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Abstract—This paper describes a new kind of genetic represen-
tation called analog genetic encoding (AGE). The representation is
aimed at the evolutionary synthesis and reverse engineering of cir-
cuits and networks such as analog electronic circuits, neural net-
works, and genetic regulatory networks. AGE permits the simul-
taneous evolution of the topology and sizing of the networks. The
establishment of the links between the devices that form the net-
work is based on an implicit definition of the interaction between
different parts of the genome. This reduces the amount of infor-
mation that must be carried by the genome, relatively to a direct
encoding of the links. The application of AGE is illustrated with ex-
amples of analog electronic circuit and neural network synthesis.
The performance of the representation and the quality of the re-
sults obtained with AGE are compared with those produced by ge-
netic programming.

Index Terms—Analog circuit synthesis, analog genetic encoding
(AGE), analog network synthesis, evolutionary computation, ge-
netic representation, neural network synthesis.

I. INTRODUCTION

MANY SYTEMS of technical and scientific interest can be
seen as collections of devices connected by links charac-

terized by a numeric value. We will call these systems analog
networks (Fig. 1). Examples of analog networks are analog elec-
tronic circuits—where the devices are the electronic compo-
nents that are not resistors and the link values correspond to
the conductance between the terminals of the devices—artifi-
cial neural networks—where the devices are the neurons and
the values correspond to the weights associated with the neuron
inputs—and genetic regulatory networks (GRNs)—where the
devices are the genes and the link values represent the effect of
one gene on the activation of another.

In some cases, the focus of the engineering activity is the syn-
thesis or design of analog networks. In other cases, it is their
reverse engineering, that is, the determination of the character-
istics of existing networks, taking into account some informa-
tion on their behavior. When tackled by a human expert, both
the synthesis and reverse engineering of analog networks are
recognized as knowledge-intensive activities, where few sys-
tematic techniques exist. For this reason, there is a founded in-
terest in the development of automatic techniques capable of
handling both problems. Evolutionary methods appear as one

Manuscript received August 22, 2005; revised March 14, 2005 and August
23, 2005. This work was supported in part by the Swiss National Science Foun-
dation under Grant 620-58049.

The authors are with the Laboratory of Intelligent Systems, Institute of
Systems Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland (e-mail: Claudio.mattiussi@epfl.ch; dario.flo
reano@epfl.ch).

Digital Object Identifier 10.1109/TEVC.2006.886801

Fig. 1. An analog network is composed by a collection of devices connected
by links characterized by a numeric value (represented here graphically by the
thickness of the lines).

of the most promising approaches for the fulfillment of this ob-
jective [1]–[3].

The synthesis or reverse engineering of an analog network
requires the specification of the topology of the network, that
is, the specification of the devices that compose the network,
their connectivity, and the specification of the sizing of the net-
work, that is, the specification of the values of the device pa-
rameters and the specification of the values that characterize the
links. This implies that a genetic encoding for artificial evolu-
tion of analog networks must be capable of representing both
the topology and the sizing of the network.

A. Direct Encoding

The most straightforward approach to the evolution of the
topology and sizing of analog networks is the use of a variable
length representation where the genome is composed by a list of
genes that can represent the devices existing in the network or
the links between the devices. Each gene representing a device
specifies the nature of the device and the value of its parameters.
Each gene representing a link specifies the value characterizing
the link and specifies also the terminals of the devices that it
connects. The direct encoding has been applied to the synthesis
of electronic circuits [4]–[6] and neural networks [7]–[11]. This
representation has the advantage of simplicity in the decoding
of the genome, but the need of explicitly representing each con-
nection results in a rapid growth in genome length with the com-
plexity of the network.

B. Developmental Encoding

Another popular approach to the genetic representation of
analog networks is based on the use of a genome that directs
a developmental process, leading to the construction of the
network. Examples of evolutionary developmental systems are
[12]–[15] for the case of electronic circuits, [16]–[22] for the
case of artificial neural networks, and [23], [24] for GRNs.
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Fig. 2. A gene contained in a fragment of chromosome (represented schemat-
ically by the sequence of rounded boxes in the top part of the figure) can be
interpreted as a device with input and output terminals, and with sequences of
nucleotides associated with the terminals (bottom). The regulatory regions of
the gene correspond to the sequences associated with the input terminals, the
coding regions correspond to the sequence associated with the output terminals.

This approach permits a much more compact description of
the network than the direct encoding. In general, the adoption
of a developmental representation requires special care in the
definition of the genetic operators, to ensure that the resulting
genomes define a valid developmental process. Moreover, it is
very difficult to define a developmental process that displays
evolvability. The complex relationship linking the genome
to the developed network is typically opaque and can lead to
systems where the effects of the genetic operators are either
insignificant or catastrophic in terms of network functionality.

