Chapter 5

Semi-Online Neural-Q _learning

This chapter contains the main research contribution of this thesis. It pro-
poses the Semi-Online Neural-Q learning algorithm (SONQL), an RL algo-
rithm designed to learn with continuous states and actions. The purpose
of the SONQL algorithm is to learn the state/action mapping of a reac-
tive robot behavior. The chapter concentrates on theoretically analyzing the
points taken into account in the design of this approach. The main features
of the algorithm are the use of a Neural Network and a database of learning
samples which stabilize and accelerate the learning process. The implemen-
tation of the algorithm in a reactive behavior is described. Results of the
SONQL algorithm will be shown in Chapter 7.

5.1 Reinforcement Learning based behaviors

Reinforcement Learning (RL) is a very suitable technique to learn in unknown
environments. Unlike supervised learning methods, RL does not need any
database of examples. Instead, it learns from interaction with the environ-
ment and according to a scalar value. As has been described in Chapter 4,
this scalar value or reward, evaluates the environment state and the last
taken action with reference to a given task. The final goal of RL is to find
an optimal state/action mapping which maximizes the sum of future rewards
whatever the initial state is. The learning of this optimal mapping or policy
is also known as the Reinforcement Learning Problem (RLP).

The features of RL make this learning theory useful for robotics. There
are parts of a robot control system which cannot be implemented without
experiments. For example, when implementing a reactive robot behavior, the
main strategies can be designed without any real test. However, for the final
tuning of the behavior, there will always be parameters which have to be
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set with real experiments. A dynamics model of the robot and environment
could avoid this phase, but it is usually difficult to achieve this model with
reliability. RL offers the possibility of learning the behavior in real-time
and avoid the tuning of the behaviors with experiments. RL automatically
interacts with the environment and finds the best mapping for the proposed
task, which in this example would be the robot behavior. The only necessary
information which has to be set is the reinforcement function which gives the
rewards according to the current state and the past action. It can be said
that by using RL the robot designer reduces the effort required to implement
the whole behavior, to the effort of designing the reinforcement function.
This is a great improvement since the reinforcement function is much simpler
and does not contain any dynamics. There is another advantage in that an
RL algorithm can be continuously learning and, therefore, the state/action
mapping will always correspond to the current environment. This is an
important feature in changing environments.

RL theory is usually based on Finite Markov Decision Processes (FMDP).
The dynamics of the environment is formulated as a FMDP and the RL al-
gorithms use the properties of these systems to find a solution to the RLP.
Temporal Difference (TD) techniques are able to solve the RLP incrementally
and without knowing the transition probabilities between the states of the
FMDP. In a robotics context, this means that the dynamics existing between
the robot and the environment do not have to be known. As far as incremen-
tal learning is concerned, TD techniques are able to learn each time a new
state is achieved. This property allows the learning to be performed online,
which in a real system context, like a robot, can be translated to a real-time
execution of the learning process. The term ”online” is here understood as
the property of learning with the data that is currently extracted from the
environment and not with historical data.

Of all TD techniques, the best known and most used technique is the
Q_learning algorithm proposed by Watkins in 1992 [Watkins and Dayan, 1992].
The advantages of this algorithm are its simplicity and the fact that it is an
off-policy method. For these reasons, which will be detailed in the next sec-
tion, Q_learning has been applied to a huge number of applications. The RL
algorithm proposed in this dissertation was also based on Q_learning.

The main problem of RL when applied to a real system is the generaliza-
tion problem, treated in Section 4.5. In a real system, the variables (states
or actions) are usually continuous. However, RL theory is based on FMDP,
which uses discrete variables. Classic RL algorithms must be modified to al-
low continuous states or actions, see Section 4.6. Another important problem
of RL when applied to real systems is the correct observation of the environ-
ment state. In a robotic system, it is usual to measure signals with noise or
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delays. If these signals are related to the state of the environment the learn-
ing process will be damaged. In these cases, it would be better to consider
the environment as a Partially Observable MDP, refer also to Section 4.5.

The approach presented in this thesis attempts to solve only the gener-
alization problem. As commented on above, the approach is based on the
Q_learning algorithm and includes a Neural Network (NN) to generalize. NNs
are able to approximate very complex value functions, but they are affected
by the interference problem, as described in Section 4.6.4. To overcome this
problem, the presented approach uses a database of learning samples which
contains a representative set of visited states/action pairs which stabilizes
and also accelerates the learning process. The approach has been named
Semi-Online Neural-Q_learning (SONQL). The next subsections will detail
each part of the SONQL algorithm and the phases to be found on its execu-
tion.

The combination of Reinforcement Learning with a behavior-based sys-
tem has already been used in many approaches. In some cases, the RL algo-
rithm was used to adapt the coordination system [Maes and Brooks, 1990,
Gachet et al., 1994, Kalmar et al., 1997, Martinson et al., 2002]. Moreover,
some researches have used RL to learn the internal structure of the behav-
iors [Ryan and Pendrith, 1998, Mahadevan and Connell, 1992, Touzet, 1997,
Takahashi and Asada, 2000, Shackleton and Gini, 1997] by mapping the per-
ceived states to control actions. The work presented by Mahadevan demon-
strated that the breaking down of the robot control policy in a set of behav-
iors simplified and increased the learning speed. In this thesis, the SONQL
algorithm was designed to learn the internal mapping of a reactive behavior.
As stated in Chapter 3, the coordinator must be simple and robust. These
features cannot be achieved with an RL algorithm since, if the data becomes
corrupted, the optimal policy can be unlearnt. Instead, RL can satisfactorily
learn a behavior mapping, which simplifies the implementation and tuning
of the algorithm. The chapter concludes with the implementation of the
SONQL algorithm in a reactive robot behavior.

5.2 (Q_learning in robotics

The theoretical aspects of the Q_learning [Watkins and Dayan, 1992] algo-
rithm have been presented in Section 4.4.2. This section analyzes the ap-
plication of the algorithm in a real system such as a robot. Q_learning is
a Temporal Difference algorithm and, like all TD algorithms, the dynamics
of the environment do not have to be known. Another important feature of
TD algorithms is that the learning process can be performed online. How-
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ever, the main advantage of ()_learning with respect to other TD algorithms
is that it is an off-policy algorithm, which means that in order to converge
to an optimal state/action mapping, any policy can be followed. The only
condition is that all state/action pairs must be regularly visited.

The policy in an RL algorithm, indicates the action which has to be
executed depending on the current state. A greedy policy chooses the best
action according to the current state/action mapping; that is, the action
which will maximize the sum of future rewards. A random policy generates
an aleatory action independently of the state. An e-greedy policy chooses
the greedy action with probability (1 — €), otherwise it generates a random
action. The importance of the policy relapses in the explotation/exploration
dilemma.

Q_learning can theoretically use any policy to converge to the optimal
state/action mapping. The most common policy is the e-greedy policy which
uses random actions to explore and greedy actions to exploit. The off-policy
feature is a very important feature in a robotic domain, since, on occasion,
the actions proposed by the learning algorithm can not be carried out. For
example, if the algorithm proposes an action which would cause a collision,
another behavior with a higher priority will prevent it with the generation
of another action. In this case, Q_learning will continue learning using the
action which has actually been executed.

Q_learning uses the action-value function, @, in its algorithm. The Q(s, a)
function contains the discounted sum of future rewards which will be obtained
from the current state s, executing action a and following the greedy policy
afterwards. The advantage of using the action-value function resides in the
facility of extracting the greedy action from it. For the current state s, the
greedy action a,,q, will be the one which maximizes the Q(s,a) values over
all the actions a. Consequently, when the Q_learning algorithm converges to
the optimal action-value function Q*, the optimal action will be extracted in
the same way. The simplicity of (Q_learning is another important advantage
in its implementation on a complex system such as a robot.

5.3 Generalization with Neural Networks

When working with continuous states and actions, as is costumary in robotics,
the continuous values have to be discretized in a finite set of values. If an
accurate control is desired, a small resolution will be used and, therefore, the
number of discrete states will be very large. Consequently, the () function
table will also become very large and the Q-learning algorithm will require
a long learning time to update all the @) values. This fact makes the im-
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plementation of the algorithm in a real-time control architecture impractical
and is known as the generalization problem. There are several techniques to
combat this problem, as overviewed in Section 4.6.

In this thesis, a Neural Network (NN) has been used to solve the gen-
eralization problem. The main reason for using an NN was for its excellent
ability to approximate any nonlinear function, in comparison with the other
function approximators. Also, an NN is easy to compute and the required
number of parameters or values is very small. The strategy consists of us-
ing the same QQ_learning algorithm, but with an NN which approximates the
tabular @) function. The number of parameters required by the NN does not
depend on the resolution desired for the continuous states and actions. It
will depend only on the complexity of the () function to be approximated. As
stated in Section 4.6.4, when generalizing with an NN, the interference prob-
lem destabilizes the learning process. This problem was taken into account
in the SONQL algorithm and will be treated in Section 5.4.

5.3.1 Neural Networks overview

A Neural Network is a function able to approximate a mathematical function
which has a set of inputs and outputs. The input and output variables are
real numbers and the approximated functions can be non-linear, according to
the features of the NN. Artificial Neural-Networks were inspired by the real
neurons found in the human brain, although a simpler model of them is used.
The basic theory of NN was widely studied during 1980s and there still are
many active research topics. For an overview of NN, refer to [Haykin, 1999].

One model frequently used in the implementation of an artificial neuron is
depicted in Figure 5.1. A neuron j located in layer [, has a set of inputs {y} ™,
y5 ', ..., 5!} and one output y:. The value of this output depends on these

inputs, on a set of weights {w',, w',, ..., wé-p} and on an activation function

10 Wi2s -

©®. In the first computation, the induced local field U;- of the neuron 7, is
calculated by adding the products of each input y!~' by its corresponding
weight wél An extra input y) ' is added to vé. This input is called the bias
term and has a constant value equal to 1. By adjusting the weight wé-o, the
neuron can be activated even if the inputs are equal to 0. The local field vé» is
then used to calculate the output of the neuron yé = ¥ (vé) The activation
function has a very important role in learning efficiency and capability.

As mentioned above, neurons are grouped in different layers. The first
layer uses as neuron inputs {yJ, v, ..., y>,} the input variables of the NN.
This set of inputs is also called the input layer, although it is not a layer of
neurons. The second and consecutive layers use as neuron inputs the neuron



96 Chapter 5. Semi-Online Neural-Q)_learning

Fixed input »§  =+1

( yl(l E . S 0}

y
(0(1) > Output

Activation
function

Inputs <

NN weights

Figure 5.1: Diagram of an artificial neuron j located at layer .

outputs of the preceding layer. Finally, the last layer of the NN is the output
layer, in which each neuron generates an output of the network. All the
neuron layers preceding the output layer are also called the hidden layers,
since the neuron output values are not seen from the outside nor are they
significant. The learning process in an NN consists of adapting the weights of
the network until the output is equal to a desired response. An NN algorithm
has the goal of indicating the procedure to modify the values of these weights.
Different network architectures can be found according to the connec-
tions among the neurons. Feed-forward networks have the same structure
as described previously. Neuron inputs always proceed from a preceding
layer, and signals are always transmitted forward ending at the output layer.
Other kinds of architectures are recurrent networks. In this case, a feedback
loop connects neuron outputs to the inputs of neurons located in a preced-
ing layer. It is also possible to connect the output of one neuron to its own
input, in which case it would be a self-feedback. Recurrent networks have a
higher learning capability and performance, although they show a nonlinear
dynamical behavior. Besides the signal transmission, NNs are also classified
according to the number of layers. Single-layer networks have only one layer
of neurons, the output layer, and are very suitable for pattern classification.
On the other hand, multilayer networks have usually one or two hidden layers
plus the output layer. Multilayer networks are able to learn complex tasks
by progressively extracting more meaningful features from the NN inputs.

5.3.2 Neural Q_learning

In order to approximate the ) function, a feed-forward multilayer neural
network has been used. This architecture allows the approximation of any
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Figure 5.2: Graph of the multilayer NN which approximates the QQ_function.
In this case, two hidden layers are used. The input layer is composed of the
states and the actions. The output layer has only one neuron which contains
the Q value for the current input values.

nonlinear function assuming that the number of layers and neuron, and the
activation functions are appropriated. The input variables of the NN are the
environment states and the actions, which have n and m dimensions respec-
tively. The output of the network has only one dimension and corresponds to
the @ value for the current states and actions. The number of hidden layers
will depend on the complexity of the ) function. Figure 5.2 shows a schema
of the network.

The use of Neural Networks in the Q_learning algorithm is known as
Neural-Q_learning (NQL). There are several approaches in which NN can be
applied, as commented on Section 4.6.4. In particular, the approximation
of the @ function using a feed-forward NN is known as direct (Q_learning
[Baird, 1995]. This is the most straight-forward approach since the whole
function is approximated in only one NN. This implementation is affected
by the interference problem, which will be treated in the next section. The
technique used to learn the Q_function is the back-propagation algorithm.
This algorithm uses the error between the output neuron and the desired
response to adapt the weights of the network.

To compute the desired response of the NN, the update equation of
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Q_learning algorithm is used. As detailed in the previous section, the @
value for a given state and action is equal to Equation 5.1. This means that
the desired response of the NN has to be equal to Equation 5.1 and the
committed error will be used to update the weights of the network.

Q(st,ar) = rip1 + 7y - maxg,,,, Q(St+1, Gmag) (5.1)

As can be seen, the computation of Equation 5.1 requires the use of the
same NN to calculate Q(S¢41, Gmaz). In order to find the action a4, which
maximizes the () value for state s;,1, a simple strategy is used. The action
space is discretized in a set of actions according to the smallest resolution
distinguished in the environment . For each action, the () value is computed
and the maximum @) value is used. If the SONQL algorithm is applied in
a task in which there is only one continuous action, the computational cost
associated with the searching of a,,., does not represent a problem. However,
if more continuous actions are present, the required time can increase appre-
ciably and the feasibility of the algorithm decreases. As will be described
in Section 5.7, the SONQL algorithm is used to learn a reactive behavior
which can have multiple continuous states and one continuous action for
each DOF of the robot. The behavior uses one SONQL algorithm for each
DOF and therefore, the computational cost of searching the a,,., action will
not represent any problem.

It is very important to note that two different learning processes are
simultaneously in execution and with direct interaction. First of all, the
Q_learning algorithm updates the @) values in order to converge to the opti-
mal () function. On the other hand, the NN algorithm updates its weights
to approximate the () values. While the ) function is not optimal, both pro-
cesses are updating the weights of the network to fulfill its learning purposes.
It is clear that the stability and convergence of the NQL algorithm can be
seriously affected by this dual learning. The next section will focus on this
issue.

Finally, Equation 5.1 shows that the necessary variables to update the
Neural-Q_function are the initial state s;, the taken action a;, the received
reward ryy1 and the new state s;.;. These four variables (the states and
actions can be multidimensional) constitute a learning sample. This term
will be used in the following subsections.

5.3.3 Back-propagation algorithm

The learning algorithm applied to the NQL is the popular back-propagation
algorithm, refer to [Haykin, 1999|. This algorithm has two important phases.
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In the forward phase, an input vector is applied to the input layer and its
effect is propagated through the network layer by layer. At the output layer,
the error of the network is computed. In the backward phase, the error is
used in an error-correction rule to update the weights of the network starting
in the output layer and ending in the first hidden layer. Therefore, the error
is propagated backwards.

0
J
aspects. A first term is the local gradient (5]@ which is influenced by the
propagated error and the derivative of the activation function. The derivative
is calculated for the induced local field vj(l) computed in the forward phase.
The derivative represents a sensitivity factor which determines the direction
of search in the weight space. The second term is the output signal yl-(l_l)
transmitted through the weight. The final term is the learning rate a which
determines the learning speed. If a small rate is used, the convergence of the
NN to the desired function will require many iterations. However, if the rate
is too large, the network may become unstable and may not converge. For a
more detailed comprehension of back-propagation refer to Algorithm 3. The
algorithm has been adapted to the NQL network and uses as input a learning
sample k.

The correction rule used to update a weight w;’ is based on different

The activation function determines the capability of learning nonlinear
functions and guarantees the stability of the learning process. The activation
function that in the hidden layers is a sigmoidal function, in particular the
hyperbolic tangent function. This function is antisymmetric and accelerates
the learning process. The equation of this function can be seen in Algorithm 3
and Figure 5.3 shows its graph. The reason why sigmoidal functions are
generally used in neural networks is for its derivative. The maximum of
a sigmoidal derivative is reached when the local field is equal to 0. Since
the weight change depends on this derivative, its maximum change will be
performed when the function signals are in their midrange. According to
[Rumelhart et al., 1986] this feature contributes to stability. The activation
function of the output neuron is a linear function. This permits the @
function to reach any real value, since sigmoidal functions become saturated
to a maximum or minimum value.

