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Abstract

In this work an alternative representation for permutations which is robust under
ordinary crossover and mutation, is proposed. This method is used for solving the
TSP.

1 Introduction

A well known computational problem is the the Travelling Salesman Problem (TSP) which
is known to be NP — complete. Here is the wording of it:

N points (‘cities’), as well as the cost of travelling between every pair of them is given.
Assume that a salesperson, starting from a given city, has to visit each city exactly
once and hence make a round-trip. The aim is to find an optimal tour in which the
total cost of the round-trip is minimized.

More formally, the TSP can be formulated as a problem of graph theory: Given a graph
G on a set of N vertices, a closed sequence of edges in G (i.e. a cycle) which passes
through each vertex of G exactly once is called a Hamiltonian Cycle. Given a complete
weighted graph G on a set of N vertices (cities) the TSP is then the problem of finding the
shortest Hamiltonian Cycle through GG. From the computational point of view this means
the determination of the particular permutation of the non-repeating sequence 1,2,... , N
where the cities are numbered consecutively from 1 to N and the permutation represents
the visiting order for which the weight sum is minimized.

The search space contains N! permutations and since TSP is NP — complete and the
corresponding optimization problems are therefore NP-hard. The best known algorithms
have exponential (deterministic) run time complexity.

Such combinatorial optimization problems are in the domain of Genetic Algorithms
interest. In the next section, the most popular method among conventional GA solutions
of TSP will be reviewed. In section ?7 an alternative solution will be introduced. A com-
parative experimental study will be overviewed in ?? which is followed by the conclusion.

2 Conventional Approach

In the conventional approach a chromosome which is devised to represent a solution con-
stitutes of N (count of the cities) genes. Each gene holds a number which is a label of a
city. So the n th gene holds the label of the city which is visited n th. In other words, the
chromosome is a direct coding of a permutation of the sequence 1,2,..., N.



The problem with this representation is obvious. Starting with a population of valid
chromosomes, ordinary crossover and mutation operators cause problems. This is so be-
cause offsprings generated by means of the ordinary operators are of a great possibility no
more valid chromosomes. A variety of methods and new operators that handle that sort
of obscenities are introduced throughout the literature.

Solutions are observed to fall into one of the following three categories:

e Disqualification: The idea is to allow the generation of those invalid chromosomes but
assign such a low fitness values that they got eliminated in the forthcoming selection
process. This simple method has its disadvantage of being extensively time consum-
ing. The genetic engine spends most of its time generating invalid chromosomes and
then eliminating them.

e Repairing: In this approach invalid chromosomes are generated but then fed into a
intermediate process where they are transformed into valid ones. Here the key idea
is to do the least modification such that the merits of crossover is preserved.

e Inventing Specialized Operators: Instead of creating invalid chromosomes the GA
operators are modified to generate only valid chromosomes.

Falling into the third category and concerning permutation-respecting crossover operators,
the following operators are worth to mention:

e Partially mapped crossover (PMX). [?]
e Order crossover (OX). [?]
e Edge recombination crossover (ERX). [?]

Among these the first one, namely PMX is quoted to be the most successful. Given two
parents s and ¢, PMX randomly picks two crossover points - like 2-point crossover. The
child is then constructed in the following way. Starting with a copy of s, the positions
between the crossover points are, one by one, set to the values of ¢ in these positions. To
keep the string a valid chromosome the cities in these positions are not just overwritten.
To set position p to city ¢, the city in position p and city ¢ swap positions. Below you see
an example of this coding and special crossover technique for two sample permutations:
6,2,3,4,1,7,5and 5,2,4,1,3,7,6
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The resulting child has
1. between the crossover points the same cities in the same positions as £, and

2. outside the crossover interval the same cities in the same positions as s, where this
is not in conflict with (1).

This idea can very easily be generalized to n-point crossover. Mutation is done by ex-
changing gene values in pairs (in a chromosome).
This method has the following draw backs:

1. The changes in the chromosomes are not confined to the exchanged portions. There-
fore the building-blocks mechanism of EC is damaged.

2. Mutations are not performed at single points.
3. Simple bit-string crossover and mutation implementations will not work.
4. The implementation requires tricks for efficiency purposes.

In the following section a new technique for GA to deal with permutation encoding, where
the representation is crossover and mutation robust, is introduced. This means that the
off-springs generated by crossover and mutation are still valid chromosomes and no spe-
cial definitions for these operators are needed: the conventional bit-string crossover and
mutation operators suffices.

3 Proposed Method

The proposed method is to describe a permutation by means of its inversions [?]. For a
permutation 4y, s, ... ,iy of the set {1,2,..., N} we let a; denote the number of integers
in the permutation which precede j but are greater than j. So, a; is a measure of how much
out of order j is. The sequence of numbers ay, as, ... ,ay is called the inversion sequence
of the permutation 4,75, ... ,iy. For example the inversion sequence of the permutation
6,2,3,4,1,7,5is 4,1,1,1,2,0,0. Here, for example, the 2 (which is the 5th element in the
inversion sequence) is saying that there are exactly 2 elements in the permutation which
are to the left of 5 end are greater than 5 (Yes this is true, they are: 6,7).
The inversion sequence ay,ao, ... ,ay satisfies the conditions

0<a; <N —1 for +=1,2,... ,N

As seen there is no restriction on the elements which says a; = a; is forbidden for i # j.
This is of course very convenient for the crossover and mutation operations in GA.