C. Implicit Interaction

An alternative genetic representation for the topology and
sizing of analog networks can be derived from the observation
of biological GRNs. Biological GRNs are composed by genes
that interact through the production of gene regulatory proteins.
Each gene contains one or more sequences of nucleotides
(i.e., characters of the genetic alphabet) called coding regions
and one or more sequences called regulatory regions. The
coding regions specify—via a molecular machine called RNA
polymerase—the production of regulatory proteins that can
potentially interact with all the regulatory regions existing in
the genome. The actual influence of one gene on another is
determined by the interaction between the regulatory proteins
produced by the first and the regulatory regions of the second.
In other words, the strength of the interaction between two
genes is not explicitly encoded in the genome but follows
implicitly from the characteristics of the sequences of charac-
ters constituting the regulatory and coding regions and from
the characteristics of the environment in which the genome
is immersed. It is, therefore, possible to interpret genes as
devices with input and output terminals and with sequences
of nucleotides associated with the terminals (Fig. 2), and to
represent the interaction between genes in terms of a device
interaction map, which transforms pairs of character sequences
associated with two distinct device terminals into a numeric

Fig. 3. Using for the genes the representation of Fig. 2, the strength of the
interaction between two genes in a GRN can be assumed as obtained through
a device interaction map W (s ; s ) from pairs of sequences (s ; s ) to values
w of interaction strength (bottom).

value that characterizes the link connecting the two terminals
(Fig. 3).

In this representation of biological GRNS, we can identify
two aspects that are crucial to the possibility of their evolu-
tionary synthesis. The first is the possibility to change the
number and type of devices that are represented in the genome.
The second is the possibility to change the strength of the
interaction that characterizes the connections between pairs
of devices. In biological genomes, these changes are brought
about by the action of genetic operators that go beyond the
simple operators of mutation and crossover that are typically
used in genetic algorithms. In particular, it is largely recognized
that the duplication, deletion, and transpositions of fragments
of genome play a fundamental role in the evolution and com-
plexification of biological organisms.

Several artificial evolutionary systems exist that use an im-
plicit representation of the interactions inspired from biological
GRNs. For example, [25]–[27] study the possibility of defining
a simple model capable of exhibiting a biologically plausible
dynamics of gene activation. The genome is constituted by a
string of characters from a finite alphabet and the device inter-
action map is defined in terms of matching between substrings
of the genome constituting the coding regions and substrings
constituting the regulatory regions. Other approaches described
in the literature use more sophisticated device interaction maps
[28]–[33]. However, all the existing approaches are either lim-
ited to the representation of GRNs or define the device interac-
tion map in terms of some simple kind of sequence matching
that leads to a poor tolerance for genome reorganizations or
limits the possibility of representing and evolving the topology
or the sizing of the network.

II. ANALOG GENETIC ENCODING (AGE)

In this paper, we describe a new genetic representation
called analog genetic encoding (AGE) which is inspired by the
working of biological GRNs. AGE applies to the representation
and evolution of the topology and sizing of all kinds of analog
networks, not only to GRNs. In particular, the device interaction
map is defined so as to permit application of all the genetic
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operators mentioned above which are instrumental to the
evolutionary complexification of the networks. We will show
that the resulting evolutionary system displays state-of-the-art
performance in the evolutionary synthesis of analog electronic
circuits.

A. Overview

The basic idea is to define a genetic representation that admits
the interpretation illustrated in Figs. 2 and 3. The AGE genome
is constituted by one or more strings of characters (called chro-
mosomes) from a finite genetic alphabet . The experimenter
defines a device set which specifies the kind of devices that can
appear in the network. For example, the device set of an evo-
lutionary experiment aimed at the synthesis of an analog elec-
tronic circuit could contain a few types of transistors, and the
device set of an evolutionary experiment aimed at the synthesis
of a neural network could contain a few types of artificial neuron
models. The experimenter also specifies the number of termi-
nals of each kind of device. For example, a bipolar transistor has
three terminals, a capacitor has two terminals, and an artificial
neuron could be specified as having one output terminal and one
input terminal, or, alternatively as having one output terminal
and several input terminals. The experimenter also specifies the
number of evolvable parameters of each device. For example, in
evolving electronic circuits one could specify completely prede-
fined bipolar transistors (no evolvable parameters) and specify
capacitors with evolvable capacitance value (one evolvable pa-
rameter).

