
Genetic Algorithm Solution of the TSPAvoiding Special Crossover and MutationG�okt�urk �Uc�olukDepartment of Computer EngineeringMiddle East Technical University06531 Ankara, TurkeyEmail: ucoluk@ceng.metu.edu.trAbstractIn this work an alternative representation for permutations which is robust underordinary crossover and mutation, is proposed. This method is used for solving theTSP.1 IntroductionA well known computational problem is the the Travelling Salesman Problem (TSP) whichis known to be NP � complete. Here is the wording of it:N points (`cities'), as well as the cost of travelling between every pair of them is given.Assume that a salesperson, starting from a given city, has to visit each city exactlyonce and hence make a round-trip. The aim is to �nd an optimal tour in which thetotal cost of the round-trip is minimized.More formally, the TSP can be formulated as a problem of graph theory: Given a graphG on a set of N vertices, a closed sequence of edges in G (i.e. a cycle) which passesthrough each vertex of G exactly once is called a Hamiltonian Cycle. Given a completeweighted graph G on a set of N vertices (cities) the TSP is then the problem of �nding theshortest Hamiltonian Cycle through G. From the computational point of view this meansthe determination of the particular permutation of the non-repeating sequence 1; 2; : : : ; Nwhere the cities are numbered consecutively from 1 to N and the permutation representsthe visiting order for which the weight sum is minimized.The search space contains N ! permutations and since TSP is NP � complete and thecorresponding optimization problems are therefore NP-hard. The best known algorithmshave exponential (deterministic) run time complexity.Such combinatorial optimization problems are in the domain of Genetic Algorithmsinterest. In the next section, the most popular method among conventional GA solutionsof TSP will be reviewed. In section ?? an alternative solution will be introduced. A com-parative experimental study will be overviewed in ?? which is followed by the conclusion.2 Conventional ApproachIn the conventional approach a chromosome which is devised to represent a solution con-stitutes of N (count of the cities) genes. Each gene holds a number which is a label of acity. So the n th gene holds the label of the city which is visited n th. In other words, thechromosome is a direct coding of a permutation of the sequence 1; 2; : : : ; N .1