A final aspect taken into account is the weight initialization. This opera-
tion is done randomly but the range of values of this random function is very
important. For a fast convergence, it is preferred that the activation function
operate in the non-saturated medium zone of its graph, see Figure 5.3. To
operate in this range, the number of inputs of each neuron and the maximum
and minimum values of these inputs has to be known. Therefore, according
to these parameters, the maximum and minimum values in which a weight
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Algorithm 3: Back-propagation algorithm adapted to NQL.

1. Initialize the weights w](l) randomly

2. For each learning sample k, composed by:

{st(k), ar(k), sp1(k), rev1(k)}

Repeat:
(I) Forward computation
For each neuron j of each layer [, compute:
a) the induced local field

ny(l—1)

= 2 w0

where, n,, (I — 1) is the number of neurons of layer [ — 1

b) the output signal y§l)(k)

y (k) = O (WP (k)

where, @) (x) is the activation function of layer [, and corresponds to,
- hyperbolic tangent in hidden layers: ¢(z) = 1.7159tanh(0.6667x)
- linear function in the output layer: p(z) =«
(IT) Error computation
a) the output of the NQL is found in the last layer L :
NQL(st(k), ar(k)) = 41" (k)
b) the desired NQL response d(k) is
d(k) = rega (k) + v - maza,,,, NQL(st41(k), amaz)
c¢) and the error is:
(k) = d(k) — NQL(sy(k), as(F))
(ITI) Backward computation
a) compute the local gradient of the output neuron:

5 (k) = e(k) g, (017 (k)

where, ¢ is the derivative of ¢ and it is equal to 1 (as ¢(x) = z)
b) For the rest of the neurons, starting from the last hidden layer,
compute the local gradient:

l l l+1 l+1
3V (k) = o op (v Zé< w!!

where, ¢]_; is equal to: ¢(x)" = 1.1439(1 — tanh?(0.6667x))
c¢) For all the weights of the NQL, update its value according to:

wl? = wl + a6 (k)y! " (k)

J?
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Figure 5.3: Sigmoidal function used as the activation function of the hid-
den layers. In particular, the function is antisymmetric with the form of a
hyperbolic tangent.

can be initialized is calculated. The weight initialization implies that the
maximum and minimum values of the input network signals must be known.
As these signals are the state and action, which depend on the problem to be
solved by reinforcement learning, a normalization, from -1 to 1, must be ap-
plied beforehand. Using this normalization, the weight initialization process
will not change if the NQL algorithm is applied in different problems.

5.4 Semi-Online Learning

The previous section presented the Neural-Q_learning approach, also known
as direct Q-learning. This approach has already been analyzed [Baird, 1995],
and demonstrated as being unstable in simple tasks. Therefore, the conver-
gence of Neural-Q_learning is not guaranteed and will depend on the appli-
cation. This instability has also been verified in a well-known generalization
problem, refer to Section 7.2. As will be described, the algorithm was not
able to converge in a considerable percentage of the experiments.

The problem Neural Networks have when used to generalize with an RL
algorithm is known as the interference problem, see Section 4.6.4. Interfer-
ence in NN occurs when learning in one zone of the input space causes loss
of learning in other zones. It is specially prevalent in online applications
where the learning process is done according to the states and actions vis-
ited rather than with some optimal representation of all the training data
[Weaver et al., 1998]. The cause of this problem is that two learning pro-
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cesses are actuating at the same time and each process is based on the other.
Q_learning uses the NN to update the () values and the NN computes the er-
ror of the network according to Q_learning the algorithm. This dual learning
makes the NQL algorithm very unstable, as has been shown. An important
problem is that each time the NN updates the weights, the whole function
approximated by the network is slightly modified. If the NQL algorithm
updates the network using learning samples, which are all located in the
same state/action zone, the non-updated state/action space will be also be
affected. The result is the state/action zones which have been visited and
learnt are no longer remembered. If the NQL algorithm is updating dif-
ferent state/action zones but with no homogeneity, the interaction between
Q_learning and the NN can cause instability.

The solution to the interference problem is the use of a Network which
acts locally and assures that learning in one zone does not affect other zones.
Approaches with Radial Basis Functions have been proposed to this end
[Weaver et al., 1998], however, this implies abandoning the high generaliza-
tion capability of a multilayer NN with back-propagation. The solution used
in this thesis proposes the use of a database of learning samples. This so-
lution was suggested in [Pyeatt and Howe, 1998], although to the author’s
best knowledge, there are no proposals which use it. The main goal of the
database is to include a representative set of visited learning samples, which
is repeatedly used to update the NQL algorithm. The immediate advantage
of the database, is the stability of the learning process and its convergence
even in difficult problems. Due to the representative set of learning sam-
ples, the Q_function is regularly updated with samples of the whole visited
state/action space, which is one of the conditions of the original Q_learning
algorithm. A consequence of the database is the acceleration of the learn-
ing. This second advantage is most important when using the algorithm in
a real system. The updating of the NQL is done with all the samples of the
database and, therefore, the convergence is achieved with less iterations.

It is important to note that the learning samples contained in the database
are samples which have already been visited. Also the current sample is al-
ways included in the database. The use of the database changes the concept
of online learning which Q_learning has. In this case, the algorithm can
be considered as semi-online, since the learning process is based on current
as well as past samples. For this reason the proposed reinforcement learn-
ing algorithm has been named Semi-Online Neural-Q)_learning algorithm
(SONQL).

Each learning sample, as defined before, is composed of the initial state
s¢, the action a;, the new state s;; and the reward r;,,. During the learning
evolution, the learning samples are added to the database. Each new sam-
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Figure 5.4: Representation of the learning sample database. The state and
action have only one dimension. The replacement rule for all the old samples
is also shown.

ple replaces older samples previously introduced. The replacement is based
on the geometrical distance between vectors (sg, a;, r¢41) of the new and old
samples. If this distance is less than a density parameter t for any old sam-
ple, the sample is removed from the database. The size of the database is,
therefore, controlled by this parameter which has to be set by the designer.
Once the algorithm has explored the reachable state/action space, a homoge-
neous, and therefore, representative set of learning sample is contained in the
database. Figure 5.4 shows a representation of the learning samples database
in a simple case in which the state and action are only one-dimensional.
The selection of s;, a; and r;11 to determine if an old learning sample
has to be removed has several reasons. The use of only s; and a;, and not
S¢+1 is due to the assumption that the dynamic of the environment is highly
deterministic. Therefore, it is assumed that if two samples have the same s;
and a; values, but different s,,1, it means that the environment may have
changed. It is preferable then to remove the old sample and retain the new
sample which should be more representative of the environment. Since the
application of the SONQL algorithm is for robot learning, it is assumed that
the stochastic transition which may occur is not significative. Finally, the
use of 7,41 is only to acquire more samples in the space zones in which the
reward changes. If s; and a; of the old and new samples are very close but
the reward is different, it is important to retain both samples. This will allow
to the algorithm to concentrate on these samples and learn the cause which
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make the reward different.

After including the database of learning samples, the difference between
a NQL iteration and a SONQL iteration must be distinguished. In each iter-
ation of the SONQL algorithm there will be as many NQL iterations as the
number of samples. Moreover, the number of SONQL iterations is equiva-
lent to the number of interactions with the environment. This justifies the
learning acceleration, since for each environment interaction, the SONQL al-
gorithm updates the NQL function several times. Finally, the improvements
caused by the database have not been theoretically demonstrated, although
this section has attempted to justify them. Only empirical results, see Chap-
ter 7, validate the proposal.

5.5 Action Selection

After updating the ) function with the learning samples, the SONQL al-
gorithm must propose an action. As the algorithm is based on Q_learning,
which is an off-policy algorithm, any policy can be followed. In practice, the
policy followed is the € — greedy policy, which was described in Section 5.2.
With probability (1 — €), the action will be the one which maximizes the
Q_function in the current state s;;1. Otherwise, an aleatory action is gen-
erated. Due to the continuous action space in the Neural-Q_function, the
maximization is accomplished by evaluating a finite set of actions. The ac-
tion space is discretized with the smallest resolution that the environment
is able to detect. In the case of a robot, the actions would be discretized
in a finite set of velocity values considered to have enough resolution for the
desired robot performance. As commented in Section 5.3.2, if more than one
action is present, the search of the optimal action can require a lot of com-
putation. In that case, the search of the greedy action is necessary to obtain
the Q(S, Gmaz) value. The search of the greedy action is one of the drawbacks
of continuous functions, as pointed out in [Baird and Klopf, 1993]. However,
the SONQL algorithm was designed to learn only one DOF of the robot
and, therefore, this problem is avoided in the results presented in this thesis.
Section 5.7 details the application of the SONQL algorithm.

5.6 Phases of the SONQL Algorithm

In this section, the Semi-Online Neural-Q_learning algorithm is broken down
in a set of phases. This break down allows a clearer comprehension of the
algorithm. Each phase is used to fulfill a simple task of the algorithm. The
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algorithm is structured sequentially starting with the observation of the envi-
ronment state and finishing with the proposal of a new action. The SONQL
algorithm is divided into four different phases which are graphically shown
in Figure 5.5.

Phase 1. LS Assembly. In the first phase, the current Learning Sample
(LS) is assembled. The LS is composed of the state of the system s,
the action a; taken from this state, the new state s;;; reached after
executing the action, and the reward r;,; received in the new state.
The action will usually be the one generated in the fourth phase of this
algorithm. However, in some applications an external system can mod-
ify the executed action. For instance, in the control architecture pro-
posed in Section 3.2, the action proposed by a higher priority behavior
can be selected instead of the one proposed by the SONQL algorithm.
Therefore, the real executed action must be observed. The last term
to complete the learning sample is the reward r;,1. Although in the
original RL problem the reward is perceived from the environment, in
this approach it has been included as a part of the algorithm. However,
it is computed according to a preprogrammed function which usually
uses the state s;;. This function has to be set by the programmer,
and will determine the goal to be achieved.

Phase 2. Database Update. In the second phase, the database is up-
dated with the new learning sample. As has been commented on, old
samples similar to the new one will be removed. Therefore, all the
samples contained in the database will be compared with the new one.

Phase 3. NQL Update. The third phase consists of updating the weights
of the NN according to Algorithm 3. For each sample of the database,
an iteration of the NQL algorithm with the back-propagation algorithm
is performed.

Phase 4. Action Selection. The fourth and final phase consists of propos-
ing a new action a;,1. The policy followed is the € — greedy, which was
described in Section 5.5.

5.7 SONQL-based behaviors

After having analyzed the SONQL algorithm, this section shows the appli-
cation for which it was designed. The goal of the SONQL algorithm is to
learn the state/action mapping of a reactive behavior, as introduced in Sec-
tion 3.1. An example of a reactive behavior is the target following behavior.
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In this case, the goal of the behavior is to generate the control actions which,
according to the position of the target, make the robot follow the target.
In this kind of application, the states and actions are usually continuous,
which causes the generalization problem. The use of the SONQL algorithm
permits the learning of the state/action mapping solving the generalization
problem. The SONQL algorithm makes Reinforcement Learning feasible for
this application.

The implementation of the reactive behavior with the SONQL algorithm
implies the accomplishment of an important condition. The behavior has to
generate a control action at the frequency of the high-level controller. This
means that the SONQL algorithm cannot stop the periodic execution of the
robot control system. To guarantee this constraint, the SONQL algorithm
is implemented with two different execution threads. The control thread has
a high priority and is executed at the frequency of the high-level controller.
This thread computes phases 1, 2 and 4 of the SONQL algorithm, that is
the ”LLS assembly”, the ”database update” and the ”action selection”. These
phases do not require a great deal of computation and are used to memorize
the new learning sample and to generate a new control action. The second
thread is the learning thread, which contains phase 3 and requires more
computation. This thread has a lower priority and will be executed during
all the available time until all the samples of the database have been updated.
Therefore, the available computational resources will be used to update the
NQL function. Figure 5.6 shows the SOQNL algorithm arranged with these
two threads.

As in all Reinforcement Learning problems, the application of the SONQL
algorithm in a behavior implies the identification of the environment. Every-
thing external to the algorithm having an influence over the observed state
is considered as the environment. The observed state will depend on the
current state and the executed control action. This action is generated by
the hybrid coordinator which can or cannot use the action proposed by the
SONQL algorithm. For this reason, and taking advantage of the off-policy
feature of Q_learning, this final action is feedback to the SONQL algorithm,
see Figure 5.7. Once the final action has been generated, the low-level con-
troller will actuate over the robot which will move accordingly. These sys-
tems are considered as the environment of the RL problem. Also, included in
the environment, a perception module will be responsible for observing the
environment state which will, in turn, be sent to the SONQL algorithm.

It is very important to note that the Q_learning theory is based on the
assumption that the environment can be modelled with a FMDP. The most
important constraint of this assumption is that the state contains a com-
plete observation of the environment. Therefore, the state must contain all
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Figure 5.7: Diagram of the SONQL algorithm acting as a behavior, respect
to the robot control system.

the variables needed to predict the new state without using past information.
An easy mistake when applying RL to a real system is to not provide the com-
plete state, which breaks the theoretical assumptions and makes the learning
impossible. It is also very common to not observe the state correctly and
this also impedes the learning. The importance of the correct observation
of the Markovian state is one of the biggest problems of RL together with
the generalization problem. This issue will be covered in the experimental
results shown in Chapter 7.

As has been described, the implementation of the reactive behaviors can
be accomplished using the SONQL algorithm, which contains the state/action
mapping. However, a behavior response, as defined is Section 3.2, is also com-
posed by an activation level. The SONQL algorithm does not include this
activation level, and has to be manually implemented. For example, in the
case of the target following behavior, the activation level will be a; = 1 if the
target is detected, otherwise it will be a; = 0. Therefore, the implementa-
tion of a SONQL-based behavior requires the definition of the reinforcement
function and the activation level function.

Another implementation aspect is the uncoupling of the degrees of free-
dom (DOF) of the robot. For each DOF of the robot, an independent
SONQL algorithm is used. This greatly improves the real-time execution
of the SONQL algorithm. The searching of the a,,,, action is accomplished
by discretizing the action space. If more than one action is present, the num-
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Figure 5.8: Example of the behavior-based control layer with two SONQL-
based behaviors.

ber of combinations will be very high and the algorithm will need a number
of computations to find the greedy action. It must be noted that, this greedy
action has to be found in the fourth phase of the algorithm and for each learn-
ing sample learnt in phase two. The use of more than one action with the
SONQL algorithm is an important problem to ensure the real-time execution
of the algorithm. The adopted solution consists of having a different SONQL
for each DOF with each one is independently learnt. This could be a disad-
vantage. However, the simultaneous learning of two DOF's in practice would
make the correct observation of the Markovian state very difficult, as will be
shown in Section 7.1. This means that the limitation of the SONQL algo-
rithm with multiple actions is not a basic necessity in most robotics tasks.
Figure 5.8 shows an example of the behavior-based control layer in which
there are two SONQL-based behaviors and two manually tuned behaviors.
Two different learning algorithms have been used for each SONQL behavior.
As already commented on, the state has to contain all the necessary vari-
ables to predict the new state. It is very important to simplify the state
information as much as possible. For example, the target following behavior
will need the position of the target with respect to the robot. If the target is
detected through a video camera, it is necessary to reduce the pixel informa-
tion to a simple value. For each DOF, this value is calculated according to the
position of the target in the image or the size of the target. Figure 5.9 shows
how the target position has been translated in three variables { f., f,, f-}.
Finally, the reinforcement function must be designed in order to point
out the goal of the behavior. Although any reward value can be assigned to
a state, only a finite set of values are used in the SONQL-based behaviors:
{—1,0,1}. Figure 5.9 shows the reinforcement functions {r,,r,,r.} for each
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Figure 5.9: State {f., fy, f.} and reward {r,,r,,r.} variables in a target
following behavior.

DOF. The simplicity of the function reduces the necessary knowledge of the
designer to implement a new behavior. Section 7 demonstrates the facility
and feasibility of this reinforcement function definition.

5.8 Discussion

The proposed SONQL algorithm has been demonstrated to be a feasible
approach to learn each DOF of a robot behavior. The experimental results
will be analyzed in Chapter 7. However, it is important to summarize the
theoretical aspects in which this approach is based. The SONQL is based on
Q_learning and uses a Neural Network and a database of learning samples
to solve the generalization problem. The use of Q_learning is because its
learning procedure is off-policy. Another feature is that it uses the action-
value function, (), from which the optimal policy is easy to extract. The
reason a Neural Network was used is for its high generalization capability.
However, these two components, Q_learning and NN, contradict some of
the convergence proofs explained in Section 4.6. First, the convergence of
linear approximators combined with off-policy methods is not guaranteed.
Indeed, there are counterexamples which show the divergence. In addition,
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NN is a non-linear function approximator for which the convergence is also
not guaranteed. The large number of successful examples which have been
demonstrated in practice are the only reasons to justify the selection of these
techniques.