Fig. 4 represents schematically the modus operandi of AGE.
The AGE genome contains one gene for each device that will
appear in the network decoded from the genome. Each gene
contains one region for each terminal and one region for each
evolvable parameter specified for that kind of device (Fig. 4,
top). In an initial stage of the decoding process, the devices are
“extracted” from the genome, and the sequences of characters
corresponding to the gene regions are associated with the termi-
nals and the evolvable parameters of the devices (Fig. 4, center).
Then, the device interaction map (and the parameter map, dis-
cussed below) is applied to this collection of devices to connect
them and finally produce an analog network (Fig. 4, bottom).

B. Device Representation

In order to define the representation of the regions of the
genome which correspond to the devices and to their terminals
and parameters, we define a collection of specific sequences of
characters that we call tokens. One specific device token is de-
fined by the experimenter for each element of the device set.
The device token signals the start of a fragment of genome that
encodes an instance of the corresponding device. The exper-
imenter also defines a terminal token and a parameter token
whose role is to delimit the sequences of characters that must
be extracted from the genome and associated with the terminals
and with the parameters of the devices (Fig. 5, top). When the
terminals of a device are not interchangeable, the order of asso-
ciation must be specified by the experimenter.

C. Device Extraction

To decode the devices encoded in the genome, each chromo-
some is scanned in search of a device token. If one is found, the

Fig. 4. Simplified representation of the workings of AGE. The encoding of
parameters is not illustrated here.

fragment of genome starting after the token is scanned in search
of all the terminal and parameter tokens required by the cor-
responding device. If all the required tokens are found before
the next device token or before the end of the chromosome, a
device—for the moment unconnected—is created and the se-
quences of characters delimited by the tokens are associated
with the terminals and parameters of the device. Then, another
device token is searched in the remaining genome, until the en-
tire genome has been examined. Fig. 5 shows an example of
device extraction.

D. Device Connection and Parameter Assignment

The result of the process of device extraction is a collection
of unconnected devices that have sequences of characters asso-
ciated with their terminals and with their evolvable parameters.
To turn this collection of devices into an actual analog network,
we need to connect the devices and assign actual values to their
evolvable parameters.

1) Device Interaction Map: In order to connect the devices,
the device interaction map is applied to all pairs of sequences
associated with distinct terminals. This gives a value for each
possible link between the devices extracted from the genome
(Fig. 6). Note that the device interaction map can produce a
value that corresponds to the absence of direct interaction. In
this case, no link will be established between the corresponding
terminals. The device interaction map must be at least in part
specific of the kind of analog network considered. For example,
in the case of electronic circuits, the device interaction map will
produce values of conductance, whereas for neural networks it
will produce weight values, which are typically dimensionless.
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Fig. 5. (Top) A chromosome encoding two three-terminal devices with one
evolvable parameter. The NBJT and PBJT device tokens signal the start of the
fragments of genome coding for the devices. The terminal token TERM and
the parameter token PARM signal the end of a sequence of characters that is
associated with a terminal or with a parameter of the device and, possibly, the
start of another sequence associated with a terminal or with a parameter. The
fragments that do not correspond to a token or to a sequence associated with
a terminal or with a parameter, constitute noncoding fragments of the genome.
(Bottom) The devices are extracted from the genome following the procedure
described in Section II-C. Note that terminal and parameter tokens are left free
to appear and mix in any order in the fragment of genome that codes for a device,
making the representation more tolerant of genome reorganizations.

To make AGE a representation that can be adapted with min-
imal effort to the various kinds of analog networks, it is expe-
dient to distinguish the network-specific component of this map
from a generic component. In this way, it is possible to reuse
this generic component for any kind of analog network. For this
reason, we write the device interaction map as a composed map

formed by a generic sequence interaction map
that transforms pairs of sequences into abstract se-

quence interaction values , and by a network-specific interac-
tion map that transforms sequence interaction values into
network-specific numeric values characterizing the links.

Examples of network-specific interaction maps will be pre-
sented later, in the context of specific evolutionary experiments.
In these experiments, the value of the sequence interaction map

corresponds to the value of the local alignment score
between the two sequences and [34]. The local alignment
of sequences has many advantages with respect to simpler tech-
niques of sequence comparison such as exact matching or Ham-
ming distance: it operates on pairs of sequences of different and
arbitrary length; it permits the generation of a whole range of
values of interaction, which can be easily changed through the

Fig. 6. Two artificial neurons extracted from a genome and having sequences of
characters associated with their input and output terminals (top) are connected,
and thus transformed into a neural network (bottom) by applying the device in-
teraction mapW (s ; s ) that associates link weightsw with pairs of character
sequences.

parameters that define the alignment; the effect of mutations of
the sequences on the value of interaction can also be changed
through the parameters that define the alignment; finally, it can
be made highly redundant, in the sense that many different pairs
of sequences correspond to the same value of interaction: this
facilitates the evolutionary generation of a given value of inter-
action. The reader is referred to [35] for a more extensive dis-
cussion of these properties in relation to the choice of the size
of the genetic alphabet and of the other parameters of the local
alignment.