The problem with this representation is obvious. Starting with a population of validchromosomes, ordinary crossover and mutation operators cause problems. This is so be-cause o�springs generated by means of the ordinary operators are of a great possibility nomore valid chromosomes. A variety of methods and new operators that handle that sortof obscenities are introduced throughout the literature.Solutions are observed to fall into one of the following three categories:� Disquali�cation: The idea is to allow the generation of those invalid chromosomes butassign such a low �tness values that they got eliminated in the forthcoming selectionprocess. This simple method has its disadvantage of being extensively time consum-ing. The genetic engine spends most of its time generating invalid chromosomes andthen eliminating them.� Repairing: In this approach invalid chromosomes are generated but then fed into aintermediate process where they are transformed into valid ones. Here the key ideais to do the least modi�cation such that the merits of crossover is preserved.� Inventing Specialized Operators: Instead of creating invalid chromosomes the GAoperators are modi�ed to generate only valid chromosomes.Falling into the third category and concerning permutation-respecting crossover operators,the following operators are worth to mention:� Partially mapped crossover (PMX). [?]� Order crossover (OX). [?]� Edge recombination crossover (ERX). [?]Among these the �rst one, namely PMX is quoted to be the most successful. Given twoparents s and t, PMX randomly picks two crossover points - like 2-point crossover. Thechild is then constructed in the following way. Starting with a copy of s, the positionsbetween the crossover points are, one by one, set to the values of t in these positions. Tokeep the string a valid chromosome the cities in these positions are not just overwritten.To set position p to city c, the city in position p and city c swap positions. Below you seean example of this coding and special crossover technique for two sample permutations:6; 2; 3; 4; 1; 7; 5 and 5; 2; 4; 1; 3; 7; 6
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The resulting child has1. between the crossover points the same cities in the same positions as t, and2. outside the crossover interval the same cities in the same positions as s, where thisis not in con
ict with (1).This idea can very easily be generalized to n-point crossover. Mutation is done by ex-changing gene values in pairs (in a chromosome).This method has the following draw backs:1. The changes in the chromosomes are not con�ned to the exchanged portions. There-fore the building-blocks mechanism of EC is damaged.2. Mutations are not performed at single points.3. Simple bit-string crossover and mutation implementations will not work.4. The implementation requires tricks for e�ciency purposes.In the following section a new technique for GA to deal with permutation encoding, wherethe representation is crossover and mutation robust, is introduced. This means that theo�-springs generated by crossover and mutation are still valid chromosomes and no spe-cial de�nitions for these operators are needed: the conventional bit-string crossover andmutation operators su�ces.3 Proposed MethodThe proposed method is to describe a permutation by means of its inversions [?]. For apermutation i1; i2; : : : ; iN of the set f1; 2; : : : ; Ng we let aj denote the number of integersin the permutation which precede j but are greater than j. So, aj is a measure of how muchout of order j is. The sequence of numbers a1; a2; : : : ; aN is called the inversion sequenceof the permutation i1; i2; : : : ; iN . For example the inversion sequence of the permutation6; 2; 3; 4; 1; 7; 5 is 4; 1; 1; 1; 2; 0; 0. Here, for example, the 2 (which is the 5th element in theinversion sequence) is saying that there are exactly 2 elements in the permutation whichare to the left of 5 end are greater than 5 (Yes this is true, they are: 6; 7).The inversion sequence a1; a2; : : : ; aN satis�es the conditions0 � ai � N � i for i = 1; 2; : : : ; NAs seen there is no restriction on the elements which says ai = aj is forbidden for i 6= j.This is of course very convenient for the crossover and mutation operations in GA.Below two iterative algorithms are given. The �rst generates the inversion sequence ofa given permutation and the second does the inverse (generates the corresponding permu-tation of a given inversion sequence).Input perm : array holding the permutationOutput inv : array holding the inversion sequencefor i 1::N dof invi  0m 1while permm 6= i dof if permm > i then invi  invi + 1m m+ 1 g g



Input inv : array holding the inversion sequenceOutput perm : array holding the permutationUses pos : dummy array for intermediate result1for i N::1 dof for m i + 1::N doif posm � invi + 1 then posm  posm + 1posi  invi + 1 gfor i 1::N do permposi = iBy this method a chromosome or a subsection of it, which has to keep a permutationwill consist of a sequence of N genes2 where the allele of each element is a natural number.The maximal allele value allowed decreases by one at each element from the �rst positionof the sequence to the last one.In GA applications natural number valued genes are usually represented by bit strings,which are the binary representation of that number. The limitation is very easily controlledby the choosing a restricted bit length and/or a modulo operation. Except this limitationof the maximal values, which always is the case in GA applications with numerical alleles,there is no extra restriction or order that has to be preserved throughout the GA oper-ations. Whatever crossover or mutation will produce will inheritly correspond to a validpermutation. Now there is a question to be answered:What characteristics of the parents will be inherited by the o�spring?Assuming that an ordinary bit-string one-point crossover is performed on both componentsof the chromosome, we can state that the o�springs will inherit characteristics from bothparents. For one of the o�spring, one of the parents, p1, will provide the displacementinformation of some of the permutation elements (lets call them E 0) and the other parent,p2 will provide a similar information for the remaining permutation elements (E 00). Ofcourse the other o�spring will receive the displacement information for E 0 and E 00 from p2and p1, respectively.Similar properties can be stated for mutation.Below is an example coding of the two permutations 6; 2; 3; 4; 1; 7; 5 and 5; 2; 4; 1; 3; 7; 6which undergo an ordinary crossover that generates two o�springs from them:
2 1 0 1 03 1

4 16 2 3 4 1 7 5

5 2 4 1 3 7 6

1 1 2 0 0 1 1 2 0 03 1

2 1 0 1 04 15 2 4 3 1 7 6

6 2 3 1 4 7 5
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O F F S P R I N G S

Permutation
(generated)

1The use of this array can be avoided by a more elaborated algorithm but this will not reduce the timecomplexity.2Actually (N � 1) su�ces, since invN is always zero.



