
Remembering Exploration

Jungtae Kim
Department of Computer Science and Engineering,

Pohang University of Science and Technology, Korea
postman@postech.ac.kr

Daijin Kim
Department of Computer Science and Engineering,

Pohang University of Science and Technology, Korea
dkim@postech.ac.kr

Abstract - For autonomous mobile robots the robot needs to
have some ability like navigation which is mainly consisted of
localization and map-building. The method to find new area for
map-building is called exploration. In this paper we introduce
new exploration method which searches unknown area by
reducing the redundant path. Unlike the previous study, which
focuses on the trade-off between exploration and exploita-
tion not on exploration itself, we suggest novel exploration
method, Remembering Exploration (RE), which emphasizes
exploration itself. For comparing our method with the previous
methods we have an experiment in grid-world simulation, and
for showing the possibility of RE method in real environment
we also have 2D world simulation experiment. The experiment
results show that our method has the priority over the previous
method.

Keywords - Robot, Navigation, Exploration, Remembering
Exploration

1. INTRODUCTION

The concerning about the mobile robot increases these
days with development of robot technology. Traditionally the
research about the mobile robot has two major part: one for the
controlled mobile robot and the autonomous mobile robot. So
far the controlled mobile robot rather than the other has been
developed very much because of its a little easier development
and the demand for the tool to help human’s work. But these
days people want to more active machines, which find out the
necessary work and do it oneself as well as help people’s
behavior. This request makes the researcher to have more
concerning about the autonomous mobile robot.

For the autonomous mobile robot the various abilities are
needed, and one of them is navigation. The navigation ability
also needs many detail technologies: for example, localization,
mapping, planning, and obstacle avoidance. Our topic, explo-
ration problem, is very important problem with exploitation
in research area about planning. Exploration means finding
the unknown information, and exploitation means getting the
goal using the already known information as much as possible.
In most case exploration is not useful but just consumes the
resource, but with a little probability we get high profit from
it. Therefore we must do exploration for unknown area not
only exploitation for that.

Unlike the most research focussing on the trade-off between
exploration and exploitation [1], in this paper we focus on the
efficiency of exploration itself. This research area is sometimes
called the coverage planning, and most well-known application
of it is an auto-cleaning robot. Even though there is no map,
the robot moves whole area without any missing space. To
cover whole area the robot need to know where the passed
place is and where the not yet passed place is. Moreover, the
robot has to move as economically as possible because of its
cost like time, electric, and etc.

There are several methods for the exploration problem; for
example, Random Walk [2], Following a Left-Wall, Counter-
based Exploration [3], Spiral Exploration [4], and Distance
Transfer [5]. In this paper we suggest new exploration method,
Remembering Exploration (RE), which can solve the previous
problems; To cover all area, RE method remembers the space
information that which space we know and which space we
do not. To move following the optimal exploration path, RE
method uses the well-known algorithms like breadth-first-
search, depth-first-search, and depth-limited-search [6]. In next
section, we explain it more detail.

2. REMEMBERING EXPLORATION (RE)
Our suggested exploration method finds the optimal path

by reducing the redundant path as much as possible. We
call this method Remembering Exploration because during the
exploration we remember the unknown areas.

Let’s explain about the RE method with Fig. 1. There is a
grid-world; White room means empty space. Blue room means
the blocked room, where if we go to the room, then we restart
at initial position. Deep green with number shows the path.
Light green without number shows the unknown area, where
later we will come back here. If there is no blocked neighbor
room, we can move to upper, lower, left, and right neighbor
room with step 1.

In Fig. 1(a) the current position is the room with number
1, and as we see we can move to one of the left, right,
and lower room but not the upper room, which is blocked.
In the current position, the distances to the three unknown
rooms are same, so we choose one randomly. Here we choose
the right direction, and the result is Fig. 1(b). In Fig. 1(b)
among the previous three unknown rooms we now known one
room and find three another unknown rooms. From the room
with number 2 the new three unknown rooms are the nearest
unknown rooms. One of them is selected randomly, and the

Fig. 1. Exploration algorithm in grid world; Blue circle means the blocked space, dark green with number means the path, and light green means unknown
space. Move to the nearest unknown space.

