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Abstract

This thesis concerns the application of artificial neural networks to solve

optimization and dynamical control problems.

A general framework for artificial neural networks models is introduced first.

Then the main feedforward and feedback models are presented. The IAC (Interactive

Activation and Competition) feedback network is analysed in detail. It is shown that the

IAC network, like the Hopfield network, can be used to solve quadratic optimization

problems.

A method that speeds up the training of feedforward artificial neural networks

by constraining the location of the decision surfaces defined by the weights arriving at

the hidden units is developed.

The problem of training artificial neural networks to be fault tolerant to loss of

hidden units is mathematically analysed. It is shown that by considering the network

fault tolerance the above problem is regularized, that is the number of local minima is

reduced. It is also shown that in some cases there is a unique set of weights that

minimizes a cost function. The BPS algorithm, a network training algorithm that

switches the hidden units on and off, is developed and it is shown that its use results in

fault tolerant neural networks.

A novel non-standard artificial neural network model is then proposed to solve

the extremum control problem for static systems that have an asymmetric performance

index. An algorithm to train such a network is developed and it is shown that the

proposed network structure can also be applied to the multi-input case.

A control structure that integrates feedback control and a feedforward artificial

neural network to perform nonlinear control is proposed. It is shown that such a

structure performs closed-loop identification of the inverse dynamical system. The

technique of adapting the gains of the feedback controller during training is then

introduced. Finally it is shown that the BPS algorithm can also be used in this case to

increase the fault tolerance of the neural controller in relation to loss of hidden units.

Computer simulations are used throughout to illustrate the results.
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Chapter 1 - Introduction

1.1 - Background and Motivation

This thesis concerns the application of artificial neural networks to solve

optimization and dynamical control problems. Artificial neural networks are

computational devices whose conception has been motivated by our current knowledge

of biological nervous systems. As such, neurocomputing, that is computation using

artificial neural networks, offers an alternative to the traditional computational approach

based on sequential and algorithmic processing.

Probably the main feature that characterizes the artificial neural networks

approach is the simultaneous use of a large number of relatively simple processors,

instead of using few very powerful central processors, as is nowadays the standard in

most man-made computers. This is also the computational architecture selected by

natural evolution for the central nervous systems of the most developed animals, where

the basic computational unit is the neuron.

The use of a large number of simple processors makes it possible to perform

parallel computation and to have a very short response time for tasks that involve real-

time simultaneous processing of several signals. Furthermore it is also possible to have

a decentralized architecture, which is much more fault tolerant to loss of individual

processors than centralized architectures.

Another important feature of artificial neural networks is that, although each

processor is very simple in terms of computational power and memory, they are

adaptable nonlinear devices. Consequently, artificial neural networks can be used to

approximate nonlinear models, an essential property for solving many real-world

problems. The adaptable parameters of artificial neural network models are the

connections that link the processors. This is similar to "learning" in biological neural

networks that is supposed to be the result of changes in the strength of the connections

between neurons.
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Research in artificial neural network models began at the same time as the first

digital computers where being developed in the 1940’s. In 1943 McCulloch and Pitts

[McPi43] proposed modelling the biological neuron as a simple threshold device, i.e. it

could be in only two states, on or off. In 1958 Rosenblatt proposed the Perceptron

[Ros58] as a model for visual pattern recognition. In 1960 Widrow and Hoff [WiHo60]

proposed the ADALINE (adaptive linear neuron). However, when in the late 1960’s

Minsky and Papert [MiPa69] pointed out some limitations of the artificial neural

network models available at the time (e.g. the lack of a reliable algorithm to train multi-

layer networks), interest in neurocomputing was greatly reduced and efforts were shifted

to the area of Artificial Intelligence and expert systems.

Interest in neurocomputing only reappeared in the mid 80’s mainly as a result

of a combination of the following factors: a) the popularization of Hopfield’s work to

solve optimization problems using feedback networks [Hop85]; b) the rediscovery of the

Back-Propagation algorithm, used to train multi-layer feedforward networks, by

Rumelhart, Hinton and Williams [RHM86], c) the realization of the limitations of

Artificial Intelligence and expert systems approaches, and d) the availability of powerful

and cheap digital computers that could be used to simulate, test and refine artificial

neural network models.

Nowadays artificial neural network models are the subject of study in many areas

as diverse as medicine, engineering and economics, to tackle problems that cannot be

easily solved by other more established approaches.

In this work our motivation is to develop techniques that exploit the properties

of nonlinear modelling, adaptability and tolerance to internal damage exhibited by

artificial neural network models in order to solve the problems of: a) extremum control

of static systems; and b) adaptive control of nonlinear dynamical systems under

feedback.

In the extremum control problem the aim is to estimate on-line, i.e. as new data

are made available, the input that maximizes the system output, considering that the

input-output relationship is unknown. Only noisy measurements of the output and the

respective input values used to produce them are available. Previous work [WeZa91] has

dealt with the case when the system is assumed to be governed by a quadratic function

with unknown parameters. In this work we develop a neural solution for the case when

the input-output relationship is non-quadratic but with a unique maximum over the
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interval of interest.

