Bio-Inspired Computing
Systems

Toward Novel Computational
Architectures

Daniel Mange and Marco Tomassini (Eds.)

Contents

Preface

1 Evolution and Learning in Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

1.1 Imtroduction.
1.1.1 Interactions between learning and evolution

1.2 Learning and Evolution in Sensorimotor Agents
1.2.1 Learning topredict L oL
1.2.2 Evolving how tolearn

1.3 Evolution of Learning for Autonomous Robots
1.3.1 Fast changing synapses

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents

1.5 Local and Global Adaptive Search in Modular Architectures
1.5.1 Battery recharge and object collection

1.6 Conclusion Lo e

ii

CONTENTS

Chapter 1

Evolution and Learning in
Autonomous Robotic Agents

Dario Floreano and Joseba Urzelai

1.1 Introduction

Evolution and learning are two forms of biological adaptation that differ in space,
time, and substrate. Evolution is a process of selective reproduction and substi-
tution based on the existence of a geographically-distributed population of indi-
viduals displaying some variability. Learning , instead, is a set of modifications
taking place within each single individual during its own life time. Evolution
and learning operate on different time scales. Evolution is a form of adaptation
capable of capturing relatively slow environmental changes that might encompass
several generations, such as perceptual characteristics of food sources for a given
bird species. Learning, instead, allows an individual to adapt to environmental
changes that are unpredictable at the generational level; think, for example, of
the imprinting mechanism that allows some bird species to memorize at birth
their own mother [27, 25]. Learning might encompass phenomena like physi-
cal development, neural maturation, and synaptic plasticity. Finally, whereas
evolution operates on the genotype (the genetic specification of an individual),
learning directly affects only the phenotype (the decoded —embodied— version
of the individual), but phenotypic changes cannot directly modify the genotype.

From an engineering point of view, learning is an attractive feature that could
be exploited for fast adaptation of an evolutionary machine to unpredictable and
contingent circumstances of the environment. Artificial evolution has been rec-
ognized as a powerful methodology to develop intelligent robots capable of au-

!The authors are with the Microcomputing Laboratory, Swiss Federal Institute of Technol-
ogy, IN-Ecublens, CH-1015 Lausanne, Switzerland. E-mail: {Name.Surname}@epfl.ch. D.F.
acknowledges support by the Swiss National Science Foundation, project nr. 21-49174.26. J.U.
is supported by grant nr. BF197.136-AK from the Basque government.

Evolution and Learning in Autonomous Robotic Agents
2 Dario Floreano and Joseba Urzelai

tonomous adaptation to an external environment [8, 18, 35, 38]. An interesting
aspect of evolution with respect to other adaptation methods, such as gradi-
ent descent techniques or reinforcement learning, is that the criterion function
describing the desired behavior needs not be detailed, continuous, and differen-
tiable [16]. On the other hand, artificial evolution can be a very slow process that
requires testing of several individuals on the same robot for several generations
[29]. In the last few years, some researchers, including ourselves, have attempted
to combine local learning methods with artificial evolution in order to achieve
faster and more efficient adaptation. In the remainder of this chapter, we shall
describe some initial explorations on evolution and learning in simulated and real
mobile robots.

1.1.1 Interactions between learning and evolution

Although evolution and learning seem to be complementary and independent
mechanisms, it is not yet clear whether these two processes work toward the
same goal, whether learning represents an advantage for an evolving system,
and how exactly evolution and learning interact. These issues, which have been
recently re-examined within a computational framework [5, 48], are relevant for
both biologists and engineers.

In the effort to explain evolutionary gaps in the fossil records, more than a
century ago James Mark Baldwin [2] advanced the idea that evolution could be
influenced by learning during life without assuming that learned features could
directly modify the genotype (as hypothesized by Lamarck [11]).? Baldwin’s ar-
gument was that learning accelerates evolution because sub-optimal individuals
can reproduce by acquiring during life necessary features for survival. However,
since learning requires time (and might thus be a disadvantage), Baldwin sug-
gested that evolution tends to select individuals who have already at birth those
useful features which would otherwise be learned. This latter aspect of Baldwin’s
effect , namely indirect genetic assimilation of learned traits, has been later sup-
ported by scientific evidence and defined by Waddington [49] as a canalization
effect .

The computational advantages of learning in artificial evolution have been
made clear only a few years ago by Hinton and Nowlan with a simple model [23].
Imagine a population of chromosomes, each encoding the connection values of a
neural network, and a fitness function that is 1 at each life instant only for a few
combination of connection values and 0 for all the other combinations. Each gene
can have three allelic values: 0 means that the connection is closed, 1 means that
the connection is open, and ? means that the connection can change its value
according to a learning mechanism. The learning mechanism employed by Hinton
and Nowlan is a simple random process that keeps changing connection weights
until —and if— a good combination is found during the limited life time of the in-

*Similar views were expressed in the same period by Morgan [34] and Osborn [39].

1.2 Learning and Evolution in Sensorimotor Agents 3

1.0 |[Fitness

T
L
U I
0.75 ! \
4 4
J ,
g !
0.5 . §
g 4
/
025 ' "
£ 4
.-'Jr \"x
-k -4 -2 0 2 [[3
Parameter space

Figure 1.1: Modification of the fitness surface in the Baldwin effect, as suggested
by Hinton and Nowlan [23]. In absence of learning, the fitness surface is always
zero, except for a few combinations of parameters (thin line in the center). When
learning is enabled, there might be several individuals who can reach at some
point the combinations that provide fitness points during life, thus enlarging and
smoothing out the fitness surface (dotted curve).

dividual. In absence of learning, the probability of finding a good combination of
weights would be very small and the fitness surface would look like a flat area with
a thin spike in correspondence of the good combinations (figure 1.1). On such
a surface a genetic algorithm does not perform better than any random search
algorithm. However, if learning is enabled, there are individuals who will even-
tually achieve one of the good combinations of connection values at some point
during life and will thus start accumulating fitness points. This corresponds to
an enlargement and smoothing of the fitness area around the good combinations
which can be discovered and easily climbed by the genetic algorithm. Individuals
with a set of values closer to the good combinations will have higher reproduction
probability (because learning reaches faster the condition when it starts accumu-
lating fitness points): the result is that what is initially learned tends to be
already present in the genes of the evolved individuals. Despite the ingenuity of
the learning mechanism employed, this simple experiment effectively shows how
the Baldwin effect might work and its computational advantages.

1.2 Learning and Evolution in Sensorimotor Agents

For the purpose of applying learning mechanisms to an evolving autonomous
robot , the experiment performed by Hinton and Nowlan has two major limita-
tions: there is no distinction between the evolutionary and the learning task and
the learning mechanism is equated to a random process. In the following two
subsections, we shall look at these issues with two experiments on evolutionary
artificial organisms equipped with learning abilities. Although both experiments

Evolution and Learning in Autonomous Robotic Agents
4 Dario Floreano and Joseba Urzelai

were run in simple grid-world simulations, it was the first time when evolution
and learning were considered in the context of artificial organisms equipped with
a sensorimotor system.

1.2.1 Learning to predict

If evolutionary and learning goals are the same, one cannot legitimately infer
that whatever is learned by an individual during life automatically increases the
probability of the individual to reproduce. Before jumping to these conclusions,
we need more evidence from experiments where evolutionary and learning goals
are different.

future future sensory
planned planned prediction
i action a d
5 A
o frpntal

d difrection

< 5‘ AT 2% b '_ ,,.-
ﬁi current o d curent o d

planned sensory planned sensory
action input action input

Figure 1.2: Left: A portion of the environment with an artificial organism and
a food token. The organism perceives the distance and angle of the food with
respect to its own frontal direction. Center: Neural network architecture evolved
without learning. Right: Neural network architecture evolved in simulations
with learning. Shaded connections are modified by prediction learning during
the life of the individual (see text).