2) Parameter Map: The assignment of a value to the evolv-
able parameters of the devices is based on the definition of a
parameter map which transforms the sequence of characters
extracted from the genome and associated with the parameter
into the value of the parameter. A simple way to define the pa-
rameter map is to interpret as an integer written in base
and to map this integer into the actual value of the parameter.
Using this approach, however, the nature of the parameter map
would be very different from that of the device interaction map
described above, which acts instead on pairs of sequences. In
particular, this would be true for the consequences of mutations
and reorganizations of the genome on the value of interaction
strength and parameter values. For this reason, it is worth con-
sidering the possibility of defining the parameter map as a func-
tion that produces a parameter value given the pair constituted
by the sequence and a fixed sequence of characters . In this
way, both the device interaction map and the parameter map cor-
respond to functions that take as arguments pairs of sequences
and produce numeric values.

E. External Connections

To perform its function an analog network must be connected
to external devices that provide input signals and accept output
signals. The external devices are defined by the experimenter
according to the kind of application. For example, the external
devices for an analog electronic circuit might be a power supply

Authorized licensed use limited to: Akira  Imada. Downloaded on May 16, 2009 at 19:38 from IEEE Xplore.  Restrictions apply.



600 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

Fig. 7. An example of use of I/O ports for the connection of external devices to
the evolving circuit The external devices defined by the experimenter are drawn
outside the dotted box. The genome contains the tokens IOPTA, IOPTB, and
IOPTC corresponding to the three connectible external terminals, which deter-
mine the association of sequences extracted from the genome with the terminals
of the external devices.

and a resistive load, whereas the external devices for the evolu-
tion of an artificial neural network controlling a robot might be
the sensors and the actuators of the robot.

In AGE, the connections between the evolved network and
the preassigned external devices is obtained by associating se-
quences of characters with the terminals of the external devices
that might possibly be connected to the evolving network. In this
way, the use of a sequence-based device interaction map can be
extended to the evolution of the interactions between these ex-
ternal devices and the evolved network. In the experiments re-
ported below, the association of sequences with the terminals of
external devices is based on the definition of a specialized device
called I/O port. The experimenter assigns a unique identifier to
each terminal of external device which must be potentially con-
nected to the evolved network. Using this identifier, a different
I/O port token is defined for each external terminal. These to-
kens signal the presence of fragments of genome that encode
the I/O ports, as illustrated in Fig. 7.

F. Genetic Operators

Many kinds of reorganizations can be applied to the AGE
genome without compromising its decodability. In AGE, the
fragments of the genome encoding the devices can be of vari-
able length and be located anywhere within the genome. The
genome itself is obviously a variable length genome. Note that
from the point of view of most genetic operators, the tokens for
devices, terminals, and parameters have no special meaning. In
particular, the tokens are not protected from the action of the
genetic operators, which can invalidate them.

Below, we describe the genetic operators that are applied to
the AGE genome in the experiments reported in this paper. To

avoid repetition, only the action of the operator is described and
it is implicitly assumed that these operators are applied proba-
bilistically to randomly chosen parts of the genome and using
for insertions and substitutions elements randomly chosen in the
suitable set.

• Character deletion, insertion, and substitution. A character
is removed, inserted, or substituted in the genome.

• Chromosome fragment deletion, transposition, and dupli-
cation. Two points are chosen in a chromosome and the
intervening genome fragment is deleted, or transferred at
another point of the genome, leaving in place the original
fragment in the case of duplication.

• Device insertion. The descriptor of a device is inserted in
the genome. The sequences of characters associated with
the terminals and the evolvable parameters of the devices
can be randomly generated or can be obtained by sampling
the sequences associated with the terminals of the devices
existing in the genome.

• Chromosome deletion and duplication. A chromosome is
deleted or duplicated. The duplication can either append to
the chromosome a copy of itself, or create a new chromo-
some.