Besides convergence proofs, Neural Networks suffer from the interference
problem when they are used as function approximators with RL algorithms
as explained in Section 4.6.4. To solve this problem, the SONQL algorithm
uses the database of learning samples. The goal of this database is to ac-
quire a representative set of samples,which continually update the NN. The
homogeneity which the database provides is able to solve the interference
problem. In addition, this database accelerates the learning process since
several updates can be performed at each environment iteration.

The main drawback of the SONQL algorithm is the searching of greedy
actions. As has been described in Section 5.5, greedy actions are found by
discretizing the action space. From a control point of view, this is not a
problem if the discretization is fine enough. However, the necessary compu-
tation increases if several continuous actions are present. This problem does
not appear in the implementation of the SONQL algorithm in a reactive be-
havior. For each DOF of the robot, an independent SONQL algorithm is
used. Since the main goal of this approach was to design an RL algorithm
able to learn robot behaviors, this drawback was not considered, although it
represents one of the future works of this dissertation.

Finally, the use of the SONQL in a behavior requires the definition of
a set of parameters: the NN configuration (number of layers and neurons),
the learning rate «, the discount factor ~, the exploration probability €, the
database density parameter ¢, the reinforcement function r;(s) and the acti-
vation level function a;. Also, the goal to be accomplished by the behavior
has to be analyzed, assuring that the state is completely observed. A first
conclusion of the SONQL-based behaviors could induce a very complex tech-
nique for solving a much simpler problem. However, it has to be noted that
most of these parameters will depend on the robot’s dynamics and, there-
fore, they will be equal for other behaviors. These invariant parameters are:
the NN configuration (number of layers and neurons), the learning rate, the
discount factor, the exploration probability and the database density param-
eter. Consequently, the implementation of a new behavior will require only
the design of the reinforcement function, the activation level function and
the analysis of the behavior task. These two functions, as has been shown,
are very simple and intuitive.



Chapter 6

URIS’ Experimental Set-up

The experimental set-up designed to work with the Autonomous Underwa-
ter Vehicle URIS is compounded of a water tank, two sensory systems, a
distributed software application and the robot itself. The overall set-up is
shown in Figure 6.1. The correct operation of all these systems in real-time
computation allows the experimentation and, therefore, the evaluation of the
proposed SONQL behaviors and hybrid coordination system. The purpose
of this chapter is to report the characteristics of these systems and their in-
teractions. First, the main features of the robot are given. These include the
design principles, the actuators and the on board sensors. The two sensory
systems, specially designed for these experiments, are then presented. The
first of these systems is the target detection and tracking system. The second
is the localization system which is used to estimate the three-dimensional po-
sition, orientation and velocity of the vehicle inside the water tank. Finally,
the software architecture, based on distributed objects, is described.

6.1 Robot Overview

Underwater Robotic Intelligent System is the meaning of the acronym URIS.
This Unmanned Underwater Vehicle (UUV) is the result of a project started
in 2000 at the University of Girona. The main purpose of this project was
to develop a small-sized underwater robot with which to easily experiment
in different research areas like control architectures, dynamics modelling and
underwater computer vision. Another goal of the project was to develop an
Autonomous Underwater Vehicle (AUV) with the required systems, hardware
and software as the word autonomous implies. Other principles are flexibility
in the tasks to be accomplished and generalization in the developed systems.

113
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Figure 6.1: URIS’ experimental environment.

6.1.1 Design

The design of this vehicle was clearly influenced by its predecessor Garbi UUV
[Amat et al., 1996], although some mechanical features were redesigned. The
shape of the vehicle is compounded of a spherical hull surrounded by various
external elements (the thrusters and camera sensors). The hull is made of
stainless steel with a diameter of 350mm, designed to withstand pressures
of 3 atmospheres (30 meters depth). On the outside of the sphere there
are two video cameras (forward and down looking) and 4 thrusters (2 in X
direction and 2 in Z direction). All these components were designed to be
water-proof, with all electrical connections made with protected cables and
hermetic systems. Figure 6.2 shows a picture of URIS and its body fixed
coordinate frame. Referred to this frame, the 6 degrees of freedom (DOFs)
in which a UUV can be moved are: surge, sway and heave for the motions in
X, Y and Z directions respectively; and roll, pitch and yaw for the rotations
about X, Y and Z axes respectively.

URIS weighs 30 Kg., which is approximately equal to the mass of the
water displaced and, therefore, the buoyancy of the vehicle is almost neutral.
Its gravity center is in the Z axis, at some distance from below the geometrical
center. The reason for this is the distribution of the weight inside the sphere.
The heavier components are placed at the bottom. This difference between
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Figure 6.2: URIS’ AUV, a) picture b) schema.

the two centers entails a stability in both pitch and roll DOFs. The further
down the gravity center is, the higher the torque which has to be applied
in the X or Y axes to incline the robot a certain value in roll or pitch,
respectively.

The movement of the robot is accomplished by its 4 thrusters. Two of
them, labelled X7 and X2 in Figure 6.2b, exert a force in X axis and a torque
in Z axis. The resultant force of both trusters is responsible for the surge
movement of the vehicle, and the resultant torque is responsible for the yaw
movement. Analogously, the other two thrusters, Z1 and Z2, exert a force
in Z axis and a torque in Y axis. The resultant force is responsible for the
heave movement of the vehicle, and the resultant torque is responsible for
the pitch movement. In this case, the pitch movement is limited to only a
few degrees around the stable position, since the gravity and buoyancy forces
cause a high stabilization torque compared to that of the thruster. Therefore,
only 4 DOFs can be actuated leaving the sway and roll movements without
control. Like the pitch DOF, the roll DOF is stabilized by the gravity and
buoyancy forces. The sway movement is neither controlled nor stabilized by
any force, which makes it sensitive to perturbations like water currents or
the force exerted by the umbilical cable. Hence, URIS is a nonholonomic
vehicle.

The inside of the hull was arranged to contain all the necessary equip-
ment for an autonomous system. First of all, the lower part of the sphere
contains various battery packages conceived to power the vehicle for a period
of one hour. A second level, above the batteries, contains the drivers of the 4
thrusters. Some electronic boards, mainly sensor interfaces, are also included
in this level. In the third level, all the hardware components and electrical
connections among all systems is found. The hardware architecture is com-
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pounded of two embedded computers. One computer is mainly in charge of
the control of the robot and the other is used for image processing and other
special sensors. The communication between computers is done through
an ethernet network and the communication between these computers and
sensors/actuators is done through other interfaces: serial lines, analog and
digital inputs and outputs, and video frame grabbers. All these devices, ex-
cept the thruster drivers, are powered by a DC-DC converter which supplies
different voltages. The thruster drivers are directly powered by some battery
packages specifically used for that purpose.

Besides the systems located in the robot, URIS’ experimental set-up is
also compounded of external systems, making some kind of connection in-
dispensable. For this purpose, an underwater umbilical cable is used. Three
different types of signals are sent through this cable. First, two power signals
are sent to the robot to supply the power for the thrusters and the power for
all the electronics independently. The second type of signal is an ethernet
connection, connecting the on-board and off board computers. Finally, two
video signals from the two on board cameras are also transmitted. Different
reasons justify the use of this umbilical cable. First, the use of external bat-
teries increases the operation time of the robot up to the whole journey. The
second reason is to help in the understanding of the experiments, allowing a
real-time supervision of them through data and video monitoring. The third
reason is to allow the computation of a part of the software architecture out
board, such as the target tracking (Section 6.2) and the localization system
(Section 6.3). The first and second reasons are aids in the development of any
new experiment. The third reason allows us to confront some technological
problems using external hardware and computational resources.

6.1.2 Actuators

As commented on above, URIS has four actuators to move the vehicle in four
DOFs. Each actuator or thruster is equipped with a DC motor, encapsulated
in a waterproof hull and connected, through a gear, to an external propeller.
Around the propeller, a cylinder is used to improve the efficiency of the water
jet. The power of each thruster is 20 Watts carrying out a maximum thrust
of 10 Newtons at 1500 rpms. The control of the DC motor is accomplished
by a servoamplifier unit. This unit measures the motor speed with a tacho-
dynamo and executes the speed control according to an external set-point.
The unit also monitors the values of the motor speed and electric current.
Communication between the onboard computer and each motor control unit
is done through analog signals.
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6.1.3 Sensors

The sensory system is one of the most important parts in an autonomous
robot. The correct detection of the environment and the knowledge of the
robot state, are very important factors in deciding how to act. URIS has a
diverse set of sensors. Some of them are used to measure the state of the robot
and others to detect the environment. Hereafter the main characteristics and
utility of each sensor are commented upon.

e Water Leakage Detection. In order to detect any water leakage,
there are several sensors which use the electric conductivity of the water
to detect its presence. These sensors are located inside each thruster
case as well as inside the lower part of the hull. Any presence of water
is immediately sited before valuable systems can be damaged. The
interface of the sensors is through digital signals.

e Thruster monitors. As commented on in Section 6.1.2, each thruster
is controlled by a control unit which monitors the thruster’s rotational
speed and its electric current. These two analog measures can be used
to detect faults. For instance, if the current is much higher or much
lower than in normal conditions, it may mean that the helix has been
blocked or has been lost. In addition, knowledge of the thruster speeds
can be used to calculate the thrust and, using the dynamics model of
the vehicle , to estimate the acceleration, velocity and position of the
vehicle. Obviously, the inaccuracies of the model, the external pertur-
bations and drift of the estimations would entail to a rough prediction,
but combining it with another navigation sensor, a more realistic esti-
mation can be obtained.

e Inertial Navigation System. An inertial unit (model MT9 from
Xsens) is also placed inside the robot. This small unit contains a 3D
accelerometer, a 3D rate-of-turn sensor and a 3D earth-magnetic field
sensor. The main use of this sensor is to provide accurate real-time ori-
entation data taken from the rate-of-turn sensor. The accelerometers
and the earth-magnetic field sensors provide an absolute orientation
reference and are used to completely eliminate the drift from the inte-
gration of rate-of-turn data. From this sensor then, the roll, pitch and
yaw angles can be obtained. The interface with the sensor is through
the serial line.

e Pressure sensor. This sensor measures the state of the robot. In
this case, the pressure detected by the sensor provides an accurate
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measurement, of the depth of the robot. Due to the electromagnetic
noise, the sensor signal needs hardware and software filtering and also
data calibration.

e Forward and Downward looking video cameras. Unlike previ-
ous sensors, the video cameras provide detection of the environment.
URIS has two water-proof cameras outside the hull. One of them is
a color camera looking along the positive X axis, see Figure 6.2. The
use of this camera is to detect targets, as will be shown in Section 6.2.
Another use is for teleoperation tasks. The second camera is a black-
and-white camera looking along the positive Z axis. The main utility of
this camera is the estimation of the position and velocity of the vehicle.
For this purpose, two different approaches have been considered. In the
first approach, the motion estimation is performed from images of the
real underwater bottom using visual mosaicking techniques. This lo-
calization system is one of the research lines of the underwater robotics
group [Garcia et al., 2001]. The second approach was inspired by the
first and was developed to work specifically in the URIS experimental
set-up. It is a localization system for structured environments based
on an external coded pattern. For further information on both systems
refer to Section 6.3.

e Sonar transducer. This sensor is used to detect the environment.
The sonar transducer (Smart sensor from AIRMAR) calculates the dis-
tance to the nearest object located in the sonar beam. The transducer
is placed outside the hull looking in the direction in which objects have
to be detected. A typical application is to point the beam at the bot-
tom to detect the altitude of the vehicle. The interface of this sensor
is through a serial line.

The sensors used in the experiments presented in this dissertation are
the water leakage sensors and the two video cameras. The following sections
detail the computer vision systems which were developed to extract useful
information from the camera images. The forward looking camera was used
to detect a moving target in the environment, and the downward looking
camera to estimate the state (position and velocity) of the robot inside the
water tank.

6.2 Target Tracking

One of the sensory systems developed for the experimental set-up of URIS
is the target detection and tracking system. This vision-based application



6.2 Target Tracking 119

Figure 6.3: URIS in front of the artificial target.

has the goal of detecting an artificial target by means of the forward looking
camera. This camera provides a large underwater field of view (about 57°
in width by 43° in height). This system was designed to provide the control
architecture with a measurement of the position of an object to be tracked
autonomously. Since the goal of this dissertation is to test control and learn-
ing systems, a very simple target was used. The shape selected for the target
was a sphere because it has the same shape from whatever angle it is viewed.
The color of the target was red to contrast with the blue color of the water
tank. These simplifications allowed us to use simple and fast computer vision
algorithms to achieve real-time (12.5 Hz) performance. Figure 6.3 shows a
picture of the target being observed by URIS.

The procedure of detecting and tracking the target is based on image
segmentation. Using this simple approach, the relative position between the
target and the robot is found. Also, the detection of the target in subsequent
images is used to estimate its relative velocity. The following subsections
detail the image segmentation algorithm, the coordinate frame in which the
position is expressed and the velocity estimation.

6.2.1 Image Segmentation

The detection of the target is accomplished by color segmentation. This
technique is very common in computer vision and consists of classifying each
pixel of the image according to its color attributes. The pixels which satisfy
the characteristics of the target are classified as part of it. In order to express
the color of an object, the HSL (Hue, Saturation and Luminance) color space
is usually preferred over the standard RGB (Red, Green and Blue). Within
the HSL color space, the hue and saturation values, which are extracted from
the RGB values, define a particular color. Therefore, the color of an object is
defined by a range of values in hue and saturation, and the segmented image



120 Chapter 6. URIS’ Experimental Set-up

vertical histogram
Jain

search
window

e

horizontal histogram

image

b)

Figure 6.4: Image segmentation, a) real image with the detected target b)
scheme used in the segmentation process.

is the one containing the pixels within the hue and saturation ranges.

In this application, the segmentation is carried out in two phases. The
first phase consists of finding just a portion of the target within the whole
searched image. It is important to ignore pixels which, due to noise or re-
flections, have a similar color to the target. Therefore, restrictive hue and
saturation ranges are applied. The consequence is an image in which only the
most saturated portions of the target appear. After the first segmentation,
two histograms of the segmented pixels in the horizontal and in the vertical
axes of the searched image are calculated. From the two histograms, the
maximum values are found. These two coordinates constitute the starting
point which is considered to belong to the target. In Figure 6.4, the seg-
mentation process in a real image and a scheme of the image, in which the
histograms are represented, is shown.

After the computation of the starting point, the second segmentation
is carried out. In this case, the segmentation is less severe than the first.
What that means is, besides the pixels belonging to the target, other pixels
of the image can also be segmented. This segmentation is used to find the
portions of the target not detected by the previous one. Using the second
segmentation, a region growing process is applied. The growing process is
begun at the starting point and will expand the target area until no more
segmented pixels are connected between them. At this point, the target
has been completely detected, see Figure 6.4a. The position of the target is
considered to be the center of the rectangle which contains the target. The
size of the target is calculated according to the mean value of the two sides
of the rectangle.

The effect of the first segmentation guarantees the correct location of
the target even in the presence of noise. On the other hand, the second
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segmentation guarantees the correct segmentation of portions of the target
which may be affected by shadows which reduce the saturation of the color.
Finally, instead of searching for the target in the whole image, a smaller
window is used, see Figure 6.4b. This window is centered on the position
found in the previous image. In case the target is not found inside the
window, the whole image is explored.

6.2.2 Target Normalized Position

Once the target has been detected, its relative position with respect to the
robot has to be expressed. The coordinate frame which has been used for the
camera has the same orientation as the URIS coordinate frame, but is located
in the focal point of the camera, see Figure 6.5. Therefore, the transformation
between the two frames can be modelled as a pure translation.

The X coordinate of the target is related to the target size detected by
the segmentation algorithm. A normalized value between -1 and 1 is linearly
assigned to the range comprised between a maximum and minimum target
size respectively. It is important to note that this measure is linear with
respect to the size, but non-linear with respect to the distance between the
robot and the target measured in X axis. In Figure 6.5 the f, variable is
used to represent the X coordinate of the target.

Similarly, the Y and Z coordinates of the target are related to the hori-
zontal and vertical positions of the target in the image, respectively. However,
in this case, the values represented by the f, and f, variables do not measure
a distance, but an angle. The f, variable measures the angle from the center
of the image to the target around the Z axis. The f, variable measures the
angle from the center of the image to the target around the Y axis. In this
case, the angles are also normalized from -1 to I as it can be seen in the
Figure 6.5.

As has been described, the coordinates of the target are directly extracted
from the position and size found in the segmentation process. This means
that the calibration of the camera has not been taken into account. Therefore,
the non-linear distortions of the camera will affect the detected position.
Moreover, the measures of the f, variable are non-linear with the distance
to the target in X axis. These non-linear effects have consciously not been
corrected to increase the complexity with which the SONQL-based behavior
will have to deal.
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Figure 6.5: Coordinates of the target in respect with URIS.