Control theory in the areas of analysis and design of time-invariant dynamical

linear systems is well developed due to the intense research effort expended since the

early 60’s. However, several dynamical systems of interest may contain severe

nonlinearities and therefore a linear model will not be entirely suitable. Unfortunately,

the nonlinear control field is much less advanced than its linear counterpart and few

general approaches exist. In this work we modify and analyze the neural control

architecture known as feedback-error-learning, which operates under feedback control

by using an artificial neural network as a feedforward controller.

1.2 - Structure of the Thesis and Contributions

In chapter 2 the basic concepts relating to artificial neural network models are

presented. The chapter begins with a simplified section about the human nervous system

and the human brain. A general framework for artificial neural network models is later

introduced and the most important feedforward artificial neural network models, i.e.

network models that perform static mappings, are then presented. Finally, some

limitations of the artificial neural network approach are discussed.

Chapter 3 is concerned with feedback artificial neural network models. Because

of the presence of feedback connections, feedback networks are complex nonlinear

dynamical systems. The two main application areas for feedback networks are as

associative memories and to solve quadratic optimization problems. Two models, the

Hopfield and IAC (Interactive Activation and Competition) neural networks are

presented and analyzed. The main contribution of this chapter is the mathematical proof

that the IAC network can also be used to solve quadratic optimization problems, much

like the Hopfield network. As far as we are aware, this is the first time that it is shown

that another feedback neural network model can be used to solve quadratic optimization

problems.

One of the limitations of current feedforward artificial neural network models,

as it is pointed out in chapter 2, is that a large number of iterations is needed if the current

training algorithms are used. The contribution in chapter 4 is the presentation of a novel

method that speeds up learning by constraining the location of the decision surfaces

defined by the values of the weights arriving at the hidden units. The same method can
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be used to provide a better initialization procedure for the network weights. The

performance of the method is evaluated through computer simulations.

Chapter 5 is concerned with fault tolerant artificial neural networks, i.e. networks

that are tolerant to loss of weights and hidden units. The problem of training an artificial

neural network can be seen as an optimization problem. Therefore it is not surprising

that current algorithms, such as Back-Propagation, will not necessarily result in fault

tolerant solutions since they do not explicitly search for a fault tolerant solution. In this

chapter we propose the BPS algorithm (involving Back-Propagation with Switching).

The proposed algorithm switches during training between the different fault

configurations, i.e. all possible fault configurations are trained and forced to share the

same set of network weights. The conventional Back-Propagation algorithm can be

considered a special case of the proposed algorithm where the set of possible

configurations contain only the no-fault configuration. The benefits of the proposed

algorithm are illustrated using a bit-mapped image recognition problem.

The main contribution of chapter 5 is the mathematical analysis that shows that,

by considering network fault tolerance, the problem of training the network is

regularized, that is the number of local minima is reduced. We show that in some cases

when the weights of a layer are fixed there is only one set of weights that minimizes the

cost function.

Chapter 6 deals with the extremum control problem. First the extremum control

problem is introduced and the limitations of the quadratic model approach are presented.

The contribution of chapter 6 is the development of a novel non-standard artificial neural

network model. Since the network model is flexible enough to accommodate non-

quadratic functions, the optimum input for static systems with an asymmetric

performance index can be estimated with a small error, even if the system is excited by

a dither with a large amplitude. The standard Back-Propagation algorithm, with the

necessary modifications for the specific network model developed in this chapter, is used

to adapt the network parameters. We mathematically prove that the proposed network

model can also be used in the multi-input case (theorem 6.1). Two simulation examples

are presented, one for the single input case and the other for a two input case.

In chapter 7 we address the use of artificial neural networks for control of

dynamical systems. First we review the main approaches proposed in the literature to

integrate feedforward artificial neural networks into the general control structure. The
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concept of feedback-error-learning, proposed by Kawato [Kaw90], is then introduced.

The first contribution in this chapter is the development of a modified feedback-error-

learning control structure which aims to perform closed-loop identification of the inverse

dynamical system. Such a modified control structure is then mathematically analyzed

and we show that, at least for the case of a single input single output linear dynamical

system, when certain requirements are satisfied, there exists an artificial neural network

(a linear filter in this case) that is a close approximation of the inverse dynamical model

of the system under control. A computer simulation for the linear case is used to

illustrate the use of the proposed neural control structure.

The second contribution in chapter 7 is the introduction of the technique of

variable (or adaptive) feedback to be used in the proposed neural control structure.

Simulations of the control of a two-joint robot, a two-input two-output nonlinear control

problem, are presented and we show that use of the variable feedback technique

improves the generalization of the neural network controller in relation to trajectories

not used during training.

The third contribution in chapter 7 is the application of the BPS algorithm,

presented in chapter 5, to improve the fault tolerance of the neural controller in relation

to faults in the neural network. The control of an inverted pendulum is used as the

simulation example in this case.

Finally the last chapter presents general conclusions and suggestions for further

work.


