j. Thus, the list(3 5 7 6 4 8 2 1)represents the tour 1� 3� 7� 2� 5� 4� 6� 8:Note that any tour has one unique adja
en
y list representation.An adja
en
y list may represent an illegal tour. For example,(3 5 7 6 2 4 1 8)28



represents the following 
olle
tion of 
y
les:1� 3� 7; 2� 5; 4� 6 and 8:It is easy to see that for the adja
en
y representation the 
lassi
al 
rossover operator may result in illegaltours. A repair algorithm might be ne
essary. Other 
rossover operators were de�ned and investigated forthe adja
en
y representation. We will des
ribe them one by one.4.4.1 Alternating Edge CrossoverThe alternating edge 
rossover works as follows (Grefenstette et al. 1985): �rst it 
hooses an edge fromthe �rst parent at random. Se
ond, the partial tour 
reated in this way is extended with the appropriateedge of the se
ond parent. This partial tour is extended by the adequate edge of the �rst parent, et
. Thepartial tour is extended by 
hoosing edges from alternating parents. In 
ase an edge is 
hosen whi
h wouldprodu
e a 
y
le into the partial tour, the edge is not added. Instead, the operator sele
ts randomly an edgefrom the edges whi
h do not produ
e a 
y
le.For example, the result of an alternating edge 
rossover of the parent(2 3 8 7 9 1 4 5 6)(7 5 1 6 9 2 8 4 3)might be (2 5 8 7 9 1 6 4 3):The �rst edge 
hosen is (1,2); it is 
hosen from the �rst parent. The se
ond edge 
hosen, edge (2,5), issele
ted from the se
ond parent, et
. Note that the only random edge introdu
ed is edge (7,6) instead ofedge (7,8).Experimental results with the alternanting edges operator have been uniformly dis
ouraging. The obviousexplanation seems to be that good subtours are often disrupted by the 
rossover operator. Ideally, an operatorought to promote the development of 
oadapted alleles, or in the TSP, longer and longer high performan
esubtours. The next operator was motivated by the desire to preserve longer parental subtours.29



4.4.2 Subtour Chunks CrossoverUsing the subtour 
hunks operator (Grefenstette et al. 1985), an o�spring is 
onstru
ted from two parenttours as follows: �rst it takes a random length subtour of the �rst parent. This partial tour is extendedby 
hoosing a subtour of random length from the se
ond parent. The partial tour is extended by takingsubtours from alternating parents. If a subtour is sele
ted from one of the parents whi
h would lead to anillegal tour, it is not added. Instead, an edge is added whi
h is 
hosen at random from the edges that do notprodu
e a 
y
le into the partial tour.4.4.3 Heuristi
 CrossoverThe heuristi
 
rossover operator (Grefenstette et al. 1985) �rst sele
ts at random a 
ity to be the startingpoint of the o�spring's tour. Then, the edges whi
h start from this 
ity are 
ompared and the shorter ofthese two edges is 
hosen. Next, the 
ity on the other side of the 
hosen edge is sele
ted as a referen
e 
ity.The edges whi
h start from this referen
e 
ity are 
ompared and the shortest one is added to the partial tour,et
. If, at some stage, a new edge would introdu
e a 
y
le into the partial tour, then the tour is extendedwith an edge 
hosen at random from the remaining edges whi
h do not introdu
e 
y
les.
Modi�
ationsJog et al. (1989) suggested the following modi�
ation. In 
ase 
hoosing the shortest edge produ
es a
y
le into the partial tour, the largest edge is 
he
ked. If 
hoosing this edge does not lead to an illegal tour,it is a

epted. Otherwise, the shortest edge from a pool of q randomly sele
ted edges is 
hosen, where q isa parameter. This variation of the heuristi
 operator tries to 
ombine short subpaths of the di�erent parenttours. However, it might be possible that the operator is not able to remove all undesirable 
rossings ofedges. Therefore, it is not suitable for �ne lo
al tuning.Suh and Van Gu
ht (1987) introdu
ed a heuristi
 
