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Abstract

This thesis concerns the application of artificial neural networks to solve
optimization and dynamical control problems.

A general framework for artificial neural networks models is introduced first.
Then the main feedforward and feedback models are presented. The IAC (Interactive
Activation and Competition) feedback network is analysed in detail. It is shown that the
IAC network, like the Hopfield network, can be used to solve quadratic optimization
problems.

A method that speeds up the training of feedforward artificial neural networks
by constraining the location of the decision surfaces defined by the weights arriving at
the hidden units is developed.

The problem of training artificial neural networks to be fault tolerant to loss of
hidden units is mathematically analysed. It is shown that by considering the network
fault tolerance the above problem is regularized, that is the number of local minima is
reduced. It is also shown that in some cases there is a unique set of weights that
minimizes a cost function. The BPS algorithm, a network training algorithm that
switches the hidden units on and off, is developed and it is shown that its use results in
fault tolerant neural networks.

A novel non-standard artificial neural network model is then proposed to solve
the extremum control problem for static systems that have an asymmetric performance
index. An algorithm to train such a network is developed and it is shown that the
proposed network structure can also be applied to the multi-input case.

A control structure that integrates feedback control and a feedforward artificial
neural network to perform nonlinear control is proposed. It is shown that such a
structure performs closed-loop identification of the inverse dynamical system. The
technique of adapting the gains of the feedback controller during training is then
introduced. Finally it is shown that the BPS algorithm can also be used in this case to
increase the fault tolerance of the neural controller in relation to loss of hidden units.

Computer simulations are used throughout to illustrate the results.
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Chapter 1 - Introduction

1.1 - Background and Motivation

This thesis concerns the application of artificial neural networks to solve
optimization and dynamical control problems. Artificial neural networks are
computational devices whose conception has been motivated by our current knowledge
of biological nervous systems. As such, neurocomputing, that is computation using
artificial neural networks, offers an alternative to the traditional computational approach
based on sequential and algorithmic processing.

Probably the main feature that characterizes the artificial neural networks
approach is the simultaneous use of a large number of relatively simple processors,
instead of using few very powerful central processors, as is nowadays the standard in
most man-made computers. This is also the computational architecture selected by
natural evolution for the central nervous systems of the most developed animals, where
the basic computational unit is the neuron.

The use of a large number of simple processors makes it possible to perform
parallel computation and to have a very short response time for tasks that involve real-
time simultaneous processing of several signals. Furthermore it is also possible to have
a decentralized architecture, which is much more fault tolerant to loss of individual
processors than centralized architectures.

Another important feature of artificial neural networks is that, although each
processor is very simple in terms of computational power and memory, they are
adaptable nonlinear devices. Consequently, artificial neural networks can be used to
approximate nonlinear models, an essential property for solving many real-world
problems. The adaptable parameters of artificial neural network models are the
connections that link the processors. This is similar to "learning” in biological neural
networks that is supposed to be the result of changes in the strength of the connections

between neurons.
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Research in artificial neural network models began at the same time as the first
digital computers where being developed in the 1940’s. In 1943 McCulloch and Pitts
[McPi43] proposed modelling the biological neuron as a simple threshold device, i.e. it
could be in only two states, on or off. In 1958 Rosenblatt proposed the Perceptron
[Ros58] as a model for visual pattern recognition. In 1960 Widrow and Hoff [WiH060]
proposed the ADALINE (adaptive linear neuron). However, when in the late 1960’'s
Minsky and Papert [MiPa69] pointed out some limitations of the artificial neural
network models available at the time (e.g. the lack of a reliable algorithm to train multi-
layer networks), interest in neurocomputing was greatly reduced and efforts were shifted
to the area of Artificial Intelligence and expert systems.

Interest in neurocomputing only reappeared in the mid 80’s mainly as a result
of a combination of the following factors: a) the popularization of Hopfield’s work to
solve optimization problems using feedback networks [Hop85]; b) the rediscovery of the
Back-Propagation algorithm, used to train multi-layer feedforward networks, by
Rumelhart, Hinton and Williams [RHM86], c) the realization of the limitations of
Artificial Intelligence and expert systems approaches, and d) the availability of powerful
and cheap digital computers that could be used to simulate, test and refine artificial
neural network models.

Nowadays artificial neural network models are the subject of study in many areas
as diverse as medicine, engineering and economics, to tackle problems that cannot be
easily solved by other more established approaches.

In this work our motivation is to develop techniques that exploit the properties
of nonlinear modelling, adaptability and tolerance to internal damage exhibited by
artificial neural network models in order to solve the problems of: a) extremum control
of static systems; and b) adaptive control of nonlinear dynamical systems under
feedback.

In the extremum control problem the aim is to estimate on-line, i.e. as new data
are made available, the input that maximizes the system output, considering that the
input-output relationship is unknown. Only noisy measurements of the output and the
respective input values used to produce them are available. Previous work [WeZa91] has
dealt with the case when the system is assumed to be governed by a quadratic function
with unknown parameters. In this work we develop a neural solution for the case when

the input-output relationship is non-quadratic but with a unique maximum over the



interval of interest.