• Homologous crossover. A tentative crossover point is
chosen within the first of the two chromosomes that are
candidates for recombination. Starting at the chosen point,
a sequence of characters of predefined length (but short
with respect to the typical chromosome length) is taken
as template from the first chromosome. A sequence of
characters sufficiently similar to the template is then
searched in the second chromosome. If a sequence of
sufficient similarity is found, its starting point becomes the
crossover point in the second chromosome; otherwise, no
recombination occurs. When there is recombination, the
fragments of chromosomes starting at the crossover points
are swapped to generate the recombined chromosomes. In
the experiments reported below, the criterion of similarity
is the existence in the second chromosome of a sequence
that matches exactly the template taken from the first
chromosome. Other techniques such as local alignment of
sequences could be used as well. The reason for defining
homologous crossover is that, since the AGE genome
does not have a fixed structure and length, the traditional
crossover can be expected to produce just macromutations
rather than recombination of structures. The homologous
crossover operator favors the recombination of fragments
of chromosome that can be considered homologous and
can be expected to represent homologous features of the
encoded analog network.

• Genome duplication. The whole genome is duplicated. The
duplication can either append to each existing chromosome
a copy of itself, or create a new chromosome for each ex-
isting one.

• Genome trimming. The application of the genetic operators
described so far can result in the transformation of frag-
ments of genome previously coding for devices into non-
coding genome. The presence of this noncoding genome
does not prevent the decoding of the remaining genome,
and can even conceivably play the role of an evolutionary
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Fig. 8. The substitution matrix (top) and indel vector (bottom) used for the calculation of the local alignment score in the experiments reported in this paper. The
matrix is circulant and the indel score is the same for all characters of the genetic alphabet.

useful repository of genetic fragments and pseudogenes.
However, to prevent the excessive increase of the genome
size, it is useful to also have the possibility to free the
genome from most of the noncoding genome. The genome
trimming operation removes from the genome all the non-
coding genome, except possibly short padding fragments
between the coding regions.

• Generation of initial population. Although not strictly a
genetic operator, the generation of a population is an oper-
ation that is traditionally required to start the evolutionary
process. A first possibility is to produce the initial genomes
by performing one or more operations of device insertion
on a background of random characters. Another possibility
is to start from a previously evolved network, or from a re-
lated network and evolve a collection of sequences that can
be used to build the AGE representation for it [35]. This
permits the incorporation of expert knowledge in the evo-
lutionary process.

III. EXPERIMENTS

In the series of examples presented in this section, AGE is
applied to the evolutionary synthesis of analog networks. First,
a series of three experiments of evolution of analog electronic
circuits is presented, followed by an example of evolution of
a neural network. The performance of the evolved electronic
circuits was evaluated in simulation using SPICE [36]. To avoid
the simulation problems potentially caused by dangling device
terminals, a 1 resistor was inserted between any dangling
terminal of the decoded circuit and the ground node. In all the
experiments, the size of the genetic alphabet is and the
scoring matrices are those shown in Fig. 8.

A. Voltage Reference

The first network evolution problem is aimed at the synthesis
of a voltage reference electronic circuit. Fig. 9 shows the devices
of the predefined external circuit. The goal of the evolutionary
experiment is the synthesis of a circuit producing a fixed output
voltage on the load resistor when the source voltage

varies in the range and the circuit tempera-
ture varies in the range C C.

1) Fitness Function: The input voltage range is discretized
into intervals of width , resulting in 21 discrete
values . The temperature range is discretized into the five

Fig. 9. The devices of the external network in the experiment of evolution of
a voltage reference. The external network is an electronic circuit composed of
a variable voltage source V with a series resistance R = 1 k
, and by a
load resistor R = 10 k
 across which the output voltage V of the evolved
network is measured.

values of the set C C C C C .
The output voltage is computed in correspondence of each
input voltage value and circuit temperature pair. The fit-
ness function is defined as , where

if
if

2) Network-Specific Interaction Map: The network-specific
interaction map corresponds to a logarithmic quantization of the
conductance values . The sequence interaction score
is mapped to the value of conductance . The
sequence interaction score is mapped to a value of
conductance . All values of sequence interaction
below are mapped to the value of conductance ,
and all values above are mapped to the value .
The values of sequence interaction between and are
orderly mapped on a set of logarithmically distributed resistance
values in the range from 1 to 1 , with values of
resistance per decade.