6.2.3 Velocity Estimation

In order to properly follow the target, the measure of its relative posi-
tion is not enough. An estimation of its relative velocity is also neces-
sary. To calculate this velocity, the f,, f, and f, variables are differenti-
ated from the sequence of images. In particular, a first order Savitzky-Golay
[Savitzky and Golay, 1964] filter, with a first order derivative included, is ap-
plied to these signals. The result of this operation is the estimation of %= dry

dt > dt
and Cg—tz. Due to the filtering process, a small delay is added to these signals

with respect to the ideal derivatives. However, these delays do not drastically
affect the performance of the experiments, as will be shown in Chapter 7.
Figure 6.6 shows the movement of the target in Y axis. The target was first
moved to the right and then twice to the left. The estimated velocity is also
shown.

6.3 Localization System
Localization is the estimation of the vehicle’s position and orientation with

respect to a global coordinate frame. A localization system is needed when
tasks involving positioning have to be carried out. Moreover, an estima-
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Figure 6.6: Normalized angular position and velocity of the target in Y axis.

tion of the vehicle’s velocity is usually required by the low-level controller.
The localization of an underwater vehicle is a big challenge. The detec-
tion of the vehicle’s speed with respect to the water is very inaccurate and
not reliable due to water currents. Electromagnetic waves are strongly at-
tenuated when travelling through water, which also dismisses the use of a
GPS. Main techniques used for underwater vehicle localization are inertial
navigation systems, and acoustic and optical sensors. Among these tech-
niques, visual mosaics have greatly advanced over the last few years offer-
ing, besides position, a map of the environment [Negahdaripour et al., 1999,
Gracias and Santos-Victor, 2000]. The general idea of visual mosaicking is to
estimate the movement of the vehicle by recognizing the movement of some
features on the ocean floor. An onboard downward-looking camera is used
to perceive these features. Main advantages of mosaicking with respect to
inertial and acoustic sensors are lower cost and smaller sensor size. Another
advantage is that the environment does not require any preparation, in con-
trast with some technologies which use a network of acoustic transponders
distributed in the environment. However, position estimation based on mo-
saics can only be used when the vehicle is performing tasks near the ocean
floor and requires reasonable visibility in the working area. There are also
unresolved problems like motion estimation in presence of shading effects,
presence of "marine snow” or non-uniform illumination. Moreover, as the
mosaic evolves, a systematic bias is introduced in the motion estimated by
the mosaicking algorithm, producing a drift in the localization of the robot
[Garcia et al., 2002].
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In the experimental set-up used for URIS” AUV, a vision-based localiza-
tion system was developed. The system was inspired by visual mosaicking
techniques [Garcia et al., 2001]. However, simplifications were made in order
to have a more accurate and drift free system. Instead of looking at the
unstructured ocean floor of a real environment, a coded pattern was used.
This pattern has the same size as the water tank and was placed on its bot-
tom. The pattern contains landmarks which can be easily tracked and, by
detecting its global position, the localization of the vehicle is accomplished.

The localization system provides an estimation of the three-dimensional
position and orientation of URIS referred to in the tank coordinate frame.
In addition, an estimation of the vehicle’s velocities, including surge, sway,
heave, roll, pitch and yaw, is computed. The algorithm is executed in real-
time (12.5 Hz) and is entirely integrated in the controllers of the vehicle.

In the next subsections, detailed information about the localization sys-
tem is given. First, the projective model of the downward-looking camera
is detailed. Then, the design and main features of the coded pattern are
described. After describing the main components of the system, the different
phases found in the localization algorithm are sequentially explained. Fi-
nally, some of the results and experiments concerning the accuracy of the
system are presented.

6.3.1 Downward-Looking Camera Model

The camera used by the localization system is an analog B/W camera. It pro-
vides a large underwater field of view (about 57° in width by 43° in height).
We have considered a pinhole camera model, in which a first order radial dis-
tortion has been considered. This model is based on the projective geometry
and relates a three-dimensional position in the space with a two-dimensional
position in the image plane, see Figure 6.7. The equations of the model are
the following:

CX . (l'p — U0)<1 + kl'l"2)

e i (6.1)
CY . (yp — UO)(l + k1T2>
o = i (6.2)

74:\/<az:pl;uo)2_i_ (ypk_vvo)>2 (6.3)

where, (“X,“Y,Y Z) are the coordinates of a point in the space with respect
to the camera coordinate frame {C'} and (‘z, ,’y,) are the coordinates, mea-
sured in pixels, of this point projected in the image plane. And, as to intrinsic
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Figure 6.7: Camera projective geometry.

parameters of the camera, (‘ug,’vy) are the coordinates of the center of the

image, (ky,k,) are the scaling factors, f is the focal distance and k; is the
first order term of the radial distortion. Finally, r is the distance, in length
units, between the projection of the point and the center of the image.

The calibration of the intrinsic parameters of the camera was done off-line
using several representative images. In each of these images, a set of points
were detected and its correspondent global position was found. Applying the
Levenberg-Marquardt optimization algorithm [Gill et al., 1981], which is an
iterative non-linear fitting method, the intrinsic parameters were estimated.
Using these parameters, the radial distortion can be corrected, as can be seen
in Figure 6.8. It can be appreciated how radial distortion is smaller for the

pixels which are closer to the center of the image (fug, vg).

6.3.2 Coded Pattern

The shape of the tank is a cylinder 4.5 meters in diameter and 1.2 meters
in height. This environment allows the perfect movement of the vehicle
along the horizontal plane and a restricted vertical movement of only 30
centimeters.

The main goal of the pattern is to provide a set of known global positions
to estimate, by solving the projective geometry, the position and orientation
of the underwater robot. The pattern is based on grey level colors and only
round shapes appear on it to simplify the landmark detection, see Figure 6.9.
Each one of these rounds or dots will become a global position used in the
position estimation. Only three colors appear on the pattern, white as back-
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Figure 6.8: Acquired image in which the center of the dots has been marked
with a round. After correcting the radial distortion the center of the dots
has changed to the one marked with a cross.

ground, and grey or black in the dots. Again, the reduction of the color space
was done to simplify the dot detection and to improve the robustness. The
dots have been distributed throughout the pattern following the X and Y
directions. All lines parallel to the X and Y axis are called the main lines
of the pattern, see Figure 6.10. This term will be useful in the description of
the algorithm used for localization, refer to Section 6.3.3.

The pattern contains some global marks which encode a unique global
position. These marks are recognized by the absence of a dot surrounded by
8 dots, see Figures 6.9 and 6.10a. From the 8 dots surrounding the missing
dot, 3 are used to find the orientation of the pattern and 5 to encode the
global position. The 3 dots marking the orientation appear in all the global
marks in the same position and with the same colors. In Figure 6.10a, these
3 dots are marked with the letter "0”. In Figure 6.10b it can be seen how,
depending on the position of these 3 dots, the direction of the X and Y axis
can be detected.

The global position is encoded in the binary color (grey or black) of the
5 remaining dots. Figure 6.10a shows the position of these 5 dots and the
methodology in which the global position is encoded. The maximum num-
ber of positions is 32. These global marks have been uniformly distributed
throughout the pattern. A total number of 37 global marks have been used,
repeating 5 codes in opposite positions on the pattern. The zones of the
pattern that do not contain a global mark, have been filled with alternately
black and grey dots, which help the tracking algorithm, as will be explained
in Section 6.3.3.



6.3 Localization System 127

oooooooooooooooo
0000000000000
eeone eececeee
ee00e oo eoe
eevecesece eece

©0000000000000000000
ecsenvececececececene
0000000000000 00000

eoe eoce eoce

)ececence
0000000000000
. sece .

Figure 6.9: Coded pattern which covers the bottom of the water tank. The
absence of a dot identifies a global mark.
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Figure 6.10: Features of the pattern, a) the main lines of the target and
details about the absolute marks are shown, b) the three orientation dots of
a global mark indicate the direction of the X and Y axis.
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In order to decide the distance between two neighboring dots, several as-
pects were taken into account. A short distance would represent a higher
number of dots appearing in the image and, therefore, a more accurate esti-
mation of the vehicle’s position. But, if a lot of dots appeared in the image
while the vehicle was moving fast, dot tracking would be very hard or even
impossible. On the other hand, a long distance between two neighboring
dots would produce the opposite effect. Therefore, an intermediate distance
was chosen for this particular application. The aspects which influenced the
decision were the velocities and oscillations of the vehicle, the camera’s field
of view and the range of depths in which the vehicle can navigate. The dis-
tance between each neighboring dot finally chosen was 10 cm. The range of
distances between the center of the robot and the pattern, used in the design
are from 50 cm to 80 cm and the minimum number of dots which must be
seen is 6, as will be described in the next subsection.

6.3.3 Localization Procedure

The vision-based localization algorithm was designed to work at 12.5 frames
per second, half of the video frequency. Each iteration requires a set of
sequential tasks starting from image acquisition to velocity estimation. The
next subsections describe the phases which constitute the whole procedure.

Pattern Detection

The first phase of the localization algorithm consists of detecting the dots
in the pattern. To accomplish this phase, a binarization is first applied to
the acquired image, see Figure 6.11a and 6.11b. Due to the non-uniform
sensitivity of the camera in its field of view, a correction of the pixel grey
level values is performed before binarization. This correction is based on the
illumination-reflectance model [Gonzalez and Woods, 1992] and provides a
robust binarization of the pattern also under non-uniform lighting conditions.

Once the image is binarized, the algorithm finds the objects in the image.
This task is accomplished by an algorithm which scans the entire image and
for each pixel that has white color, it applies a region growing process. This
process expands the region until the boundaries of the objects are found.
Some features of the object, like the surface, the center, the boundaries and
the aspect ratio, are calculated. Finally, the color of the pixels belonging to
the object is changed to black and the scanning process is continued until
no more white pixels are found. Some of the objects which do not fulfill a
minimum and maximum surface, or do not have a correct aspect ratio, are
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Figure 6.11: Detection of the pattern: a) acquired image, b) binarization, c)
detection of the position, size and color of the dots.
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dismissed. The other objects are considered to be one of the dots in the
pattern.

Finally, for each detected dot and using the original image, the algorithm
classifies its grey level, labelling them in three groups: grey, black or unknown.
In the case of the label being unknown, the dot will be partially used in
following phases, as Section 6.3.3 details. Figure 6.11c shows the original
image with some marks on the detected dots. The rectangle containing each
dot shows its boundaries. The color of the small point centered in each dot
indicates the color which has been detected. If the color is white, the dot has
been classified as black, if the color is dark grey the dot is grey, and if the
color is light grey the dot is unknown. In the image shown in Figure 6.11c,
only black and grey dots were found.

Dots Neighborhood

The next phase in the localization system consists of finding the neighbor-
hood relation among the detected dots. The goal is to know which dot is
next to which other dot. This will allow the calculation of the global position
of all of them, starting from the position of only one. The next phase will
consider how to find this initial position.

The first step in this phase is to compensate the radial distortion which
affects the position of the detected dots in the image plane. Figure 6.8 has
already shown the effect of the correction of the radial distortion. Another
representation of the same image is shown in Figure 6.12a. In this Figure, the
dots before the distortion compensation are marked in black and after the
compensation in grey. The new position of the dots in the image is based on
the ideal projective geometry. This means that lines in the real world appear
as lines in the image. Using this property, and also by looking at relative
distances and angles, the two main lines of the pattern are found. These
two lines can also be seen in the figure. The two main lines of the pattern
indicate the directions of the X and Y axis, although the correspondence
between each main line and each axis it is not known. To detect the main
lines, at least 6 dots must appear in the image.

The next step consists of finding the neighborhood of each dot. The
algorithm starts from a central dot and goes over the others according to
the direction of the main lines. To assign the neighborhood of all the dots,
a recursive algorithm was developed which also uses distances and angles
between dots. After assigning all the dots, a network joining all neighboring
dots can be drawn (see Figure 6.12b).
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a)

Figure 6.12: Finding the dots neighborhood: a) main lines of the pattern, b)
extracted neighborhood.

Dots Global Position

Once the neighborhood of all the dots has been found, the global position of
these points is required. Two methodologies are used to identify the global
position of a subset of them. After these initial positions are known, the
neighborhood network is used to calculate the position of all of these points.

The first methodology is used when a global mark is detected, see Fig-
ure 6.12b. The conditions for using a global mark are that a missing dot
surrounded by 8 dots appears on the network and the color of these 8 dots
is recognizable. In this case, the algorithm checks first the three orientation
dots to find how the pattern is oriented. As showed in Figure 6.10b, the
algorithm has to check how the pattern is oriented and, therefore, what are
the directions of the X and Y axis. From the four possible orientations,
only one matches the three colors. After that, the algorithm checks the five
dots which encode a memorized global position, refer also to Figure 6.10a.
Once the orientation and position of the global mark has been recognized,
the algorithm calculates the position of all the detected dots.

The second methodology is used when no global marks appear on the
image, or when there are dots of the global mark which have the color la-
bel unknown. It consists of tracking the dots from one image to the next.
The dots which appear in a very small zone in two consecutive images are
considered to be the same and, therefore, the global position of the dot is
transferred. Refer to Figure 6.13 to see a graphical explanation of the track-
ing process. The high speed of the localization system, compared with the
slow dynamics of the underwater vehicle, assures the tracking performance.
The algorithm distinguishes between grey and black dots, improving the ro-
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Figure 6.13: Tracking of dots: a) field of view of images k£ and k — 1, b)
superposition of the dots detected in images k and k— 1. Dots with the same
color which appear very close in two sequential images are considered to be
the same dot.

bustness of the tracking. Moreover, since different dots are tracked at the
same time, the transferred positions of these dots are compared, using the
dot neighborhood, preventing possible mistakes.

Position and Orientation Estimation

Once the global positions of all the detected dots are known, the localization
of the robot can be carried out. Equation 6.4 contains the homogeneous
matrix which relates the position of one point (“X;,“Y;,“ Z;) with respect
to the camera coordinate frame {C'}, with the position of the same point
with respect to the water tank coordinate frame {T'}. The parameters of
this matrix are the position (¥ X¢,” Yo,T Zo) and the rotation matrix of
the camera with respect to {T'}. The nine parameters of the orientation
depend only on the values of roll (¢), pitch () and yaw (¢)) angles. For
abbreviation, the cosine and sinus operations have been substituted with
7¢” and " s” respectively.

TX; cpcl)  —spep + cpshsd  sso + cpsbep T X “X;

Ty, | | svcd  ced + shslsd  —cbse + spsbep 1Yo y;

Tz, 1 | —s0 chsop chcd T7Ze ¢z
1 0 0 0 1 1
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For each dot i, the position (T X;,TY;,T Z;) is known, as well as the ratios:

CX- CY
L =V, and CZZ =V (6.5)

which are extracted from Equations 6.1 and 6.2, and have been named V;, and
Viy- The estimation of the state of the robot is accomplished in two phases.
In the first phase, 7 Z¢, roll (¢) and pitch () are estimated using the non-
linear fitting method proposed by Levenberg-Marquardt [Gill et al., 1981].
This recursive method estimates the parameters which best fit in a non-linear
equation from which a set of samples are known.

Given two dots ¢ and 7, the square of their distance is the same when com-
puted with respect to {C} or to {T'}, see Equation 6.6. From this equation,
“X; and “Y; can be substituted applying Equation 6.5. After the substi-
tution, Equation 6.7 is obtained, in which D;; is the square of the distance
between the two dots and is calculated with the right part of Equation 6.6.

(“Xi = X))+ (Y= )P+ (92 - 92y =
("X = "X+ (" = ")+ (T2 = 7 2Z;)° (6.6)

(“ZVie = “Z;Via)? + (“ZiViy — “Z;V3y)? + (“Zi — ©Z;)* = Dy (6.7)

By rearranging the terms of Equation 6.7, Equation 6.8 can be written.
This equation is the one to be optimized by the Levenberg-Marquardt algo-
rithm. The unknowns of the equation are ©Z; and CZj. These values can
be calculated using Equations 6.9 and 6.10, which have been extracted from
Equation 6.4. The unknowns of Equations 6.9 and 6.10 are 7 Z¢, roll (¢) and
pitch (6). Therefore, from each pair of detected dots, one Equation 6.8 can
be written depending only on the three unknowns 7 Zg, roll (¢) and pitch
(f). The algorithm finds the values for these three unknowns which best
fit with a certain number of equations. In order to compute a solution, the
minimum number of equations must be the number of unknowns. Therefore,
three equations, from three different dots, are required in order to have an
estimation. Evidently, the higher the number of dots, the more accurate the
estimations are.