Control theory in the areas of analysis and design of time-invariant dynamical
linear systems is well developed due to the intense research effort expended since the
early 60’s. However, several dynamical systems of interest may contain severe
nonlinearities and therefore a linear model will not be entirely suitable. Unfortunately,
the nonlinear control field is much less advanced than its linear counterpart and few
general approaches exist. In this work we modify and analyze the neural control
architecture known as feedback-error-learning, which operates under feedback control

by using an artificial neural network as a feedforward controller.

1.2 - Structure of the Thesis and Contributions

In chapter 2 the basic concepts relating to artificial neural network models are
presented. The chapter begins with a simplified section about the human nervous system
and the human brain. A general framework for artificial neural network models is later
introduced and the most important feedforward artificial neural network models, i.e.
network models that perform static mappings, are then presented. Finally, some
limitations of the artificial neural network approach are discussed.

Chapter 3 is concerned with feedback artificial neural network models. Because
of the presence of feedback connections, feedback networks are complex nonlinear
dynamical systems. The two main application areas for feedback networks are as
associative memories and to solve quadratic optimization problems. Two models, the
Hopfield and IAC (Interactive Activation and Competition) neural networks are
presented and analyzed. The main contribution of this chapter is the mathematical proof
that the IAC network can also be used to solve quadratic optimization problems, much
like the Hopfield network. As far as we are aware, this is the first time that it is shown
that another feedback neural network model can be used to solve quadratic optimization
problems.

One of the limitations of current feedforward artificial neural network models,
as it is pointed out in chapter 2, is that a large number of iterations is needed if the current
training algorithms are used. The contribution in chapter 4 is the presentation of a novel
method that speeds up learning by constraining the location of the decision surfaces

defined by the values of the weights arriving at the hidden units. The same method can
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be used to provide a better initialization procedure for the network weights. The
performance of the method is evaluated through computer simulations.

Chapter 5 is concerned with fault tolerant artificial neural networks, i.e. networks
that are tolerant to loss of weights and hidden units. The problem of training an artificial
neural network can be seen as an optimization problem. Therefore it is not surprising
that current algorithms, such as Back-Propagation, will not necessarily result in fault
tolerant solutions since they do not explicitly search for a fault tolerant solution. In this
chapter we propose the BPS algorithm (involving Back-Propagation with Switching).
The proposed algorithm switches during training between the different fault
configurations, i.e. all possible fault configurations are trained and forced to share the
same set of network weights. The conventional Back-Propagation algorithm can be
considered a special case of the proposed algorithm where the set of possible
configurations contain only the no-fault configuration. The benefits of the proposed
algorithm are illustrated using a bit-mapped image recognition problem.

The main contribution of chapter 5 is the mathematical analysis that shows that,
by considering network fault tolerance, the problem of training the network is
regularized, that is the number of local minima is reduced. We show that in some cases
when the weights of a layer are fixed there is only one set of weights that minimizes the
cost function.

Chapter 6 deals with the extremum control problem. First the extremum control
problem is introduced and the limitations of the quadratic model approach are presented.
The contribution of chapter 6 is the development of a novel non-standard artificial neural
network model. Since the network model is flexible enough to accommodate non-
quadratic functions, the optimum input for static systems with an asymmetric
performance index can be estimated with a small error, even if the system is excited by
a dither with a large amplitude. The standard Back-Propagation algorithm, with the
necessary modifications for the specific network model developed in this chapter, is used
to adapt the network parameters. We mathematically prove that the proposed network
model can also be used in the multi-input case (theorem 6.1). Two simulation examples
are presented, one for the single input case and the other for a two input case.

In chapter 7 we address the use of artificial neural networks for control of
dynamical systems. First we review the main approaches proposed in the literature to

integrate feedforward artificial neural networks into the general control structure. The
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concept of feedback-error-learning, proposed by Kawato [Kaw90], is then introduced.
The first contribution in this chapter is the development of a modified feedback-error-
learning control structure which aims to perform closed-loop identification of the inverse
dynamical system. Such a modified control structure is then mathematically analyzed
and we show that, at least for the case of a single input single output linear dynamical
system, when certain requirements are satisfied, there exists an artificial neural network
(a linear filter in this case) that is a close approximation of the inverse dynamical model
of the system under control. A computer simulation for the linear case is used to
illustrate the use of the proposed neural control structure.

The second contribution in chapter 7 is the introduction of the technique of
variable (or adaptive) feedback to be used in the proposed neural control structure.
Simulations of the control of a two-joint robot, a two-input two-output nonlinear control
problem, are presented and we show that use of the variable feedback technique
improves the generalization of the neural network controller in relation to trajectories
not used during training.

The third contribution in chapter 7 is the application of the BPS algorithm,
presented in chapter 5, to improve the fault tolerance of the neural controller in relation
to faults in the neural network. The control of an inverted pendulum is used as the
simulation example in this case.

Finally the last chapter presents general conclusions and suggestions for further

work.



