
Bio-Inspired Computing

Systems

Toward Novel Computational
Architectures

Daniel Mange and Marco Tomassini (Eds.)

Contents

Preface i

1 Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai 1

1.1 Introduction . 1

1.1.1 Interactions between learning and evolution 2

1.2 Learning and Evolution in Sensorimotor Agents 3

1.2.1 Learning to predict . 4

1.2.2 Evolving how to learn . 7

1.3 Evolution of Learning for Autonomous Robots 9

1.3.1 Fast changing synapses . 13

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 16

1.5 Local and Global Adaptive Search in Modular Architectures 22

1.5.1 Battery recharge and object collection 24

1.6 Conclusion . 29

ii CONTENTS

Chapter 1

Evolution and Learning in

Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

1.1 Introduction

Evolution and learning are two forms of biological adaptation that di�er in space,

time, and substrate. Evolution is a process of selective reproduction and substi-

tution based on the existence of a geographically-distributed population of indi-

viduals displaying some variability. Learning , instead, is a set of modi�cations

taking place within each single individual during its own life time. Evolution

and learning operate on di�erent time scales. Evolution is a form of adaptation

capable of capturing relatively slow environmental changes that might encompass

several generations, such as perceptual characteristics of food sources for a given

bird species. Learning, instead, allows an individual to adapt to environmental

changes that are unpredictable at the generational level; think, for example, of

the imprinting mechanism that allows some bird species to memorize at birth

their own mother [27, 25]. Learning might encompass phenomena like physi-

cal development, neural maturation, and synaptic plasticity. Finally, whereas

evolution operates on the genotype (the genetic speci�cation of an individual),

learning directly a�ects only the phenotype (the decoded |embodied| version

of the individual), but phenotypic changes cannot directly modify the genotype.

From an engineering point of view, learning is an attractive feature that could

be exploited for fast adaptation of an evolutionary machine to unpredictable and

contingent circumstances of the environment. Arti�cial evolution has been rec-

ognized as a powerful methodology to develop intelligent robots capable of au-

1The authors are with the Microcomputing Laboratory, Swiss Federal Institute of Technol-
ogy, IN-Ecublens, CH-1015 Lausanne, Switzerland. E-mail: fName.Surnameg@ep
.ch. D.F.
acknowledges support by the Swiss National Science Foundation, project nr. 21-49174.26. J.U.
is supported by grant nr. BF197.136-AK from the Basque government.

2

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

tonomous adaptation to an external environment [8, 18, 35, 38]. An interesting

aspect of evolution with respect to other adaptation methods, such as gradi-

ent descent techniques or reinforcement learning, is that the criterion function

describing the desired behavior needs not be detailed, continuous, and di�eren-

tiable [16]. On the other hand, arti�cial evolution can be a very slow process that

requires testing of several individuals on the same robot for several generations

[29]. In the last few years, some researchers, including ourselves, have attempted

to combine local learning methods with arti�cial evolution in order to achieve

faster and more e�cient adaptation. In the remainder of this chapter, we shall

describe some initial explorations on evolution and learning in simulated and real

mobile robots.

1.1.1 Interactions between learning and evolution

Although evolution and learning seem to be complementary and independent

mechanisms, it is not yet clear whether these two processes work toward the

same goal, whether learning represents an advantage for an evolving system,

and how exactly evolution and learning interact. These issues, which have been

recently re-examined within a computational framework [5, 48], are relevant for

both biologists and engineers.

In the e�ort to explain evolutionary gaps in the fossil records, more than a

century ago James Mark Baldwin [2] advanced the idea that evolution could be

in
uenced by learning during life without assuming that learned features could

directly modify the genotype (as hypothesized by Lamarck [11]).2 Baldwin's ar-

gument was that learning accelerates evolution because sub-optimal individuals

can reproduce by acquiring during life necessary features for survival. However,

since learning requires time (and might thus be a disadvantage), Baldwin sug-

gested that evolution tends to select individuals who have already at birth those

useful features which would otherwise be learned. This latter aspect of Baldwin's

e�ect , namely indirect genetic assimilation of learned traits, has been later sup-

ported by scienti�c evidence and de�ned by Waddington [49] as a canalization

e�ect .

The computational advantages of learning in arti�cial evolution have been

made clear only a few years ago by Hinton and Nowlan with a simple model [23].

Imagine a population of chromosomes, each encoding the connection values of a

neural network, and a �tness function that is 1 at each life instant only for a few

combination of connection values and 0 for all the other combinations. Each gene

can have three allelic values: 0 means that the connection is closed, 1 means that

the connection is open, and ? means that the connection can change its value

according to a learning mechanism. The learning mechanism employed by Hinton

and Nowlan is a simple random process that keeps changing connection weights

until |and if| a good combination is found during the limited life time of the in-

2Similar views were expressed in the same period by Morgan [34] and Osborn [39].

1.2 Learning and Evolution in Sensorimotor Agents 3

Figure 1.1: Modi�cation of the �tness surface in the Baldwin e�ect, as suggested
by Hinton and Nowlan [23]. In absence of learning, the �tness surface is always
zero, except for a few combinations of parameters (thin line in the center). When
learning is enabled, there might be several individuals who can reach at some
point the combinations that provide �tness points during life, thus enlarging and
smoothing out the �tness surface (dotted curve).

dividual. In absence of learning, the probability of �nding a good combination of

weights would be very small and the �tness surface would look like a
at area with

a thin spike in correspondence of the good combinations (�gure 1.1). On such

a surface a genetic algorithm does not perform better than any random search

algorithm. However, if learning is enabled, there are individuals who will even-

tually achieve one of the good combinations of connection values at some point

during life and will thus start accumulating �tness points. This corresponds to

an enlargement and smoothing of the �tness area around the good combinations

which can be discovered and easily climbed by the genetic algorithm. Individuals

with a set of values closer to the good combinations will have higher reproduction

probability (because learning reaches faster the condition when it starts accumu-

lating �tness points): the result is that what is initially learned tends to be

already present in the genes of the evolved individuals. Despite the ingenuity of

the learning mechanism employed, this simple experiment e�ectively shows how

the Baldwin e�ect might work and its computational advantages.

1.2 Learning and Evolution in Sensorimotor Agents

For the purpose of applying learning mechanisms to an evolving autonomous

robot , the experiment performed by Hinton and Nowlan has two major limita-

tions: there is no distinction between the evolutionary and the learning task and

the learning mechanism is equated to a random process. In the following two

subsections, we shall look at these issues with two experiments on evolutionary

arti�cial organisms equipped with learning abilities. Although both experiments

4

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

were run in simple grid-world simulations, it was the �rst time when evolution

and learning were considered in the context of arti�cial organisms equipped with

a sensorimotor system.

1.2.1 Learning to predict

If evolutionary and learning goals are the same, one cannot legitimately infer

that whatever is learned by an individual during life automatically increases the

probability of the individual to reproduce. Before jumping to these conclusions,

we need more evidence from experiments where evolutionary and learning goals

are di�erent.

frontal
direction

α
d

α d
sensory
input

current
planned
action

future
planned
action

α d
sensory
input

current
planned
action

future
planned
action α d

sensory
prediction

Figure 1.2: Left: A portion of the environment with an arti�cial organism and
a food token. The organism perceives the distance and angle of the food with
respect to its own frontal direction. Center: Neural network architecture evolved
without learning. Right: Neural network architecture evolved in simulations
with learning. Shaded connections are modi�ed by prediction learning during
the life of the individual (see text).

Nol�, Parisi, and Elman [36] have addressed this issue studying populations of

simulated organisms interacting with simple environments. Each organism lives

in a two-dimensional grid world where a number of food tokens are randomly

distributed (�gure 1.2). Each food token occupies one cell; if the organism hap-

pens to pass on one of these cells, the food token is automatically \eaten" and

the organism's �tness is increased. Each individual is equipped with a neural

network interfaced to a sensorimotor system that provides input information on

the distance and angle (with respect to the facing direction) of the nearest food

token and on the planned motor action; the motor system includes four possible

actions, coded on two motor units: turn 90� right, turn 90� left, move one cell

forward, and stay. At each time step, the neural network receives as input the

current sensory information on the nearest food token and the current planned

1.2 Learning and Evolution in Sensorimotor Agents 5

motor action (at); the output units produce the next planned action (at+1). At

this point, the planned action that was used as input is executed and the next

planned action is passed as new input together with the newly computed sensory

information. This sensorimotor cycle is repeated for a number of times (life span)

during which the organism is allowed to visit a number of new environments with

di�erent food distributions.