rossover operator whi
h is based on the 2-opt algorithm30



of Lin (1965). This operator sele
ts two random edges, (k,l) and (m,n), and 
he
ks whetherd(k; l) + d(m;n) > d(k; n) + d(m; l);where d(i; j) represents the distan
e between 
ity i and 
ity j. In 
ase the inequality above is true, the edges(k,l) and (m,n) are repla
ed by the edges (k,n) and (m,l).The main advantage of the adja
en
y representation is that it allows hyperplane analysis, also 
alleds
hemata analysis (Oliver et al. (1987), Grefenstette et al. (1985) and Mi
halewi
z (1992).Unfortunately, all the operators des
ribed above give poor results. In parti
ular, the experimental resultswith the alternating edge operator have been uniformly dis
ouraging. This is be
ause this operator oftendestroys good subpaths of the parent tours. Therefore, the subtour 
hunk operator by 
hoosing subpathsinstead of edges from the parent tours, performs better than the alternating edge operator. However, itstill has quite a low performan
e, be
ause it does not take into a

ount any information available about theedges. The heuristi
 
rossover operator on the other hand, sele
ts the better edge of the two possible edges,and therefore it performs far better than the other two operators. However, the performan
e of the heuristi
operator is not remarkable either (Grefenstette et al. 1985). Note that also other mutation operators haveto be developed, sin
e the 
lassi
al mutation operator is only de�ned for binary strings.4.5 Ordinal RepresentationAlso in the ordinal presentation, whi
h was introdu
ed by Grefenstette et al. (1985) a tour is representedas a list of n 
ities. The i-th element of the list is a number in the range from 1 to n� i+ 1. There existsan ordered list of 
ities, whi
h serves as a referen
e point.The easiest way to explain the ordinal representation is by giving an example. Assume, for example, thatthe ordered list is given by L = (1 2 3 4 5 6 7 8):Now the tour 1� 5� 3� 2� 8� 4� 7� 6 is represented byT = (1 4 2 1 4 1 2 1):31



This should be interpreted as follows. The �rst number of T is a 1. This means that to get the �rst 
ity ofthe tour we have to take the �rst element of list L and remove it from L. The partial tour is: 1. The se
ondelement of T is a 4. Therefore, to get the se
ond 
ity of the tour we have to get the fourth element of list L,whi
h is 
ity 5. We remove 
ity 5 from list L. The partial tour is: 1�5. If we 
ontinue in the above des
ribedway until all the elements of L have been removed, we �nally �nd the tour 1� 5� 3� 2� 8� 4� 7� 6.The advantage of the ordinal presentation is that the 
lassi
al 
rossover operator 
an be used. Thisfollows from the fa
t that the i-th element of the tour representation is always a number in the range from1 to n � i + 1. It is easy to see that partial tours to the left of the 
rossover point do not 
hange, whereaspartial tours to the right of the 
rossover point are disrupted in a quite random way.As predi
ted by the above 
onsideration of subtour disruptions, experimental results using the ordinalrepresentation have been generally poor.4.6 Matrix RepresentationAt least three attempts have been done to use a binary matrix representation.1. Fox and M
Mahon (1987) suggested representing a tour as a matrix in whi
h the element in row i and
olumn j is a 1 if, and only if, in the tour 
ity i is visited before 
ity j. For example, the tour 2� 3� 1� 4is represented by the matrix: 0BBBBBBBBBB�
0 0 0 11 0 1 11 0 0 10 0 0 0

1CCCCCCCCCCA :Suppose that a solution of the n-
ities TSP is represented by matrix M . M has the following properties:1. Pnj=1Pni=1mij = n(n�1)2 (i; j 2 f1; 2; : : : ; ng);2. mii = 0 (i 2 f1; 2; : : : ; ng);3. (mij = 1 ^mjk = 1)) mik = 1 (i; j; k 2 f1; 2; : : : ; ng):32



In 
ase the number of 1's in the matrix is less than 12n(n � 1) and the other requirements are satis�ed,it is possible to 
omplete the matrix in su
h a way that it represents a legal tour.For this matrix representation two new 
rossover operators were developed: the interse
tion operatorand the union operator. The interse
tion operator 
onstru
ts an o�spring O from parent P1 and P2 in thefollowing way. First, for all i; j 2 f1; 2; : : : ; ng it de�nesoij :=8>><>>: 1 if p1;ij = p2;ij = 1;0 otherwise.Se
ond, some 1's whi
h are unique for one of the parents are \added" to O, and the matrix is 
ompletedwith the help of an analysis of the sum of rows and 
olumns, in su
h a way that the result is a legal tour.For example, the parent tours 2� 3� 1� 4 and 2� 4� 1� 3 whi
h are represented by0BBBBBBBBBB�
0 0 0 11 0 1 11 0 0 10 0 0 0