Nolfi, Parisi, and Elman [36] have addressed this issue studying populations of
simulated organisms interacting with simple environments. Each organism lives
in a two-dimensional grid world where a number of food tokens are randomly
distributed (figure 1.2). Each food token occupies one cell; if the organism hap-
pens to pass on one of these cells, the food token is automatically “eaten” and
the organism’s fitness is increased. Each individual is equipped with a neural
network interfaced to a sensorimotor system that provides input information on
the distance and angle (with respect to the facing direction) of the nearest food
token and on the planned motor action; the motor system includes four possible
actions, coded on two motor units: turn 90° right, turn 90° left, move one cell
forward, and stay. At each time step, the neural network receives as input the
current sensory information on the nearest food token and the current planned

1.2 Learning and Evolution in Sensorimotor Agents)

motor action (a’); the output units produce the next planned action (a'*!). At
this point, the planned action that was used as input is executed and the next
planned action is passed as new input together with the newly computed sensory
information. This sensorimotor cycle is repeated for a number of times (life span)
during which the organism is allowed to visit a number of new environments with
different food distributions.

The authors have compared two evolutionary conditions, one where the neural
network parameters (connection states) are genetically determined and another
where each network can also learn during the entire life span of the organism
(but without transmitting changes due to learning back into the genotype). In
both conditions the evolutionary goal (fitness function) was that of developing
organisms capable of eating the highest number of food tokens. The additional
learning mechanism employed in the second condition was a gradient descent
method (implemented as a back-propagation algorithm [44] of the error between
correct responses and neural network outputs), a more efficient solution than ran-
dom switching of connections used by Hinton and Nowlan. However, the choice
of an error correcting mechanism raises the problem of where the correct network
output (sometimes called “teaching input”) comes from at each time step. It
would be technically unfeasible (for a robot) and biologically implausible (for an
organism) to assume the presence of an external teacher telling the individual
what to do at each time step. A more plausible scenario is learning to predict
the sensory consequences of one’s own motor actions. Biological and artificial
organisms can both decide what actions to take and predict what will their con-
sequences be. An important difference between neural networks applied to a data
base (which is by far the most common way of using artificial neural networks
in the science and industry) and neural networks of living organisms and au-
tonomous robots is that, in the latter case, the output of the network can affect
its own next input [40]. In sensory prediction learning , the teaching signals are
readily available from the environment, once the organism has accomplished the
action.?

In order to incorporate prediction learning in the second condition, Nolfi et
al. have added to the network two output units (figure 1.2, right side) coding for
a prediction of the sensory information after the execution of the current planned
action (a'), and used the freshly-gathered sensory information to update at each
time step synaptic weights with the back-propagation algorithm. It should be
noticed that although motor actions and sensory predictions are produced by
different output units, both systems share the same synaptic weights from the
input units to the hidden units.

Three main results were obtained by comparing the conditions with and with-
out learning;:

3Learning to predict sensory consequences of motor actions has also been recently exploited
for autonomous induction of internal models of the interactions between robot and environment
(26, 28, 47].

Evolution and Learning in Autonomous Robotic Agents
6 Dario Floreano and Joseba Urzelai

e Learning populations systematically and significantly displayed faster and
higher fitness values across generations than populations without learning.

e After a number of generations, individuals learning to predict also increased
the ability to find food during life.

e Individuals of the last generation evolved in the condition without learning,
when provided with additional output units, could learn to predict better
than random individuals (that is, those of the initial generation), indicat-
ing that food finding strategies facilitated prediction learning. Furthermore,
individuals of the last generations which had evolved in the learning condi-
tion, learned to predict even better than those of the no-learning condition,
but their prediction performance at birth was identical to random individ-
uals. Therefore, evolution did not select individuals with good prediction
abilities, but individuals with a predisposition to learn.

Evolution
surface

Learning
surface

————— =

Figure 1.3: Search surfaces when evolution and learning have different goals [36].
y-axes represent evolutionary and learning performances, z-axes represent param-
eter combinations. Black disks correspond to the initial positions of two different
individuals (A and B) on the evolutionary and learning landscapes. Without
learning, individual A would have higher reproduction probability. With learn-
ing, both individuals tend to move toward higher zones on the learning landscape.
The evolutionary fitness of each individual is the integral of the evolutionary area
(shaded regions) corresponding to the trajectory in the parameter space caused
by learning. These two surfaces are dynamically correlated (see text).

Since here the learning criterion is different from the evolutionary goal, the
explanation by Hinton and Nowlan depicted in figure 1.1 could not fully explain
these results. Nolfi et al. have proposed a new explanation. Imagine two different
search surfaces , an evolutionary surface and a learning surface (figure 1.3). In
the condition where organisms can learn during life, weight change produces a
trajectory on the learning surface which corresponds to a displacement on the

1.2 Learning and Evolution in Sensorimotor Agents 7

evolutionary surface. Learning affects evolution in the selection process because
the final fitness of the individual will be the sum of the fitness values received
during such displacements on the weight space. The correlation between these two
search surfaces plays an important role. The authors distinguish between a static
correlation and a dynamic correlation. Static correlation means that maxima
and minima occupy the same position in the two surfaces (although they do not
necessarily have the same values). Instead, dynamic correlation means that the
change in performance (increment or decrement) caused by a certain trajectory
is similar in both surfaces (although change rates are not necessarily the same).

From the experimental results summarized above, one can deduce that there
is no static correlation between food-gathering and sensory prediction because
individuals of the last generations do not have better prediction abilities at birth;
however, there is a partial dynamic correlation because after some generations an
increment in prediction abilities corresponds to an increment in food-gathering
abilities. The authors argue that in populations that both evolve and learn, evo-
lution progressively selects for individuals that are located in regions of dynamic
correlation. In other words, evolution selects individuals capable of learning in
such a way that they can also have higher reproductive chances.

1.2.2 Evolving how to learn

Another limitation of the experiment by Hinton and Nowlan was the learning
mechanism employed. Even assuming that evolution and learning are working
toward the same goal (for example, the development of suitable food gather-
ing strategies), biological learning seems to be more directional than random
switching of synapses. The experiments conducted by Ackley and Littman [1]
in simulated environments not only represent a step forward with respect to this
issue, but also introduce a novel self-teaching architecture that could be used
right away on real autonomous robots.

A variable-size population of artificial organisms lives in a simulated environ-
ment containing predators, different types of food tokens, and other objects. Each
organism is controlled by a neural network composed of two modules: an action
module and an evaluation module (figure 1.4), as in classic reinforcement learning
architectures [3, 4]. The action module is a feedforward network mapping sensory
information into probabilities of executing a certain action; the evaluation module
provides an evaluation of the sensory information which is used as a reinforce-
ment signal for the action module. The value of the reinforcement signal depends
on the variation of the output of the evaluation module over time. A genetic al-
gorithm evolves the synaptic weight values of both the action and the evaluation
modules, but during the life of the individual the action module also modifies
the genetically inherited weights using the reinforcement signal provided by the
evaluation module. The basic principle behind the weight change rule is that
positive reinforcements cause strengthening of active synapses, whereas negative

Evolution and Learning in Autonomous Robotic Agents
8 Dario Floreano and Joseba Urzelai

reinforcements cause weakening of active synapses. As in Darwinian evolution ,
final synaptic weight values are not copied back into the genotype.

action module

I evaluation
actions |:| |:| module
1 1
! ! rei anrcement
probabiliti signal

Figure 1.4: Evolutionary Reinforcement Learning [1]. The genetic string of an
individual encodes the connection strengths of the two modules composing the
control system. The action module also modifies its own connection strengths
during life, but such changes are not written back into the genetic code.

Each organism can reproduce when it has accumulated enough energy (eat-
ing food while escaping predators) and has found another organism ready for
reproduction ; offspring are formed by crossing over and randomly mutating the
chromosomes of the parents. Organisms die if they cannot maintain a sufficient
energy level or when they become too old. As compared to traditional genetic al-
gorithms [24], here the energy level plays the role of an intrinsic fitness function.*
One way of comparing the effect of different manipulations of the parameters of
these artificial world consists in observing how long a population survives. The
authors have compared three different situations: evolution without learning ,
learning without evolution , and the combination of both. The latter condition,
also named “Evolutionary Reinforcement Learning” , outperformed both other
conditions managing to keep the population alive for over three thousand gen-
erations. A longitudinal study of the behavioral characteristics of the artificial
organisms showed that during the first 600 generations the action modules were

“These types of environments, which are more biologically plausible, are also known as Latent
Energy Environments [31].

1.3 Evolution of Learning for Autonomous Robots 9

not capable of reaching food at birth, but had to learn it during life. In later
generations however, food gathering strategies were already present at birth.