The authors have compared two evolutionary conditions, one where the neural

network parameters (connection states) are genetically determined and another

where each network can also learn during the entire life span of the organism

(but without transmitting changes due to learning back into the genotype). In

both conditions the evolutionary goal (�tness function) was that of developing

organisms capable of eating the highest number of food tokens. The additional

learning mechanism employed in the second condition was a gradient descent

method (implemented as a back-propagation algorithm [44] of the error between

correct responses and neural network outputs), a more e�cient solution than ran-

dom switching of connections used by Hinton and Nowlan. However, the choice

of an error correcting mechanism raises the problem of where the correct network

output (sometimes called \teaching input") comes from at each time step. It

would be technically unfeasible (for a robot) and biologically implausible (for an

organism) to assume the presence of an external teacher telling the individual

what to do at each time step. A more plausible scenario is learning to predict

the sensory consequences of one's own motor actions. Biological and arti�cial

organisms can both decide what actions to take and predict what will their con-

sequences be. An important di�erence between neural networks applied to a data

base (which is by far the most common way of using arti�cial neural networks

in the science and industry) and neural networks of living organisms and au-

tonomous robots is that, in the latter case, the output of the network can a�ect

its own next input [40]. In sensory prediction learning , the teaching signals are

readily available from the environment, once the organism has accomplished the

action.3

In order to incorporate prediction learning in the second condition, Nol� et

al. have added to the network two output units (�gure 1.2, right side) coding for

a prediction of the sensory information after the execution of the current planned

action (at), and used the freshly-gathered sensory information to update at each

time step synaptic weights with the back-propagation algorithm. It should be

noticed that although motor actions and sensory predictions are produced by

di�erent output units, both systems share the same synaptic weights from the

input units to the hidden units.

Three main results were obtained by comparing the conditions with and with-

out learning:

3Learning to predict sensory consequences of motor actions has also been recently exploited
for autonomous induction of internal models of the interactions between robot and environment
[26, 28, 47].

6

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

� Learning populations systematically and signi�cantly displayed faster and

higher �tness values across generations than populations without learning.

� After a number of generations, individuals learning to predict also increased

the ability to �nd food during life.

� Individuals of the last generation evolved in the condition without learning,

when provided with additional output units, could learn to predict better

than random individuals (that is, those of the initial generation), indicat-

ing that food �nding strategies facilitated prediction learning. Furthermore,

individuals of the last generations which had evolved in the learning condi-

tion, learned to predict even better than those of the no-learning condition,

but their prediction performance at birth was identical to random individ-

uals. Therefore, evolution did not select individuals with good prediction

abilities, but individuals with a predisposition to learn.

Evolution
surface

Learning
surface

A B

Figure 1.3: Search surfaces when evolution and learning have di�erent goals [36].
y-axes represent evolutionary and learning performances, x -axes represent param-
eter combinations. Black disks correspond to the initial positions of two di�erent
individuals (A and B) on the evolutionary and learning landscapes. Without
learning, individual A would have higher reproduction probability. With learn-
ing, both individuals tend to move toward higher zones on the learning landscape.
The evolutionary �tness of each individual is the integral of the evolutionary area
(shaded regions) corresponding to the trajectory in the parameter space caused
by learning. These two surfaces are dynamically correlated (see text).

Since here the learning criterion is di�erent from the evolutionary goal, the

explanation by Hinton and Nowlan depicted in �gure 1.1 could not fully explain

these results. Nol� et al. have proposed a new explanation. Imagine two di�erent

search surfaces , an evolutionary surface and a learning surface (�gure 1.3). In

the condition where organisms can learn during life, weight change produces a

trajectory on the learning surface which corresponds to a displacement on the

1.2 Learning and Evolution in Sensorimotor Agents 7

evolutionary surface. Learning a�ects evolution in the selection process because

the �nal �tness of the individual will be the sum of the �tness values received

during such displacements on the weight space. The correlation between these two

search surfaces plays an important role. The authors distinguish between a static

correlation and a dynamic correlation. Static correlation means that maxima

and minima occupy the same position in the two surfaces (although they do not

necessarily have the same values). Instead, dynamic correlation means that the

change in performance (increment or decrement) caused by a certain trajectory

is similar in both surfaces (although change rates are not necessarily the same).

From the experimental results summarized above, one can deduce that there

is no static correlation between food-gathering and sensory prediction because

individuals of the last generations do not have better prediction abilities at birth;

however, there is a partial dynamic correlation because after some generations an

increment in prediction abilities corresponds to an increment in food-gathering

abilities. The authors argue that in populations that both evolve and learn, evo-

lution progressively selects for individuals that are located in regions of dynamic

correlation. In other words, evolution selects individuals capable of learning in

such a way that they can also have higher reproductive chances.

1.2.2 Evolving how to learn

Another limitation of the experiment by Hinton and Nowlan was the learning

mechanism employed. Even assuming that evolution and learning are working

toward the same goal (for example, the development of suitable food gather-

ing strategies), biological learning seems to be more directional than random

switching of synapses. The experiments conducted by Ackley and Littman [1]

in simulated environments not only represent a step forward with respect to this

issue, but also introduce a novel self-teaching architecture that could be used

right away on real autonomous robots.

A variable-size population of arti�cial organisms lives in a simulated environ-

ment containing predators, di�erent types of food tokens, and other objects. Each

organism is controlled by a neural network composed of two modules: an action

module and an evaluation module (�gure 1.4), as in classic reinforcement learning

architectures [3, 4]. The action module is a feedforward network mapping sensory

information into probabilities of executing a certain action; the evaluation module

provides an evaluation of the sensory information which is used as a reinforce-

ment signal for the action module. The value of the reinforcement signal depends

on the variation of the output of the evaluation module over time. A genetic al-

gorithm evolves the synaptic weight values of both the action and the evaluation

modules, but during the life of the individual the action module also modi�es

the genetically inherited weights using the reinforcement signal provided by the

evaluation module. The basic principle behind the weight change rule is that

positive reinforcements cause strengthening of active synapses, whereas negative

8

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

reinforcements cause weakening of active synapses. As in Darwinian evolution ,

�nal synaptic weight values are not copied back into the genotype.

sensory
input

probabilities

actions

reinforcement
signal

action module
evaluation

module

sensory
input

Figure 1.4: Evolutionary Reinforcement Learning [1]. The genetic string of an
individual encodes the connection strengths of the two modules composing the
control system. The action module also modi�es its own connection strengths
during life, but such changes are not written back into the genetic code.

Each organism can reproduce when it has accumulated enough energy (eat-

ing food while escaping predators) and has found another organism ready for

reproduction ; o�spring are formed by crossing over and randomly mutating the

chromosomes of the parents. Organisms die if they cannot maintain a su�cient

energy level or when they become too old. As compared to traditional genetic al-

gorithms [24], here the energy level plays the role of an intrinsic �tness function.4

One way of comparing the e�ect of di�erent manipulations of the parameters of

these arti�cial world consists in observing how long a population survives. The

authors have compared three di�erent situations: evolution without learning ,

learning without evolution , and the combination of both. The latter condition,

also named \Evolutionary Reinforcement Learning" , outperformed both other

conditions managing to keep the population alive for over three thousand gen-

erations. A longitudinal study of the behavioral characteristics of the arti�cial

organisms showed that during the �rst 600 generations the action modules were

4These types of environments, which are more biologically plausible, are also known as Latent
Energy Environments [31].

1.3 Evolution of Learning for Autonomous Robots 9

not capable of reaching food at birth, but had to learn it during life. In later

generations however, food gathering strategies were already present at birth.