1CCCCCCCCCCA and 0BBBBBBBBBB�
0 0 1 01 0 1 10 0 0 01 0 1 0

1CCCCCCCCCCA ;
give after the �rst phase 0BBBBBBBBBB�

0 0 0 01 0 1 10 0 0 00 0 0 0
1CCCCCCCCCCA :This matrix 
an be 
ompleted in six di�erent ways, sin
e the only restri
tion on the o�spring tour is thatit starts in 
ity 2. One possible o�spring is the tour 2� 1� 4� 3 whi
h is represented by:0BBBBBBBBBB�

0 0 1 11 0 1 10 0 0 00 0 1 0
1CCCCCCCCCCA :

The union operator divides the set of 
ities into two disjoint groups. See Fox and M
Mahon (1987) for aspe
ial method of making this division. For the �rst group of 
ities the matrix elements of the o�spring are33



taken from the �rst parent, for the se
ond group they are sele
ted from the se
ond parent. The resultingmatrix is 
ompleted by an analysis of the sum of the rows and 
olumns. For example, 
onsider again thetwo parents given above, and suppose that we divide the set of 
ities into f1,2g and f3,4g. Hen
e, after the�rst step of the union operator we have 0BBBBBBBBBB�
0 0 x x1 0 x xx x 0 0x x 1 0

1CCCCCCCCCCA ;
whi
h might be 
ompleted to 0BBBBBBBBBB�

0 0 0 01 0 0 01 1 0 01 1 1 0
1CCCCCCCCCCA ;whi
h represents the tour 4� 3� 2� 1.Fox and M
Mahon did not de�ne a mutation operator.The experimental results on di�erent topologies of the 
ities reveal an interesting 
hara
teristi
 of theunion and interse
tion operators, whi
h allows progress to be made even when the elitism (preserving thebest) option was not used. This was not the 
ase for either ER or PMX operators.2. Seniw (1991) had another approa
h. He de�ned the matrix element in the i-th row and the j-th
olumn to be 1 if, and only if, in the tour 
ity j is visited inmediately after 
ity i. This implies that a legaltour is represented by a matrix of whi
h ea
h row and ea
h 
olumn 
ontains pre
isely one 1. We remarkthat a matrix whi
h has pre
isely one 1 in ea
h row and in ea
h 
olumn does not ne
essarily represent alegal tour. For example, 
onsider the matri
es0BBBBBBBBBB�

0 0 0 10 0 1 01 0 0 00 1 0 0
1CCCCCCCCCCA and 0BBBBBBBBBB�

0 1 0 01 0 0 00 0 0 10 0 1 0
1CCCCCCCCCCA ;
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where the �rst matrix represents the tour 2� 3� 1� 4, and the se
ond one the set of subtours f1� 2, 3� 4g. Mutation is de�ned as follows: �rst several rows and 
olumns are sele
ted. The elements in the interse
-tions of these rows and 
olumns are removed and randomly repla
ed, though in su
h a way that the resultis a matrix of whi
h ea
h row and ea
h 
olumn 
ontains pre
isely one 1. For example, 
onsider again thematrix representation of the tour 2� 3� 1� 4 and suppose that we sele
t the �rst and the se
ond row andthe third and the fourth 
olumn. First, the matrix elements in the interse
tions of the rows and 
olumns areremoved. Hen
e, 0BBBBBBBBBB�
0 0 x x0 0 x x1 0 0 00 1 0 0

1CCCCCCCCCCA :
Randomly repla
ing the elements may give0BBBBBBBBBB�

0 0 1 00 0 0 11 0 0 00 1 0 0
1CCCCCCCCCCA :

Note that this matrix does not represent a legal tour. The 
rossover operator whi
h was de�ned 
reatesan o�spring O from parents P1 and P2 as follows. First, for all i; j 2 f1; 2; : : : ; ng it de�nesoij :=8>><>>: 1 if p1;ij = p2;ij = 1;0 otherwise.Se
ond, it alternately takes a 1 from one of the parents, whi
h is unique for that parent, and 
hanges the
orresponding matrix element of the o�spring from a 0 into a 1. Finally, if any rows in the o�spring still donot 
ontain a 1, 1s are added randomly, though in su
h a way that the result is a matrix whi
h has pre
iselyone 1 in ea
h row and in ea
h 
olumn. For example, the parent tours 2� 3� 1� 4 and 2� 4� 1� 3, whi
h35



are represented by 0BBBBBBBBBB�
0 0 0 10 0 1 01 0 0 00 1 0 0

1CCCCCCCCCCA and 0BBBBBBBBBB�
0 0 1 00 0 0 10 1 0 01 0 0 0

1CCCCCCCCCCA ;may 
reate the following o�spring: 0BBBBBBBBBB�
0 0 0 10 0 1 00 1 0 01 0 0 0