These experiments are similar to the situation described by Hinton and Nowlan
because learning and evolution are synergetic mechanisms working toward the
same goal. Consequently, here the Baldwin effect manifests itself in its most in-
tuitive aspects: an evolutionary advantage of learning individuals and a gradual
genetic assimilation of the features learned during life. The distinctive aspect
of the approach employed by Ackley and Littman is that evolution effectively
decides how to shape learning, that is when and how to provide positive and
negative reinforcements to the action module. In the reinforcement learning lit-
erature, the decision of when and how a reinforcement signal of a certain type is
provided to the learning system (by the environment) is called a Reinforcement
Program (RP). In practice, choosing an appropriate RP makes the difference
between a successful learning session and a serious failure. By letting evolution
decide under what conditions different reinforcement signals are received by the
action module, Ackley and Littman have created an autonomous self-learning
system that decides when and what should be learned. A similar approach has
been taken more recently by Nolfi et al. [37] in experiments resorting to more re-
alistic simulations of a mobile robot (which will be described below), and showed
to be a very effective procedure in dynamic environments that are unpredictable
on the evolutionary time scale.

1.3 Evolution of Learning for Autonomous Robots

In the experiments described above, evolution was combined with supervised
learning algorithms and all studies were carried out in grid-world simulations.
In this section we shall describe a different approach based on the assumption
that the neural mechanisms underlying life learning are themselves developed
and shaped by the evolutionary process (see section 1.3.1 for biological consid-
erations). A genetic algorithm is used to evolve neural structures that can be
continuously modified during life according to the mechanisms specified in the
genotype. Each decoded neural network is downloaded into a real mobile robot
which is free to interact with the environment while its fitness is automatically
computed and stored away for selective reproduction.

We used the miniature mobile robot Khepera which has a circular shape with a
diameter of 55 mm, a height of 30 mm, and a weight of 70 g (figure 1.5). Khepera,
which has been originally developed at our laboratory [33], is supported by two
wheels and two small Teflon balls. Each of two motor controllers sets the speed of
its own wheel according to a continuous value between -0.5 and +0.5, where 0.0
means no rotation, -0.5 means maximum rotation speed in one direction (set to 80
mm/s) and 0.5 means maximum rotation speed in the opposite direction. Each
of the eight infrared proximity sensors, six positioned on one side and two on the
opposite side, returns a continuous value between 0 and 1 that signals the distance

Evolution and Learning in Autonomous Robotic Agents
10 Dario Floreano and Joseba Urzelai

Figure 1.5: The miniature mobile robot Khepera with a ruler. Small black parts
around the body are active infrared sensors.

of an object from that sensor (the closer the object, the higher the value returned).
In our environment the maximum detection range was approximately 4 cm. The
robot was provided with a small positioning device which detected light beams
emitted by a laser device placed on the top of the environment and computed the
robot absolute position (see [18] for further details). This information was used
only for behavior analysis and was not passed to the neural controller. Khepera
was attached via a serial port to a Sun SparcStation by means of a lightweight
aerial cable and specially-designed rotating contacts.

Figure 1.6: Bird-view of the evolutionary environment and the Khepera robot
within.

The robot was put in an environment consisting of a circular corridor whose
external size was approximately 60x50 cm large (figure 1.6). The genetic op-
erators, the decoding routines from genotypes to phenotypes, and the neural

1.3 Evolution of Learning for Autonomous Robots 11

network dynamics were managed by the workstation CPU. Each individual of a
population was in turn decoded into a corresponding neural network, the input
nodes connected to the robot sensors, the output nodes to the motors (output
unit activation was transformed in the range 4+0.5 before passing it to the mo-
tor), and the robot was let free to move for 24 s (80 motor actions) while its
fitness ® was automatically recorded at each time step and accumulated. Each
sensorimotor loop lasted 300 ms (to/from communications between the robot and
the workstation lasted approximately 60 ms) during which the wheel speed was
kept constant. Between one individual and the next, a pair of random velocities
was applied to the wheels for 5 seconds: this procedure was aimed at limiting
the artifactual inheritance of bad locations between adjacent individuals in the
population.

The fitness function ® designed for evolving an obstacle-avoidance and straight
navigation behavior

o=V (1-VAv) (1-1) (1.1)

where 0 < V < 1 is a measure of the average rotation speed in absolute value of
the two wheels, Av = (vjess + 0.5) — (vpighe + 0.5),0 < Av < 1 is the absolute
value of the difference between the speeds of the wheels transformed into positive
values, and 0 < ¢ < 1 is the activation value of the proximity sensor with the
highest activity. ® was newly computed every 300 ms, accumulated during the
life of the individual, and finally normalized by the number of actions.

A simple genetic algorithm (as described in [20]) was employed to evolve bi-
nary chromosomes which encoded a set of parameters describing synaptic prop-
erties and learning rules. Every time a new phenotype was created, its synapses
were initialized to small random values which could change their strengths, but
final strengths were not coded back into the chromosome. Thus, each decoded
neural network changed its own synaptic strength configuration according to the
genetic instructions while the robot interacted with its own environment.

Each neural network had only three neurons, one hidden neuron and two mo-
tor neurons, each receiving synaptic connections from all eight infrared sensors
and from the hidden neuron (Figure 1.7). Synaptic connections could have a
driving or a modulatory effect on the postsynaptic neuron; afferent signals were
combined in a two-component activation function [41] providing an output be-
tween 0 and 1. Driving signals determined the direction of rotation of the wheel,
whereas modulatory signals could enhance or reduce speed, but could not change
the direction of rotation. Each synapse was individually coded on the chromo-
some by four properties: driving or modulatory (1 bit), excitatory or inhibitory
(1 bit), its learning rule (2 bits), and its learning rate (2 bits). Each individual
synapse could change its strength according to one of four basic Hebbian learning
rules [50]: pure Hebbian, postsynaptic, presynaptic, and covariance (more details
are given in [19]).

As soon as the network was decoded and attached to the sensors and motors
of the robot, synaptic weight values were initialized to small random values in the

Evolution and Learning in Autonomous Robotic Agents
12 Dario Floreano and Joseba Urzelai

From

To

Hidden Motors
unit

Figure 1.7: The architecture of the neural network employed. Black disks are
synapses; the circle in the middle of the robot body represents the hidden neuron.

range [0.0,0.1] and updated every 300 ms according to the following discrete-time
equation
w' = w1t + nAw' (1.2)

where 1 was the genetically-encoded learning rate, which could assume one of
four values {0.0,0.3,0.7,1.0}.5

Three evolutionary runs were made. In all runs the best individual fitness
reached a maximum value around the 50th generation (® = 0.23,+0.09). All
the best individuals of the last generation managed to keep a straight trajectory
while avoiding obstacles. The evolved behaviors resulted in smooth paths around
the arena (Figure 1.8). This ability was developed by each individual neuro-
controller during the first few sensorimotor loops, whatever the initial random
values assigned to the synapses. In all the three runs the best individuals of the
last generation displayed an emergent frontal direction corresponding to the side
where more infrared sensors were placed, which provided a better sampling of
the obstacles facing the robot.

Here we provide the analysis of one of the best individuals of the last genera-
tion (other individuals had very similar characteristics). Once the neural network
had been decoded, connected to the robot sensors and motors, synaptic strengths
were initialized to random values in the range [0.0,0.1], the robot was positioned

SIf the learning rate is 0.0, the corresponding synapse does not change its strength during
the life of the individual.

1.3 Evolution of Learning for Autonomous Robots 13

Figure 1.8: Trajectory of an evolved robot learning to navigate during life. Po-
sition data, visualized as bars representing the axis connecting the two wheels,
were acquired with a laser positioning device every 100 ms. Left: trajectory
during the first lap (the robot starts in the lower portion of the environment and
turns anti-clockwise). Right: trajectory at the second lap.

facing a corner of the inner wall (figure 1.8, left; initial position corresponds to
the set of superimposed bars in the lower portion of the environment) and let free
to move. During the first 2 s (6-7 synaptic updates), the robot adjusted its posi-
tion alternating back-and-forth movements until it found a wall on its right side.
This initial behavior was quite stereotypical: it was displayed for any starting
position. Once the wall had been found, the robot moved forward keeping it at a
distance of 2 cm from its own right side; every second or third action, it slightly
turned toward the wall and then continued forward. This sort of jerky behavior
was gradually reduced when coasting a straight long wall (e.g., the north and east
walls). If the wall was slightly bent, the robot could still follow it without reduc-
ing speed, but when it encountered a convex angle smaller than 90° (which means
that most of the front infrared sensors are active) the robot stopped, backed ro-
tating to the right, and then moved forward in the new direction. After one lap
around the maze, the path became smoother with less trajectory adjustments
and more tuned to the geometric outline of the environment (figure 1.8, right).

