
NADA

Numerisk analys och datalogi Department of Numerical Analysis
Kungl Tekniska Högskolan and Computer Science
100 44 STOCKHOLM Royal Institute of Technology

SE-100 44 Stockholm, SWEDEN

An Evolutionary Approach to Automatic
Construction of the Structure in

Hierarchical Reinforcement Learning

Stefan Elfwing

TRITA-NA-Eyynn

Master’s Thesis in Computer Science (20 credits)
at the School of Computer Science and Engineering,

Royal Institute of Technology, Februari 2003
Supervisor at Nada was Anders Lansner

Examiner was Anders Lansner

Abstract
Because the learning time is exponential in the size of the state space, a hierarchical
learning structure is often introduced into reinforcement learning (RL) to handle
large scale problems. However, a limitation to the use of hierarchical RL algorithms
is that the learning structure, representing the strategy for solving a task, has to be
given in advance by the designer. This thesis presents an evolutionary approach to
automatic construction of the learning structure in hierarchical reinforcement learn-
ing. The proposed method combines the MAXQ hierarchical reinforcement learning
method and genetic programming. The MAXQ method learns the policy based on
the task hierarchies obtained by genetic programming, while genetic programming
explores the appropriate hierarchies using the result of the MAXQ method. To show
the validity of the proposed method, computer simulations for a foraging task are
performed. In the task, the agent collects food, represented by battery packs, into
its nest. The simulation results show a strong connection between the complexity
of the evolved hierarchies and the complexity of the environment.

Ett evolutionärt tillvägagångssätt för automatisk
konstruktion av inlärningsstrukturen i hierarkisk

reinforcement learning

Sammanfattning
En hierarkisk inlärningsstruktur introduceras ofta i reinforcement learning (RL) för
att hantera storskaliga problem. Orsaken är att inlärningstiden växer exponentiellt
med avseende på storleken på tillståndsrymden. En begränsning av användningen
av hierarkiska RL-algoritmer är att inlärningsstrukturen, som representerar strate-
gin för att lösa uppgiften, måste ges av konstruktören i förväg. Den här rapporten
presenterar ett evolutionärt tillvägagångssätt för automatisk konstruktion av inlär-
ningsstrukturen i hierarkisk RL. Den föreslagna metoden kombinerar hierarkisk RL
MAXQ och genetisk programmering. MAXQ-metoden lär en policy baserad på upp-
giftshierarkierna som erhålls från genetisk programmering. Den genetiska program-
meringen söker i sin tur efter lämpliga hierarkier, genom att använda resultaten från
MAXQ-metoden. För att visa metodens giltighet utförs simuleringar för en uppgift
där agenten ska söka efter mat. I uppgiften samlar agenten in mat, som representeras
av batterier, till sitt bo. Simuleringsresultaten visar ett starkt samband mellan de
evolverade hierarkiernas komplexitet och miljöns komplexitet.

Acknowledgments

I want to thank Dr. Kenji Doya, supervisor at ATR (Advanced Telecommunications
Research Institute International), and Dr. Eiji Uchibe for valuable suggestions and
ideas during the work. I also want to thank Anders Lansner, supervisor at KTH, for
helpful advice and for support in the initial contacts with Japan. Finally, I want to
thank Anders Eriksson for co-development of the MATLAB simulator used for my
experiments and also for his friendship and support during the time in Japan.

I am very grateful for the economical support from the Sweden-Japan foundation
and ATR, which made this thesis possible.

Contents

1 Introduction 1
1.1 Cyber Rodent Project . 2
1.2 Motivation and Goal . 2
1.3 Related Works . 3

2 Background 5
2.1 Reinforcement Learning . 5

2.1.1 Concept . 5
2.1.2 Markov Decision Process . 7
2.1.3 Value Functions . 8
2.1.4 Action Selection . 9
2.1.5 Temporal Difference Learning 10
2.1.6 Function Approximation . 12