3) Evolutionary Algorithm and Parameters: The evolu-
tionary algorithm used in the current experiment is a standard
generational genetic algorithm that uses tournament selection
and elitism. The values of the parameters are listed below:

• population size 100;
• tournament size 5;
• elite size 1;
• prob. of character substitution 0.001;
• prob. of character insertion 0.001;
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• prob. of character deletion 0.001;
• prob. of fragment duplication 0.01;
• prob. of fragment deletion 0.01;
• prob. of fragment transposition 0.01;
• prob. of chromosome duplication 0.001;
• prob. of chromosome deletion 0.001;
• prob. of genome duplication 0.001;
• prob. of individual genome trimming 0.01;
• prob. of population genome trimming 0.01;
• length of spacing genome in trimming 20;
• prob. of device insertion 0.01;
• prob. of homologous crossover 0.1;
• num. of matching chars for hom. cross. 10.

The probabilities of application of the genetic operators listed
above are not critical. They were chosen heuristically based on
the information collected on a series of test runs, with the ob-
jective of keeping reasonably low the disruptive effect of the
operators.

4) Device Set: The device set for the current experiment con-
tains one NPN (BC846B) and one PNP (BC856B) bipolar junc-
tion transistor. The listings of the SPICE models of the transis-
tors can be found in [35].

5) Initial Population and Device Insertion: Each individual
of the initial population is obtained by generating a genome
composed of one chromosome containing the representation of
five devices randomly chosen in the device set and the represen-
tation of two copies of each kind of I/O port associated with the
external circuit. The sequences associated with the terminals are
randomly generated sequences of characters of length 20. Frag-
ments of genome representing distinct devices are separated in
the genome by randomly generated spacer sequences of length
20. Spacer sequences are also inserted at the start and at the end
of the chromosome.

6) Results: Fig. 10 shows the evolutionary graphs for five
repetitions of the experiment. Fig. 11 shows an example of
voltage reference circuit evolved in these runs. Fig. 12 illus-
trates the output of this circuit. Each run shown in Fig. 10 took
on average about nine days to complete on a single-processor
Pentium 4 machine. The SPICE simulation time averaged over
all runs and generations is about 4.2 s per generation and the
genome decoding time is about 3.6 s per generation. These
values of time are also representative of the other experiments
of electronic circuit evolution considered in this paper.

B. Temperature Sensor

The second network evolution problem is aimed at the syn-
thesis of a temperature sensing electronic circuit. Fig. 13 shows
the devices of the predefined external circuit. The goal of the
evolutionary experiment is the synthesis of a circuit producing
across the load resistor an output voltage that is proportional
to the circuit temperature in the range C C,
with a proportionality coefficient of C.

1) Fitness Function: The output voltage of the evolved
circuits is evaluated in correspondence of the discrete set

C C C C C of 21 equis-
paced temperature values. The fitness function is defined as

, where is the desired output
voltage at the temperature .

Fig. 10. The evolutionary graphs for five runs of the experiment aimed at the
evolution of a voltage reference electronic circuit.

Fig. 11. Example of evolved voltage reference circuit.

2) Maps and Parameters: The network specific interaction
map, the device set, the initial population, and the parameters
of the evolutionary algorithm are the same as in previous
experiment.

3) Results: Fig. 14 shows the fitness graphs for five repeti-
tions of the experiment. Fig. 15 shows an example of evolved
temperature sensing circuit. The behavior of this circuit is illus-
trated in Fig. 16.

C. Gaussian Function Generator

The third circuit evolution problem is aimed at the synthesis
of a Gaussian function generator. Fig. 17 shows the devices of
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Fig. 12. The output voltage V of the evolved voltage reference circuit shown in Fig. 11, plotted as a function of the input voltage V .

Fig. 13. The devices of the external network in the experiment of evolution of
a temperature sensing electronic circuit. The external network is composed of
two fixed voltage sources V = 15 V and V = 5 V, two series resistance
R = 1 k
 andR = 1 k
, and by a load resistorR = 10 k
 across which
the output voltage V of the evolved network is measured.

Fig. 14. The fitness graphs for five runs of the experiment aimed at the evolu-
tion of a temperature sensor circuit.

the predefined external circuit. The goal of the evolutionary ex-
periment is the synthesis of a circuit producing through the load
voltage source an output current that is a (non-normal-
ized) Gaussian function of the variable input voltage in the
range , with a peak value in
correspondence of , and .

1) Fitness Function: The output current of the evolved
circuits is evaluated in correspondence of the discrete set

Fig. 15. Example of evolved temperature sensing circuit.

Fig. 16. The graph of the output voltage V of the evolved temperature sensing
circuit shown in Fig. 15 plotted as a function of the circuit temperature T . The
background line shows the ideal behavior.

of 101 equis-
paced values of voltage. The fitness function is defined as

, where is the target
output current.

2) Device Set: The device set for the current experiment con-
tains two MOSFET transistors: a PMOS and an NMOS.