1CCCCCCCCCCA ;whi
h is again not a representation of a legal tour.We have seen that the de�ned operators do not ne
essarily result in legal tours. It is possible that theoperators 
onvert the parent tour(s) into a 
olle
tion of subtours. These subtours are allowed in the hopethat natural 
lustering takes pla
e (however, subtours whi
h 
ontain less than q 
ities are not allowed, whereq is a parameter). After the exe
ution of the geneti
 algorithm the best solution found is 
onverted into alegal tour. This is done with the help of a deterministi
 algorithm whi
h 
ombines pairs of subtours.This evolution program gave a reasonable performan
e on several test 
ases from 30 
ities to 512 
ities.3. The last approa
h based on a binary matrix representation was proposed by Homaifar and Guan (1991).They used the same representation as Seniw (1991), but in 
ombination with di�erent 
rossover and mutationoperators. The 
rossover operators they used ex
hange all entries of the parent matri
es either after a 1-point
rossover or a 2-point 
rossover. Afterwards, an additional \repair algorithm" is run to assure that the resultis a matrix of whi
h ea
h row and ea
h 
olumn 
ontains pre
isely one 1, and to 
onne
t any 
y
les to produ
ea legal tour.A 1-point 
rossover 
an be seen as follows. Consider the representations of the tours 1 � 2 � 3� 4 and
36



4� 3� 2� 1. These are 0BBBBBBBBBB�
0 1 0 00 0 1 00 0 0 11 0 0 0

1CCCCCCCCCCA and 0BBBBBBBBBB�
0 0 0 11 0 0 00 1 0 00 0 1 0

1CCCCCCCCCCA ;respe
tively. Suppose, that the 
rossover point is 
hosen between the se
ond and the third 
olumn.Hen
e, 0BBBBBBBBBB�
0 1 0 00 0 1 00 0 0 11 0 0 0

1CCCCCCCCCCA and 0BBBBBBBBBB�
0 0 0 11 0 0 00 1 0 00 0 1 0

1CCCCCCCCCCA :
Crossover results in 0BBBBBBBBBB�

0 1 0 10 0 0 00 0 0 01 0 1 0
1CCCCCCCCCCA and 0BBBBBBBBBB�

0 0 0 01 0 1 00 1 0 10 0 0 0
1CCCCCCCCCCA ;whi
h of 
ourse do not represent legal tours.A 2-point 
rossover works a

ording to the same idea. Consider again the two parent tours given above,and suppose that we 
hoose the �rst 
rossover point to be between the �rst and the se
ond 
olumn, and these
ond to be between the third and the fourth 
olumn. Hen
e,0BBBBBBBBBB�

0 1 0 00 0 1 00 0 0 11 0 0 0
1CCCCCCCCCCA and 0BBBBBBBBBB�

0 0 0 11 0 0 00 1 0 00 0 1 0
1CCCCCCCCCCA :
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The result of the 
rossover is0BBBBBBBBBB�
0 0 0 00 0 0 00 1 0 11 0 1 0

1CCCCCCCCCCA and 0BBBBBBBBBB�
0 1 0 11 0 1 00 0 0 00 0 0 0

1CCCCCCCCCCA ;
whi
h again do not represent legal tours.The mutation operator used by Homaifar and Guan (1991) was heuristi
 inversion. This operator reversesthe order of the 
ities between two randomly 
hosen 
ut points. If the distan
e between two 
ut points islarge, the operator explores 
onne
tions between \good" paths, otherwise the operator performs lo
al sear
h.The reported results (Homaifar et al. 1993) indi
ate that this approa
h performed su

essfully on 30-100
ity TSP problems.5 Hybridization with Lo
al Sear
hGeneti
 algorithms 
an be applied to problems of whi
h very little knowledge is available. However,Grefenstette (1987b) showed that in many o

asions it is possible to in
orporate problem-spe
i�
 knowledgein these algorithms. One example of in
orporated knowledge we have already seen: the heuristi
 