CZVE AV + D)+ CZH(VE+ V1)
—2 CZZ' CZj(Wx‘G$ + ngij + 1) = Dij (6-8)
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o TZZ' _ TZC
Z; = (6.9)
—50Viy + cls¢Viy + clco
Tz, _ TZ
°z, / < (6.10)

77 280V + cBsgVy + cOcd

The second phase consists of estimating the 7 X and 7Y, positions and
the yaw () angle. In this case, a linear least square technique is applied.
This technique uses a set of linear equations to estimate a set of unknowns.
The general form of the linear system can be seen in Equation 6.11. The
y(t) term is a vector which contains the independent terms of the linear
equation. The H(z(t),t) matrix contains the known values which multiply
the unknown parameters contained in 6. The solution of the linear system
can be easily computed applying Equation 6.12.

y(t) = H(x(t),t)0 (6.11)

0= (H"H)"'H"y (6.12)

The equations which contain the three unknowns (7 X¢, 7Y and 1) are
included in Equation 6.4, and can be rewritten as Equations 6.13 and 6.14.
Both equations can be applied to each dot 7. The equations are non linear due
to the cosine(cy)) and sinus(sy) of the yaw angle. However, instead of consid-
ering the yaw as one unknown, each operation (¢ and si) has been treated
as an independent unknown. Equations 6.13 and 6.14 can be rewritten to
Equations 6.15 and 6.16, which have the same structure as Equation 6.11.
The number of files n of the terms y(t) and H(xz(t),t) is the double of the
number of detected dots, since for each dot there are two available equations.
To solve the linear system, Equation 6.12 is applied obtaining the four un-
knowns, ¢y, si,” X and TYg. The yaw () angle is calculated applying the
atan? operation.

TXi = (cped) © X +
(—stpce + cpshsg) Y + (6.13)
(svs¢ + cosbed) “ Z; + T X¢

Ty, = (s9pch) °X; +
(cthed + spsse) Y + (6.14)
(—cs¢ + sipslcd) “ Zi + Yo
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TX1
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X, s
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= H 6.15
T)/i TXC ( )
TYC
TXn
TYn
chC X1 + (s0s¢) CY1 + (s6ch) © Z1 —cpCY1 +590C 2, 1 0
cpCY1 — 5973 cHCX1 + (s0s9) CY1 + (s0cp) €21 0 1
H— cHCX; + (ses¢)5yi + (s0c9) € Z; —c<;sCYi“Jr s Z; 1 o
- cHCY; —s6CZ; ACX; + (s05¢) CYi + (s0cp)CZ; 0 1
hdCX, + (ses¢)5yn + (s0c¢) © Zy, —c<z>CYn“Jr s¢C Zn 1 0
ct Y, — 507, A C Xy + (5059) CYy + (s0cp)€Z; 0 1
(6.16)

Once the three-dimensional position and orientation of the camera has
been found, a simple translation is applied to find the position of the center
of the robot. Figure 6.14 shows a representation of the robot position in the
water tank. Also, the detected dots are marked on the pattern.

Filtering and Velocity Estimation

In the estimation of the position and the orientation, there is an inherent
error. The main sources of this error are the simplifications, the quality of the
systems and the uncertainty of some physical parameters. Refer to the next
section for more detailed information about the accuracy of the system. Due
to this error, small uncertainties about the vehicle position and orientation
exist and cause some oscillations even if the robot is static. To eliminate these
oscillations, a first order Savitzky-Golay [Savitzky and Golay, 1964] filter has
been applied. This online filter uses a set of past non-filtered values to
estimate the current filtered position or orientation.

Finally, the velocity of the robot with respect to the onboard coordi-
nate frame { R} is also estimated. A first order Savitzky-Golay filter with a
first order derivative included is applied to the position and orientation val-
ues. This filter is also applied online and uses a window of past non-filtered
samples. The output of the filtering process is directly the filtered velocity.
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Figure 6.14: Estimated position and orientation of the robot in the water
tank. The triangle indicates the X, Y and Yaw state of the robot. Roll
and Pitch angles are indicated by two vertical lines at the top left and right
corners respectively. Finally, the dots seen by the robot are also drawn.

After calculating the velocities with the Savitzky-Golay filter, a transforma-
tion from {T'} to {R} coordinate frames is applied. Therefore, the position
and orientation are referred to the water tank coordinate frame {7'}, while
the velocities are referred to the onboard coordinate frame {R}.

As usual when filtering a signal, an inherent delay will be added to the
velocity or position. However, it has been verified that this small delay
does not affect the low-level controller of the vehicle, as will be shown in
Section 6.4.2. Figure 6.15 shows the estimated three-dimensional position
and orientation with and without filtering, and also the velocities for the
same trajectory.

6.3.4 Results and Accuracy of the System

The localization system offers a very accurate estimation of the position,
orientation and velocity. The system is fully integrated on the vehicle’s con-
troller, providing measures at a frequency of 12.5 times per second. Because
of the high accuracy of the system, other measures like the heading from
a compass sensor or the depth from a pressure sensor are not needed. In
addition, the localization system can be used to calibrate sensors, to validate
other localization systems or to identify the dynamics of the vehicle. An
example of a trajectory measured by the localization system can be seen in
Figure 6.16.
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Figure 6.15: The left column shows the position and orientation before and
after filtering during a trajectory. The right column shows the velocity for
the 6 DOFs with respect to the on board coordinate frame {R}.
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Figure 6.16: Three-dimensional trajectory measured by the localization sys-
tem. Three views are shown.

In order to determine the accuracy of the system, the errors affecting the
estimations have been studied. Main sources of error are the imperfections of
the pattern, the simplification on the camera model, the intrinsic parameters
of the camera, the accuracy in detecting the centers of the dots and the error
of least-square and Levenberg-Marquardt algorithms on its estimations. It
has been assumed that the localization system behaves as an aleatory process
in which the mean of the estimates coincides with the real position of the
robot. It is important to note that the system estimates the position knowing
the global position of the dots seen by the camera. In normal conditions, the
tracking of dots and the detection of global marks never fails, which means
that there is no drift in the estimates. By normal conditions we mean, when
the water and bottom of the pool are clean, and there is indirect light from
the sun.

To find out the standard deviation of the estimates, the robot was placed
in 5 different locations. In each location, the robot was completely static and
a set of 2000 samples was taken. By normalizing the mean of each set to
zero and grouping all the samples, a histogram can be plotted, see Fig. 6.17.
From this data set, the standard deviation was calculated obtaining these
values: 0.006[m] in X and Y, 0.003[m] in Z, 0.2[°] in roll, 0.5[]°] in pitch and
0.2[°] in yaw.

The accuracy of the velocity estimations is also very high. These mea-
surements are used by the low level controller of the vehicle which controls
the surge, heave, pitch and yaw velocities.
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Figure 6.17: Histogram of the estimated position and orientation.
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The only drawback of the system is the pattern detection when direct
light from the sun causes shadows to appear in the image. In this case, the
algorithm fails in detecting the dots. Any software improvement to make a
more robust system in presence of shadows would increase the computational
time and the time cycle of the algorithm would be too slow. However, the
algorithm is able to detect these situations and the vehicle is stopped.

6.4 Software Architecture

In this section, the software architecture used to control URIS AUV is de-
tailed. As will be described, a software framework was developed as a tool
to easily implement the architecture needed to carry out a mission. After
the description of this framework, the particular architecture used in the
experiments of this thesis is detailed.

6.4.1 Distributed Object Oriented Framework

When working with physical systems such as an underwater robot, a real-time
Operating System (OS) is usually required. The main advantage is better
control of the CPU work. In a real-time OS, the scheduling of the processes
to be executed by the CPU is done according to preemptive priorities. More
priority processes will be first executed and will also advance processes which
are already in execution. Using a correct priority policy it is possible to
guarantee the frequency in which the control architecture has to be executed,
which is very important to assure the controllability of the robot.

A software framework, based on a real-time operating system was spe-
cially designed for URIS AUV. In particular, QNX OS was used. This frame-
work is intended to assist the architecture designers to build the software
architecture required to carry out a particular mission with URIS AUV. The
framework proposes the use of a set of distributed objects which represent
the architecture. Each object represents a component of the robot (sensors
or actuators), or a component of the control system (low-level or high-level
controllers). An Interface Definition Language (IDL) is used to define the
services which the object supports. From the information contained in the
IDL, the object skeleton is automatically generated. Each object has usually
two threads of execution. One of them, the periodic thread, is executed at
a fixed sample time and is used to perform internal calculations. The other
thread, the requests thread, is used to answer requests from clients.

The priority of each object thread is set independently and, depending
on that, the objects will be executed. If a sample time is not accomplished,



6.4 Software Architecture 141

a notification is produced. These notifications are used to redesign the ar-
chitecture in order to accomplish the desired times.

The software framework allows the execution of the objects in different
computers without any additional work for the architecture designer. A
server name is used in order to find the location of all the objects. Evidently,
objects that are referred to as physical devices, such as sensors or actuators,
have to be executed in the computer which has the interfaces for them.
Communication between objects is performed in different ways depending
on whether they are executed sharing the same logical space and if they
are executed in the same computer. However, these variations are hidden
by the framework, which only shows a single communication system to the
architecture designer.

Although this software framework was developed to work under a real-
time operating system, the execution of objects under other conventional OS
is also supported. The main reason for that is the lack of software drivers of
some devices for the QNX OS.

6.4.2 Architecture Description

The software architecture used in the experiments presented in this thesis
can be represented as a set of components or objects which interact among
them. The objects which appear in the architecture can be grouped in three
categories: actuators, sensors and controllers. A scheme of all the objects,
with the connections between them, can be seen in Figure 6.18. The ac-
tuators’ category contains the four actuators objects. The sensor category
contains the water detection, target tracking and localization objects and, the
controllers category contains the low-level, high-level and the two SONQL be-
haviors. It is important to remark on the difference between low and high
level controllers. The low-level controller is in charge of directly actuating
on the actuators of the robot to follow the movement set-points which the
high-level controller generates. On the other hand, the high-level controller
is responsible for the mission accomplishment and generates the set-points
which the low-level controller has to reach.

All these objects are mainly executed in the on board embedded com-
puter, but two external computers have also been used. The on board com-
puter contains the actuators, controllers and sensory objects. As can be
seen, not all the sensors presented in Section 6.1.3 have been used. One
of the external computers, which has been called the vision computer, con-
tains the two vision-based sensory systems, which are the target tracking
(Section 6.2) and the localization system (Section 6.3). The other external
computer, which has been called the supervision computer, is only used as
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a client of the previous objects. Its main goal is to control the operation of
the objects and to monitor them. It is also used to send commands for robot
teleoperation.

Another representation of the same architecture can be seen in Fig-
ure 6.19. In this case, the objects or components are seen from the point of
view of the control system. In this representation, the sensing components,
high-level controller, low-level controller and actuators are more clearly dif-
ferentiated.

Hereafter, a more detailed description of each object is given. First, the
objects belonging to the onboard embedded computer are reviewed. This
computer is responsible for the control of the robot and runs the QNX real-
time operating system.

e Actuators. The four thrusters of the robot are controlled through
these four objects. These objects have only one thread for the requests
from the clients. There is no internal calculation to perform. The
services which these objects accept are used to modify the set-point
velocity of the motor, enable/disable the thruster, and to read the real
velocity and electric current of the motor.

e Water Leakage Detection. This object is used to measure the five
water leakage sensors contained in the vehicle. The object has only
one thread to attend to the requests from the clients. The only service
which this object supports is to give the state of the five water sensors.

e Low-Level Controller. This object is in charge of the computation
of the low-level controller of the vehicle. Its goal is to send control
actions to the actuators to follow the set-points given by the high-level
controller. Unlike the previous objects, a periodic thread is used to
regularly recalculate and send these control actions. In particular, a
sample time of 0.1 seconds is used. The DOFs to be controlled are four:
surge, heave, pitch and yaw. The control system implemented for each
DOF is a simple PID controller. The state which is controlled is the
velocity of each DOF. The feedback measure of this velocity is obtained
from the localization object. The four PID controllers are executed in
parallel at each iteration and the control actions are superposed and
sent to the actuators. In Figure 6.20 the performance of the surge and
yaw controllers is shown.

The low-level controller offers different services. The most important
service is to receive the set-points. Three set-points are requested:
the surge, the heave and the yaw velocities. The pitch velocity is not
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Figure 6.20: Performance of the surge and yaw velocity-based controllers.

requested as it is always considered to be zero. Other services are also
available which are mainly used for the tuning of the controllers. By
calling these services, the parameters of the controllers can be modified
online, and internal variables can be checked. There is also a general
service to enable/disable the controller.

High-Level Controller. This object is the one which contains the
behavior-based control architecture and, therefore, the part which is
evaluated in this thesis. It contains the set of behaviors and the hybrid
coordination system which has been designed to accomplish a particular
task.

Each behavior requests information from other objects, such as the
target tracking object or the localization object, in order to generate
its response. After the behaviors have been executed, the coordinator
computes the final response and sends it to the low-level controller.

As with the low-level controller, a periodic thread is used, but in this
case with a sample time of 0.3 seconds. The services offered by this
object allow us to enable/disable the controller and each behavior. An-
other service is in charge of receiving the response which a teleoperation
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behavior will have. Using this service, an external user can command
the robot.

e SONQL-based Behaviors. Although the behaviors are executed in
the high-level controller, two auxiliary objects are used to implement
the SONQL-based behaviors. Each one is used to learn a different DOF
of the behavior. These objects contain the learning algorithm proposed
in this thesis. The structure of the algorithm is divided in two threads.
The periodic thread is in charge of updating the NN weights with the
learning samples database, refer to section 5.7. The rest of the SONQL
algorithm is executed every time a request is received.

Each time the high-level controller has to calculate the response of a
SONQL-based behavior, it sends to one of the SONQL-based behav-
iors the current and past states of the environment and the last taken
action. For example, in the case of the X DOF of a target following be-
havior, it sends the current and past positions and velocities in X axis
of the target, and the last taken action in surge. The SONQL-based be-
havior receives the states and action through the requests thread. This
thread has a higher priority than the periodic thread and, therefore,
the execution of the last one is stopped. Using the received state, the
reinforcement is calculated completing a new learning sample. This
sample is added to the learning sample database. Finally, an action
is calculated and is returned to the high-level controller. The requests
thread is finished, and the periodic thread starts again to update the
NN weights but with the recently added learning sample.

The services which these objects offer are basically to receive new learn-
ing samples and to configure all the parameters of the SONQL algo-
rithm. It is also possible to reset the NN weights and all the variables.

The objects which will next be reviewed belong to the vision computer.
This computer is one of the external computers and is run by the Windows
operating system. The reason why a non real-time operating system has
been used is because the frame grabbers, which are used to acquire images,
do not provide software drivers for QNX OS. This computer was not located
inside the robot because, at the time of the experiments, the embedded vision
computer was not available.

e Target Detection and Tracking. This object implements the vision
algorithm to detect and track an artificial target located in the water
tank, as has been described in Section 6.2. The algorithm is executed
in the periodic thread. In this case, the sample time of the thread is 0.08
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seconds (12.5 Hz), which is double the sample time in which a video
camera acquires a complete image. This means that the algorithm is
applied once every images. The requests thread is used to send the last
calculated position and velocity of the target.

e Localization. Similar to the previous object, the localization object
implements the algorithm which estimates the position, orientation and
velocity of the robot inside the water tank, refer to Section 6.3. The
localization algorithm is also executed in the periodic thread at a sample
time of 0.08 seconds. The requests thread is used to send the last
calculated position and velocity of the robot.

The last components of the software architecture are the object clients
which are contained in the supervision computer. The main uses of these
clients are to control and monitor the architecture.

e Architecture Control. This component is used to enable and dis-
able some of the objects of the architecture. Concretely, these objects
are those belonging to the actuator and controller categories, refer to
Figure 6.18.

e Teleoperation. As has been commented above, the high-level con-
troller contains a teleoperation behavior which is commanded from the
exterior. The teleoperation component then has the goal of getting
the control command from a human and sending it to the high-level
controller. This human-machine interface is accomplished by a joystick.

e Monitoring. Finally a monitoring component is in charge of consult-
ing the state of all the objects through their services. This component
will aid in the comprehension of the experiments.



Chapter 7

Experimental Results

This chapter presents the experimental results of this thesis. The chapter
is organized in two parts. The first part describes the application of the
behavior-based control layer to fulfill a robot task. This task consisted of
following a target with the underwater robot URIS using the experimental
set-up described in Chapter 6. The main goal of these experiments was to
test the feasibility of the hybrid coordination system as well as the SONQL
based behaviors. To accomplish this, a set of behaviors were designed, from
which one was learnt with the SONQL algorithm while the other behaviors
were manually implemented. A detailed description of the whole control
system will be given and the results presented. The results will first focus on
the SONQL algorithm, showing the learning of the X DOF, the Yaw DOF
and some tests concerning the convergence of the algorithm. The hybrid
coordination system will then be tested with the manual and learnt behaviors.
The second part of this chapter shows the results of the SONQL algorithm in
an RL benchmark. In this case, the task was used to test the generalization
capability of the algorithm. The problem is called the "mountain-car” task
and was executed in simulation. The suitability of the SONQL algorithm for
solving the generalization problem will be stated.