2.2 Hierarchical Reinforcement Learning 15
2.2.1 Semi-Markov Decision Process 16
2.2.2 MAXQ . 17

2.3 Genetic Algorithms . 22
2.3.1 Concept . 24
2.3.2 Genetic Programming . 27

3 Exploration of the MAXQ Hierarchies by GP 30
3.1 MAXQ Implementation . 30
3.2 GP Implementation . 32

4 Experiments 35
4.1 The Cyber Rodent Robot . 35
4.2 Learning Task and Provided Subtasks 36
4.3 Environmental Settings . 40
4.4 Learning and Evolution Settings . 42
4.5 Experimental Results . 43

4.5.1 Evolved Hierarchies . 43
4.5.2 Similarity in Structure . 45
4.5.3 Performance Improvement and Intermediate Structures 46
4.5.4 Similarity in Policy . 47

5 Discussion 52
References 54

List of Figures

2.1 The RL model . 5
2.2 Cliff walking task . 9
2.3 Optimal state-value function for the cliff walking task 9
2.4 Five normalized Gaussian features 14
2.5 A linear RBF network approximating Qt(s, a) 15
2.6 The taxi problem . 18
2.7 Task decomposition of the taxi problem 19
2.8 MAXQ graph of the taxi problem. Triangles denote Max nodes and

rounded boxes show Q nodes. 21
2.9 Crossover in GA . 25
2.10 Mutation in GA . 26
2.11 GA applied to the Brachystrochrone problem 27
2.12 Parse tree of LISP expressions . 28
2.13 Crossover in GP . 29

3.1 Acyclic MAXQ graph of the taxi problem. 33

4.1 The Cyber Rodent robot with a battery pack 35
4.2 MAXQ graph of the foraging task, including all available subtasks . 37
4.3 The approximated action-value functions for the three primitive sub-

tasks that use angle as state information. The figures show the already
learned behaviors before the evolutionary process begins. The num-
bering of the actions are according to Table 4.4. 40

4.4 Experimental environmental settings 41
4.5 Hierarchies obtained by GP . 44
4.6 Measurement of structural differences between two hierarchies. . . . 46
4.7 Average difference in hierarchical structure between the best perform-

ing hierarchy and the hierarchies ranked 2-8, measured for each gen-
eration in environment 1. 47

4.8 Performance development for the 8 best performing hierarchies in
each generation. The graphs show the development for the obtained
hierarchies in environment 2. 48

4.9 The best performing hierarchies in 8 selected intermediate generations
in environment 2. 50

4.10 Average probability for primitive subtask selection. 51

List of Tables

4.1 The four different types of state for the foraging task 36
4.2 Provided composite subtasks for the foraging task 38
4.3 Provided primitive subtasks for the foraging task. The targets, bat-

tery packs and the nest, are identified by their colors: green for bat-
tery packs and red for the nest . 38

4.4 Actions, pairs of right and left wheel velocities, for the primitive sub-
tasks . 39

4.5 Learning parameters and initial values common for all subtasks . . . 42
4.6 Number of RBFs in the normalized Gaussian RBF networks 43
4.7 GP parameters . 43

Chapter 1

Introduction

In everyday life humans and animals are experts in adapting to the current task
and environment. For most tasks only a few basic behaviors are used, but these
are combined and executed in an order which gives a strategy that is suited to the
environment.

In this thesis a method for an artificial agent to adapt its strategy to the envir-
onment is presented. To represent the strategies of the artificial agent the MAXQ
hierarchical reinforcement learning (RL) framework is used. The strategies are rep-
resented as trees of subtasks, denoted task hierarchies. When the strategies are used,
the subtasks are executed sequentially, according to a learned policy, to complete
the overall task.

The largest focus of research in the field of hierarchical RL has been in the de-
velopment of learning algorithms for given hierarchical structures. Very few studies
have been done in adaptation or learning of the task hierarchy. A good task hierarchy
is a basic condition for hierarchical RL algorithms to work efficiently. Therefore, it
is important to development methods that can construct a good hierarchy for a
given problem. Most hierarchical RL applications are applied to simple problems in
a discrete grid world with fixed environmental settings. In such cases it is relatively
easy to provide a good task hierarchy. For large scale problems, especially if the
agent has to rely on local and continuous state information, this is not the case.

In this thesis an evolutionary approach is used for adapting the strategies, task
hierarchies, to the environmental settings during the lifetime of the agent. An agent
is seen as having a number of competing strategies inside its “ brain”. A good
strategy is evolved over time by the mixing of the competing strategies. Genetic
programming (GP) is chosen as evolutionary method, since the genetic operators
of GP, responsible for the mixing of the competing strategies, are designed to be
applied on tree structures.