rossoveroperator (see Se
tion 4.4.3).Another opportunity to use problem-spe
i�
 knowledge is in the determination of the initial population.The initial population 
an be 
hosen at random. However, it is also possible to start with a populationwhi
h already has some quality. This is 
alled seeding. Lawler et al. (1985) and Johnson (1990) des
ribedhow a population of medium quality 
an be 
reated. Note that seeding has to be done very 
arefully, sin
e ageneti
 algorithm started with an initial population of little variety may qui
kly 
onverge to a lo
al optimum.Banzhaf (1990) and Grefenstette (1987b) de�ned measures of the population varian
e. An algorithm whi
his frequently used for seeding is the 2-opt algorithm (Lin 1965).While the geneti
 algorithms are not well suited for �nely tuned lo
al sear
h, Goldberg (1989) suggested38




rossing them with a lo
al sear
h algorithm. In this way the evolutionary algorithm sear
hes for the \hills",and the lo
al sear
h algorithm 
limbs them. Several attempts have been done to implement Goldberg'ssuggestion, amongst others by A
kley (1987); Gorges-S
hleuter (1989); Jog et al. (1989); M�uhlenbein(1989,1991); M�uhlenbein and Kindermann(1989); M�uhlenbein et al. (1987, 1988); Suh and Van Gu
ht (1987) andUlder et al.(1990). They all used algorithms of the following stru
ture:1. Constru
t a (random or seeded) initial population.2. Apply lo
al sear
h to every individual of the initial population and repla
e every individual by thebetter individual (e.g. lo
al optimum), whi
h was rea
hed by applying lo
al sear
h to it.3. Create new individuals with the help of geneti
 operators and add them to the population.4. Use lo
al sear
h to repla
e ea
h new 
reated individual in the 
urrent population by a better individual(e.g. lo
al optimum).5. Redu
e the extended population to its original size in a

ordan
e with a sele
tion 
riterion.6. If it does not 
omply with a stopping 
riteria: go to step 3.The lo
al sear
h in the steps 2 and 4 may be performed with, e.g. the 2-opt algorithm (Lin 1965) orthe Or-opt algorithm (Or 1976 and Lawler et al. 1985). Ulder et al. (1990) used a lo
al sear
h algorithmbased on Lin and Kernighan neighbourhoods (Lin and Kernighan 1973). Lin et al. (1993) even appliedsimulated annealing. They worked with neighbourhoods determined by the following swapping strategies:random 2-ex
hange and lo
ally adja
ent swap. Also a 
ombination of di�erent lo
al sear
h te
hniques maybe 
hosen: Prinetto et al. (1993) applied in every generation Or-opt, 2-opt, and Group Optimization with aprobability of 0.5, 0.3 and 0.2 respe
tively. They also used a 
ombination of several 
rossover operators.Instead of using lo
al sear
h in every iteration of a geneti
 algorithm it is also possible to wait thealgorithm has rea
hed an interesting stage in the sear
h pro
ess. Another possibility is to perform lo
alsear
h only when the geneti
 algorithm has terminated.M�uhlenbein and Gorges-S
hleuter developed a parallel geneti
 algorithm based on the above des
ribedstru
ture (Gorges-S
hleuter 1989; M�uhlenbein 1989, 1991 and M�uhlenbein et al. 1987, 1988). They 
alled39



their algorithm ASPARAGOS (ASyn
hronous PARAllel Geneti
 Optimization Strategy). Another parallelgeneti
 algorithm for the Travelling Salesman Problem is des
ribed in Fogel (1990).6 Experimental results with the path representation6.1 Introdu
tionFa
ed with the impossibility of 
arrying out an analyti
 
omparision of the di�erent operators presentedin the previous se
tion, we have 
arried out an empiri
al 
omparision between the di�erent 
ombination of
rossover and mutation operators presented in relation with the path representation.The Geneti
 Algorithm that we used follows the prin
iples of GENITOR (Whitely et al. 1989). Inthe mentioned algorithm, only one new individual is 
reated in ea
h iteration of the algorithm. This newindividual repla
es the worst of the individuals existing in the population, only if its evaluation fun
tion isbetter. The 
riteria for stopping the algorithm is double. In this way, if in 1000 su