3) Maps and Parameters: The network specific interaction
map, the device set, the initial population, and the parameters
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Fig. 17. The devices of the external network in the experiment of evolution of
a Gaussian function generator circuit. The external network is composed of a
variable voltage source V connected to a series resistance R = 1 
, a fixed
voltage sourceV = 5V, and another fixed voltage sourceV = 2:5V through
which the output current I of the evolved network is measured.

Fig. 18. The fitness graphs for five runs of the experiment aimed at the evolu-
tion of a Gaussian function generator circuit.

of the evolutionary algorithm are unchanged from the previous
experiments, except for the number of devices in the initial
genome which is set to 10.

4) Results: Fig. 18 shows the fitness graphs for five repeti-
tions of the experiment. Fig. 19 shows an example of evolved
Gaussian function generator. The input–output behavior of this
circuit is illustrated in Fig. 20.

D. XOR Neural Network

The goal of this final experiment of network evolution is the
synthesis of a neural network realizing the two-input XOR func-
tion. Fig. 21 shows the predefined external devices.

1) Fitness Function: The fitness is defines as
, as shown in the

equation at the bottom of the page, where is the
function realized by the network and is the XOR
function.

2) Network-Specific Interaction Map: The network-specific
interaction map realizes a logarithmic quantization of the con-
nection weights. Using the symbolism of the quantization of

Fig. 19. Example of evolved Gaussian function generator.

Fig. 20. The output current I of the evolved Gaussian function generator cir-
cuit shown in Fig. 19 plotted as a function of the input voltage V . The back-
ground line represents the ideal relationship between V and I .

Fig. 21. The devices of the external network in the experiment of evolution
of a neural network realizing the XOR function. X and X are the two input
neurons, the “+1” neuron is the fixed input bias neuron, and Y is the output
neuron. In order to simplify the quantization of the connection weights, all the
input neurons produce also the inverted signal.

conductance values described in Section III-A, we have
(absence of link), , , ,

, , and .

if
otherwise
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Fig. 22. The fitness graphs obtained in 25 runs of the experiment aimed at the
synthesis of a neural network realizing the XOR function.

Fig. 23. Example of evolved neural network realizing the XOR function.

3) Device Set: The devices available to the evolving
circuit are two kinds of sigmoid neurons—one excita-
tory and the other inhibitory—implementing the function

.
4) Maps and Parameters: The network specific interaction

map, the device set, and the parameters of the evolutionary algo-
rithm are the same as in the experiment of evolution of a voltage
reference. The genome of the individuals of the initial popula-
tion encodes one neuron.

5) Results: Fig. 22 shows the evolutionary graphs for 25 rep-
etitions of the experiment. The curves of the maximum fitness
show that all the runs evolved, within 200 generations, at least
one network realizing the required function with the given tol-
erance. Fig. 23 shows an example of evolved neural network.

IV. DISCUSSION

1) Performance: There exist no established benchmarks for
the evaluation of experiments of evolution of analog circuits.
However, the three problems to which AGE has been applied in

TABLE I
COMPARISON OF GP AND AGE FOR VOLTAGE REFERENCE

TABLE II
COMPARISON OF GP AND AGE FOR TEMPERATURE SENSOR

TABLE III
COMPARISON OF GP AND AGE FOR GAUSSIAN FUNCTION GENERATOR

this paper are inspired from problems that were tackled with ge-
netic programming (GP) in [12]. The problems considered here
and those described in [12] have the same target functionality
but differ in the transistor models used in the simulator and in
the values of some of the resistors of the external circuits. De-
spite these differences, and despite the availability of just one
GP result for each problem, it is useful to consider side by side
the results obtained with the two methods. To this end, the cir-
cuits evolved with AGE were evaluated with the fitness func-
tion used in the GP experiments, which consists of the sum of
the absolute value of the deviations from the target output value
weighted by a factor of 10 if the deviation is greater than a pre-
assigned limit value (so that smaller fitness values correspond to
better circuit performance). Each output value falling within the
limit is defined as a hit. For both AGE and the GP experiments,
the number of evaluations required to produce the best circuit
of the run is considered.