4 GA Solution of the TSP ProblemBoth methods, PMX and the newly proposed one, are implemented as C programs. Thedi�erences are kept as local as possible. As a testbed a problem from the TSPLIB is chosen.This problem is a symmetric TSP and the data comes from a `Real World problem' namelythe road distances that connect 29 cities in Bavaria, Germany.Both methods were run with the same settings of GA dynamics: 10-point crossover,pool size of 1000 chromosomes, 15% elitism, 0:007 mutation/gene exchange. To avoid thedi�erences coming from the randomization of the initial pool both methods are run 4000times and comparison is made statistically.The optimal distance solution of the problem is known to be 2020. Normally theaverage of the initial population (which is created randomly) is about 6000 � 7000. Ofcourse neither method converges always to the optimum but rather gets caught in localminima which are nearly optimal. Below the number distribution of the pool's bests ofeach of the runs for both the methods are given as histograms (dashed lines are PMX,solids are the proposed method)Histogram over All Runs for the Pool's Best
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best path length of the poolAs observed the proposed method produces almost with the same frequency bad solutionsas PMX does. The most frequently produced solution by the proposed method is betterthen the most frequently produced solution by PMX but is less in number by 1% over all4000 runs. The good solutions are slightly more produced by PMX. The averages are 2259and 2242 for the proposed method and PMS respectively. The proposed method is morestable in producing solutions, namely the standard deviation for it is 98:5 where the same�gure is 108:3 for PMX.The striking point about the proposed method is not only that it allows simple crossoverand mutation, but also the high convergence rate observed in the TSP. The proposedmethod converges to a nearly optimal solution much more rapidly. Below the count ofiterations of each run is given as a histogram over all the 4000 runs. Similar to the previoushistograms the dashed lines are used for PMX and solid lines for the proposed method.



Histogram over All Runs for the Iteration Count
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The count of iteration till convergence is achieved is on the average 110:5 for the proposedmethod. PMX requires on the average 248 iteration to converge. The stability measure ofthe convergence is also in favour of the new proposed method: The standard deviation forthe iteration counts is 30:9 for the proposed method where it is 48:9 for PMX.5 ConclusionA new method for representing permutations as GA chromosomes has been introduced. Incontrast to the conventional ones this proposed representation is not handicapped undercrossover and mutation. The proposed method is used in a TSP and has proven itself asgood as the conventional method. The comparative study of the results shows that thenew method outperforms the conventional PMX method by a factor of 2:2 in convergencerate.References[1] D.E. Goldberg and R. Lingle, Alleles, Loci, and the Travelling Salesman Problem,in:J.J. Grefenstette (ed), Proceedings of the First International Conference on GeneticAlgorithms and Their Application, Lawrence Erlbaum Associates, Hillsdale, NJ, 1985,pp. 154-159[2] L. Davis, Applying Adaptive Algorithms to Epistatic Domains, in: Proceedings of theInternational Joint Conference on Arti�cial Intelligence, 1985, pp. 162-164[3] M. Oliver, D.J. Smith and J.R.C. Holland, A Study of Permutation Crossover Operatorson the Travelling Salesman Problem, in:J.J. Grefenstette (ed.), Proceedings of theSecond International Conference on Genetic Algorithms, Lawrence Erlbaum Associates,Hillsdale, NJ, 1987, pp. 224-230[4] M. Hall, American Mathematical Society, Proceedings of the Symposium on Pure Math-ematics, 1963, 6 pp. 203[5] S. Even, Algorithmic Combinatorics, The Macmillan Company, NY, 1973