essive iterations theaverage 
ost of the population has not de
reased, the algorithm will be stoped, not allowing, whatsoevermore than 50000 evaluations in ea
h sear
h. In the experiments presented here the following parameters havebeen established: size of population (� = 200), probability of mutation (pm = 0:01) and sele
tive pressure(b = 1.90). The last parameter, introdu
ed in GENITOR, is related with the assigning of probability forthe sele
tion of the parents. In short, it indi
ates the preferen
e of the sele
tion awarded to the best of theindividuals of the population making a 
omparison with the average individual. In this way, for example,if b=2 this signi�es that the best individual has been assigned the probability of 
onverting itself into thefather whi
h is double that of the average individual.For ea
h of the 48 (8 x 6) 
ombinations between 
rossover and mutation operators 
onsidered, 10 sear
heshave been realized. The sear
hes have been realized using the SPARC-server 100 
omputer , under the Solaris2.3 operating system. The treatment of the data obtained in the experiments has been realized with theSPSS pa
kage (1988), studing the statisti
al signi�
an
e (� = 0:05) of the average results using Kruskal -Wallis test. 40



6.2 ResultsThe following �les have been used in the empiri
al study: Distan
es in kilometers between the 47 
apitalsof the Spanish peninsular provin
es, as well as the well known Gr�ots
hels24, and Gr�ots
hels48, whi
h havebeen used previously in empiri
al 
omparisons. These are two �les that 
an be obtained via ftp in many sites,that represent the distan
es between 24 and 48 imaginary 
ities. They are oftenly used in TSP problems toknow the �tness of the algorithm we use, and 
an be de�ned like a 
lassi
al experiment in the TSP.Capitals of the Spanish peninsular provin
esTable IV shows the best results and the average results obtained for ea
h possible 
ombination betweenthe 
rossover and mutation parameters 
onsidered. Distan
es in kilometers have been used. They have beenprovided by Center of Publi
ations of the General Te
hni
al Se
retary of the Department of Publi
 Works,Transport and Environment.We are not aware of any other work on these 
hara
teristi
s that have been applied to this �le, so a
omparison with other referen
es is not possible. The tour with the lowest 
ost has been evaluated in 6238Km., whi
h has been obtained ten times (5 of them with ER 
rossover operator, 4 of them with POS, andthe resting one with OX2). All of the mutation operators have been 
apable of �nding this tour, althoughthe ISM was the one whi
h found it the most number of times. The statisti
ally signi�
ant di�eren
es havebeen found in relation with average behavior, related with 
rossover operator likewise with the mutationoperator. The best 
rossover operators were in the following order: ER, OX1, POS, OX2 and CX, while thebest mutation operators were : IVM, DM, and ISM.In relation to the speed of the 
onvergen
e, measured by the number of evaluations made until the
onvergen
e of the algorithm, the fastest 
rossover operators, were the following: ER, PMX, OX1, POS, andOX2, likewise the mutation operators were : SIM and SM.There is a more profound study of the above mentioned data, that work with di�erent sizes of population,mutation probabilities and sele
tive pressures, whi
h you 
an refer to in Larra~naga et al. (1996
).Gr�ots
hels24This �le, the same as the following one, has been used as a bank of tests in several approximations to41



Tour lengths for 
apitals of Spanish provin
es.AP CX ER OX1 OX2 PMX POS VRDM best results 7309 7552 6238 6564 6333 7114 6238 8256 6238DM average results 12021 10610 8644 8785 9486 10407 9013 15956 10615EM best results 7510 7559 6238 6472 6412 7666 6245 8272 6238EM average results 12195 10703 8649 9175 9850 11710 9331 16178 10974ISM best results 7452 8240 6238 6437 6238 6470 6238 7826 6238ISM average results 11950 10544 8649 8850 9644 10744 9112 15796 10661IVM best results 7266 7964 6238 6396 6558 6803 6238 8064 6238IVM average results 11944 10593 8545 8883 9507 10400 8922 16077 10609SIM best results 10596 8813 6245 6305 6364 7322 6238 9685 6238SIM average results 14763 10661 9243 9831 11045 13073 10188 16589 11924SM best results 10364 8440 6238 6311 6472 7985 6388 9797 6238SM average results 15014 10672 9461 10085 11077 13335 10189 16739 120717266 7552 6238 6305 6238 6470 6238 7826 623812981 10630 8865 9268 10101 11612 9459 16222 11142
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TSP using the Geneti
 Algorithm.Table V shows the results obtained. The best result, 1272 km, has been a
hieved with the following
rossover operators: ER, OX1, OX2, PMX and POS. All the mutation operators �nd the above mentionedvalue.At the average results level, improvements have been rea
hed with the following 
rossover operators: ER,OX1, POS, OX2, and PMX, likewise with the mutation operators: DM and IVM.Fast 
rossover operators in this example were: ER, PMX, OX1 and OX2, while SIM likewise SM 
an be
onsidered as fast mutation operators.Tour lengths for the Gr�ots
hels24 problem.AP CX ER OX1 OX2 PMX POS VRDM best results 1349 1316 1272 1272 1289 1272 1272 1340 1272DM average results 1470 1416 1274 1305 1322 1355 1305 1777 1403EM best results 1369 1388 1272 1272 1289 1296 1272 1380 1272EM average results 1487 1474 1274 1299 1311 1416 1312 1903 1434ISM best results 1300 1289 1272 1272 1272 1313 1272 1565 1272ISM average results 1406 1461 1272 1307 1316 1368 1298 1993 1428IVM best results 1301 1344 1272 1272 1272 1298 1272 1390 1272IVM average results 1406 1408 1277 1303 1329 1369 1315 1904 1414SIM best results 1421 1302 1272 1272 1272 1327 1289 1390 1272SIM average results 1588 1441 1276 1313 1342 1393 1329 1737 1428SM best results 1396 1330 1272 1272 1300 1306 1279 1537 1272SM average results 2996 1423 1277 1300 1367 1388 1316 1920 16231300 1289 1272 1272 1272 1272 1272 1340 12721725 1437 1275 1305 1331 1382 1313 1872 1455Gr�ots
hels48In Table VI the average and the best results are shown. The best sear
h 
orresponds to the tour of 507443