1.3.1 Fast changing synapses

The development of such behavior can be understood by studying the internal
dynamics of the evolved network. Figure 1.9 plots the strengths of all synapses
in the network during the first 100 actions (sensory-motor loops) visualized in
Figure 1.8 using the same format of Figure 1.7. Without going into much de-
tail (which can be found in [19]), one of the most remarkable results is that
synapses continuously change while the behavior is quite stable. In the con-
ventional view, synapses are relatively slow-changing and stable components of

Evolution and Learning in Autonomous Robotic Agents

14 Dario Floreano and Joseba Urzelai
| s - o arm0sme
f\
1 s -2
| m/n=03/post ws{ d/n=00/hebb sl m/n=00/pre
e
J dzn=00/pre sas| d/n=00/hebb s d/n=00/syn
: .
A
iR o
d/n=10/ post M \ \/\)\A\ Iy /\\
. B | JA
d/n=03/post , / | m/n=07/post
‘ i A YA
5| m/n=00/pre e nhy ol AT U
\Mf\\ { \f \Mf \f
= !
: -
AT
| a/no0ren ”L/ a7n=10/hasp ns//’q’w e
‘ 4 e
\ M L o
[\:‘f"\ ”\j S m/ne10/pos \ \ \;k
| /=077 \ __\ ﬂ’
0t o I
B f;u o /0037 post *l d/n=037/syn
|
)) ’Wﬁwﬁflﬁﬁ : Ve
-)
ool o 4/0=07/5yn o / /=037 hebb
,

Figure 1.9: Synaptic strength recorded every 300 ms during the first 100 actions
of the robot. y-axis position indicate excitatory (pointing upwards) or inhibitory
synapses (pointing downwards).

the nervous system. Synaptic change is identified with learning of new skills or
acquisition of new knowledge, while neuron activation is identified with behav-
ior expression. Typically, acquisition of a stable behavior in a static environment
corresponds to stability (no further change) of individual synapses (e.g., see [22]).
Such requirement is explicitly included into the objectives (least-mean-square er-
ror minimization, energy reduction, maximization of node mutual information,
etc.) from which —both supervised and unsupervised— conventional learning
algorithms are derived, but it is not included into the fitness function employed
in this experiment, which is defined only in behavioral terms.

The functioning of our system offers a complementary —but not necessarily
alternative— explanation. Synapses are responsible for both learning and be-
havior regulation. Knowledge in the network is not expressed by a final stable
state of the synaptic configuration, but rather by a dynamic equilibrium point in

1.3 Evolution of Learning for Autonomous Robots 15

initial position

Figure 1.10: State-space representation of synaptic dynamics during the first 100
actions plotted as trajectory within the space of the first three principal compo-
nents. Arrows indicate starting position and range of oscillation between action
sequences 20-80 and 80-100. Oscillations within the subspace of the third (small-
est) component correspond to fine trajectory adjustments. Method: Sanger’s
network [45] for extracting the first three principal components of the input corre-
lation matrix was trained to stability on the 27-component vectors corresponding
to the synaptic activity recorded during the first 100 actions of the robot (visu-
alized in Figure 1.9); after training, input vectors were presented again to the
network and output unit activations were plotted in the resulting 3-dimensional
space.

an n-dimensional state-space (where n is the number of synapses). Figure 1.10
plots the trajectory of synaptic change in the reduced state-space of the first three
principal components of the recorded synaptic vectors during the first 100 actions
of the individual displayed in figure 1.8. During the first six actions the systems
moves toward a subregion of the space for which there is no change in the first two
principal components; residual variation along the slice of space corresponding
to the third principal component corresponds to fine trajectory adjustments and
is further reduced as the robot gradually tunes its path to the geometry of the
environment. This means that, after an initial phase of adjustment, the synapses
as a whole change in a systematic and co-ordinated fashion. In other words,
the stable behavior acquired during life is regulated by continuously changing
synapses which are dynamically stable.

From an engineering point of view, evolution of learning abilities , that is of
robots capable of autonomously self-reconfiguring their internal parameters on
the fly depending on external conditions, represents a good trade-off between
the long time required for artificial evolution and the flexibility of the evolved
system. However, one of the limitations of this experiment is that it has been
tested only in a static environment where evolution alone could come up with

Evolution and Learning in Autonomous Robotic Agents
16 Dario Floreano and Joseba Urzelai

similarly efficient solutions [17].

1.4 Adaptive Behavior in Co-evolutionary Competi-
tive Agents

Adaptive behavior during life —as compared to innate and fixed behavior— might
represent an advantage in unpredictable and dynamic environments. In this
respect, co-evolution of competitive species provides an interesting testbed to
study the role of adaptive behavior. In the simplest scenario of two competing
species, such as a predator and a prey, the behavior of each individual is tightly
related to the behavior of the competitor both on the evolutionary and on the
ontogenetic time scale. On the evolutionary time scale, the coupled dynamics of
the system give rise to the “Red Queen effect” whereby the fitness landscape of
each population is continuously modified by the competing population [10].

On the ontogenetic time-scale, it has been argued that pursuit-evasion con-
tests might favour the emergence of “protean behaviors”, that is behaviors which
are adaptively unpredictable [14]. For example, prey could take advantage of un-
predictable escape behaviors based on short sequences of stochastic motor actions.
Similarly, predators could take advantage of enhanced perceptual characteristics
and/or adaptive sensory-motor intelligence which could enable predictive tracking
strategies (for a good introduction, see [32]). However, none of these experimen-
tal studies systematically explored the role of ontogenetic adaptive behavior in
co-evolution of competing species. Although most of the evolved systems include
some form of noise, it is difficult to say whether this plays an important role on
the specific dynamics of co-evolving species or it is simply exploited for smooth-
ing the fitness landscape. All the results presented so far in the literature are
based on single-run studies and do not include comparisons between different
adaptation techniques.

We decided to look at life learning in co-evolutionary systems using an ap-
proach similar to that described in the previous section. In particular, we were
interested in understanding whether life-learning might change co-evolutionary
dynamics and what type of adaptive behavior each species (predator and prey)
would exploit. We employed two Khepera robots, one of which (the Predator)
was equipped with a vision module while the other (the Prey) had a maximum
available speed set to twice that of the predator (figure 1.11). The two species
evolved in a square arena of size 47 x 47 cm with high white walls so that the
predator could always see the prey (if within the visual angle) as a black spot on
a white background.

Since evolutionary experiments take a long time on real robots, before imple-
menting our system on the Khepera robots, we decided to systematically study
the dynamics in realistic simulations (figure 1.12). The controllers of the two

5The evolved controllers were then downloaded on the physical robots. Furthermore, the

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 17

Figure 1.11: Right: The Predator is equipped with the vision module (1D-array
of photo-receptors, visual angle of 36°). Left: The Prey has a black protuberance
which can be detected by the predator everywhere in the environment, but its
maximum speed is twice that of the predator. Both Predator and Prey are
equipped with 8 infrared proximity sensors (max detection range was 3 cm in our
environment).

robots were simple perceptrons with two sigmoid units and recurrent connections
at the output layer. The activation of each output unit was used to update the
speed value of the corresponding wheel every 100ms. In the case of the predator,
each output unit received connections from five visual units, each corresponding
to the activity of 7 physical photoreceptors, and from eight infrared proximity
sensors; in the case of the prey, each output unit received input only from 8
infrared proximity sensors, but its activation value was multiplied by 2 before
setting the wheel speed.

Two populations of 100 individuals each were co-evolved for 100 generations.
Each individual was tested against the best competitors of the ten previous gen-
erations (a similar procedure was used in [46, 43, 9]) in order to improve co-
evolutionary stability. A tournament ended either when the predator touched
the prey or after 500 motor updates (corresponding to 50 seconds on the real
robots). The fitness function @, for each tournament ¢ was simply TimetoCon-
tact normalized by the maximum number of motor updates (500) T'tC for the
predator pr, and 1 — TtC for the prey py, further averaged over the number of
tournaments (10). Therefore the fitness values were always between 0 and 1,
where 0 is worst.