result is like Fig. 1(c). In Fig. 1(c) the current position is the
room with number 3. The upper, left and right rooms from
the room with number 3 are blocked, and the lower room
is already known, so there is no new unknown room. The
nearest unknown rooms from the room with number 3 are the
lower and right rooms of the room with number 2. Even if
the two rooms are not neighbor of the room with number 3,
there is no problem. Among the two nearest unknown rooms
we choose one randomly. The lower room of the room with
number 2 is selected, but because the room and the current
position is not neighbor each other we can’t move directly by
1 step. Therefore we have to find the shortest path. The two
unknown rooms are neighborhood of known rooms, so here
we use the known information to find the path from the current
position to the neighbor room of the unknown rooms. For that
we use well-known search method like breadth-first-search,
depth-first-search, or depth-limited-search [6], then the path
through the room with number 3 and the room with number
2 is the shortest path. Following the path, we get the result
like Fig. 1(d). The room with number 4 is changed from an
unknown room to a known room, and the right and lower
rooms of the room with number 4 are added into the unknown
rooms.

This procedure is repeated until all area is covered or
known. When we find the final goal position we choose
whether we try to this procedure more or we stop the procedure
and exploit the already known information. RE method has the
little redundant moves because of the following two reasons;
RE searches the nearest unknown room and RE uses the
shortest path to move to the nearest unknown room. In the
next section we summary the previous procedure.

3. ALGORITHM

The pseudo-code of RE is like Algorithm 1. In the initial
part the following procedure(2-6 lines) is done. There are a
known area set (LK) and an unknown area set (LU), and we
empty the two sets. The current position (xc, yc) is determined
randomly or as a fixed position, and the target position(xt, yt)
is set same to the current position (xc, yc). We register the
current position (xc, yc) in the unknown area set (LU).

After initializing, we repeat the following procedure(8-16
lines) until reaching the final position. Among the neighbor
areas of the current position (xc, yc) we move one of the
areas, which do not belong to the known area set (LK), to
the unknown area set (LU). If the current position (xc, yc)
reaches the target position (xt, yt), then we move the target
position (xt, yt) from the unknown area set (LU) to the known
area set (LK), and set the new target position (xt, yt) as the
nearest area in the unknown area set (LU). Going to the target
position (xt, yt), we move to the neighbor area, which is in
the union of known area set (LK) and unknown area set (LU).
We then update the moved position as the new current position
(xc, yc).

Algorithm 1. Remembering Exploration
INITIALIZE

Empty the unknown land LU .
Empty the known land LK .
Set the current position (xc, yc) randomly or fixed.
Set the target position (xt, yt) same to (xc, yc).
Register (xc, yc) in LU .

LOOP
Register a neighbor land of (xc, yc) in LU if the
land 6∈ LK .
IF (xc, yc) ≡ (xt, yt)

Transfer (xt, yt) from LU to LK .
Set (xt, yt) same to the nearest land ∈ LU .

END IF
Move to a neighbor land ∈ LK ∪ LU which is on the
path toward (xt, yt).
Update (xc, yc) by new current position.

END LOOP

4. EXPERIMENTS

We have two experiments like followings. The first one is
to find the goal in grid world like Fig. 2. The second one is
to explore area in 2D world like Fig. 3. From now we will
explain about the two experiments in detail.

Fig. 2. Grid world with 13x13 rooms: green for the blocked room, red circle
for the current position, and red cross for the target position.

4.1. Grid world experiment

The grid world experiment is an algorithm test on the 13x13
rooms, totally 169 rooms. In the grid world the white room
means the empty space, the green room means the blocked
space, the red cross means the final goal, and the red circle
means the current position (Fig. 2). The initial position and
final position are determined at initial time randomly. If we are
not on the border rooms, we can select one of the upper, lower,
left, and right direction. Whenever moving, we can move only
to a neighbor room, that is, the movable distance is always 1.
If the number of moves is over than maximum of moves or we
move to the blocked room, we must restart at initial position.

In the condition that the current position is determined
and the information about the target position and the blocked
rooms is unknown, we compare the performance of our
suggested algorithm and the previous method [1], [3], which
are like the following; First, Random Walk (RW) algorithm
[2] enables to move along one of the upper, lower, left, and
right direction (except the case when on the border) randomly.
The algorithm is the simplest and shows the various paths.
Second, Following a Left-Wall (FLW) algorithm is a well-
known method in finding the exit in maze. As we known
from the name, we just continue to follow the left-wall from
the initial position. Here we assume that the initial position
and the final position is connected by the wall. Even though
we get the same result if we follow the right-wall, we unify
the name for the easy. Third, Counter-based Exploration (CE)
algorithm [3] is that whenever we visit a room we increase
the number of visit to the room, and then when we choose the
next direction we consider the lowest number of visit among
the neighbor rooms. Unlike the previous methods which uses

only the information of neighborhood and determines the next
direction, CE algorithm holds the information about the whole
world and updates and uses the information.