7.1 Target-following task

The task consisted of following a target with the underwater robot URIS.
Three basic aspects were considered. The first was to avoid obstacles in
order to ensure the safety of the vehicle. In this case, the wall of the pool
was the only obstacle. The second aspect was to ensure the presence of the
target within the camera’s field of view. The third aspect was to follow the
target at a certain distance. Each one of these aspects was translated to a
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robot behavior, hence, the behaviors were: the ”"wall avoidance” behavior,
the "target recovery” behavior and the ”target following” behavior. It is
important to note the simplicity which behavior-based controllers offer. It is
much simpler to design each behavior independently rather than developing
a single control strategy to handle all of the considerations.

An additional behavior was included, the ”teleoperation” behavior, which
allowed the robot to move according to the commands given by a human.
This behavior did not influence the outcome of the target following task, but
was used to test the performance of the system, for example, by moving the
vehicle away from the target.

Due to the shallow water in the tank in which the experiments were per-
formed, only the motions on the horizontal plane were considered. Therefore,
to accomplish the target following task, only the surge and yaw control ac-
tions were generated by the behaviors. The other two controllable DOF's
(heave and pitch) were not used. In the case of the heave movement, the
low-level controller maintained the robot at an intermediate depth. Regard-
ing the pitch orientation, a zero degree set-point (normal position) was used.

Following the behavior-based control layer proposed in Chapter 3, each
behavior b; generated a response r;, which was composed of an activation
level a; and a control action v;. Since the heave movement was not present,
the control action vector was v; = (v, 0,V; yaw). The range used for the
actions was v;; = [—1,1], corresponding to the maximum backward and
forward velocity set-points in surge and yaw.

After defining the behaviors present in this task, the next step was to
set their priorities. To determine these priorities, the importance of each
behavior goal was ranked. This is the hierarchy used:

1. "Wall Avoidance” behavior. This was the highest priority behavior
in order to ensure the safety of the robot even if the task was not
accomplished.

2. "Teleoperation” behavior. This was given a higher priority than the
next two behaviors in order to be able to drive the robot away from
the target when desired.

3. "Target Recovery” behavior. This was given a higher priority than the
target following behavior so as to be able to find the target when it was
not detected.

4. "Target Following” behavior. This was the lowest priority behavior
since it should only control the robot when the other behavior goals
had been accomplished.
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The establishment of the priorities allowed the composition of the behavior-
based control layer. Figure 7.1 shows the implementation of the four behav-
iors using three hybrid coordination nodes. Finally, the last step was the
definition of the internal state/action mapping and the activation level func-
tion for each behavior. The "target following” behavior was implemented
with the SONQL algorithm. Its implementation and learning results will be
described in the next section. As far as the other behaviors go, the main
features were:

”Wall Avoidance” behavior This behavior was manually implemented.
It used the absolute position of the robot as input, see Figure 7.1. The
robot position was used to calculate the minimum distance to the cir-
cular wall of the water tank called d,,, see Figure 7.2. The behavior
response 1, was computed according to this distance. The idea was
to activate the behavior linearly with close proximity to the wall. To
accomplish this, two threshold distances were set, ty min and ty maa,
where ty, min < twmaz- If dw > twmaez, this meant the robot was too
far from the wall and the behavior was not active (a,, = 0). On the
other hand, when d,, < ty min, the robot was too close to the wall.
Therefore, the activation was set at a,, = 1 and the coordinator actu-
ated competitively in order to restore the safety of the robot. Finally,
it tymin < dw < twmasz, this meant the robot was close to the wall
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Figure 7.2: Schema of the "wall avoidance” behavior. The control action and
the zones where the behavior is active are shown.

but not in a dangerous position and the activation was linearly cal-
culated between 0 and 1. The control action v, was only calculated
when the activation was larger than 0. In that case, in order to drive
the robot away from the wall, the control action was set to point to-
wards the center of the circumference. According to the vehicle’s yaw
angle, this two-dimensional control action was split in the surge and
yaw movements. The implementation of the ”"wall avoidance” behavior
was designed experimentally with the thresholds and other parameters
also obtained experimentally.

”Teleoperation” behavior The "teleoperation behavior” had to reflect
the commands given by a joystick module. The teleoperation response
r; was composed of the activation level a; and the control action vector
v;. The activation level of this behavior was 1 when the joystick was
activated to send commands, otherwise it was set to 0. Moreover, the
control actions were taken directly from the joystick. The surge move-
ment v, ,, corresponded to the forward/backward joystick command and
the yaw movement v; 4, corresponded to the left/right command.

”Target Recovery” behavior This behavior was also manually implemented
but was much simpler than the ”"wall avoidance” behavior. The input
of this behavior was the target position in respect to the robot, see Fig-
ure 7.1. This behavior was active a, = 1 only when the target was not
detected. In that case, it generated a constant rotational movement
Ur yaw = £0.8 which spun the robot in the direction in which the target
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had last been detected.

To conclude, the hybrid coordinator was implemented with a quadratic
parameter k = 2. This parameter assured the prevalence of higher priority
behaviors, and was also experimentally set.

7.1.1 SONQL behavior

The "target following” behavior was learnt using two SONQL algorithms,
one for each DOF. The goal of this algorithm was to learn the state/action
mapping of this behavior. This mapping determined the movements the
robot had to perform in order to locate itself at a certain distance from the
target and pointing directly at it. In order to generate the robot response r,
the activation level was ay = 1 whenever the target was detected and ay = 0
otherwise. Moreover, the control action vy was generated by the SONQL
algorithms. In particular, the SONQL algorithm of the X DOF generated
the vy, control action and the algorithm of the Yaw DOF generated the
Vfyaw- Lhe next paragraphs will describe the state variables, the reinforce-

ment function and the parameters of the SONQL algorithm used in each
DOF.

Environment State

A reinforcement learning algorithm requires the observation of the complete
environment state. If this observation is not complete or the signals are
too corrupted with noise or delays, the convergence will not be possible.
The state of the environment must therefore contain all the required mea-
surements relating the target to the robot. The first measurement was the
relative position between the target and the robot: f, in X DOF and f, in
Y aw DOF. The procedure to compute these continuous values was described
in Section 6.2. A second necessary measurement was the relative velocity
between the target and the robot. For instance, let’s consider the case when
the target is in front of the robot but there is a relative angular velocity
between them. If the algorithm decides to execute the action vy e, = 0,
in the next step, the target will not be directly in front of the robot. On
the contrary, if the relative velocity between them is zero and the executed
action is again zero, in the next step, the target will still be located in front
of the robot. Hence, we have two situations in which the target was located
in the same place and the executed action was also the same, yet the system
was brought to a different state. Since the environment is considered to be
deterministic, this pointed out that the relative velocity was also required to
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differentiate both states. These measurement were: fv, for the X DOF and
fv, for the Yaw DOF.

Finally, if the target and the robot are both rotating at a velocity which
makes the relative position and relative velocity equal to zero, a new mea-
surement would be required to differentiate this state from the state in which
everything is stopped and the target is directly in front of the robot. In this
case, the absolute velocity of the robot or the absolute velocity of the tar-
get would also be required. This new measurement would be necessary to
learn the behavior in case the target was moving. However, this case was not
tested due to the complexity it would have represented in the exploration of
a three-dimensional space. Instead, the behavior was learnt using a static
target.

Besides the number of variables which composed the environment state,
the quality of these variables was also very important. The target tracking
system was designed to accurately estimate the relative positions and veloc-
ities. Indeed, the estimation of the relative velocity was especially difficult,
as in the filtering process in which a delay was unavoidably added to the
signal. Initially, this delay did not allow the system to learn, since the esti-
mated velocities did not match the real movement. The filtering had to be
accurately improved in order to remove part of this delay. Finally, it must be
remembered that the state variables have been extracted from a vision-based
system in which the non-linear distortions were not corrected. Moreover, the
f: measure is non-linear with respect to the relative distance to the target.
All these non-linear effects, which were consciously not corrected, should not
pose a problem for the learning algorithm since a Markovian environment
does not imply linearity.

In summary, the state for the X DOF of the SONQL algorithm was
composed of f, and fv,; and the YAW DOF of the SONQL algorithm was
composed of f, and fv,. Figure 7.1 shows these measurements as inputs
for the "target following” behavior and Figure 7.3 shows a two-dimensional
representation of the f, and f, axes.

Reinforcement Function

The reinforcement function is the only information a designer must introduce
in order to determine the goal of the behavior. The reinforcement function
must be a deterministic function which relates the state and action spaces to
a reward value. In the case of the ”target following” behavior, the reinforce-
ment function took only the target position as input. Therefore, according
to these variables, f, in the X DOF and f, in the Yaw DOF, a reward value
was given. Only three reward values were used: -1, 0 and 1, simplifying the
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Figure 7.3: Relative positions f, and f, and the reinforcement values r, and
ry, for the "target following” behavior.

implementation of this function. Figure 7.3 shows the reward values accord-
ing to the target relative position. Basically, in order to maintain the target
in front of the robot, the positive rewards » = 1 were given when the position
of the target was around f, = 0 and at a certain distance from the robot
in X axis, around f, = —0.25. The other reward values were progressively
given if the target was farther. The r, variable was used for the X DOF and
the r, variable for the Yaw DOF. As can be observed, the reward functions
change the values at some thresholds, which were found experimentally.

SONQL parameters

After defining the states, actions and reinforcement function, the final step to
learn the ”target following” behavior with the SONQL algorithm consisted
of setting the parameters of the algorithm. The same parameter values were
used for both DOFs. The values of the parameter and some considerations
are described, as follows:

NN configuration. The Neural Network had 3 continuous variables as in-
puts: {fs, fuz, vy, } for the X DOF and {f,, fuy, vfyaw} for the Yaw
DOF. The output was the estimated ((s,a) value. Only one hidden
layer was used with 6 neurons. This configuration was found experi-
mentally and used for both DOFs. Different configurations were also
tested, although this one provided the best compromise between gen-
eralization capability and convergence time. The more neurons, the
higher the generalization capability, but also, the higher number of
learning iterations needed to converge.
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Learning rate a. A diverse set of values were tested. The final learning
rate was set to a = 0.1, which demonstrated a fast and stable learning
process.

Discount factor 7. The discount factor was set to v = 0.9. Since the
learning of a robot behavior is a continuous task without a final state,
a discount factor smaller than 1 was required. In the case of using
v = 1.0, the @ function values would increase or decrease, depending
on the state/action zone, until they reach —oo or co. This value was
chosen experimentally without exploring many values.

Exploration probability €. The learning was performed with a e — greedy
policy. The exploration probability was e = 0.3. A smaller exploration
probability increased the time required to converge, and a higher prob-
ability caused the robot to act too randomly. The value was also set
experimentally.

Database Density Parameter t. The density parameter was set to t =
0.5. However, this parameter does not provide intuitive information
about the number of learning samples. It indicates the minimum dis-
tance between two learning samples. This distance is calculated ac-
cording to the vectors (s,a,r) of each sample, which, in this case was
a four-dimensional vector since the state has two dimensions. In prac-
tice, the number of learning samples resulted in being less than 30,
although it depended on the state/action space exploration. Several
parameters were tested, concluding that with a larger value (less sam-
ples) the convergence was not always achieved due to the interference
problem. Similar results were obtained for both DOFs.

7.1.2 Learning Results

An exhaustive set of experiments were carried out in order to test the SONQL
algorithm. In these experiments, optimal parameters were found and a fast
and effective learning of the robot behavior was achieved.

X DOF

The experiments in the X DOF were carried out by placing the target in front
of the robot and starting the learning algorithm. The target was placed next
to the wall of the water tank and the robot was placed in front of it at the
center of the circular tank. This positioning gave the robot the maximum
space in which to explore the state. In addition, as the target was placed
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Figure 7.4: Real-time learning evolution and behavior testing in the X DOF.
In the same experiment, the behavior was first learnt and then tested. In the
learning phase, the state/action space exploration can be appreciated. The
testing consisted of moving the robot away from the target first, and then
allowing the behavior to reach it again. The evolution of the states, actions
and rewards is shown.

close to the wall of the tank, the vehicle was stopped by the ”wall avoidance”
behavior when it came too close to the wall, preventing a collision with the
target.

The learning of the X DOF took about 110 seconds, which represents
about 370 learning iterations (sample time = 0.3 seconds). Figure 7.4 shows
a typical real-time learning evolution. It can be seen how the robot explored
the state in the learning phase. Immediately after the learning phase the
behavior was tested by applying, with the ”teleoperation” behavior, an action
which moved the vehicle away from the target. It can be seen how the target
was again reached and the maximum rewards achieved.

The policy learnt after this learning can be seen in Figure 7.5. The
optimal action vy, according to the state {f,, fv,} can be appreciated. For
example for f, = 1 and fv, = 0, which means that the target is at the
farthest distance and the velocity is zero, the optimal action is vs, = 1, that
is, "go forward”. This is a trivial case, however, but the policy also shows
situations in which intermediate action values are given.
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Figure 7.5: State/action policy learnt for the X DOF.

The Q-function learnt in one of the experiments can also be seen. Fig-
ure 7.6 shows the maximum @) value for each state s = (f;, fv,) which is also
the state value V'(s). It can be appreciated that the maximum values are
in the target positions (f,) where the reinforcement function was maximum.
However, according to the velocity variable, fv,, the value of zones with the
same position f, change. This is due to the prediction provided by the state
value function. If the target is located at the position where the reward is
maximum but the velocity causes it to move away, the value of this state
is lower than the states in which the future rewards will also be maximum.
Finally, it must be noted that the function approximated by the NN is not
only the one shown in this figure. Another dimension, corresponding to the
continuous action vy, is also contained in the function. This demonstrates
the high function approximation capability of NN.

YAW DOF

Similar experiments were performed for the Yaw DOF. The target was lo-
cated in front of the robot when the SONQL was started. During the ex-
ploration of the space, the robot frequently lost the target but the ”target
recovery”’ behavior became active and the target was detected again.

The learning of the Yaw DOF took about 60 seconds, which represents
about 200 learning iterations (sample time = 0.3 seconds). The learning of
this DOF was faster than the learning of the X DOF since the state/action
space to be explored was smaller. Figure 7.7 shows a typical real-time learn-
ing evolution. As happened with the X DOF, learning and testing phases
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Figure 7.6: State value function, V'(s), after the learning for the X DOF.

were consecutively performed. During the testing phase, the ”teleoperation”
behavior was used to interfere with the "target following”, causing the robot
to loose the target. It can be seen how the target was always reached again
and the maximum rewards were achieved.

The policy and state value functions for the Yaw DOF can be seen in
Figure 7.8 and Figure 7.9 respectively. The policy relates the optimal action
Vfyaw according to the environment state { f,, fv,}. As far as the state value
function V' (s) is concerned, it can be clearly appreciated how the maximum
values are in the target positions near the center (f, = 0).

Convergence Test

The SONQL algorithm demonstrated that it converges to the optimal policy
in a relatively small time, as commented above. The only condition to assure
the convergence was to guarantee the reliability of the observed state. This
means that perturbations like the influence of the umbilical cable had to
be avoided. Figure 7.10 shows six consecutive learning attempts of the Yaw
DOF. This figure also shows that the averaged reward increased, demonstrat-
ing that the behavior was being learnt. It can be seen that the algorithm
started exploring the state in order to find the maximum reward. Once the
whole state had been explored, the algorithm exploited the learnt QQ_function
and obtained the maximum reward.
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Figure 7.7: Real-time learning evolution and behavior testing of the Yaw
DOF. In the same experiment, the behavior was learnt first and then tested.
The testing consisted of moving the robot away from the target with the " tele-
operation” behavior and allowing the ”target following” behavior to reach it
again. The evolution of the states, rewards and actions is shown.

Figure 7.8: State/action policy learnt for the Yaw DOF.
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Figure 7.10: Behavior convergence for different attempts. The results of six
different learning trials in the Yaw DOF are shown. Each graph represents
the mean of the last 20 rewards. This representation is useful to verify that
the algorithm is receiving the maximum rewards. The minimum and maxi-

mum values correspond to the minimum (r, =

—1) and maximum rewards

(r, = 1). Also, the average of the six experiments can be seen, pointing out

that the accumulated rewards increased while the behavior was learnt.
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Figure 7.11: Trajectory of URIS while following the target in the water tank.