Three different co-evolutionary conditions have been studied, each one corre-
sponding to a different controller type (Table 1.1), but all using the same architec-
ture and chromosome length. In all conditions, the first bit of each synapse coded
its sign (whether excitatory or inhibitory). In the first condition, the remaining
four bits coded the synaptic strength as a value in the range [0,1]: since no

most interesting evolutionary runs were replicated directly on the physical robots.

Evolution and Learning in Autonomous Robotic Agents
18 Dario Floreano and Joseba Urzelai

47 cm

1 SYNAPSE

L

47 cm

00000 O0OOOO0O0OO

Figure 1.12: Left and center: Details of simulation of vision, of neural network
architecture, and of genetic encoding. The Prey differs from the Predator in that
it does not have 5 input units for vision. Each synapse in the network is coded by
five bits, the first bit determining the sign of the synapse and the remaining four
the other synaptic parameters. Right: Initial starting position for Prey (left,
empty disk with small opening corresponding to frontal direction) and Predator
(right, black disk with line corresponding to frontal direction) in the arena. For
each competition, the initial orientation is random.

changes take place during the life of the individuals, let us call them genetically-
determined controllers . In the second condition, only two bits coded the synaptic
strength (again, in the range [0,1]), and the remaining two bits coded the level
of random noise applied to the synaptic value. Each level corresponded to the
lower and upper bounds of a uniform noise distribution: 0.0 (no noise), +0.337,
+0.667, and +1.0. At every network activation, each synapse had its own newly-
computed noise value added to its strength (with a final check to level out sums
below 0.0 or above 1.0). We shall call this condition adaptive-noise controllers
because each species can evolve the most appropriate noise level for each synapse.
In the third condition, two bits coded four Hebbian rules and the remaining two
bits the learning rate (0.0, 0.337, 0.667, and 1.0), exactly as described above

Bits for one synapse

Condition 1 |2 ‘ 3 ‘ 4 ‘ 5
1 sign strength
2 sign | strength | noise
3 sign | Hebb rule | rate

Table 1.1: Genetic encoding of synaptic parameters for each co-evolutionary con-
dition. 1: Genetically-determined controllers; 2: Adaptive-noise controllers; 3:
Directional-change controllers.

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 19

in section 1.3. Let us call this condition directional-change controllers , simply
indicating that synaptic changes depend on sensory activation and motor actions.
For each condition, 6 different evolutionary runs were performed, each starting

with a different seed for initializing the computer random functions.”

Protean behaviors

As for biological competitive systems [42], population performances display os-
cillatory behaviors in all three conditions (figure 1.13). However, here nominal
fitness is not an indicator of fitness progress. For example, a reduced fitness of
the predators does not necessarily mean that their behaviors have deteriorated;
in fact, it might be explained by behavioral progress achieved by the prey. A

0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4

0.2 0.2 0.2

1) 2) 3)

Figure 1.13: Average population fitness across generations for the three different
conditions. Thick line is predator, thin line is prey. 1) Genetically determined;
2) adaptive noise; 3) directional change.

relational measure of performance gives us additional information on the coupled
dynamics of such a co-evolved system: for example, one can derive an index of
relative performance r{ by counting how often one species reports higher fitness
than the competing species at each generation for each separate run ¢ in a specific
condition c. In our co-evolutionary runs which lasted 100 generations, such index
will be in the range [—100,100], where —100 means that the prey always out-
performed the predators, 0 means that both species were equally better or worse
than the competitors, and 100 means that the predators always outperformed
the prey.

For the genetically-determined condition (¢ = 1), the average value over dif-
ferent runs was R! = 16.67, with standard deviation of the sample mean o = 38,
indicating that both species reported similar performances. Similar results were
measured in the condition with evolutionary adaptive noise (¢ = 2) which dis-
played an average relative performance R? = 11.66, with standard deviation of

TA set of pairwise two-tail ¢-tests of the average fitness and best fitness along generations
among all the six runs, performed to check whether different seeds significantly affected the
experimental outcomes, gave negative results at significance level 0.05. Therefore, for each
condition below, we shall plot only data referring to seed 1 (arbitrarily chosen), but the statistical
tests reported will be based on all runs.

Evolution and Learning in Autonomous Robotic Agents
20 Dario Floreano and Joseba Urzelai

the sample mean o = 32.5 (probability value was 0.83 for ¢-test of the differ-
ence of the means between the two conditions). However, relative performance
of the two species in the directional-change condition significantly differed from
both other conditions, R3 = 72 with standard deviation of the sample mean
o =15.39, p < 0.01 for a two-tailed ¢-test of the difference of the means. In this
last condition, the predators profited of the learning ability and reported almost
always better performance than the prey. Furthermore, in all runs, the average
fitness of the predator population was more stable than that of the prey.

4
o
1

1) 2) 3)

Figure 1.14: Interesting behaviors recorded at different points in evolutionary
history (from top to bottom) for each condition. Black disk is predator, white
is prey. 1) genetically determined (generations 20, 70 , 90); 2) adaptive noise
(generations 20, 50 , 80); 3) directional change (generations 20, 70 , 95).

A more intuitive understanding of the results can be gained by looking at
typical behaviors of the two species recorded at interesting points of co-evolution
(figure 1.14). When the individuals cannot modify synaptic weights during life,
several different behavioral strategies rapidly evolve and alternate over genera-

1.4 Adaptive Behavior in Co-evolutionary Competitive Agents 21

tions for both individuals, but none of these strategies can always win over those
developed by the competitor. For example, in the first row of figure 1.14.1, we
have a prey that follow walls and a predator that has developed good visual
tracking abilities. Later on, as shown in the second row, the prey waits for the
predator and rapidly avoids it when it gets too close. After a few more generations
the prey resumes a sort of wall-following behavior, but the predator develops a
“spider strategy”: it slowly backs against a wall and there it waits for the fast
approaching prey which detects its enemy too late to avoid it.

The introduction of modifiable controllers in co-evolutionary competition sig-
nificantly affected various aspects of the system dynamics, both on the evolu-
tionary and on the ontogenetic time-scale. On the evolutionary time-scale, noisy
controllers (¢ = 2) caused a relaxation of the tightly coupled dynamics observed
in the benchmark condition (¢ = 1). High behavioral variation during life of
the competitors, especially in the case of prey, was such that only a sufficiently
general behavioral strategy could pay off, both for the predator and for the prey.
Co-evolutionary search here had higher probability of selecting individuals lo-
cated in better zones of the fitness landscape, a mechanism very similar to that
explained by Hinton and Nowlan. Instantaneous fitness values reflected more
closely behavioral progress, as in traditional single-agent static environments.
On the other hand, directional-change controllers (¢ = 3) clearly favored domi-
nance of one species —the predator— whose sensorimotor system profited most
of non-random changes of synaptic values.

On the ontogenetic time scale, that is at the level of individual tournaments,
the two species differentially exploited the two types of modifiable controllers.
In condition 2, both species reported similar performances, but they differently
exploited adaptive noise: prey employed higher noise levels to generate unpre-
dictable and hard-to-track trajectories, whereas predators reduced noise level to
maintain sufficient pursuit strategies (figure 1.14.2). In condition 3, predators
benefited from directional synaptic change to improve their pursuit abilities with
respect to condition 1. As one can see in figure 1.14.3, there is not much vari-
ation in the behavior of the predator. It always displays a very good tracking
ability across generations: once the prey has been locked in its visual field, it
quickly accelerates to maximum speed until contact. In this condition, for the
predator it is sufficient to get the sign of the synapses right. Then, independently
of their initial random values, the synapses from active sensors will be increased
causing an acceleration in the right direction. As compared to condition 1, where
the predator tended to efficiently track in only one direction, here it can turn in
both directions at equal speed. In condition 1 proper tracking in both directions
would have required accurate settings of all synaptic strengths from visual inputs.
Here instead, since synapses are temporarily increased depending on active units,
adjustments take place when and where required depending on current sensory
input. The trajectory in the second row of figure 1.14.3 displays an example of
synaptic adjustment. While the prey rotates always around the same circle, the

Evolution and Learning in Autonomous Robotic Agents
22 Dario Floreano and Joseba Urzelai

predator performs three turns during which synaptic values from the visual units
are gradually increased; at the fourth turn, the synaptic values will be sufficiently
high to cause a straight pursuit (eventually, the prey will try to avoid the predator
without success).

