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Abstract

Computational models of motivation are software reasoning processes designed to direct,
activate or organise the behaviour of artificial agents. Models of motivation inspired by
psychological motivation theories permit the design of agents with a key reasoning
characteristic of natural systems: experience-based attention focus. The ability to focus
attention is critical for agent behaviour in complex or dynamic environments where only
small amounts of available information is relevant at a particular time. Furthermore,
experience-based attention focus enables adaptive behaviour that focuses on different tasks
at different times in response to an agent’s experiences in its environment. This thesis is
concerned with the synthesis of motivation and reinforcement learning in artificial agents.
This extends reinforcement learning to adaptive, multi-task learning in complex, dynamic

environments.

Reinforcement learning algorithms are computational approaches to learning characterised
by the use of reward or punishment to direct learning. The focus of much existing
reinforcement learning research has been on the design of the learning component. In
contrast, the focus of this thesis is on the design of computational models of motivation as
approaches to the reinforcement component that generates reward or punishment. The
primary aim of this thesis is to develop computational models of motivation that extend
reinforcement learning with three key aspects of attention focus: rhythmic behavioural
cycles, adaptive behaviour and multi-task learning in complex, dynamic environments. This
is achieved by representing such environments using context-free grammars, modelling
maintenance tasks as observations of these environments and modelling achievement tasks
as events in these environments. Motivation is modelled by processes for task selection, the
computation of experience-based reward signals for different tasks and arbitration between
reward signals to produce a motivation signal. Two specific models of motivation based on
the experience-oriented psychological concepts of interest and competence are designed
within this framework. The first models motivation as a function of environmental

experiences while the second models motivation as an introspective process.

This thesis synthesises motivation and reinforcement learning as motivated reinforcement
learning agents. Three models of motivated reinforcement learning are presented to explore
the combination of motivation with three existing reinforcement learning components. The
first model combines motivation with flat reinforcement learning for highly adaptive
learning of behaviours for performing multiple tasks. The second model facilitates the recall
of learned behaviours by combining motivation with multi-option reinforcement learning. In

the third model, motivation is combined with an hierarchical reinforcement learning



component to allow both the recall of learned behaviours and the reuse of these behaviours

as abstract actions for future learning.

Because motivated reinforcement learning agents have capabilities beyond those of existing
reinforcement learning approaches, new techniques are required to measure their
performance. The secondary aim of this thesis is to develop metrics for measuring the
performance of different computational models of motivation with respect to the adaptive,
multi-task learning they motivate. This is achieved by analysing the behaviour of motivated
reinforcement learning agents incorporating different motivation functions with different
learning components. Two new metrics are introduced that evaluate the behaviour learned
by motivated reinforcement learning agents in terms of the variety of tasks learned and the

complexity of those tasks.

Persistent, multi-player computer game worlds are used as the primary example of complex,
dynamic environments in this thesis. Motivated reinforcement learning agents are applied to
control the non-player characters in games. Simulated game environments are used for
evaluating and comparing motivated reinforcement learning agents using different
motivation and learning components. The performance and scalability of these agents are
analysed in a series of empirical studies in dynamic environments and environments of
progressively increasing complexity. Game environments simulating two types of
complexity increase are studied: environments with increasing numbers of potential learning
tasks and environments with learning tasks that require behavioural cycles comprising more

actions.

A number of key conclusions can be drawn from the empirical studies, concerning both
different computational models of motivation and their combination with different
reinforcement learning components. Experimental results confirm that rhythmic behavioural
cycles, adaptive behaviour and multi-task learning can be achieved using computational
models of motivation as an experience-based reward signal for reinforcement learning. In
dynamic environments, motivated reinforcement learning agents incorporating introspective
competence motivation adapt more rapidly to change than agents motivated by interest
alone. Agents incorporating competence motivation also scale to environments of greater
complexity than agents motivated by interest alone. Motivated reinforcement learning
agents combining motivation with flat reinforcement learning are the most adaptive in
dynamic environments and exhibit scalable behavioural variety and complexity as the
number of potential learning tasks is increased. However, when tasks require behavioural
cycles comprising more actions, motivated reinforcement learning agents using a multi-

option learning component exhibit greater scalability. Motivated multi-option reinforcement

vi



learning also provides a more scalable approach to recall than motivated hierarchical

reinforcement learning.

In summary, this thesis makes contributions in two key areas. Computational models of
motivation and motivated reinforcement learning extend reinforcement learning to adaptive,
multi-task learning in complex, dynamic environments. Motivated reinforcement learning
agents allow the design of non-player characters for computer games that can progressively

adapt their behaviour in response to changes in their environment.
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