These experiments are similar to the situation described by Hinton and Nowlan

because learning and evolution are synergetic mechanisms working toward the

same goal. Consequently, here the Baldwin e�ect manifests itself in its most in-

tuitive aspects: an evolutionary advantage of learning individuals and a gradual

genetic assimilation of the features learned during life. The distinctive aspect

of the approach employed by Ackley and Littman is that evolution e�ectively

decides how to shape learning, that is when and how to provide positive and

negative reinforcements to the action module. In the reinforcement learning lit-

erature, the decision of when and how a reinforcement signal of a certain type is

provided to the learning system (by the environment) is called a Reinforcement

Program (RP). In practice, choosing an appropriate RP makes the di�erence

between a successful learning session and a serious failure. By letting evolution

decide under what conditions di�erent reinforcement signals are received by the

action module, Ackley and Littman have created an autonomous self-learning

system that decides when and what should be learned. A similar approach has

been taken more recently by Nol� et al. [37] in experiments resorting to more re-

alistic simulations of a mobile robot (which will be described below), and showed

to be a very e�ective procedure in dynamic environments that are unpredictable

on the evolutionary time scale.

1.3 Evolution of Learning for Autonomous Robots

In the experiments described above, evolution was combined with supervised

learning algorithms and all studies were carried out in grid-world simulations.

In this section we shall describe a di�erent approach based on the assumption

that the neural mechanisms underlying life learning are themselves developed

and shaped by the evolutionary process (see section 1.3.1 for biological consid-

erations). A genetic algorithm is used to evolve neural structures that can be

continuously modi�ed during life according to the mechanisms speci�ed in the

genotype. Each decoded neural network is downloaded into a real mobile robot

which is free to interact with the environment while its �tness is automatically

computed and stored away for selective reproduction.

We used the miniature mobile robot Khepera which has a circular shape with a

diameter of 55 mm, a height of 30 mm, and a weight of 70 g (�gure 1.5). Khepera,

which has been originally developed at our laboratory [33], is supported by two

wheels and two small Te
on balls. Each of two motor controllers sets the speed of

its own wheel according to a continuous value between -0.5 and +0.5, where 0.0

means no rotation, -0.5 means maximum rotation speed in one direction (set to 80

mm/s) and 0.5 means maximum rotation speed in the opposite direction. Each

of the eight infrared proximity sensors, six positioned on one side and two on the

opposite side, returns a continuous value between 0 and 1 that signals the distance

10

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

Figure 1.5: The miniature mobile robot Khepera with a ruler. Small black parts
around the body are active infrared sensors.

of an object from that sensor (the closer the object, the higher the value returned).

In our environment the maximum detection range was approximately 4 cm. The

robot was provided with a small positioning device which detected light beams

emitted by a laser device placed on the top of the environment and computed the

robot absolute position (see [18] for further details). This information was used

only for behavior analysis and was not passed to the neural controller. Khepera

was attached via a serial port to a Sun SparcStation by means of a lightweight

aerial cable and specially-designed rotating contacts.

Figure 1.6: Bird-view of the evolutionary environment and the Khepera robot
within.

The robot was put in an environment consisting of a circular corridor whose

external size was approximately 60x50 cm large (�gure 1.6). The genetic op-

erators, the decoding routines from genotypes to phenotypes, and the neural

1.3 Evolution of Learning for Autonomous Robots 11

network dynamics were managed by the workstation CPU. Each individual of a

population was in turn decoded into a corresponding neural network, the input

nodes connected to the robot sensors, the output nodes to the motors (output

unit activation was transformed in the range �0:5 before passing it to the mo-

tor), and the robot was let free to move for 24 s (80 motor actions) while its

�tness � was automatically recorded at each time step and accumulated. Each

sensorimotor loop lasted 300 ms (to/from communications between the robot and

the workstation lasted approximately 60 ms) during which the wheel speed was

kept constant. Between one individual and the next, a pair of random velocities

was applied to the wheels for 5 seconds: this procedure was aimed at limiting

the artifactual inheritance of bad locations between adjacent individuals in the

population.

The �tness function � designed for evolving an obstacle-avoidance and straight

navigation behavior

� = V
�
1�

p
�v

�
(1� i) (1.1)

where 0 � V � 1 is a measure of the average rotation speed in absolute value of

the two wheels, �v = (vleft + 0:5) � (vright + 0:5); 0 � �v � 1 is the absolute

value of the di�erence between the speeds of the wheels transformed into positive

values, and 0 � i � 1 is the activation value of the proximity sensor with the

highest activity. � was newly computed every 300 ms, accumulated during the

life of the individual, and �nally normalized by the number of actions.

A simple genetic algorithm (as described in [20]) was employed to evolve bi-

nary chromosomes which encoded a set of parameters describing synaptic prop-

erties and learning rules. Every time a new phenotype was created, its synapses

were initialized to small random values which could change their strengths, but

�nal strengths were not coded back into the chromosome. Thus, each decoded

neural network changed its own synaptic strength con�guration according to the

genetic instructions while the robot interacted with its own environment.

Each neural network had only three neurons, one hidden neuron and two mo-

tor neurons, each receiving synaptic connections from all eight infrared sensors

and from the hidden neuron (Figure 1.7). Synaptic connections could have a

driving or a modulatory e�ect on the postsynaptic neuron; a�erent signals were

combined in a two-component activation function [41] providing an output be-

tween 0 and 1. Driving signals determined the direction of rotation of the wheel,

whereas modulatory signals could enhance or reduce speed, but could not change

the direction of rotation. Each synapse was individually coded on the chromo-

some by four properties: driving or modulatory (1 bit), excitatory or inhibitory

(1 bit), its learning rule (2 bits), and its learning rate (2 bits). Each individual

synapse could change its strength according to one of four basic Hebbian learning

rules [50]: pure Hebbian, postsynaptic, presynaptic, and covariance (more details

are given in [19]).

As soon as the network was decoded and attached to the sensors and motors

of the robot, synaptic weight values were initialized to small random values in the

12

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

Hidden
unit

Motors

From

To

Figure 1.7: The architecture of the neural network employed. Black disks are
synapses; the circle in the middle of the robot body represents the hidden neuron.

range [0:0; 0:1] and updated every 300 ms according to the following discrete-time

equation

wt = wt�1 + ��wt (1.2)

where � was the genetically-encoded learning rate, which could assume one of

four values f0:0; 0:3; 0:7; 1:0g.5
Three evolutionary runs were made. In all runs the best individual �tness

reached a maximum value around the 50th generation (� = 0:23;�0:09). All

the best individuals of the last generation managed to keep a straight trajectory

while avoiding obstacles. The evolved behaviors resulted in smooth paths around

the arena (Figure 1.8). This ability was developed by each individual neuro-

controller during the �rst few sensorimotor loops, whatever the initial random

values assigned to the synapses. In all the three runs the best individuals of the

last generation displayed an emergent frontal direction corresponding to the side

where more infrared sensors were placed, which provided a better sampling of

the obstacles facing the robot.

Here we provide the analysis of one of the best individuals of the last genera-

tion (other individuals had very similar characteristics). Once the neural network

had been decoded, connected to the robot sensors and motors, synaptic strengths

were initialized to random values in the range [0:0; 0:1], the robot was positioned

5If the learning rate is 0.0, the corresponding synapse does not change its strength during
the life of the individual.

1.3 Evolution of Learning for Autonomous Robots 13

map

x

y

map

x

y

Figure 1.8: Trajectory of an evolved robot learning to navigate during life. Po-
sition data, visualized as bars representing the axis connecting the two wheels,
were acquired with a laser positioning device every 100 ms. Left: trajectory
during the �rst lap (the robot starts in the lower portion of the environment and
turns anti-clockwise). Right: trajectory at the second lap.

facing a corner of the inner wall (�gure 1.8, left; initial position corresponds to

the set of superimposed bars in the lower portion of the environment) and let free

to move. During the �rst 2 s (6-7 synaptic updates), the robot adjusted its posi-

tion alternating back-and-forth movements until it found a wall on its right side.

This initial behavior was quite stereotypical: it was displayed for any starting

position. Once the wall had been found, the robot moved forward keeping it at a

distance of 2 cm from its own right side; every second or third action, it slightly

turned toward the wall and then continued forward. This sort of jerky behavior

was gradually reduced when coasting a straight long wall (e.g., the north and east

walls). If the wall was slightly bent, the robot could still follow it without reduc-

ing speed, but when it encountered a convex angle smaller than 90� (which means

that most of the front infrared sensors are active) the robot stopped, backed ro-

tating to the right, and then moved forward in the new direction. After one lap

around the maze, the path became smoother with less trajectory adjustments

and more tuned to the geometric outline of the environment (�gure 1.8, right).