1.5 Local and Global Adaptive Search in Modular Ar-
chitectures

If from a biological and epistemological point of view it is worthwile exploring
with real robots the implications of our notion of phylogenetic and ontogenetic
adaptation, from an engineering point of view it is necessary to take a set of
short-cuts and devise novel strategies for the specification and development of
adaptive robots that comply with standard engineering methods and practical
constraints.

Modern approaches to behavior engineering of autonomous robots have stressed
the importance of modular and distributed architectures composed of simple and
interconnected elements [6, 12] where each component has full or partial access to
sensory data and can affect the actions taken by the robot. Distributed modular
control has several potential advantages: it is an open system, it is intrinsically
robust to local failures, and it is suitable for gradual “shaping”, i.e. incremental
training of independent behavioral competences [13].

In several practical situations, it is neither necessary nor advisable to train
a control system completely from scratch. On the one hand, learning not only
takes long time, but it also does not guarantee to converge if the parameter
search space is very large. On the other hand, there might be some aspects of
the behavior that could be easily pre-programmed exploiting available knowledge
about the task constraints. A modular architecture can easily accommodate both
adaptive and pre-programmed modules (the latter are sometimes referred to as
“Instincts”).

Adaptation in modular architectures can take place at two different levels:
within each individual module and between modules. The first level is often
concerned with acquisition of a new competence for a partially defined module
and/or with re-adaptation of some of its parameters, such as threshold tuning, to
accommodate minor changes in the environment or robotic platform. This aspect
of adaptation is equivalent to a local search in a restricted parameter search
and is well-suited for learning mechanisms such as —for example— reinforcement
learning. The second level of adaptation is concerned with coordination of all
modules and/or with acquisition and integration of new modules to cope with
major environmental changes and task constraints. This aspect of adaptation is
analogous to a global search over a less granulated space composed by a finite
set of behavioral competences, and seems well-suited for an incremental and
evolutionary approach. A similar proposition has been advanced in [7], where
the possibility of evolving high-level behavior primitives was explored.

1.5 Local and Global Adaptive Search in Modular Architectures 23

We have experimented with an open modular architecture which can be in-
crementally shaped via evolutionary and learning mechanisms while the robot
interacts with its own environment. In doing so, we had three main concerns:

e the architecture must be capable of integrating adaptive modules with pre-
programmed behaviors, but also be able to discard them latter if they be-
come inefficient;

e the system must allow for incremental and autonomous construction of
a suitable architecture, as demanded by the shaping policy or by major
changes in the task constraints;

e individual modules must be capable of quickly re-adapting themselves to
local changes without requiring a full redesign of the whole architecture.

Activation Level Motor Qutput
Inhibition Unit

Inhibitory In
Inhibitory Cut =

| Learning

Algorithm

Performance
indicator

j ‘—Behavior Policy
Activation Sensory Input Behavior

Network Generator

Figure 1.15: Structure of a behavioral module. The behavior generator shown
here is a neural network, but it could be any other structure, such as a pre-
designed and fixed program. The output of the behavior generator can be a motor
command or any other decision. Sensory inputs may include decision signals from
other modules. In the current implementation, links between modules can be only
inhibitory or absent.

Application of artificial evolution requires a proper definition of the elements
on which it operates, in this case individual modules, so that the decoded geno-
type corresponds to a legal and meaningful architecture. Each module (fig-
ure 1.15)of the architecture receives input from the sensors of the robot and from
other modules, and sends output signals to other modules and to the motors of the
robot. The internal structure is based on two components: an activation network
and a behavior generator. The activation network decides on the basis of current
(and/or previous) sensory information whether the module becomes active. The
behavior generator can be a pre-programmed behavior, a neural network (as in

Evolution and Learning in Autonomous Robotic Agents
24 Dario Floreano and Joseba Urzelai

figure 1.15), a classifier system, or any other structure capable of generating mo-
tor commands or other behavioral decisions in response to sensory inputs. If the
behavior generator is capable of adaptation, the module includes a suitable local
learning algorithm and a learning policy. In the experiment described below,
the behavior generator of some modules consisted in a neural network adapting
through a self-supervised reinforcement learning algorithm.

A module can send and receive signals from other modules in two ways: a
signal can be a piece of information, such as a decision output or input, or a
link to decide which module(s) should be activated at every time step. The
former type of signal is basically exchanged between the behavior generators,
whereas the latter is exchanged between activation networks. In the current
implementation, activation links between modules can be only inhibitory, where
they exist. If a module becomes active, it attempts to inhibit all modules to which
it is connected; similarly, it receives inhibitory signals from other connected active
modules. The module winning this competition will access the motor resources

8 The pattern of connectivity

and control the robot for a certain time slice.
among the modules and their individual activation networks are encoded as a
binary string and evolved by a genetic algorithm.

Evolution is incremental and operates on variable-length genotypes . Initially,
a set of basic modules are defined on the basis of general knowledge about the
task requirements and robot sensors. The activation networks of the modules
and the connectivity pattern among modules define the genotype length. An
initial population of such controllers is evolved until an individual is generated
that satisfies the task criteria. Individual modules can be individually trained
before evolution and/or during evolution, depending on the task constraints.
If the task constraints change, or if new hardware modules are added to the
robot, it is possible to define new modules and increment the genotype length
by including the new activation networks and all the connectivity to previous
modules. However, old parts of the genotype can be masked so that they cannot
be crossed over or mutated. Incremental evolution is useful not only for changing
environments and for variable robot configurations, but also for progressively
achieving very complex behaviors. It has been shown that by gradually increasing
environment complexity [15] and modifying the fitness function [21], it is possible
to evolve behaviors which otherwise would not be evolvable.

1.5.1 Battery recharge and object collection

The methodology described above was tested for the development of a complex
task in a changing environment. A Khepera robot equipped with an additional
gripper module, was positioned in an environment including several small objects,
a battery charger and a light source positioned above it (figure 1.16). Instead of

81t is easy to extend the current version to the case of excitatory and inhibitory links with
variable strengths, which makes the global architecture similar to a recurrent neural network.

1.5 Local and Global Adaptive Search in Modular Architectures 25

using the real batteries available on the Khepera (which last approximately 30
minutes and require additional 40 minutes to recharge), a virtual battery lasting
between 40 and 60 seconds (depending on motor activity) and a fast virtual
recharger (taking 5 seconds to recharge) were employed during training. This
solution did not change the difficulty and/or realism of the training environment,
but considerably speeded up our measures.

HATFRRY AN

Figure 1.16: The environment used for the object collecting experiment. The
battery charger and the light source are visible on the background.

In order to test several parts of our methodology, we devised two different
tasks to be achieved sequentially and incrementally. As a first goal, we attempted
to evolve a controller capable of moving the robot around the arena without
hitting obstacles and returning to the recharging station before full discharge of
the batteries. At this stage, the gripper module was not yet plugged on the top
of the robot. Four initial modules were defined (see figure 1.15):

Wander Used to move to robot around the environment. The behavior gen-
erator has been implemented both as a pre-designed program and as an
adaptive neural network because different wandering behaviors might be
used depending on the tasks requirements. For our experiment, it turned
out that simple straight motion was learned in few seconds and was per-
fectly adequate for the task. Input: proximity sensors. Output: wheel
commands.

Follow-Light It goes toward the light source moving the robot in the direction
of the population vector resulting from the activity of all ambient light

Evolution and Learning in Autonomous Robotic Agents
26 Dario Floreano and Joseba Urzelai

sensors. No learning mechanism is required here because there is only one
light source and sufficient gradient information in the environment. Input:
ambient-light sensors. Output: wheel commands.

Recharge When active, it freezes every motor activity until the battery charge
indicator is on the full zone. Input: front proximity sensors and battery
charge indicator. Output: all available motors.

Obstacle-Avoidance The behavior generator is an adaptive neural network
mapping sensor activations into one of four possible motor actions (go for-
ward, turn right, turn left, move backward). Input: proximity sensors.
Output: wheel commands.