7.1.3 Task achievement

This section shows the performance of the behavior-based control layer in
two situations. The first situation shows the accomplishment of the target
following task, see Figure 7.11. In this figure, it can be seen how the robot
followed the target at a certain distance. The target was moved manually
around the water tank and, therefore, the robot trajectory was also a circum-
ference. Note that the position of the target is approximate since there is no
system to measure it. The behavior responses for this experiment are shown
in Figure 7.12. It can be seen that at the beginning of the trajectory the
target was not detected since the ”target recovery” behavior was active. This
behavior generated a constant yaw movement until the target was detected
(see the Yaw DOF graph). Then, the "target following” behavior became
active and generated several surge and yaw movements generating the circu-
lar trajectory (see X and Yaw graphs). Finally, the target was moved very
fast, causing the activation of the ”target recovery” behavior again.

The second situation of interest is the coordination of the ”wall avoidance”
and "target following” behaviors, see Figure 7.13. In this case, the target was
used to push the robot backwards to the wall of the tank. The signals in this
figure show how the ”wall avoidance” behavior became active and stopped the
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Figure 7.12: Activation levels and control actions for the "wall avoidance”,
"target recovery” and "target following” behaviors. The response of the
coordinator is also shown. These signals correspond to the trajectory shown
in Figure 7.11.
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control action of the "target following” behavior. The coordinated response
in the surge movement (see the X DOF graph) was nearly zero, although
the "target following” behavior was generating a backward movement. The
result was that the vehicle stopped between the target and the wall of the
tank, thus producing the desired effect of the hybrid coordinator.

7.1.4 Conclusions and Discussion

After the presentation of the real experiments with URIS, some conclusions
can be extracted:

e The behavior-based control layer and, in particular, the hybrid coordi-
nator system is a suitable methodology to solve a robot task. The task
must be previously analyzed and a set of behaviors with their priorities
must be designed. The proposal is simple and actuates with robust-
ness and good performance. The parameter k, used by the coordinator
nodes, is not a parameter to tune and does not greatly affect the fi-
nal performance. It simply determines the degree to which dominant
behaviors will subsume the non-dominant ones.

e The design and implementation of some behaviors is sometimes very
simple, like the "target recovery” behavior. However, other behaviors,
like the "target following” behavior, require a deeper analysis. For this
kind of behavior it is interesting to use the SONQL algorithm.

e The SONQL algorithm simplifies the designing of robot behaviors. The
definition of the reinforcement function and the analysis of the observed
state are the most important tasks. The parameters of the algorithm
can first be taken from other behaviors and then refined if necessary.
The SONQL will learn the optimal mapping between the state and the
action, whatever the relation is.

e Another advantage of the SONQL algorithm is that it is an off-policy
algorithm. This feature allows the interaction of the other behaviors
while performing the learning. This is especially important in behav-
ioral architectures where more than one behavior is simultaneously en-

abled.

e An RL learning algorithm should not be considered as a classic con-
troller. The problem solved by RL is the maximization of the sum of
future rewards. Therefore, an optimal mapping is the one which solves
this problem. The optimal control action, according to control theory,
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Figure 7.13: Performance of the hybrid coordination system. It can be seen
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following” behavior. This experiment was achieved by bring the target closer
to the robot, making the robot go backwards until the wall was found.
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can only be achieved if the terms defining this optimality are considered
in the design of the reinforcement function.

e One of the most important drawbacks is the accuracy required in the
observation of the environment state. If the state is not fully observed,
or has noise or delays, the learning cannot be accomplished. When
selecting the components of the state, it is important to choose the
variables which can be measured with more accuracy. Also, the mea-
surement of the state will depend on the sample time of the algorithm.
If the sample time is very small (fast execution), the state measure-
ment must have a higher precision. The use of eligibility traces (see
Section 4.4.3) could probably minimize this problem. Algorithms using
eligibility traces update the values of a set of past states and this causes
an average effect less sensitive to the poor accuracy of the state mea-
surement. However, the implementation of eligibility in dealing with
the generalization problem is much more complicated.

e Finally, an implementation issue concerning the action used in the
learning process must be commented on. In the RL update rule, action
a; is the one proposed at time ¢ and contributes to the achievement of
state s;41. Surprisingly, when this action was used, the learning had
many problems in converging. After analyzing the state transitions
and the executed actions, it was found that there was a more logical
state transition when considering action a;_; for the change from s; to
s¢11- By applying action a;_1, the learning became much more stable
due to the fast execution of the SONQL algorithm. As commented in
Section 6.4.2, the high level controller is executed every 0.3 seconds,
while the low-level controller id executed at 0.1 seconds. The low-level
controller did not have enough time to achieve the set-points, and the
actions were not effective until the next iteration. Again, this problem
could also be solved with eligibility traces.

7.2 SONQL in the ”Mountain-Car” task

This section presents the application of the SONQL algorithm to the "moun-
tain-car” benchmark. This problem is widely accepted by the RL research
community as a convenient benchmark to test the convergence and gener-
alization capabilities of an RL algorithm. Although the convergence of the
SONQL algorithm cannot be formally probed, it is assumed that if it is able
to converge on this complex task, it will also be able to converge in sim-
pler tasks, such as the reactive robot behavior at hand. The "mountain-car”



7.2 SONQL in the ”Mountain-Car” task 165

benchmark is not a continuous task like a robot behavior, but an episodic
task. Moreover, contrary to a robot behavior, the environment is completely
observable without or noise. Hence, this task is highly suitable to test the
generalization capability of the SONQL only.

This section first describes the "mountain-car” task. Then, in order to
have a performance baseline, the (Q_learning algorithm is applied to the prob-
lem. After showing the performance of the Q_learning, the SONQL algorithm
is applied. The results of the algorithm using different configurations will be
analyzed. Finally, a comparison of the SONQL performance with respect to
other RL algorithms is done.

7.2.1 The "Mountain-Car” task definition

The "mountain-car” task [Moore, 1991, Singh and Sutton, 1996] was designed
to evaluate the generalization capability of RL algorithms. In this problem,
a car has to reach the top of a hill. However, the car is not powerful enough
to drive straight to the goal. Instead, it must first reverse up the oppo-
site slope in order to accelerate, acquiring enough momentum to reach the
goal. The states of the environment are two continuous variables, the po-
sition p and the velocity v of the car. The bounds of these variables are
—1.2 < p < 0.5; and —0.07 < v < 0.07. Action a is a discrete variable
with three values {—1,0, +1}, which correspond to reverse thrust, no thrust
and forward thrust respectively. The mountain geography is described by
the equation: altitude = sin(3p). Figure 7.14 shows the "mountain-car”
scenario. The dynamics of the environment, which determines the state evo-
lution, is defined by these two equations:

Vi1 = bound[vy + 0.001 a; — 0.0025 cos(3 py)] (7.1)

per1 = bound[p; + vi11] (7.2)

in which the bound operation maintains each variable within its allowed
range. If p;; 1 is smaller than its lower bound, then v, is reset to zero. On
the other hand, if p;,; achieves its higher bound, the episode finishes since
the task is accomplished. The reward is -1 everywhere except at the top of
the hill, where it is 1. New episodes start at random positions and velocities
and run until the goal has been reached or a maximum of 200 iterations have
elapsed. The optimal state/action mapping to solve the "mountain-car” task
is not trivial since, depending on the position and the velocity, a forward or
reverse action must be applied.
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Figure 7.14: The "mountain-car” task domain.

7.2.2 Results with the QQ_learning algorithm

To provide a performance baseline, the classic QQ_learning algorithm was ap-
plied. The state space was finely discretized, using 180 states for the position
and 150 for the velocity. The action space contained only three values, -1, 0
and 1. Therefore, the size of the QQ table was 81000 positions. The exploration
strategy was an € — greedy policy with € set at 30%. The discount factor was
v = 0.95 and the learning rate o = 0.5, which were found experimentally.
The Q table was randomly generated at the beginning of each experiment.
In each experiment, a learning phase and an evaluation phase were repeat-
edly executed. In the learning phase, a certain number of iterations were
executed, starting new episodes when it was necessary.

In the evaluation phase, 500 episodes were executed. The policy followed
in this phase was the greedy policy, since only exploitation was desired. In
order to numerically quantify the effectiveness of the learning, the average
time spent in each episode is used. This time is measured as the number of
iterations needed by the current policy to achieve the goal. After running
100 experiments with Q_learning, the average episode length in number of
iterations once the optimal policy had been learnt was 50 iterations with 1.3
standard deviation. The number of learning iterations to learn this optimal
policy was approximately 107. Figure 7.15 shows the effectiveness evolution
of the Q_learning algorithm after different learning iterations.

It is interesting to compare this mark with other state/action policies.
If a forward action (a = 1) is always applied, the average episode length is
86. If a random action is used, the average is 110, see Figure 7.15. These
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Figure 7.15: Effectiveness of the Q_learning algorithm with respect to the
learning iterations. During the first iterations the efficiency was very low,
requiring many iterations to reach the goal. The graph was obtained by av-
eraging 100 trials. In each trial, the effectiveness was calculated by averaging
the number of iterations to goal in 500 episodes. After converging, the effec-
tiveness was maximum, requiring only 50 iterations to accomplish the goal.
The 95% confidence intervals are also shown. Finally, the effectiveness levels
of random and forward policies can be observed.

averages depend highly on the fact that the maximum number of iterations
in an episode is 200, since in many episodes these policies do not fulfill the
goal.

The optimal policy learnt by Q_learning is shown in Figure 7.16. This
mapping relates the state of the environment (car position and velocity) with
the discrete actions, a = {—1,0,1}. In this figure four different mappings
are presented which correspond to the same trial but at different learning
iterations. It can be observed how the optimal policy becomes more defined
as a function of the learning iterations. It is important to note the non-linear
relation between the mapping and the optimal action. The disadvantage of
a discrete state space is that each state/action pair must be updated several
times until a homogeneous policy is obtained. This causes a high number of
learning iterations.
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Figure 7.16: State/action policy after several number of learning iterations
for the Q_learning algorithm. The actions are represented in different colors:
white for forward thrust, gray for no-thrust, and black for reverse thrust.

Similar to the experiments with the URIS robot, the () function can
also be represented. In Figure 7.17, the maximum Q(s,a) value for each
state value is represented which is also the V(s) function. For a clearer
visualization, the V'(s) axis has been inverted. Hence, the states with a higher
state-value are the ones which correspond to the lower parts of the three-
dimensional surface. It can be observed how the shape of the state-value
function evolves according to the learning iterations. Also, it is interesting
to compare the evolution of the V(s) function with respect to the evolution
of the optimal policy. The V(s) function evolves much faster to its definitive
shape, while the policy is learnt slowly.

7.2.3 Results with the SONQL algorithm

The SONQL was also applied to the "mountain-car” task. Since the state
space had been finely discretized with the Q_learning algorithm, it was as-
sumed that with only three actions, the minimum number of iterations to
fulfill the goal is 50. The SONQL algorithm cannot improve this mark as
it is based on the QQ_learning algorithm. However, it is expected that it can
reduce the number of iterations required to learn the optimal policy.
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Figure 7.17: State value function V(s) after different learning iterations for
the Q_learning algorithm.

An extensive number of experiments were executed with the SONQL
algorithm in order to find the best configuration. The NN had three layers
with 15 neurons in the two hidden layers. Only three actions were used, as
with the Q_learning experiments. The optimal learning rate and discount
factor were = 0.0001 and v = 0.95. And the ¢ parameter was set at
30%. Note the difference between the optimal learning rate of the SONQL
algorithm and the Q_learning algorithm. The (Q_learning has a higher rate
but only one value of the discrete function is updated. On the other hand,
the SONQL algorithm has a much smaller learning rate but each NN update
affects the whole continuous space. The density parameter of the database
was set to t = 0.09, which entailed approximately 470 learning samples at
the end of each trial.

As with the QQ_learning algorithm, each trial had a learning phase and an
evaluation phase. In the evaluation phase 500 episodes were tested. For each
experiment with a SONQL configuration, a total number of 100 trials were
run. The average episode length in number of iterations for the parameters
detailed above was 53 with 2.1 standard deviation. The number of learning
iterations were only 20000, approximately. This result demonstrates that
the SONQL algorithm is able to converge much faster than the Q_learning
algorithm (from 107 to 20000 learning iterations), although it is not able to
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Figure 7.18: Effectiveness of the SONQL algorithm with respect to the learn-
ing iterations. The graph is the average of 100 trials. The 95% confidence
intervals are also shown.

learn exactly the same optimal policy. The policy learnt by the Q_learning
algorithm was able to solve the "mountain-car” task in 50 iterations, while
the SONQL required 53 iterations. This difference is very small and, there-
fore, the feasibility of the SONQL algorithm in solving the generalization is
affirmed. The convergence of the algorithm also proved to be very high and
in all the experiments the optimal policy was learnt.

Figure 7.18 shows the performance evolution with respect to the num-
ber of learning iterations. After 20000 learning iterations, the number of
iterations required to accomplish the goal are 53. It is also observed how
the SONQL algorithm maintains effectiveness until the end of the experi-
ment without diverging. Figure 7.19 shows another representation of the
same experiment. In this case, the graph is drawn with respect to the total
number of NN updates, considering each sample of the database as a learn-
ing iteration. The number of iterations is higher than before since, for each
SONQL iteration, all the samples of the database are learnt. However, the
number of NN updates are also significantly fewer than with the Q_learning
algorithm, which is also represented. The total number of NN updates was
approximately 8 - 10° iterations.

The optimal policy learnt by the SONQL algorithm is shown in Fig-
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Figure 7.19: Effectiveness of the SONQL algorithm with respect to the num-
ber of NN updates.

ure 7.20. As previously done with the Q_learning algorithm, four different
mappings are presented, which correspond to different learning iterations. It
can be observed how the optimal policy becomes more defined as the learn-
ing is performed. It is interesting to compare the policies learnt by the two
algorithms, see Figure 7.16 and Figure 7.20. In the policy learnt by the
SONQL, the optimal actions are more clearly defined, although both have
similar shapes. The state zones of the Q_learning policy which are less de-
fined, indicate that they were not visited enough and, consequently, a higher
divergence between the Q_learning and SONQL policies can be found.

The @) function at different learning iterations is represented in Fig-
ure 7.21. As in previous representations, the maximum value for each state
is shown, which is the state-value function V'(s). It can be observed how the
shape of the function evolves according to the learning iterations. The V (s)
axis has been inverted for a clearer visualization. It is interesting to compare
the shape of the V(s) function learnt by the SONQL algorithm with the
one of the QQ_learning algorithm, see Figure 7.17. The function learnt by the
SONQL is much smoother, although the shape is similar. The ranges of the
two functions are not exactly the same. The maximum and minimum values
of the SONQL function are higher, which is caused by the interference of the
NN when updating the samples. However, the values of different actions at
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Figure 7.20: State/action policy after different learning iterations for the
SONQL algorithm. The actions are represented in different colors: white for
forward thrust, gray for no-thrust, and black for reverse thrust.

the same states maintain the same relation which finally defines the policy.
The V(s) function learnt by the SONQL algorithm after 20000 iterations is
shown in Figure 7.22. In this figure two different views of the approximated
state-value function can be observed.

The influence of the database was analyzed using the same SONQL con-
figuration and changing the database size. Instead of referring to the density
parameter ¢, the number of samples stored in the database will be used. The
total number of NN updates was fixed at 8-10° iterations approximately, and
in each experiment 100 trials were simulated. The first experiment consisted
of learning with only the current learning sample, that is, without using the
database. Figure 7.23 shows the obtained result. It can be appreciated that
the algorithm is not able to learn an optimal mapping. The effectiveness
occurs in 110 iterations, which is the same effectiveness as with a random
policy. The confidence interval is very large, since each of the 100 trials had a
very different result. The first conclusion is that, although the NN is able to
approximate the optimal Q-function, the interference problem does not allow
the stability of the learning process. The database is therefore necessary to
ensure the convergence.

Three more experiments were executed in which the number of learn-
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Figure 7.21: State value function V(s) after several learning iterations for
the SONQL algorithm.
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ing samples were 280, 150 and 85 samples. In Figure 7.24, the effective-
ness of these experiments, together with the previous ones, are shown. The
graphs represent the number of NN updates. It can be observed that all
the SONQL algorithms finished at the same number of iterations (8 - 109).
The convergence time is not drastically different, although the experiments
with a smaller database converged sooner. However, the experiments with a
larger database obtained a better effectiveness. The averages of the ”D=470",
"D=280", "D=150" and "D=85" experiments are 53, 54, 56 and 58 respec-
tively. Figure 7.25 shows the same graphs but with respect to the number
of learning iterations of the SONQL algorithm. The number of iterations is
smaller since the number of NN updates is equal and the database is larger. A
second conclusion can be extracted from these results; with a larger database,
a better learning is achieved. A large database implies a large set of learning
samples uniformly distributed throughout the visited space. This represen-
tative set of samples improves the learning capacity of the direct Q_learning.
Finally, besides the improvement of the effectiveness, a larger database also
implies a higher computation of the SONQL algorithm for the same number
of iterations, which must be taken into account in a real-time application.