For each method, the complexities are following; Let N
be the total number of rooms. For the RW method, we can’t
expect the next position, that is, it is impossible to know the
maximal moves. So we skip the analysis of the complexity of
RW. For the FLW method, it can move all N area at most.
Therefore, its complexity is O(N). For the CE method, it can
cover all N areas as known areas, and to reach each area it can
move N steps at most. Therefore, it has O(N2) complexity.
For the our suggested RE method, it is similar to the CE
method. So in the complex analysis RE’s complexity is same
to the CE’s one, O(N2). All above results are summarized in
the last column of Table 1.

We have a test on the three previous method and our method
for finding the path from the initial position to the final
position. The performance comparison is done by the criterion
of how fast the method finds out the final position and how
short the length of the final path, which the method found out,
is. After all methods reach the final position, the total moves,
the retrial number, and the final path length are recorded and
new grid world is rebuilt. The average of the 100 times for
this procedure is summarized in the Table 1.

TABLE I
PERFORMANCE COMPARISON WITH THE PREVIOUS METHODS AND OUR

METHOD; RANDOM WALK (RW), FOLLOWING A LEFT-WALL (FLW),
COUNTER-BASED EXPLORATION (CE), AND REMEMBERING

EXPLORATION (RE). EACH COMPLEXITY IS SHOWN IN THE LAST

COLUMN.

of moves # of epoch final path len. cmplx.

RW 5000 3000 500 - -
FLW 100 10 40 O(N)

CE 800 100 28 O(N2)

RE 600 50 28 O(N2)

Among the three previous methods and our suggested
method, RW method has a worst result. In total moves and
retrial number, the numbers are much bigger than the others,
and the final path is also not an optimal path. FLW method
finds the final position very fast because it never takes moves
more than 169, which is the total number of rooms. But the
final path is also not an optimal path. CE method shows prior
than RW or FLW method; It finds an almost optimal path. But
during the exploration it also moves some redundant path.

The suggested RE method also finds out the optimal path
like CE. Moreover, the time which is took to find out the final
path is surprisingly 25% shorter than CE method. From this
experiment we know that our suggested method has a priority
on the previous methods.

4.2. 2D world experiment

The 2D world experiment is about the performance when
the virtual robot with a laser sensor in the real building map

Fig. 3. Exploration on 2D map of real building. [Left] Blue pie shows that the robot scans neighborhood area with laser scanner. Yellow areas mean the
passed areas of the robot. [Right] Yellow area shows the known area of the robot. Blue line shows the mesh model. Blue square means the unknown area
and red circle means the current position of the robot. The number on the mesh shows the distance from the target position.

moves to explore the area (Fig. 3[Left]). The differences with
the previous grid-world experiment are following; First, the
number of possible position becomes very bigger or the space
becomes the continuous space (<2). Therefore, it is impossible
to memorize all of the area, so we must find out the method
which represents all area with a little information. There are
several well-known methods for that, for example the method
using the grid model [7] or the method using the mesh model
[8]. In this experiment we use the mesh model method (Fig.
3[Right]). Second, unlike the grid-world experiment, we can
know the information which exists far away. In this experiment
we simulate the robot with a laser sensor, URG-04LX [9]
model, which scans 4 meters away at most. The laser sensor
scan around 135 degree, so as you see in Fig. 3[Left] the robot
can not recognize whole 360 degree area but only know the
front 135 degree area. Finally, the goal of this experiment is
not to find the specific final position but to know how much the
robot covers whole area, that is, the problem is changed from
point-to-point planning to coverage planning. It is because
usually the exploration work cooperates with map-building,
so we want to make the total map as wide as possible.

In real robot experiment whenever exploring the unknown
area the robot must do the map-building, localization or
both like Simultaneous Localization and Mapping (SLAM).
But in this paper we only focus on the exploration, so we
assume that other necessary abilities are work well; There
is no error in making a map, that is, the map-building is
well done, and we know the current position exactly, that is,
the localization is well done. Moveover, we assume that our
experiment has no sudden obstacle and change, that is, this is
an exploration experiment in stationary environment. Without
other bad effect, we have this experiment.