Reinforcement value
L

L L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550
Actions

Figure 1.17: Performance of the Obstacle-Avoidance behavior generator dur-
ing reinforcement learning before evolution. One action lasts approximately 100
ms. Reinforcement values —1,1 are averaged over a moving window (window
size = 30). Performance below zero means higher percentage of negative rein-
forcements, above zero higher number of positive reinforcements.

Both the Wander and Obstacle-Avoidance modules were separately trained
before evolution, but the learning process could be locally and automatically
resumed at any time during evolution if the performance indicators reached a
critical level (in case that some characteristics of the environment or of the me-
chanical components changed). For each adaptive module, a local reinforcement
learning algorithm [30] attempted to satisfy a simple behavior policy exploiting
only information locally available to the module. For example, for the Obstacle-
Avoidance module, the policy was the minimization of the activation level of
the proximity sensors. Since each module is relatively simple and operates only
on local information, the learning process is very fast, as shown in figure 1.17.

Once existing adaptive modules have been trained, a population of chromo-
somes, each encoding the activation networks and the connectivity pattern be-
tween modules, are randomly initialized and evolved on the Khepera using the

1.5 Local and Global Adaptive Search in Modular Architectures 27

Figure 1.18: Evolutionary training of the controller for exploration and battery
charging task (maximum fitness which can be obtained without recharging is
approximately 0.55). Fitness 1.0 could be theoretically achieved only in an envi-
ronment without objects and walls.

procedure and fitness function already described in section 1.3. Fitness values
are accumulated at each time step; therefore, robots that are capable of peri-
odically recharging will totalize higher fitness scores. A maximum limit of 200
actions, roughly corresponding to twice the battery life span, was allowed for all
individuals. After only 20 generations, there are individuals who are capable of
performing the desired task (figure 1.18).

In a second stage, we plugged the gripper module on the Khepera and we
changed the task definition. Now the desired behavior was that of collecting
the highest number of objects and releasing them outside the arena, recharging
the batteries when necessary. The gripper module has two degrees of freedom
(figure 1.16): it can lift/lower the arm and open/close the gripper. An optical
barrier between the two segments of the gripper provides sensory information on
the presence of an object. Three additional modules were defined as follows:

Object-Identification Used to discriminate between graspable objects and ob-
stacles. The behavior generator is an adaptive network which autonomously
learns by exploring a detected object. Input: proximity sensors, optical bar-
rier. Output: wheel commands, gripper commands, object class.

Object-Grasp If the Object-Identification module recognizes a graspable ob-
ject, and if the optical barrier is off, it moves toward the direction of the
population vector resulting from the activation of the proximity sensors,
it lowers the gripper, it backs until the optical barrier is on (object well-
positioned), closes the gripper, and lifts the object. The module is not
adaptive. Input: optical barrier, Object-Identification output, proximity
sensors. Qutput: wheel commands, gripper commands.

Evolution and Learning in Autonomous Robotic Agents
28 Dario Floreano and Joseba Urzelai

Object-Release If the Object-Identification module recognizes a wall, it moves
toward the population vector resulting from the activation of the proximity
sensors, lowers the gripper, and drops the object. Input: optical barrier,
Object-Identification output, proximity sensors. Output: wheel commands,
gripper commands.

Reinforcement value
L

Figure 1.19: Performance of the Object-Identification module during rein-
forcement learning on small objects (diameter is 10 mm). One action lasts ap-
proximately 3 s. Reinforcement values —1,1 are averaged over a moving win-
dow (window size = 30). Performance below zero means higher percentage of
negative reinforcements, above zero higher number of positive reinforcements.
Performance around zero means random discrimination.

The Object-Identification module learns to discriminate objects by explor-
ing them with the gripper. If some sensors are active, it formulates a hypothesis
on the object type; then, it moves the robot toward the direction of the popu-
lation vector resulting from the sensor activity and it lowers the gripper while
backing a little bit. If the encountered object is graspable, then the light barrier
becomes on. The signal coming from the optical barrier (off or on) is used to
provide the reinforcement value and learn the sensory configuration associated to
the corresponding object. As for other adaptive modules, learning employs only
information locally available to the module, is carried out separately, but it can
be automatically resumed during evolution if the performance indicator reaches a
critical threshold. After approximately 20 minutes of training with small metallic
objects (all having the same diameter of 10 mm) scattered around the arena, the
module is capable of reaching a satisfactory stable performance.

In order to evolve the full architecture, the genotype size is increased by
allocating new bits for all the new activation networks and links among new and
old modules. The old parts of the genotype are masked so that they are not
affected by crossover and mutation. The fitness function is augmented with an
additional component that gives 0.5 points for every grasped object and further

1.6 Conclusion 29

iess of best individual

Fitn

Figure 1.20: Evolutionary training of the controller on the full task, including
object picking and releasing. Fitness values above 1.5 indicate that at least one
object has been picked up and correctly released outside the arena. Given the
limit put on the life duration of each individual, a robot can collect and release
5 objects at best, including a battery recharge, during the life span.

0.5 points if the object is correctly released. After a few generation of incremental
evolution (figure 1.20), the best individuals are capable of executing the complete
final task: collecting objects and recharging when necessary.

As stated above, one of the advantages of a modular architecture is that
individual modules can autonomously and locally re-adapt to small environmen-
tal changes without requiring re-training of the complete architecture. After
evolutionary training, we have substituted all objects with larger ones. The
new objects, which have a diameter (25 mm) almost twice that of the previous
ones, are often recognized as walls (see initial performance drop in figure 1.21 as
compared to final performance reported in figure 1.19). However, the Object-
Identification module automatically and quickly adapts the synaptic weights to
the new object size without external supervision (figure 1.21).

1.6 Conclusion

In this chapter we have examined the relationship between evolution and learn-
ing from the computational perspective of autonomous sensorimotor agents. The
general message emerging from the models and experiments described above is
that the combination of these two adaptive methods is more than a sum. Evolu-
tion and learning interact affecting each other’s search space and search modal-
ity. Learning can ameliorate and accelerate evolution by modifying the selective-
reproduction probability of evolving individuals. Evolution decides what are the
most suitable learning mechanisms and how learning operates. Finally, learning
is used to adapt to local and relatively fast changes in the environment which are

Evolution and Learning in Autonomous Robotic Agents
30 Dario Floreano and Joseba Urzelai

T T T T T T T T T
0.8} 4
06 -
04 -

02

Reinforcement value

-02f

—oal

—o6|

-08f

Figure 1.21: Performance of the Object-Identification module during reinforce-
ment learning when small objects are replaced with new larger objects (diameter
is 25 mm). Initial performance is given by the generalization from the previously
learned synaptic weights. One action lasts approximately 3 s. Reinforcement
values —1,1 are averaged over a moving window (window size = 30). Perfor-
mance below zero means higher percentage of negative reinforcements, above
zero higher number of positive reinforcements. Performance around zero means
random discrimination.

unpredictable on the evolutionary scale.

Computational explorations of interactions between evolution and learning,
conducted in laboratories of artificial life where several variables can be ma-
nipulated as desired and their effects systematically studied, provide important
insights for a better understanding of the principles of biological adaptation. On
the other hand, the combination of evolution and learning can be fruitfully ex-
ploited for engineering robots equipped with improved behavioral autonomy and
self-adaptation mechanisms.

It is difficult to assess to what extent our computational notion of learning and
evolution reflects biological mechanisms. In any case, the biological inspiration
behind the adaptive algorithms employed, such as genetic algorithms and artificial
neural networks, represents a rich source of new ideas that can be rigorously tested
and exploited for the realization of novel and robust machines.

Bibliography

[1]

D. H. Ackley and M. L. Littman. Interactions between learning and evolu-
tion. In C.G. Langton, J.D. Farmer, S. Rasmussen, and C. Taylor, editors,
Artificial Life 1I: Proceedings Volume of Santa Fe Conference, volume XI.
Addison Wesley: series of the Santa Fe Institute Studies in the Sciences of
Complexities, Redwood City, CA, 1992.

J. M. Baldwin. A new factor in evolution. American Naturalist, 30:441-451,
1896.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that
can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, 13(5):835-846, 1983.

A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential
decision making. In M. Gabriel and J. W. Moore, editors, Learning and
Computational Neuroscience, pages 539-602. MIT Press-Bradford Books,
Cambridge, MA, 1990.

R. K Belew and M. Mitchell, editors. Adaptive Individuals in Evolving Popu-
lations: Models and Algorithms. Addison-Wesley, Redwood City, CA, 1996.