1

1.1 Cyber Rodent Project

The work with this thesis has been performed within the Cyber Rodent project in
Dr. Mitsuo Kawato’s department at ATR (Advanced Telecommunications Research
Institute International) in Japan, under the supervision of Dr. Kenji Doya. The goal
of the Cyber Rodent Project is to understand the adaptive mechanisms necessary
for artificial agents that have the same fundamental constraints as biological agents,
namely, self-preservation and self-reproduction. Previous studies of RL assumed
arbitrarily defined “rewards”, but in the models of biological systems, rewards should
be grounded as the mechanisms for self-preservation and self-reproduction. To be
able to achieve these goals the Cyber Rodent robots have the capability of finding
and re-charging from battery packs and copying programs via IR-ports.

The main research topics of Cyber Rodent project are

• Development of programs for basic behaviors. Examples of basic beha-
viors of the Cyber Rodent are foraging, detection of friends and enemies, and
communication via IR-ports.

• Implementation of RL algorithms. The learning algorithms shall improve
the basic behaviors, create new behaviors or combine already learned behaviors
for more complex behaviors, for example collaborative behaviors.

• Development of meta-learning algorithms. To achieve robust and effi-
cient learning the parameters of the learning algorithms, the meta-parameters,
also have to be learned or tuned.

• Exploration of communication mechanisms. The Cyber Rodent robots
can communicate in various types of ways. The goal of this research is to
investigate how the communication can be integrated with the learning to
improve the performance.

• Design of an evolutionary framework. To be able to achieve the ultimate
goal, to create evolution in the laboratory, an artificial gene code has to be
designed. The code has to have the ability to describe behaviors and learning
algorithms, and also to maintain functionality under genetic manipulation.

1.2 Motivation and Goal

The goal of this study is to find a method for automatic construction of the task
hierarchy in hierarchical RL. The main motivation is that the existing hierarchical
RL algorithms have no capability to learn or adapt the task hierarchy [3, 14]. The
designer has to provide the task hierarchy in advance and as already mentioned this
is non-trivial for many problems.

A second motivation for this thesis is that an automatic construction method
could provide meta-learning capability to the learning structure. Meta-learning is
the study of learning about learning. In this case meta-learning capability means

2

that the automatic construction method could facilitate learning of related tasks
and environments. If the agent has learned a good hierarchy for one task and
environment and then is moved to a related task and/or environment, an automatic
construction method could make small changes to the learning structure, to adapt
the agent’s strategy to the new situation.

The task hierarchies are seen as strategies for a single agent to solve a problem
during its lifetime. The task hierarchies are built up from a few basic behaviors that
the agent already knows how to perform. As the adaptation of the task hierarchy
is accomplished during the agent’s lifetime, the population in the evolutionary com-
putation represents different types of competing hierarchies within one agent and
the learning in the hierarchies continue through the evolutionary process. Also, as
the agent uses a number of already learned basic behaviors these basic behaviors
are shared by all hierarchies. An aim in this thesis is that the artificial agent acts
as a realistic autonomous agent, using local and continuous information about the
environment.

Another important topic for this thesis is to study the evolution process. Artifi-
cial evolution methods have the advantage compared with real biological evolution
that the details of the process can be studied in detail. In real biological evolution
only the final result can be studied.

1.3 Related Works

Very few studies have been done in the field of adapting or learning of the task
hierarchy in hierarchical RL. The author has not find any previous works that are
directly related to the work presented in this thesis. The author found the three
studies presented below the most interesting works in the scientific field of this thesis.

Doya et al. [5] proposed multiple model-based reinforcement learning for RL in
continuous time and space. Each module consists of a state prediction model and a
reinforcement learning controller, and their system could decompose a complicated
task into simpler subtasks based on the idea of a softmax selection of the prediction
errors. However, it is difficult to extend their method to a multi-layer architecture
since only one softmax function is allowed for the upper layer.