The results obtained in this section empirically demonstrate the benefit
of using the SONQL algorithm, and especially the learning samples database,
for solving the generalization problem.

7.2.4 Discussion

The comparison between the SONQL algorithm and the Q_learning algorithm
must only be considered as an evaluation of the SONQL policy with respect
to the optimal one, which was supposed to be the one learnt by Q_learning.
The Q_learning exhibited a long convergence time since it was affected by
the generalization problem. It is interesting to compare the performance
of the SONQL algorithm with respect to other RL algorithms that have
also dealt with the "moutain-car” task. The results of some of them are
next commented. These algorithms have been classified according to the
generalization methodology.

Decision Trees A decision tree used to generalize the QQ_learning algorithm
was proposed by Vollbrecht [Vollbrecht, 1999]. The effectiveness of this
algorithm was 58 iterations to goal, and the convergence time was 20000
learning episodes. The number of learning iterations was not detailed.
Another interesting work can be found in [Munos and Moore, 2002]. In
this work, a detailed study of the value function and policy function
was presented, although the effectiveness was not mentioned.
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Figure 7.23: Effectiveness of the SONQL algorithm with respect to the learn-
ing iterations without using the database. In this case, the number of learning
iterations is the same as the number of NN updates.
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Figure 7.24: Effectiveness of the SONQL algorithm with respect to the num-
ber of NN updates. The performance of the database is shown with five
different sizes (D=1,85,150,280 and 470).
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Figure 7.25: Effectiveness of the SONQL algorithm with respect to the learn-
ing iterations. The performance of the database is shown with five different
sizes (D=1,85,150,280 and 470).

CMAC The use of the CMAC function approximator in the "mountain-

b

car’ task is also common. The most known application was done
by Sutton [Sutton, 1996], who centered his work in the value func-
tion. He also analyzed the use of eligibility traces. CMAC was im-
plemented with 10 tilings, having 9x9 tiles each. However, the effec-
tiveness was not mentioned. Another implementation can be found in
[Kretchmar and Anderson, 1997], in which they applied a CMAC func-
tion with 11 tilings and 3x3 tiles. The effectiveness was 68 iterations
to goal and the convergence time was 1500 episodes. In the same work,
the use of a radial basis function approximator was also reported. The
results showed a better effectiveness with the same convergence time,
the number of iterations to goal was 56.

Memory-based In [Smart, 2002], a memory-based method using locally

weighted regression was evaluated with the "mountain-car” task. The
effectiveness of the algorithm was 70 iterations to goal and the conver-
gence time was not clearly stated.

Neural Networks To the authors best knowledge there are no successful

examples that apply Neural Networks to the "mountain-car” task. In
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[Boyan and Moore, 1995], the divergence of Neural Networks in this
problem was stated using a 2 layer network with 80 hidden neurons and
using back-propagation updating. This result is the same obtained with
the SONQL algorithm when the database was not used. Therefore, the
SONQL algorithm, making use of the database, can be considered as
one successful case in which a NN was able to solve the generalization
problem proposed in the "mountain-car” task.

The results of these algorithms does not improve the mark obtained with
the SONQL algorithm. Any of them was able to reach an effectiveness of
53 iterations to goal. As far as the number of learning iterations, it was
not clearly stated in these works and, therefore, it cannot be directly com-
pared. However, from the comments about this feature, it is extracted that
the SONQL algorithm requires less iterations to converge. They talk about
the number of episodes to learn, which even if it is multiplied by the final
effectiveness, gives a higher number of iterations. Another important aspect
is the computational cost. Although it cannot be quantitatively compared,
the SONQL algorithm may require more computation than these algorithms,
due to the high number of learning samples to update at each SONQL it-
eration. Therefore, the conclusion of this comparison is, the SONQL has
a higher generalization capability and a short convergence time, but these
features must be balanced with respect to the available computational power
and real-time requirements.

Finally, after presenting the results of the SONQL algorithm in the ”moun-
tain-car” benchmark, it can be concluded that:

e The SONQL algorithm was able to solve the generalization problem
found in the "mountain-car” task. The generalization capability of the
NN allowed the approximation of the Q-function. The database of
learning samples was also a requirement to guarantee the convergence
in 100% of the cases.

e The number of learning samples clearly influenced the performance of
the SONQL algorithm. The higher the number of samples, the higher
the performance. However, a high number of samples also implies a
high computational cost, which must be taken into account in a real-
time application.

e The effectiveness of the SONQL algorithm was not as good as the
effectiveness of the (Q_learning algorithm. However, a drastic reduction
of the number of iterations needed to converge was demonstrated by the
SONQL algorithm. Even the number of NN updates was significantly
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smaller than the number of iterations needed for the convergence of the
Q_learning algorithm.

e The results of the SONQL algorithm with respect to other RL algo-
rithms has shown a higher effectiveness and a smaller convergence time.

e It has been demonstrated that the SONQL algorithm is a suitable ap-
proach for reinforcement learning problems in which a generalization
and fast learning are required.



Chapter 8

Conclusions

This chapter concludes the work presented throughout this dissertation. It
first summarizes the thesis by reviewing the contents described in each chap-
ter. It then points out the research contributions extracted from the propos-
als and the experiments. In addition, all aspects which have not been accom-
plished as well as some interesting future research issues are commented on
in the future work section. Then, the research framework in which this thesis
was achieved is described. Finally, the publications related to this work are
listed.

8.1 Summary

In order to develop an autonomous robot, a control architecture must be in-
cluded in the robot control system. The control architecture has the goal of
accomplishing a mission which can be divided into a set of sequential tasks.
Chapter 2 presented Behavior-based control architectures as a methodology
to implement this kind of controllers. Its high interaction with the envi-
ronment, as well as its fast execution and reactivity, are the keys to its
success in controlling autonomous robots. This chapter also compared some
classic approaches by testing their performance in a simulated task with an
Autonomous Underwater Vehicle. The main attention was given to the co-
ordination methodology. Competitive coordinators assured the robustness
of the controller, whereas cooperative coordinators determined the perfor-
mance of the final robot trajectory. Chapter 3 proposed the structure of a
control architecture for an autonomous robot. Two main layers are found in
this schema; the deliberative layer which divides the robot mission into a set
of tasks, and the behavior-based layer which is in charge of accomplishing
these tasks. This chapter and the thesis centered only on the behavior-based
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layer. A behavior coordination approach was proposed. The main feature
is its hybrid coordination of behaviors, between competitive and cooperative
approaches. The approach was tested with the simulated task as well.

The second part of the thesis centered on the implementation of the robot
behaviors. It proposed the use of a learning algorithm to learn the internal
mapping between the environment state and the robot actions. Chapter 4
presented Reinforcement Learning as a suitable learning theory for robot
learning. Its online applicability and the non-requirement of any previous
information about the environment are the most important advantages. In
addition, the Q_learning algorithm was presented, which is specially ade-
quate for its capability in off-policy learning. The most important drawback
is the generalization problem. Reinforcement Learning algorithms are based
on discrete representations of the state and action spaces. When these al-
gorithms are applied to continuous variables, as most robotics applications
require, the discretization of the variables causes an enormous number of
states and a long learning time. The generalization makes the application of
Reinforcement Learning in robotics impractical. However, several techniques
were presented which attempt to solve this problem. Chapter 5 proposed a
Reinforcement Learning algorithm designed to be applied to robotics. The
goal of the SONQL algorithm is to learn robot behaviors. It is based on
the Q_learning algorithm and solves the generalization problem by using a
Neural Network and a database of the most representative learning samples.

The thesis has shown some experiments with the Autonomous Under-
water Vehicle URIS. Chapter 6 detailed the experimental set-up specifically
designed for these experiments. A description of the vehicle was done first,
followed by the presentation of two sensory systems. The target detection
and tracking system was in charge of detecting an artificial target by using
computer vision. Its purpose was to provide the detection of the environ-
ment state for the SONQL algorithm. The second sensorial system was the
localization system, which also uses computer vision to estimate the position
and velocity of the vehicle. The system was responsible for the fine control-
lability of the robot. Finally, Chapter 7 showed some results of the SONQL
algorithm. The feasibility of the approach was demonstrated by learning a
target following behavior in real-time computation. The hybrid coordina-
tion system demonstrated to be a suitable methodology, by coordinating the
SONQL-based behavior and other manually implemented behaviors. The
SONQL algorithm was also tested in a simulated benchmark. This task
demonstrated empirically the feasibility of this algorithm in a complex gen-
eralization problem.
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8.2 Contributions

This thesis has accomplished the proposed goal which is the development of
a robot control architecture for an AUV able to achieve simple tasks and
exhibit real-time learning capabilities. In the development of this goal, some
research contributions were achieved. Hereafter these contributions are listed:

Online learning of robot behaviors . The most important contribution
has been the online learning of robot behaviors. The use of Reinforce-
ment Learning in robotics is very common nowadays. However, there
are not many approaches which perform an online learning. It is, there-
fore, an important contribution to demonstrate the feasibility of the
SONQL in a real-time task, specially in a complex domain such as un-
derwater robotics. The algorithm proved able to learn the state/action
mapping of one DOF in less than 400 iterations, which was less than
two minutes. Although the best parameters were used and the exper-
iments were designed in detail, these results point out the important
role learning algorithms will have in future robotics applications.

SONQL as a continuous state RL algorithm . The second contribu-
tion is also related to the SONQL algorithm. This algorithm demon-
strated a high generalization capability in the "mountain-car” bench-
mark. The combination of the Neural Network and the learning sam-
ples database resulted in an algorithm able to face the generalization
problem. The Neural Network offered a high function approximation
capability, and the database guaranteed its stability by avoiding the
interference problem. To the best of the author’s knowledge, similar
approaches have not been found in the literature and, therefore, the
SONQL represents a contribution in the Reinforcement Learning field.
However, it must be noted that, although the action space is contin-
uous in the Neural Network, the search of greedy actions requires a
discretization of this space. Therefore, the SONQL must be considered
only as an algorithm to solve the generalization problem in the state
space.

Methodologies for Generalizing . The generalization problem in Rein-
forcement Learning was treated in detail. The most important method-
ologies currently being applied were described. This study was not
considered as an exhaustive survey but a general overview of the most
used techniques.

Development of a behavior-based control system . Another contri-
bution was the development of the behavior-based control layer, and in
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particular, the hybrid coordination methodology. The main features of
the coordination system are its simplicity and robustness which assure
the safety of the vehicle. In addition, the cooperation between behav-
iors improves the final robot trajectory. The behavior-based control
layer demonstrated as being an efficient tool in the implementation of
a set of behaviors and the obtained results were highly satisfactorily.

Behavior-based control architectures . Four classic Behavior-based con-
trol architectures were presented, tested and compared. These archi-
tectures represent the most important principles in this field. There-
fore, this study offers an exemplified introduction to Behavior-based
Robotics. The testing of the architectures in a simulated environment
also led to the identification of the dynamics model of GARBI and
URIS underwater robots.

Development of a localization system . A localization system for un-
derwater robots in structured environments was proposed. The system
is able to estimate the position and orientation in three degrees of free-
dom and also the velocity. The localization is based on a coded pattern
and a computer vision system. The high accuracy of the estimations
and the real-time execution of the algorithm are the main features. The
localization system has been one of the most important factors for the
success of the presented experiments.

8.3 Future Work

The development of a research project always provokes the discovery of new
problems as well as new interesting research topics. Future work of the sort
contained in this thesis has elements of both kinds. Five different points
were considered to be the most logical lines to continue this research. The
order in which they are presented corresponds to its hypothetic chronological
execution, and also to its specification level.

Exploration/Exploitation policy . The policy which was followed while
the SONQL was learning is the e — greedy policy. The advantage of this
is the exploration of new state/action pairs which could have a higher
@ value. The effectiveness of random actions in exploring is, at the
same time, a problem when working with real systems. Random ac-
tions cause very abrupt changes of the robot’s movement, which puts at
risk the safety and controllability of the robot. A future improvement
could be the design of a exploration/exploitation policy which is more
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appropriate for robotics. This policy could make use of the learning
sample database which already contains the non-explored space. How-
ever, the convergence of the algorithm and its necessary time should
be studied and compared with the ¢ — greedy policy.

Further SONQL testing . The experimental results have shown the learn-
ing of the "target tracking” behavior. This behavior was chosen for the
ease in detecting an artificial target with a computer vision system. It
would be interesting to add a new state dimension to allow the learning
of moving targets. It would also be interesting to test the feasibility of
the SONQL with other behaviors. A "trajectory following” behavior,
for instance, has a difficult solution for non-holonomic vehicles. The
solution adopted by the SONQL algorithm would certainly be interest-
ing. Another important test would be the execution of the algorithms
in a natural environment, which usually has much more perturbations,
and would also allow the learning of the heave DOF.

Action space generalization . As was treated throughout this disserta-
tion, the SONQL algorithm cannot work effectively if several continu-
ous actions are present. In the learning of the robot behaviors, only one
continuous action was used since each DOF was independently learnt.
However, the extension of the algorithm to more than one continuous
action cannot be easily accomplished. The main reason for that resides
in the difficulty in finding the maximum value of the Q_learning func-
tion when it is implemented with a Neural Network. This problem,
which is also found in other generalization techniques, also constitutes
a future work.

Other RL issues . Besides the generalization problem, the correct ob-
servation of the Markovian state is also a very important point in
robotics. Partially Observable Markov Decision Processes were pre-
sented in Chapter 4 to deal with environments in which the state is
corrupted. The use of a POMDP algorithm should be considered in
future research since the difficulty in having a correct observation is
very high. Also the use of eligibility traces has been pointed in the
experimental results for their higher suitability in Non-Markovian envi-
ronments. In addition, some other research issues about Reinforcement
Learning were pointed out. Policy methods and hierarchical learning
are two interesting topics which have recently received a lot of attention
and are very suitable to robotics.

Deliberative layer This thesis has concentrated on the behavior-based layer
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of a complete control architecture only. It is logical to note as a fu-
ture work the development of the upper layer, which is the deliberative
layer. This layer would allow the execution of real missions instead of
simple tasks. The deliberative layer would configure a set of behaviors
by setting the priorities among them to execute a particular task. After
the fulfillment of this task, a new one would be started. This would be
repeated until the mission was completed. However, in order to test
the deliberative layer, an assorted set of sensors and behaviors must
first be fully working. This future work also involves a new research
line since behavior-based robotics is not a suitable approach for mission
planning.

8.4 Research Framework

The results and conclusions presented in this thesis are based on a set of
experiments. During the period in which this thesis was completed, several
robot platforms were used. This section summarizes the research facilities
and evolution of this thesis. The most relevant research publications will be
referred and can be checked in the next section.

The first experiments consisted of testing some Behavior-based Robotics
control architectures. At that time, the robot GARBI was available for tele-
operation tasks but it was still not ready to test a control architecture. As has
been described throughout this dissertation, in order to perform a test with a
control architecture, the subordinate components, such as sensors, actuators
and the low-level controller, must be properly working. Therefore, the exper-
imentation was performed with a simulated dynamics model of GARBI and
a simulated underwater environment. This led to the identification of the
dynamics model of this vehicle [CAMS’01a]. Moreover, further work on dy-
namics identification was conducted since then [IIA’01,MED’02,GCUV’03b].
This realistic model allowed the execution of a simulated task and the com-
parison of different control architectures [MCMC’00,QAR’00]. This work
was carried out during a research stage at the University of Wales College,
Newport, under the supervision of Prof. Geoff Roberts. Also, the hybrid co-
ordinator methodology [IROS’01a,ITA’00] was designed using this simulator.

The second part of this thesis discussed the use of a Reinforcement Learn-
ing algorithm to learn the internal structure of a behavior. The first steps in
this field were carried out with simulation and published in [IROS’01a]. At
that time, as a result of a research stay at the University of Hawaii, under
the supervision of Prof. Junku Yuh, the learning algorithms were applied to
two different robots. The first one was a commercial mobile robot (Magellan
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Pro mobile robot). The advantages of using this platform first, instead of
an AUV, were certainly great. The ease in controlling the vehicle and the
environment allowed the execution of a high number of experiments [ITA’03].
The utility of these experiments was the detection of the interference prob-
lem in the Neural Network. This problem was solved by designing a first
version of the SONQL algorithm which was tested with a second robot. In
this case, an underwater robot called ODIN, developed in the University of
Hawaii. The experiments with ODIN [IFAC’02,0CEANS’01] demonstrated
the feasibility of Reinforcement Learning with an autonomous underwater
robot.

The experiments were then improved and reproduced with the underwater
robot URIS [IROS’02], which are the experiments presented in this thesis.
In this case, several sensory systems were specifically developed. Among
them, the accurate localization system permitted a fine control of the robot
[ICRA’03a,GCUV’03a]. The experiments with URIS are the most complete,
although they could not have been achieved without the previous experience.
Finally, the generalization capability of the SONQL with the "mountain-car”
task was evidently performed in simulation [IROS’03].
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