1.3.1 Fast changing synapses

The development of such behavior can be understood by studying the internal

dynamics of the evolved network. Figure 1.9 plots the strengths of all synapses

in the network during the �rst 100 actions (sensory-motor loops) visualized in

Figure 1.8 using the same format of Figure 1.7. Without going into much de-

tail (which can be found in [19]), one of the most remarkable results is that

synapses continuously change while the behavior is quite stable. In the con-

ventional view, synapses are relatively slow-changing and stable components of

14

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

m / η=0.0 / hebb

m / η=0.3 / post

d / η=0.0 / pre

d / η=0.0 / pre

m / η=0.0 / pre

d / η=0.0 / syn

d / η=0.3 / pre

m / η=0.7 / post

m / η=0.7 / pre

d / η=0.7 / syn

m / η=0.3 / post

m / η=1.0 / post

d / η=1.0 / hebb

d / η=0.3 / post

d / η=1.0 / post

d / η=0.0 / hebb

d / η=0.0 / hebb

m / η=0.3 / pre d / η=0.0 / pre

m / η=0.0 / pre

d / η=0.0 / syn

d / η=0.3 / pre

m / η=0.7 / post

m / η=0.7 / post

m / η=1.0 / pre

d / η=0.3 / syn

d / η=0.3 / hebb

Figure 1.9: Synaptic strength recorded every 300 ms during the �rst 100 actions
of the robot. y-axis position indicate excitatory (pointing upwards) or inhibitory
synapses (pointing downwards).

the nervous system. Synaptic change is identi�ed with learning of new skills or

acquisition of new knowledge, while neuron activation is identi�ed with behav-

ior expression. Typically, acquisition of a stable behavior in a static environment

corresponds to stability (no further change) of individual synapses (e.g., see [22]).

Such requirement is explicitly included into the objectives (least-mean-square er-

ror minimization, energy reduction, maximization of node mutual information,

etc.) from which |both supervised and unsupervised| conventional learning

algorithms are derived, but it is not included into the �tness function employed

in this experiment, which is de�ned only in behavioral terms.

The functioning of our system o�ers a complementary |but not necessarily

alternative| explanation. Synapses are responsible for both learning and be-

havior regulation. Knowledge in the network is not expressed by a �nal stable

state of the synaptic con�guration, but rather by a dynamic equilibrium point in

1.3 Evolution of Learning for Autonomous Robots 15

initial position

actions
20-80

actions
80-100

Figure 1.10: State-space representation of synaptic dynamics during the �rst 100
actions plotted as trajectory within the space of the �rst three principal compo-
nents. Arrows indicate starting position and range of oscillation between action
sequences 20-80 and 80-100. Oscillations within the subspace of the third (small-
est) component correspond to �ne trajectory adjustments. Method: Sanger's
network [45] for extracting the �rst three principal components of the input corre-
lation matrix was trained to stability on the 27-component vectors corresponding
to the synaptic activity recorded during the �rst 100 actions of the robot (visu-
alized in Figure 1.9); after training, input vectors were presented again to the
network and output unit activations were plotted in the resulting 3-dimensional
space.

an n-dimensional state-space (where n is the number of synapses). Figure 1.10

plots the trajectory of synaptic change in the reduced state-space of the �rst three

principal components of the recorded synaptic vectors during the �rst 100 actions

of the individual displayed in �gure 1.8. During the �rst six actions the systems

moves toward a subregion of the space for which there is no change in the �rst two

principal components; residual variation along the slice of space corresponding

to the third principal component corresponds to �ne trajectory adjustments and

is further reduced as the robot gradually tunes its path to the geometry of the

environment. This means that, after an initial phase of adjustment, the synapses

as a whole change in a systematic and co-ordinated fashion. In other words,

the stable behavior acquired during life is regulated by continuously changing

synapses which are dynamically stable.

From an engineering point of view, evolution of learning abilities , that is of

robots capable of autonomously self-recon�guring their internal parameters on

the
y depending on external conditions, represents a good trade-o� between

the long time required for arti�cial evolution and the
exibility of the evolved

system. However, one of the limitations of this experiment is that it has been

tested only in a static environment where evolution alone could come up with

16

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

similarly e�cient solutions [17].

1.4 Adaptive Behavior in Co-evolutionary Competi-

tive Agents

Adaptive behavior during life {as compared to innate and �xed behavior{ might

represent an advantage in unpredictable and dynamic environments. In this

respect, co-evolution of competitive species provides an interesting testbed to

study the role of adaptive behavior. In the simplest scenario of two competing

species, such as a predator and a prey, the behavior of each individual is tightly

related to the behavior of the competitor both on the evolutionary and on the

ontogenetic time scale. On the evolutionary time scale, the coupled dynamics of

the system give rise to the \Red Queen e�ect" whereby the �tness landscape of

each population is continuously modi�ed by the competing population [10].

On the ontogenetic time-scale, it has been argued that pursuit-evasion con-

tests might favour the emergence of \protean behaviors", that is behaviors which

are adaptively unpredictable [14]. For example, prey could take advantage of un-

predictable escape behaviors based on short sequences of stochastic motor actions.

Similarly, predators could take advantage of enhanced perceptual characteristics

and/or adaptive sensory-motor intelligence which could enable predictive tracking

strategies (for a good introduction, see [32]). However, none of these experimen-

tal studies systematically explored the role of ontogenetic adaptive behavior in

co-evolution of competing species. Although most of the evolved systems include

some form of noise, it is di�cult to say whether this plays an important role on

the speci�c dynamics of co-evolving species or it is simply exploited for smooth-

ing the �tness landscape. All the results presented so far in the literature are

based on single-run studies and do not include comparisons between di�erent

adaptation techniques.

We decided to look at life learning in co-evolutionary systems using an ap-

proach similar to that described in the previous section. In particular, we were

interested in understanding whether life-learning might change co-evolutionary

dynamics and what type of adaptive behavior each species (predator and prey)

would exploit. We employed two Khepera robots, one of which (the Predator)

was equipped with a vision module while the other (the Prey) had a maximum

available speed set to twice that of the predator (�gure 1.11). The two species

evolved in a square arena of size 47 x 47 cm with high white walls so that the

predator could always see the prey (if within the visual angle) as a black spot on

a white background.

Since evolutionary experiments take a long time on real robots, before imple-

menting our system on the Khepera robots, we decided to systematically study

the dynamics in realistic simulations (�gure 1.12).6 The controllers of the two

6The evolved controllers were then downloaded on the physical robots. Furthermore, the

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 17

Figure 1.11: Right: The Predator is equipped with the vision module (1D-array
of photo-receptors, visual angle of 36�). Left: The Prey has a black protuberance
which can be detected by the predator everywhere in the environment, but its
maximum speed is twice that of the predator. Both Predator and Prey are
equipped with 8 infrared proximity sensors (max detection range was 3 cm in our
environment).

robots were simple perceptrons with two sigmoid units and recurrent connections

at the output layer. The activation of each output unit was used to update the

speed value of the corresponding wheel every 100ms. In the case of the predator,

each output unit received connections from �ve visual units, each corresponding

to the activity of 7 physical photoreceptors, and from eight infrared proximity

sensors; in the case of the prey, each output unit received input only from 8

infrared proximity sensors, but its activation value was multiplied by 2 before

setting the wheel speed.

Two populations of 100 individuals each were co-evolved for 100 generations.

Each individual was tested against the best competitors of the ten previous gen-

erations (a similar procedure was used in [46, 43, 9]) in order to improve co-

evolutionary stability. A tournament ended either when the predator touched

the prey or after 500 motor updates (corresponding to 50 seconds on the real

robots). The �tness function �c for each tournament c was simply TimetoCon-

tact normalized by the maximum number of motor updates (500) T tC for the

predator pr, and 1 � T tC for the prey py, further averaged over the number of

tournaments (10). Therefore the �tness values were always between 0 and 1,

where 0 is worst.

Three di�erent co-evolutionary conditions have been studied, each one corre-

sponding to a di�erent controller type (Table 1.1), but all using the same architec-

ture and chromosome length. In all conditions, the �rst bit of each synapse coded

its sign (whether excitatory or inhibitory). In the �rst condition, the remaining

four bits coded the synaptic strength as a value in the range [0; 1]: since no

most interesting evolutionary runs were replicated directly on the physical robots.