R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous Sys-
tems, 6:3—-15, 1990.

R. A. Brooks. Artificial Life and real robots. In F. J. Varela and P. Bourgine,
editors, Toward a practice of autonomous systems: Proceedings of the First
European Conference on Artificial Life. The MIT Press/Bradford Books,
Cambridge, MA, 1992.

D. Cliff, I. Harvey, and P. Husbands. Explorations in evolutionary robotics.
Adaptive Behavior, 2:73-110, 1993.

D. Cliff and G. F. Miller. Tracking the red queen: Measurements of adaptive
progress in co-evolutionary simulations. In F. Mordn, A. Moreno, J. J.
Merelo, and P. Chacén, editors, Advances in Artificial Life: Proceedings of
the Third European Conference on Artificial Life, pages 200-218. Springer
Verlag, Berlin, 1995.

32

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

R. Dawkins. The Blind Watchmaker. Longman, Essex, 1986.

J. B. P. A. de M. de Lamarck. Zoological Philosophy. MacMillan, London,
1914. Relevant excerpt reprinted in [5].

M. Dorigo and M. Colombetti. Robot shaping: Developing autonomous
agents through learning. Artificial Intelligence, 71:321-370, 1994.

M. Dorigo and M. Colombetti. Robot shaping: An experiment in behavior
engineering. MIT Press, Cambridge, MA, 1998.

P. Driver and N. Humphries. Protean behavior: The biology of unpredictabil-
ity. Oxford University Press, Oxford, 1988.

D. Floreano. Emergence of Home-Based Foraging Strategies in Ecosystems
of Neural Networks. In J. Meyer, H. L. Roitblat, and S. W. Wilson, edi-
tors, From Animals to Animats II: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior. MIT Press-Bradford Books,
Cambridge, MA, 1993.

D. Floreano. Reducing human design and increasing adaptivity in evolu-
tionary robotics. In T. Gomi, editor, Evolutionary Robotics, pages 187-220.
A AT Books, Ontario, Canada, 1997.

D. Floreano and F. Mondada. Automatic Creation of an Autonomous Agent:
Genetic Evolution of a Neural-Network Driven Robot. In D. Cliff, P. Hus-
bands, J. Meyer, and S. W. Wilson, editors, From Animals to Animats III:
Proceedings of the Third International Conference on Simulation of Adap-
tive Behavior, pages 402-410. MIT Press-Bradford Books, Cambridge, MA,
1994.

D. Floreano and F. Mondada. Evolution of homing navigation in a real
mobile robot. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26:396-407, 1996.

D. Floreano and F. Mondada. Evolution of plastic neurocontrollers for sit-
uated agents. In P. Maes, M. Matarié, J-A. Meyer, J. Pollack, H. Roitblat,
and S. Wilson, editors, From Animals to Animats IV: Proceedings of the
Fourth International Conference on Simulation of Adaptive Behavior, pages
402-410. MIT Press-Bradford Books, Cambridge, MA, 1996.

D. E. Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, Redwood City, CA, 1989.

I. Harvey, P. Husbands, and D. Cliff. Seeing The Light: Artificial Evolution,
Real Vision. In D. Cliff, P. Husbands, J. Meyer, and S. W. Wilson, edi-
tors, From Animals to Animats III: Proceedings of the Third International

BIBLIOGRAPHY 33

[22]

23]

[24]

Conference on Simulation of Adaptive Behavior. MIT Press-Bradford Books,
Cambridge, MA, 1994.

J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural
computation. Addison-Wesley, Redwood City, CA, 1991.

G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex
Systems, 1:495-502, 1987.

J. H. Holland. Adaptation in natural and artificial systems. The University
of Michigan Press, Ann Arbor, 1975.

K. Immelmann. The evolutionary significance of early experience. In
G. Bearends, C. Beer, and A. Manning, editors, Function and FEvolution
in Behaviour, pages 243-253. Clarendon Press, Oxford, 1976.

M. I. Jordan and D. E. Rumelhart. Forward Models: Supervised Learning
with a Distal Teacher. Cognitive Science, 16:307-354, 1992.

K. Z. Lorenz. The Evolution of Behaviour. Scientific American, 199(6):67—
78, 1955.

M. Marjanovi¢, B. Scassellati, and M. Williamson. Self-taught visually-
guided pointing for a humanoid robot. In P. Maes, M. Matari¢, J-A. Meyer,
J. Pollack, H. Roitblat, and S. Wilson, editors, From Animals to Animats
1V: Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior, pages 36—44. MIT Press-Bradford Books, Cambridge,
MA, 1996.

M. Matari¢ and D. Cliff. Challenges in Evolving Controllers for Physical
Robots. Robotics and Autonomous Systems, 19(1):67-83, 1996.

L. Meeden. Developing Neural Network Controllers for Robots. IEEE Trans-
actions on Systems, Man and Cybernetics: Part B: Cybernetics, 26:474-484,
1996.

F. Menczer and R. K. Belew. Latent energy environments. In R. K. Belew
and S. Mitchell, editors, Plastic Individuals in Evolving Populations. Addison
Wesley, Redwood City, CA, 1993.

G. F. Miller and D. CIiff. Protean behavior in dynamic games: Arguments for
the co-evolution of pursuit-evasion tactics. In D. Cliff, P. Husbands, J. Meyer,
and S. W. Wilson, editors, From Animals to Animats III: Proceedings of the
Third International Conference on Simulation of Adaptive Behavior. MIT
Press-Bradford Books, Cambridge, MA, 1994.

34

[33]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: A tool
for investigation in control algorithms. In T. Yoshikawa and F. Miyazaki,
editors, Proceedings of the Third International Symposium on Experimental
Robotics, pages 501-513, Tokyo, 1993. Springer Verlag.

C. L. Morgan. Habit and instinct. Edward Arnold, London, 1896.

S. Nolfi. Using emergent modularity to develop control system for mobile
robots. Adaptive Behavior, 5:343-364, 1997.

S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution in neural net-
works. Adaptive Behavior, 3:5-28, 1994.

S. Nolfi and D. Parisi. Learning to adapt to changing environments in evolv-
ing neural networks. Adaptive Behavior, 5:75-98, 1996.

P. Nordin and W. Banzhaf. An online method to evolve behavior and to
control a miniature robot in real time with genetic programming. Adaptive
Behavior, pages 107-140, 1996.

H. F. Osborn. Ontogenetic and phylogenetic variation. Science, 4:786-789,
1896.

D. Parisi, F. Cecconi, and S. Nolfi. Econets: Neural networks that learn in
an environment. Network, 1:149-168, 1990.

W. A. Phillips, J. Kay, and D. Smyth. The discovery of structure by multi-
stream networks of local processors with contextual guidance. Network,
6:225-246, 1995.

E. Renshaw. Modeling Biological Populations in Space and Time. Cambridge
University Press, Cambridge, 1991.

C. W. Reynolds. Competition, Coevolution and the Game of Tag. In
R. Brooks and P. Maes, editors, Proceedings of the Fourth Workshop on
Artificial Life, pages 59-69, Boston, MA, 1994. MIT Press.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representa-
tions by Back-Propagation of Errors. Nature, 323:533-536, 1986.

T. D. Sanger. Optimal unsupervised learning in a single-layer feedforward
neural network. Neural Networks, 2:459-473, 1989.

K. Sims. Evolving 3D Morphology and Behavior by Competition. In
R. Brooks and P. Maes, editors, Proceedings of the Fourth Workshop on
Artificial Life, pages 28-39, Boston, MA, 1994. MIT Press.

BIBLIOGRAPHY 35

[47] J. Tani. Model-Based Learning for Mobile Robot Navigation from the Dy-
namical Systems Perspective. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26:421-436, 1996.

[48] P. Turney, D. Whitley, and R. Anderson. Special Issue on Evolution, Learn-
ing, and Instincts: 100 Years of the Baldwin Effect. Evolutionary Computa-
tion, 4:iii—viii, 1996.

[49] C. H. Waddington. Canalization of development and the inheritance of ac-
quired characters. Nature, 150:563-565, 1942.

[50] D. Willshaw and P. Dayan. Optimal plasticity from matrix memories: What
goes up must come down. Neural Computation, 2:85-93, 1990.

36

BIBLIOGRAPHY