km., worse than optimal of this problem (5046 Km.). This optimal has been rea
hed using the 
ombinationof the ER + SIM operators relaxing the stopping 
onditions, and in
reasing the size of the population.The statisti
ally signi�
ant di�eren
es has been found in relation with average behavior, related with
rossover operator, with the best being ER, POS, OX1 and OX2 operators. The best behavior of themutation operators were ISM, DM and IVM operators.The number of ne
essary iterations to rea
h the 
onvergen
e, ER, PMX and POS 
ould be 
onsidered asfast 
rossover operators, likewise with the mutation operators SIM and SM.Tour lengths for the Grts
hels48 problem.AP CX ER OX1 OX2 PMX POS VRDM best results 6403 10387 5137 5142 5123 5560 5186 14931 5123DM average results 7082 11398 5208 5368 5390 6150 5459 15595 7706EM best results 6606 9719 5134 5194 5150 6420 5168 14760 5134EM average results 7220 10649 5232 5458 5651 7103 5361 15325 7750ISM best results 6311 9514 5107 5234 5080 6092 5158 15228 5080ISM average results 6905 10543 5176 5422 5536 6496 5401 15554 7629IVM best results 6769 9905 5100 5145 5169 5519 5174 15267 5100IVM average results 7276 11139 5238 5436 5455 6139 5395 15702 7723SIM best results 9847 9356 5074 5424 5097 7010 5179 15205 5074SIM average results 10304 10610 5154 5538 5451 7430 5493 15663 8205SM best results 8802 9786 5074 5280 5251 6663 5164 15014 5074SM average results 10220 11014 5138 5516 5715 7523 5413 15580 82656311 9356 5074 5142 5080 5519 5158 14760 50748168 10892 5191 5456 5533 6807 5420 15570 7880
6.3 Con
lusions
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Although we are aware that the experiments made over three tests �les don't allow us to generalize theresults obtained in other TSP problem, a 
ertain uniformity of behavior of the operators in the di�erentexamples 
an be seen. In this way, the 
rossover operators ER, OX1, POS and OX2, likewise the mutationoperators DM, IVM, and ISM were those whi
h had the best results. If we 
onsider speed related with thenumber of evaluations until 
onvergen
e, the 
lassi�
ation for the 
rossover operators was: ER, PMX, OX1and POS, likewise for the mutation operators: SIM and SM. The operators of spe
ial interest, ie the onesthat had the best results and at the same time were the qui
kest, are ER, OX1 and POS.Starkwather et al. (1991) present an empiri
al 
omparison of six 
rossover operators, designed for thepath representation: ER, OX1, OX2, POS, PMX and CX. Ea
h of the above operators was used to solve the30 
ity TSP. None of the operators use mutation. The results obtained indi
ate how good ER, OX1, OX2,and POS operators are.Although, at the start it was 
onsidered that the tasks of sequen
ing were similar, so only one geneti
operator would be enough for any problem of sequen
ing, results indi
ate that the e�e
tiveness of di�erentoperators is dependent on the problem domain; operators whi
h work well in problem where adja
en
y isimportant (e.g. TSP) may not be e�e
tive for other types of sequen
ing problems.Likewise, for example, in the problem of the sear
h of the optimal permutation with whi
h we havere
ently been working in Bayesian networks ((Larra~naga et al. (1996a) (1996b)) using 
rossover and mutationoperators developed in relation with path representation, the 
rossover operators that provided the bestresults, in both 
ases, were: CX, OX2 and POS operators. Comparing this with the results obtained here,the di�eren
e is that the CX operator is in
luded and the ER operator is ex
luded. Note that in the last twoproblems the sear
h is made over the non 
y
li
 permutations of n integer numbers, in 
ontradi
tion withTSP, in whi
h the optimal 
y
li
 permutation is to be sear
hed.7 Con
lusionsWe have 
onsidered several representations and operators whi
h may be used in geneti
 algorithmsmeant to solve the Travelling Salesman Problem. The �rst representation at whi
h we looked was the binary45