18

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

VISION INFRARED

1 SYNAPSE
36 o

47 cm

4
7

c
m

Figure 1.12: Left and center: Details of simulation of vision, of neural network
architecture, and of genetic encoding. The Prey di�ers from the Predator in that
it does not have 5 input units for vision. Each synapse in the network is coded by
�ve bits, the �rst bit determining the sign of the synapse and the remaining four
the other synaptic parameters. Right: Initial starting position for Prey (left,
empty disk with small opening corresponding to frontal direction) and Predator
(right, black disk with line corresponding to frontal direction) in the arena. For
each competition, the initial orientation is random.

changes take place during the life of the individuals, let us call them genetically-

determined controllers . In the second condition, only two bits coded the synaptic

strength (again, in the range [0; 1]), and the remaining two bits coded the level

of random noise applied to the synaptic value. Each level corresponded to the

lower and upper bounds of a uniform noise distribution: 0:0 (no noise), �0:337,
�0:667, and �1:0. At every network activation, each synapse had its own newly-

computed noise value added to its strength (with a �nal check to level out sums

below 0.0 or above 1.0). We shall call this condition adaptive-noise controllers

because each species can evolve the most appropriate noise level for each synapse.

In the third condition, two bits coded four Hebbian rules and the remaining two

bits the learning rate (0:0, 0:337, 0:667, and 1:0), exactly as described above

Bits for one synapse

Condition 1 2 3 4 5

1 sign strength

2 sign strength noise

3 sign Hebb rule rate

Table 1.1: Genetic encoding of synaptic parameters for each co-evolutionary con-
dition. 1: Genetically-determined controllers; 2: Adaptive-noise controllers; 3:
Directional-change controllers.

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 19

in section 1.3. Let us call this condition directional-change controllers , simply

indicating that synaptic changes depend on sensory activation and motor actions.

For each condition, 6 di�erent evolutionary runs were performed, each starting

with a di�erent seed for initializing the computer random functions.7

Protean behaviors

As for biological competitive systems [42], population performances display os-

cillatory behaviors in all three conditions (�gure 1.13). However, here nominal

�tness is not an indicator of �tness progress. For example, a reduced �tness of

the predators does not necessarily mean that their behaviors have deteriorated;

in fact, it might be explained by behavioral progress achieved by the prey. A

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

1) 2) 3)

Figure 1.13: Average population �tness across generations for the three di�erent
conditions. Thick line is predator, thin line is prey. 1) Genetically determined;
2) adaptive noise; 3) directional change.

relational measure of performance gives us additional information on the coupled

dynamics of such a co-evolved system: for example, one can derive an index of

relative performance rci by counting how often one species reports higher �tness

than the competing species at each generation for each separate run i in a speci�c

condition c. In our co-evolutionary runs which lasted 100 generations, such index

will be in the range [�100; 100], where �100 means that the prey always out-

performed the predators, 0 means that both species were equally better or worse

than the competitors, and 100 means that the predators always outperformed

the prey.

For the genetically-determined condition (c = 1), the average value over dif-

ferent runs was R1 = 16:67, with standard deviation of the sample mean � = 38,

indicating that both species reported similar performances. Similar results were

measured in the condition with evolutionary adaptive noise (c = 2) which dis-

played an average relative performance R2 = 11:66, with standard deviation of

7A set of pairwise two-tail t-tests of the average �tness and best �tness along generations
among all the six runs, performed to check whether di�erent seeds signi�cantly a�ected the
experimental outcomes, gave negative results at signi�cance level 0.05. Therefore, for each
condition below, we shall plot only data referring to seed 1 (arbitrarily chosen), but the statistical
tests reported will be based on all runs.

20

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

the sample mean � = 32:5 (probability value was 0.83 for t -test of the di�er-

ence of the means between the two conditions). However, relative performance

of the two species in the directional-change condition signi�cantly di�ered from

both other conditions, R3 = 72 with standard deviation of the sample mean

� = 15:39, p < 0:01 for a two-tailed t-test of the di�erence of the means. In this

last condition, the predators pro�ted of the learning ability and reported almost

always better performance than the prey. Furthermore, in all runs, the average

�tness of the predator population was more stable than that of the prey.

1) 2) 3)

Figure 1.14: Interesting behaviors recorded at di�erent points in evolutionary
history (from top to bottom) for each condition. Black disk is predator, white
is prey. 1) genetically determined (generations 20, 70 , 90); 2) adaptive noise
(generations 20, 50 , 80); 3) directional change (generations 20, 70 , 95).

A more intuitive understanding of the results can be gained by looking at

typical behaviors of the two species recorded at interesting points of co-evolution

(�gure 1.14). When the individuals cannot modify synaptic weights during life,

several di�erent behavioral strategies rapidly evolve and alternate over genera-

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 21

tions for both individuals, but none of these strategies can always win over those

developed by the competitor. For example, in the �rst row of �gure 1.14.1, we

have a prey that follow walls and a predator that has developed good visual

tracking abilities. Later on, as shown in the second row, the prey waits for the

predator and rapidly avoids it when it gets too close. After a few more generations

the prey resumes a sort of wall-following behavior, but the predator develops a

\spider strategy": it slowly backs against a wall and there it waits for the fast

approaching prey which detects its enemy too late to avoid it.

The introduction of modi�able controllers in co-evolutionary competition sig-

ni�cantly a�ected various aspects of the system dynamics, both on the evolu-

tionary and on the ontogenetic time-scale. On the evolutionary time-scale, noisy

controllers (c = 2) caused a relaxation of the tightly coupled dynamics observed

in the benchmark condition (c = 1). High behavioral variation during life of

the competitors, especially in the case of prey, was such that only a su�ciently

general behavioral strategy could pay o�, both for the predator and for the prey.

Co-evolutionary search here had higher probability of selecting individuals lo-

cated in better zones of the �tness landscape, a mechanism very similar to that

explained by Hinton and Nowlan. Instantaneous �tness values re
ected more

closely behavioral progress, as in traditional single-agent static environments.

On the other hand, directional-change controllers (c = 3) clearly favored domi-

nance of one species |the predator| whose sensorimotor system pro�ted most

of non-random changes of synaptic values.

On the ontogenetic time scale, that is at the level of individual tournaments,

the two species di�erentially exploited the two types of modi�able controllers.

In condition 2, both species reported similar performances, but they di�erently

exploited adaptive noise: prey employed higher noise levels to generate unpre-

dictable and hard-to-track trajectories, whereas predators reduced noise level to

maintain su�cient pursuit strategies (�gure 1.14.2). In condition 3, predators

bene�ted from directional synaptic change to improve their pursuit abilities with

respect to condition 1. As one can see in �gure 1.14.3, there is not much vari-

ation in the behavior of the predator. It always displays a very good tracking

ability across generations: once the prey has been locked in its visual �eld, it

quickly accelerates to maximum speed until contact. In this condition, for the

predator it is su�cient to get the sign of the synapses right. Then, independently

of their initial random values, the synapses from active sensors will be increased

causing an acceleration in the right direction. As compared to condition 1, where

the predator tended to e�ciently track in only one direction, here it can turn in

both directions at equal speed. In condition 1 proper tracking in both directions

would have required accurate settings of all synaptic strengths from visual inputs.

Here instead, since synapses are temporarily increased depending on active units,

adjustments take place when and where required depending on current sensory

input. The trajectory in the second row of �gure 1.14.3 displays an example of

synaptic adjustment. While the prey rotates always around the same circle, the

22

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

predator performs three turns during which synaptic values from the visual units

are gradually increased; at the fourth turn, the synaptic values will be su�ciently

high to cause a straight pursuit (eventually, the prey will try to avoid the predator

without success).

1.5 Local and Global Adaptive Search in Modular Ar-

chitectures

If from a biological and epistemological point of view it is worthwile exploring

with real robots the implications of our notion of phylogenetic and ontogenetic

adaptation, from an engineering point of view it is necessary to take a set of

short-cuts and devise novel strategies for the speci�cation and development of

adaptive robots that comply with standard engineering methods and practical

constraints.

Modern approaches to behavior engineering of autonomous robots have stressed

the importance of modular and distributed architectures composed of simple and

interconnected elements [6, 12] where each component has full or partial access to

sensory data and can a�ect the actions taken by the robot. Distributed modular

control has several potential advantages: it is an open system, it is intrinsically

robust to local failures, and it is suitable for gradual \shaping", i.e. incremental

training of independent behavioral competences [13].