Tables I –III show the average number of circuit evaluations,
the number of hits, the fitness value, and the number of transis-
tors and resistors of the best evolved circuits obtained with GP
and AGE. The tables show that for the voltage reference and
temperature sensor problems, AGE produced better results in
terms of fitness and number of hits with a tenfold and twofold
reduction, respectively, of the number of circuit evaluations with
respect to GP. In the Gaussian function case, the unique GP
circuit achieved a slightly better performance than the average
AGE circuit, but using about an order of magnitude more circuit
evaluations. The circuits produced by AGE contain on average
less transistors and more resistors than those produced by GP.
Some of the AGE runs produced circuits of the kind shown in
Figs. 11, 15, and 19, which are much more compact than the typ-
ical GP product that performs the same function. Summing up,
in the evolution of electronic circuits, AGE compares well with
GP in terms of performance of the evolved circuits and com-
putational effort required to evolve them. In all the experiments
with AGE, the length of the genome remained within reasonable
limits and did not manifest any phenomenon of bloat, as exem-
plified by Figs. 10 and 22. The absence of bloat is presumably
due to the combined effect of the genome trimming operator and
of the possibility of invalidation of the device tokens by genetic

Authorized licensed use limited to: Akira  Imada. Downloaded on May 16, 2009 at 19:38 from IEEE Xplore.  Restrictions apply.



606 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 5, OCTOBER 2007

operators mentioned in Section II-F. Since there is no evolu-
tionary pressure to preserve from invalidation the tokens of the
devices that do not contribute to the circuit functionality, these
devices are likely to be invalidated by some genome mutation
and then trimmed from the genome.

In the experiments of circuit evolution, the decoding of the
genome took almost the same time as the circuit simulations.
However, in this experiment, the evaluation of fitness merely
requires the calculation of the operating point of the evolved
circuits. In experiments requiring more complex circuit simula-
tions such as time transients the decoding time can be expected
to become negligible with respect to the simulation time. Note
that the 100 individuals population size with which AGE can
work is much smaller than the several hundred thousand indi-
viduals of the typical population size required by GP to solve
the same problems.

2) Complexification: The AGE runs display a variation in
the number of devices encoded in the genome. For example,
Fig. 10 shows an initial decrease in the number of devices fol-
lowed by an increase after a few tens of generations, which later
subsides. The initial decrease corresponds to the elimination of
most of the randomly generated initial devices. The subsequent
increase corresponds to the introduction of devices produced by
the genetic operators during the evolutionary process. This phe-
nomenon was observed in the solution of all the electronic cir-
cuit problems and is apparent also in the XOR runs documented
in Fig. 22. These latter runs were continued for several hundreds
of generations after the attainment of the required solution and
illustrate the eventual reduction in most runs of the number of
devices to the minimum that is known to be required to solve the
XOR problem. This shows that the AGE representation permits
the complexification and decomplexification of the network ac-
cording to the needs of the evolutionary process.

3) Automatic Feature Selection: The comparison of the
evolved XOR network of Fig. 23 with the predefined external
network of Fig. 21 shows that the evolutionary process has
selected the inverted input signals for and and the
directed bias output as input signals disregarding the directed
input and inverted bias. This shows that the AGE represen-
tation permits the automatic selection of the subset of inputs
(and outputs) required to solve the given problem. In machine
learning parlance AGE is intrinsically capable of solving the
feature selection problem.

V. FUTURE WORK

1) Scalability: The evolution of large sparsely connected net-
works could be hindered by the randomly generated interactions
between the sequences associated with the terminals. Although
this problem never materialized in the experiments performed
so far, its possible appearance can be prevented in several ways.
A first possibility consists in the introduction of techniques for
the modularization of the evolved network. A complementary
approach consists in the implementation of a mechanism of in-
teraction silencing similar to the mechanism of gene silencing
by RNA interference observed in eukaryotic cells.

2) Real-World Problems: A limitation of the series of net-
work synthesis problems considered in the previous section is

that they are only in part representative of real-world network
synthesis problems. The XOR problem is quite remote from
actual neural network applications and electronic circuits must
perform correctly in an operational envelope that is typically
more complex than those considered in the previous section.
The consideration of a more realistic operational envelope
requires the formulation of design synthesis as a multiob-
jective problem with constraints, the consideration of which
would have entailed the additional complications constituted
by multiobjective evolutionary algorithms and prevented our
focusing on the issue of the newly defined genetic encoding.
Experiments are under way to assess the performance of AGE
in more complex and realistic contexts and for the synthesis and
reverse engineering of GRNs. The results obtained so far show
that AGE compares well with the most powerful algorithms for
neuroevolution existing in the literature [37].

VI. CONCLUSION

AGE is a new approach to the representation and evolution of
generic analog networks. The structure of the AGE genome and
that of the genetic operators it tolerates permits the evolutionary
complexification and decomplexification of the network during
the evolutionary process. We have shown that AGE is a pow-
erful method for the synthesis of analog electronic circuits, with
performances that compare well with those of a state-of-the-art
evolutionary method like GP.
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