representation. This representation might be useful for small problem instan
es of the TSP. However, forlarger problem instan
es the binary strings whi
h represent the tours be
ome unmanageably large. Anotherdisadvantage of the binary representation is that the 
lassi
al operators do not ne
essarily result in legalo�spring tours; repair algorithms would be ne
essary.The se
ond representation des
ribed, was the path representation. This representation 
an be seen as themost natural of those 
onsidered. It is also the one that is used most often, and a large variety of operatorshave been developed for it. These operators try to pass on two types of information to the o�spring: theabsolute position of the 
ities in the parent tours and the relative order of the 
ities in the parent tours. Someoperators, e.g. the CX operator and the position based operator, pay most attention to the former typeof information transfer. Other operators, e.g. the order based operator, the ER operator and the heuristi
operator, pay more attention to the latter type. Sin
e the TSP sear
hes for a 
y
le of whi
h the 
ost isindependent of the 
hosen starting 
ity, it 
an be expe
ted that information about the relative order of the
ities is more important to pass on than the information about the absolute position of the 
ities.Few results 
an be found on the 
omparison of the performan
e of the di�erent operators from a math-emati
al point of view. This, amongst other reasons, is due to the fa
t that, for most operators, s
hemataanalysis is quite diÆ
ult. Some results 
an be found. Oliver et al. (1987) 
on
luded from theoreti
al andempiri
al results that the OX operator is better than the PMX operator and that the PMX operator isbetter than the CX operator. Grefenstette et al. (1985) showed that it was better to use a heuristi
 
rossoveroperator. However, Whitley et al. (1989, 1991) showed that their ER operator worked even better than theheuristi
 
rossover operator. Our results, obtained with 3 di�erent examples, using 48 
ombinations between8 
rossover operators and 6 mutation operators, show the superiority of the following operators: ER, OX1,POS and OX2 (
rossover operators), and DM, IVM and ISM (mutation operators).The thrid representation 
onsidered was the adja
en
y representation. We have seen that for this repre-sentation several 
rossover operators have been developed. However, unfortunately all the des
ribed 
rossoveroperators give a low performan
e. The 
reated o�spring does not inherit enough adequate information fromits parents.The penultimate representation whi
h we des
ribed was the ordinal representation. The advantage of46



this representation is that the 
lassi
al operators 
an be used. However, it gives poor results.The last representation to whi
h we paid attention to was the matrix representation. In fa
t we did not
onsider one matrix representation, but two: the representation used by Fox and M
Mahon (1987), and therepresentation used by Seniw (1991) and by Homaifar and Guan (1991). The main diÆ
ulty using thesematrix representations is to de�ne operators whi
h lead to legal o�spring. In both the approa
hes of Seniw(1991) and Homaifar and Guan (1991), additional repair algorithms are ne
essary to assure that the o�springis a legal tour.Although it may be a bit out of the rea
h of this paper, we also dis
ussed brie
y the hybridization of ageneti
 algorithm with lo
al sear
h. We did this sin
e the 
reation of a good evolutionary algorithm seemsto inevitably in
lude lo
al sear
h te
hniques.Another aspe
t that 
ould be interest is to 
ompare the results obtained with the approximations basedon the Geneti
 Algorithms examined here, with other te
hniques in
luded in the Evolutionary Computation- Evolutionary Programming, Evolutionary Strategies... -, as well as other heuristi
s of optimization -Simulated Annealing, Tabu Sear
h, Threshold A

epting,...-.A
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