In several practical situations, it is neither necessary nor advisable to train

a control system completely from scratch. On the one hand, learning not only

takes long time, but it also does not guarantee to converge if the parameter

search space is very large. On the other hand, there might be some aspects of

the behavior that could be easily pre-programmed exploiting available knowledge

about the task constraints. A modular architecture can easily accommodate both

adaptive and pre-programmed modules (the latter are sometimes referred to as

\instincts").

Adaptation in modular architectures can take place at two di�erent levels:

within each individual module and between modules. The �rst level is often

concerned with acquisition of a new competence for a partially de�ned module

and/or with re-adaptation of some of its parameters, such as threshold tuning, to

accommodate minor changes in the environment or robotic platform. This aspect

of adaptation is equivalent to a local search in a restricted parameter search

and is well-suited for learning mechanisms such as {for example{ reinforcement

learning. The second level of adaptation is concerned with coordination of all

modules and/or with acquisition and integration of new modules to cope with

major environmental changes and task constraints. This aspect of adaptation is

analogous to a global search over a less granulated space composed by a �nite

set of behavioral competences, and seems well-suited for an incremental and

evolutionary approach. A similar proposition has been advanced in [7], where

the possibility of evolving high-level behavior primitives was explored.

1.5 Local and Global Adaptive Search in Modular Architectures 23

We have experimented with an open modular architecture which can be in-

crementally shaped via evolutionary and learning mechanisms while the robot

interacts with its own environment. In doing so, we had three main concerns:

� the architecture must be capable of integrating adaptive modules with pre-

programmed behaviors, but also be able to discard them latter if they be-

come ine�cient;

� the system must allow for incremental and autonomous construction of

a suitable architecture, as demanded by the shaping policy or by major

changes in the task constraints;

� individual modules must be capable of quickly re-adapting themselves to

local changes without requiring a full redesign of the whole architecture.

Figure 1.15: Structure of a behavioral module. The behavior generator shown
here is a neural network, but it could be any other structure, such as a pre-
designed and �xed program. The output of the behavior generator can be a motor
command or any other decision. Sensory inputs may include decision signals from
other modules. In the current implementation, links between modules can be only
inhibitory or absent.

Application of arti�cial evolution requires a proper de�nition of the elements

on which it operates, in this case individual modules, so that the decoded geno-

type corresponds to a legal and meaningful architecture. Each module (�g-

ure 1.15)of the architecture receives input from the sensors of the robot and from

other modules, and sends output signals to other modules and to the motors of the

robot. The internal structure is based on two components: an activation network

and a behavior generator. The activation network decides on the basis of current

(and/or previous) sensory information whether the module becomes active. The

behavior generator can be a pre-programmed behavior, a neural network (as in

24

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

�gure 1.15), a classi�er system, or any other structure capable of generating mo-

tor commands or other behavioral decisions in response to sensory inputs. If the

behavior generator is capable of adaptation, the module includes a suitable local

learning algorithm and a learning policy. In the experiment described below,

the behavior generator of some modules consisted in a neural network adapting

through a self-supervised reinforcement learning algorithm.

A module can send and receive signals from other modules in two ways: a

signal can be a piece of information, such as a decision output or input, or a

link to decide which module(s) should be activated at every time step. The

former type of signal is basically exchanged between the behavior generators,

whereas the latter is exchanged between activation networks. In the current

implementation, activation links between modules can be only inhibitory, where

they exist. If a module becomes active, it attempts to inhibit all modules to which

it is connected; similarly, it receives inhibitory signals from other connected active

modules. The module winning this competition will access the motor resources

and control the robot for a certain time slice.8 The pattern of connectivity

among the modules and their individual activation networks are encoded as a

binary string and evolved by a genetic algorithm.

Evolution is incremental and operates on variable-length genotypes . Initially,

a set of basic modules are de�ned on the basis of general knowledge about the

task requirements and robot sensors. The activation networks of the modules

and the connectivity pattern among modules de�ne the genotype length. An

initial population of such controllers is evolved until an individual is generated

that satis�es the task criteria. Individual modules can be individually trained

before evolution and/or during evolution, depending on the task constraints.

If the task constraints change, or if new hardware modules are added to the

robot, it is possible to de�ne new modules and increment the genotype length

by including the new activation networks and all the connectivity to previous

modules. However, old parts of the genotype can be masked so that they cannot

be crossed over or mutated. Incremental evolution is useful not only for changing

environments and for variable robot con�gurations, but also for progressively

achieving very complex behaviors. It has been shown that by gradually increasing

environment complexity [15] and modifying the �tness function [21], it is possible

to evolve behaviors which otherwise would not be evolvable.

1.5.1 Battery recharge and object collection

The methodology described above was tested for the development of a complex

task in a changing environment. A Khepera robot equipped with an additional

gripper module, was positioned in an environment including several small objects,

a battery charger and a light source positioned above it (�gure 1.16). Instead of

8It is easy to extend the current version to the case of excitatory and inhibitory links with
variable strengths, which makes the global architecture similar to a recurrent neural network.

1.5 Local and Global Adaptive Search in Modular Architectures 25

using the real batteries available on the Khepera (which last approximately 30

minutes and require additional 40 minutes to recharge), a virtual battery lasting

between 40 and 60 seconds (depending on motor activity) and a fast virtual

recharger (taking 5 seconds to recharge) were employed during training. This

solution did not change the di�culty and/or realism of the training environment,

but considerably speeded up our measures.

Figure 1.16: The environment used for the object collecting experiment. The
battery charger and the light source are visible on the background.

In order to test several parts of our methodology, we devised two di�erent

tasks to be achieved sequentially and incrementally. As a �rst goal, we attempted

to evolve a controller capable of moving the robot around the arena without

hitting obstacles and returning to the recharging station before full discharge of

the batteries. At this stage, the gripper module was not yet plugged on the top

of the robot. Four initial modules were de�ned (see �gure 1.15):

Wander Used to move to robot around the environment. The behavior gen-

erator has been implemented both as a pre-designed program and as an

adaptive neural network because di�erent wandering behaviors might be

used depending on the tasks requirements. For our experiment, it turned

out that simple straight motion was learned in few seconds and was per-

fectly adequate for the task. Input: proximity sensors. Output: wheel

commands.

Follow-Light It goes toward the light source moving the robot in the direction

of the population vector resulting from the activity of all ambient light

26

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

sensors. No learning mechanism is required here because there is only one

light source and su�cient gradient information in the environment. Input:

ambient-light sensors. Output: wheel commands.

Recharge When active, it freezes every motor activity until the battery charge

indicator is on the full zone. Input: front proximity sensors and battery

charge indicator. Output: all available motors.

Obstacle-Avoidance The behavior generator is an adaptive neural network

mapping sensor activations into one of four possible motor actions (go for-

ward, turn right, turn left, move backward). Input: proximity sensors.

Output: wheel commands.

50 100 150 200 250 300 350 400 450 500 550
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Actions

R
ei

nf
or

ce
m

en
t v

al
ue

Figure 1.17: Performance of the Obstacle-Avoidance behavior generator dur-
ing reinforcement learning before evolution. One action lasts approximately 100
ms. Reinforcement values �1; 1 are averaged over a moving window (window
size = 30). Performance below zero means higher percentage of negative rein-
forcements, above zero higher number of positive reinforcements.

Both theWander andObstacle-Avoidancemodules were separately trained

before evolution, but the learning process could be locally and automatically

resumed at any time during evolution if the performance indicators reached a

critical level (in case that some characteristics of the environment or of the me-

chanical components changed). For each adaptive module, a local reinforcement

learning algorithm [30] attempted to satisfy a simple behavior policy exploiting

only information locally available to the module. For example, for the Obstacle-

Avoidance module, the policy was the minimization of the activation level of

the proximity sensors. Since each module is relatively simple and operates only

on local information, the learning process is very fast, as shown in �gure 1.17.