In Fig. 3[Right] there is a mesh model with blue lines; The
vertex of the mesh shows the position of the robot, and the

edge shows the path of the robot. The vertex connected to
the other vertex means that they are neighborhood. The blue
square means that it is unknown area, and the red circle means
indicates the current position.

In the grid world the four neighbor rooms become the
neighbor area, but in the 2D world we can not make the
concept of the upper, lower, left, and right, so we regard the
vertex in the mesh model as the neighbor area and apply the
Algorithm 1. In Algorithm 1, the neighbor area of the current
position is determined by selecting the middle points which
have no obstacle around area. In this experiment we divide the
scan area 270 degree into 5 parts, that is, 54 degree for each
part. So if there is no obstacle in continuous 54 degree area,
we select the middle point as the neighbor position.

In the mesh model the distance is defined by Euclidian
distance, and the distance from the goal position is recorded
in the each vertex like Fig. 3[Right]. The robot do not move
exactly on the edge because the space is continuous and
the control of the robot is not perfect. The robot moves
with satisfying the following conditions as possible; First, the
robot uses as a nearer vertex as possible. Second, the robot
prefers the unknown area, which is not far from the current
position by the Euclidian distance. Third, the robot prefers the
smaller different angle from the current angle to the angle of
any unknown area(vertex). When the robot selects the next
position, it uses the upper three condition as criterion.

Because the performance comparison of the other algorithm
and our algorithm is already done in the previous experiment,
and its performance is same in the 2D world experiment, so we
need not test about that anymore. Instead of that, we only test
about the percentage of coverage area. In this experiment we
know that our RE method can cover 95% of whole movable
area. The extra 5% area can be reduced by tuning the range
of finding the neighbor area.

5. DISCUSSION AND FUTURE WORK

In this paper we introduce the new exploration method, Re-
membering Exploration (RE). For comparing with the previous
exploration methods we have an experiment for finding the
path to the goal in grid world and compare the total number
of moves and the final path length. In the result we see that
our method is prior to the previous ones. Moreover, to see
how well our method works in pseudo-real environment we
have an experiment in the 2D world environment, and we get
the result that RE method can cover almost all over the region
even within very short time.

For the easy of 2D world experiment, we assume that the
explored environment is stationary as well as there is no
error in making the map. But in real world this assumption
is not suitable. So we have to study about the environment
where some obstacle are appeared or the arrangement is
changed sometimes. With that, we also need to study about
the adjustment work for the mesh model when there occurs
an loop-closing during making the map.

6. ACKNOWLEDGEMENTS

The authors would like to thank the Ministry of Education
of Korea for its financial support toward the Division of

Mechanical and Industrial Engineering, and the Division of
Electrical and Computer Engineering at POSTECH through
BK21 program.

REFERENCES

[1] S. B. Thrun, “Efficient exploration in reinforcement learning,” Tech.
Rep. CMU-CS-92-102, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, 1992.

[2] D. Nguyen and B. Widrow, The truck backer-upper: an example of self-
learning in neural networks. Cambridge, MA, USA: MIT Press, 1990.

[3] S. B. Thrun, “The role of exploration in learning control,” in Handbook
for Intelligent Control: Neural, Fuzzy and Adaptive Approaches, Florence,
Kentucky: Van Nostrand Reinhold, 1992.

[4] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, “Bsa:
A complete coverage algorithm,” in Proceeding of IEEE Int. Conf. on
Robotics and Automation, (Barcelona, Spain), April 2001.

[5] H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of mathematics and Artificial Intelligence, pp. 11–126, 2001.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. Cambridge, MA, USA: MIT Press, 2001.

[7] A. W. Moore and C. G. Atkeson, “The parti-game algorithm for vari-
able resolution reinforcement learning in multidimensional state spaces,”
Machine Learning, vol. 21, no. 3, pp. 199–233, 1995.

[8] J. C. Latombe, Robot Motion Planning. Kluwer Academic, Boston, 1991.
[9] H. Kawata, A. Ohya, S. Yuta, W. Santosh, and T. Mori, “Development

of ultra-small lightweight optical range sensor system,” in Proceeding of
IEEE Int. Conf. on Intelligent Robots and Systems (IROS ’05), pp. 3277–
3282, 2005.