Below two iterative algorithms are given. The first generates the inversion sequence of
a given permutation and the second does the inverse (generates the corresponding permu-
tation of a given inversion sequence).

Input perm : array holding the permutation
Output inv : array holding the inversion sequence

fori+ 1..N do
{inv; <0
m<+1
while perm,, # i do
{ if perm,, > i then inv; < inv; + 1
m<«<—m+1}}




Input inv : array holding the inversion sequence
Output perm : array holding the permutation
Uses pos : dummy array for intermediate result!

for 1 < N..1 do
{for m + i+ 1..N do
if pos,, > inv; + 1 then pos,, < pos,, + 1
pos; < inv; + 1}
for i < 1..N do permy,ys;, =1

By this method a chromosome or a subsection of it, which has to keep a permutation
will consist of a sequence of N genes? where the allele of each element is a natural number.
The maximal allele value allowed decreases by one at each element from the first position
of the sequence to the last one.

In GA applications natural number valued genes are usually represented by bit strings,
which are the binary representation of that number. The limitation is very easily controlled
by the choosing a restricted bit length and/or a modulo operation. Except this limitation
of the maximal values, which always is the case in GA applications with numerical alleles,
there is no extra restriction or order that has to be preserved throughout the GA oper-
ations. Whatever crossover or mutation will produce will inheritly correspond to a valid
permutation. Now there is a question to be answered:

What characteristics of the parents will be inherited by the offspring?

Assuming that an ordinary bit-string one-point crossover is performed on both components
of the chromosome, we can state that the offsprings will inherit characteristics from both
parents. For one of the offspring, one of the parents, p;, will provide the displacement
information of some of the permutation elements (lets call them £’) and the other parent,
po will provide a similar information for the remaining permutation elements (£"). Of
course the other offspring will receive the displacement information for £ and £" from p,
and py, respectively.

Similar properties can be stated for mutation.

Below is an example coding of the two permutations 6,2,3,4,1,7,5 and 5,2,4,1,3,7,6
which undergo an ordinary crossover that generates two offsprings from them:

4 N 4 N\

Permutation Chromosome representation Permutation Chromosome representation

(generated)

[4[1]1]1]2]0]0] 3[1]1]1[2[0]0]
|3|1|2|1|0|1|0|E: [4]1][2[1]0]1]0]

t Crossover point
- J \ /)

PARENTS OFFSPRINGS

!The use of this array can be avoided by a more elaborated algorithm but this will not reduce the time
complexity.
2Actually (N — 1) suffices, since invy is always zero.



4 GA Solution of the TSP Problem

Both methods, PMX and the newly proposed one, are implemented as C programs. The
differences are kept as local as possible. As a testbed a problem from the TSPLIB is chosen.
This problem is a symmetric TSP and the data comes from a ‘Real World problem’ namely
the road distances that connect 29 cities in Bavaria, Germany.

Both methods were run with the same settings of GA dynamics: 10-point crossover,
pool size of 1000 chromosomes, 15% elitism, 0.007 mutation/gene_exchange. To avoid the
differences coming from the randomization of the initial pool both methods are run 4000
times and comparison is made statistically.

The optimal distance solution of the problem is known to be 2020. Normally the
average of the initial population (which is created randomly) is about 6000 — 7000. Of
course neither method converges always to the optimum but rather gets caught in local
minima which are nearly optimal. Below the number distribution of the pool’s bests of
each of the runs for both the methods are given as histograms (dashed lines are PMX,
solids are the proposed method)
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As observed the proposed method produces almost with the same frequency bad solutions
as PMX does. The most frequently produced solution by the proposed method is better
then the most frequently produced solution by PMX but is less in number by 1% over all
4000 runs. The good solutions are slightly more produced by PMX. The averages are 2259
and 2242 for the proposed method and PMS respectively. The proposed method is more
stable in producing solutions, namely the standard deviation for it is 98.5 where the same
figure is 108.3 for PMX.

The striking point about the proposed method is not only that it allows simple crossover
and mutation, but also the high convergence rate observed in the TSP. The proposed
method converges to a nearly optimal solution much more rapidly. Below the count of
iterations of each run is given as a histogram over all the 4000 runs. Similar to the previous
histograms the dashed lines are used for PMX and solid lines for the proposed method.
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The count of iteration till convergence is achieved is on the average 110.5 for the proposed
method. PMX requires on the average 248 iteration to converge. The stability measure of
the convergence is also in favour of the new proposed method: The standard deviation for
the iteration counts is 30.9 for the proposed method where it is 48.9 for PMX.

5 Conclusion

A new method for representing permutations as GA chromosomes has been introduced. In
contrast to the conventional ones this proposed representation is not handicapped under
crossover and mutation. The proposed method is used in a TSP and has proven itself as
good as the conventional method. The comparative study of the results shows that the
new method outperforms the conventional PMX method by a factor of 2.2 in convergence
rate.
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