Once existing adaptive modules have been trained, a population of chromo-

somes, each encoding the activation networks and the connectivity pattern be-

tween modules, are randomly initialized and evolved on the Khepera using the

1.5 Local and Global Adaptive Search in Modular Architectures 27

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

F
itn

es
s

of
 b

es
t i

nd
iv

id
ua

l

Figure 1.18: Evolutionary training of the controller for exploration and battery
charging task (maximum �tness which can be obtained without recharging is
approximately 0.55). Fitness 1.0 could be theoretically achieved only in an envi-
ronment without objects and walls.

procedure and �tness function already described in section 1.3. Fitness values

are accumulated at each time step; therefore, robots that are capable of peri-

odically recharging will totalize higher �tness scores. A maximum limit of 200

actions, roughly corresponding to twice the battery life span, was allowed for all

individuals. After only 20 generations, there are individuals who are capable of

performing the desired task (�gure 1.18).

In a second stage, we plugged the gripper module on the Khepera and we

changed the task de�nition. Now the desired behavior was that of collecting

the highest number of objects and releasing them outside the arena, recharging

the batteries when necessary. The gripper module has two degrees of freedom

(�gure 1.16): it can lift/lower the arm and open/close the gripper. An optical

barrier between the two segments of the gripper provides sensory information on

the presence of an object. Three additional modules were de�ned as follows:

Object-Identi�cation Used to discriminate between graspable objects and ob-

stacles. The behavior generator is an adaptive network which autonomously

learns by exploring a detected object. Input: proximity sensors, optical bar-

rier. Output: wheel commands, gripper commands, object class.

Object-Grasp If the Object-Identi�cation module recognizes a graspable ob-

ject, and if the optical barrier is o�, it moves toward the direction of the

population vector resulting from the activation of the proximity sensors,

it lowers the gripper, it backs until the optical barrier is on (object well-

positioned), closes the gripper, and lifts the object. The module is not

adaptive. Input: optical barrier, Object-Identi�cation output, proximity

sensors. Output: wheel commands, gripper commands.

28

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

Object-Release If the Object-Identi�cation module recognizes a wall, it moves

toward the population vector resulting from the activation of the proximity

sensors, lowers the gripper, and drops the object. Input: optical barrier,

Object-Identi�cation output, proximity sensors. Output: wheel commands,

gripper commands.

50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Actions

R
ei

nf
or

ce
m

en
t v

al
ue

Figure 1.19: Performance of the Object-Identi�cation module during rein-
forcement learning on small objects (diameter is 10 mm). One action lasts ap-
proximately 3 s. Reinforcement values �1; 1 are averaged over a moving win-
dow (window size = 30). Performance below zero means higher percentage of
negative reinforcements, above zero higher number of positive reinforcements.
Performance around zero means random discrimination.

The Object-Identi�cation module learns to discriminate objects by explor-

ing them with the gripper. If some sensors are active, it formulates a hypothesis

on the object type; then, it moves the robot toward the direction of the popu-

lation vector resulting from the sensor activity and it lowers the gripper while

backing a little bit. If the encountered object is graspable, then the light barrier

becomes on. The signal coming from the optical barrier (o� or on) is used to

provide the reinforcement value and learn the sensory con�guration associated to

the corresponding object. As for other adaptive modules, learning employs only

information locally available to the module, is carried out separately, but it can

be automatically resumed during evolution if the performance indicator reaches a

critical threshold. After approximately 20 minutes of training with small metallic

objects (all having the same diameter of 10 mm) scattered around the arena, the

module is capable of reaching a satisfactory stable performance.

In order to evolve the full architecture, the genotype size is increased by

allocating new bits for all the new activation networks and links among new and

old modules. The old parts of the genotype are masked so that they are not

a�ected by crossover and mutation. The �tness function is augmented with an

additional component that gives 0.5 points for every grasped object and further

1.6 Conclusion 29

5 10 15 20 25 30 35
0

1

2

3

4

5

6

F
itn

es
s

of
 b

es
t i

nd
iv

id
ua

l

Generations

Figure 1.20: Evolutionary training of the controller on the full task, including
object picking and releasing. Fitness values above 1.5 indicate that at least one
object has been picked up and correctly released outside the arena. Given the
limit put on the life duration of each individual, a robot can collect and release
5 objects at best, including a battery recharge, during the life span.

0.5 points if the object is correctly released. After a few generation of incremental

evolution (�gure 1.20), the best individuals are capable of executing the complete

�nal task: collecting objects and recharging when necessary.

As stated above, one of the advantages of a modular architecture is that

individual modules can autonomously and locally re-adapt to small environmen-

tal changes without requiring re-training of the complete architecture. After

evolutionary training, we have substituted all objects with larger ones. The

new objects, which have a diameter (25 mm) almost twice that of the previous

ones, are often recognized as walls (see initial performance drop in �gure 1.21 as

compared to �nal performance reported in �gure 1.19). However, the Object-

Identi�cation module automatically and quickly adapts the synaptic weights to

the new object size without external supervision (�gure 1.21).

1.6 Conclusion

In this chapter we have examined the relationship between evolution and learn-

ing from the computational perspective of autonomous sensorimotor agents. The

general message emerging from the models and experiments described above is

that the combination of these two adaptive methods is more than a sum. Evolu-

tion and learning interact a�ecting each other's search space and search modal-

ity. Learning can ameliorate and accelerate evolution by modifying the selective-

reproduction probability of evolving individuals. Evolution decides what are the

most suitable learning mechanisms and how learning operates. Finally, learning

is used to adapt to local and relatively fast changes in the environment which are

30

Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Actions

R
ei

nf
or

ce
m

en
t v

al
ue

Figure 1.21: Performance of theObject-Identi�cationmodule during reinforce-
ment learning when small objects are replaced with new larger objects (diameter
is 25 mm). Initial performance is given by the generalization from the previously
learned synaptic weights. One action lasts approximately 3 s. Reinforcement
values �1; 1 are averaged over a moving window (window size = 30). Perfor-
mance below zero means higher percentage of negative reinforcements, above
zero higher number of positive reinforcements. Performance around zero means
random discrimination.

unpredictable on the evolutionary scale.

Computational explorations of interactions between evolution and learning,

conducted in laboratories of arti�cial life where several variables can be ma-

nipulated as desired and their e�ects systematically studied, provide important

insights for a better understanding of the principles of biological adaptation. On

the other hand, the combination of evolution and learning can be fruitfully ex-

ploited for engineering robots equipped with improved behavioral autonomy and

self-adaptation mechanisms.

It is di�cult to assess to what extent our computational notion of learning and

evolution re
ects biological mechanisms. In any case, the biological inspiration

behind the adaptive algorithms employed, such as genetic algorithms and arti�cial

neural networks, represents a rich source of new ideas that can be rigorously tested

and exploited for the realization of novel and robust machines.

Bibliography

[1] D. H. Ackley and M. L. Littman. Interactions between learning and evolu-

tion. In C.G. Langton, J.D. Farmer, S. Rasmussen, and C. Taylor, editors,

Arti�cial Life II: Proceedings Volume of Santa Fe Conference, volume XI.

Addison Wesley: series of the Santa Fe Institute Studies in the Sciences of

Complexities, Redwood City, CA, 1992.

[2] J. M. Baldwin. A new factor in evolution. American Naturalist, 30:441{451,

1896.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that

can solve di�cult learning control problems. IEEE Transactions on Systems,

Man, and Cybernetics, 13(5):835{846, 1983.

[4] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential

decision making. In M. Gabriel and J. W. Moore, editors, Learning and

Computational Neuroscience, pages 539{602. MIT Press-Bradford Books,

Cambridge, MA, 1990.

[5] R. K Belew and M. Mitchell, editors. Adaptive Individuals in Evolving Popu-

lations: Models and Algorithms. Addison-Wesley, Redwood City, CA, 1996.

[6] R. A. Brooks. Elephants don't play chess. Robotics and Autonomous Sys-

tems, 6:3{15, 1990.

[7] R. A. Brooks. Arti�cial Life and real robots. In F. J. Varela and P. Bourgine,

editors, Toward a practice of autonomous systems: Proceedings of the First

European Conference on Arti�cial Life. The MIT Press/Bradford Books,

Cambridge, MA, 1992.

[8] D. Cli�, I. Harvey, and P. Husbands. Explorations in evolutionary robotics.

Adaptive Behavior, 2:73{110, 1993.

[9] D. Cli� and G. F. Miller. Tracking the red queen: Measurements of adaptive

progress in co-evolutionary simulations. In F. Mor�an, A. Moreno, J. J.

Merelo, and P. Chac�on, editors, Advances in Arti�cial Life: Proceedings of

the Third European Conference on Arti�cial Life, pages 200{218. Springer

Verlag, Berlin, 1995.

32 BIBLIOGRAPHY

[10] R. Dawkins. The Blind Watchmaker. Longman, Essex, 1986.

[11] J. B. P. A. de M. de Lamarck. Zoological Philosophy. MacMillan, London,

1914. Relevant excerpt reprinted in [5].

[12] M. Dorigo and M. Colombetti. Robot shaping: Developing autonomous

agents through learning. Arti�cial Intelligence, 71:321{370, 1994.

[13] M. Dorigo and M. Colombetti. Robot shaping: An experiment in behavior

engineering. MIT Press, Cambridge, MA, 1998.

[14] P. Driver and N. Humphries. Protean behavior: The biology of unpredictabil-

ity. Oxford University Press, Oxford, 1988.

[15] D. Floreano. Emergence of Home-Based Foraging Strategies in Ecosystems

of Neural Networks. In J. Meyer, H. L. Roitblat, and S. W. Wilson, edi-

tors, From Animals to Animats II: Proceedings of the Second International

Conference on Simulation of Adaptive Behavior. MIT Press-Bradford Books,

Cambridge, MA, 1993.

[16] D. Floreano. Reducing human design and increasing adaptivity in evolu-

tionary robotics. In T. Gomi, editor, Evolutionary Robotics, pages 187{220.

AAI Books, Ontario, Canada, 1997.

[17] D. Floreano and F. Mondada. Automatic Creation of an Autonomous Agent:

Genetic Evolution of a Neural-Network Driven Robot. In D. Cli�, P. Hus-

bands, J. Meyer, and S. W. Wilson, editors, From Animals to Animats III:

Proceedings of the Third International Conference on Simulation of Adap-

tive Behavior, pages 402{410. MIT Press-Bradford Books, Cambridge, MA,

1994.

[18] D. Floreano and F. Mondada. Evolution of homing navigation in a real

mobile robot. IEEE Transactions on Systems, Man, and Cybernetics-Part

B, 26:396{407, 1996.

[19] D. Floreano and F. Mondada. Evolution of plastic neurocontrollers for sit-

uated agents. In P. Maes, M. Matari�c, J-A. Meyer, J. Pollack, H. Roitblat,

and S. Wilson, editors, From Animals to Animats IV: Proceedings of the

Fourth International Conference on Simulation of Adaptive Behavior, pages

402{410. MIT Press-Bradford Books, Cambridge, MA, 1996.

[20] D. E. Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, Redwood City, CA, 1989.

[21] I. Harvey, P. Husbands, and D. Cli�. Seeing The Light: Arti�cial Evolution,

Real Vision. In D. Cli�, P. Husbands, J. Meyer, and S. W. Wilson, edi-

tors, From Animals to Animats III: Proceedings of the Third International

BIBLIOGRAPHY 33

Conference on Simulation of Adaptive Behavior. MIT Press-Bradford Books,

Cambridge, MA, 1994.

[22] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural

computation. Addison-Wesley, Redwood City, CA, 1991.

[23] G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex

Systems, 1:495{502, 1987.

[24] J. H. Holland. Adaptation in natural and arti�cial systems. The University

of Michigan Press, Ann Arbor, 1975.

[25] K. Immelmann. The evolutionary signi�cance of early experience. In

G. Bearends, C. Beer, and A. Manning, editors, Function and Evolution

in Behaviour, pages 243{253. Clarendon Press, Oxford, 1976.

[26] M. I. Jordan and D. E. Rumelhart. Forward Models: Supervised Learning

with a Distal Teacher. Cognitive Science, 16:307{354, 1992.

[27] K. Z. Lorenz. The Evolution of Behaviour. Scienti�c American, 199(6):67{

78, 1955.

[28] M. Marjanovi�c, B. Scassellati, and M. Williamson. Self-taught visually-

guided pointing for a humanoid robot. In P. Maes, M. Matari�c, J-A. Meyer,

J. Pollack, H. Roitblat, and S. Wilson, editors, From Animals to Animats

IV: Proceedings of the Fourth International Conference on Simulation of

Adaptive Behavior, pages 36{44. MIT Press-Bradford Books, Cambridge,

MA, 1996.

[29] M. Matari�c and D. Cli�. Challenges in Evolving Controllers for Physical

Robots. Robotics and Autonomous Systems, 19(1):67{83, 1996.

[30] L. Meeden. Developing Neural Network Controllers for Robots. IEEE Trans-

actions on Systems, Man and Cybernetics: Part B: Cybernetics, 26:474{484,

1996.

[31] F. Menczer and R. K. Belew. Latent energy environments. In R. K. Belew

and S. Mitchell, editors, Plastic Individuals in Evolving Populations. Addison

Wesley, Redwood City, CA, 1993.

[32] G. F. Miller and D. Cli�. Protean behavior in dynamic games: Arguments for

the co-evolution of pursuit-evasion tactics. In D. Cli�, P. Husbands, J. Meyer,

and S. W. Wilson, editors, From Animals to Animats III: Proceedings of the

Third International Conference on Simulation of Adaptive Behavior. MIT

Press-Bradford Books, Cambridge, MA, 1994.

34 BIBLIOGRAPHY

[33] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: A tool

for investigation in control algorithms. In T. Yoshikawa and F. Miyazaki,

editors, Proceedings of the Third International Symposium on Experimental

Robotics, pages 501{513, Tokyo, 1993. Springer Verlag.

[34] C. L. Morgan. Habit and instinct. Edward Arnold, London, 1896.

[35] S. Nol�. Using emergent modularity to develop control system for mobile

robots. Adaptive Behavior, 5:343{364, 1997.

[36] S. Nol�, J. L. Elman, and D. Parisi. Learning and evolution in neural net-

works. Adaptive Behavior, 3:5{28, 1994.

[37] S. Nol� and D. Parisi. Learning to adapt to changing environments in evolv-

ing neural networks. Adaptive Behavior, 5:75{98, 1996.

[38] P. Nordin and W. Banzhaf. An online method to evolve behavior and to

control a miniature robot in real time with genetic programming. Adaptive

Behavior, pages 107{140, 1996.

[39] H. F. Osborn. Ontogenetic and phylogenetic variation. Science, 4:786{789,

1896.

[40] D. Parisi, F. Cecconi, and S. Nol�. Econets: Neural networks that learn in

an environment. Network, 1:149{168, 1990.

[41] W. A. Phillips, J. Kay, and D. Smyth. The discovery of structure by multi-

stream networks of local processors with contextual guidance. Network,

6:225{246, 1995.

[42] E. Renshaw. Modeling Biological Populations in Space and Time. Cambridge

University Press, Cambridge, 1991.

[43] C. W. Reynolds. Competition, Coevolution and the Game of Tag. In

R. Brooks and P. Maes, editors, Proceedings of the Fourth Workshop on

Arti�cial Life, pages 59{69, Boston, MA, 1994. MIT Press.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representa-

tions by Back-Propagation of Errors. Nature, 323:533{536, 1986.

[45] T. D. Sanger. Optimal unsupervised learning in a single-layer feedforward

neural network. Neural Networks, 2:459{473, 1989.

[46] K. Sims. Evolving 3D Morphology and Behavior by Competition. In

R. Brooks and P. Maes, editors, Proceedings of the Fourth Workshop on

Arti�cial Life, pages 28{39, Boston, MA, 1994. MIT Press.

BIBLIOGRAPHY 35

[47] J. Tani. Model-Based Learning for Mobile Robot Navigation from the Dy-

namical Systems Perspective. IEEE Transactions on Systems, Man, and

Cybernetics-Part B, 26:421{436, 1996.

[48] P. Turney, D. Whitley, and R. Anderson. Special Issue on Evolution, Learn-

ing, and Instincts: 100 Years of the Baldwin E�ect. Evolutionary Computa-

tion, 4:iii{viii, 1996.

[49] C. H. Waddington. Canalization of development and the inheritance of ac-

quired characters. Nature, 150:563{565, 1942.

[50] D. Willshaw and P. Dayan. Optimal plasticity from matrix memories: What

goes up must come down. Neural Computation, 2:85{93, 1990.

36 BIBLIOGRAPHY