Downing [4] applied GP to construct the state space for successful learning to
converge. Uchibe et al. [18] also applied GP to obtain hierarchical structures for
cooperative and competitive mobile robots. In their case, a terminal set consisted of
multiple behaviors was obtained by RL. Since their methods just obtained switching
conditions according to the situation, the value function obtained by RL was not
utilized effectively.

In the related field of on-line learning and evolutionary robotics there are several
interesting studies. Nordin et al. [13] applied GP directly to the binary code to
learn an obstacle avoiding behavior, using the robot’s infrared distance sensors. The
experiments were performed on the Khepera robot and the learning time, 1.5 s,
is exceptionally fast. Martin [10] used GP to learn a program for visual obstacle

3

avoiding behavior.
Hornby et al. [7] proposed an autonomous evolutionary algorithm for developing

dynamic locomotion gaits for the Sony quadruped robot, using the robot’s digital
camera and infrared sensors.

4

Chapter 2

Background

2.1 Reinforcement Learning

RL is a computational approach to learning from experience, by interaction with the
environment. Compared with other machine learning approaches, RL is much more
goal-directed. RL is not a supervised learning technique, like for example supervised
artificial neural networks and decision trees. In supervised learning the designer
provides the agent with a number of training examples. The success of the learning
is then based on how well the agent generalizes from these training examples.

2.1.1 Concept

AGENT

ENVIRONMENT

 State st
 Reward rt Action at

 st+1

 rt+1

Figure 2.1. The RL model

Figure 2.1 shows the RL framework. An agent interacts with the environment
by, in each state, selecting an action, which puts the agent in a new state and the

5

agent also receives a numerical reward signal from the environment.
More formally, in each discrete time step, t = 0, 1, 2, . . ., the agent has a rep-

resentation of the state of the environment, st ∈ S, where S is the set of possible
states. On the basis of the current state information the agent selects an action,
at ∈ A(st), where A(st) is the set of possible actions in state st. Thereby, the agent
receives a numeric reward, rt+1 ∈ R, and is in the new state st+1. RL methods learn
by experience a policy πt, a mapping from state representations to action selection
probabilities. πt(s, a) is the probability for selecting action at = a if st = s. The
general goal of reinforcement learning is to find a policy that maximizes the expected
future cumulative reward.

The expected future cumulative reward, which is the objective of learning, is
called the expected return, Rt. In simple cases where the learning of the task can
be broken down into subsequences, episodes, and there is a final time step for each
episode, T , corresponding to the agent being in a terminal state, the expected return
is defined as

Rt = rt+1 + rt+2 + · · · + rT =
T∑
k=0

rt+k+1, (2.1)

where rt+1 + rt+2 + · · · + rT is the sequence of rewards received after time step t.
This type of tasks is called episodic tasks and a typical example of such a task is
game playing, where the task terminates when one play of the game is finished.

Many tasks do not fulfill the requirements of being episodic. They can not nat-
urally be broken down into episodes and do not have terminal states that terminate
the task. This type of tasks is called continual tasks. For continual tasks T = ∞
and therefore, if Rt would be defined as in Equation 2.1 the expected return would
be infinite. To avoid this, the concept of discounting is introduced. The goal of
the agent is then to maximize the expected discounted return, where the future
cumulative reward is discounted exponentially as

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1, (2.2)

where γ is the discount rate parameter, 0 ≤ γ ≤ 1. If γ is zero the agent only
tries to maximize the immediate reward and as γ approaches one the agent becomes
more far-sighted, meaning that future rewards are more strongly weighted in the
calculation of the discounted return. Equations 2.1 and 2.2 can be unified to one
equation as

Rt =
T∑
k=0

γkrt+k+1, (2.3)

where T = ∞ for continual tasks and γ = 1 for episodic tasks.
The reward function is the designer’s tool for telling the agent what to achieve.

Therefore, it is very important to design the reward function carefully, so that the

6

reward signals in the different states really represent the goal the designer wants the
agent to fulfill. The problem of assigning the appropriate reward to the different
states is known as the credit assignment problem. A typical example of a reward
function, for the episodic task chess playing, is that the agent receives −1 for loosing,
+1 for winning and 0 for drawing and for all non-terminal states.

2.1.2 Markov Decision Process

The mathematical foundation for RL is developed under the assumption that the
environment has the Markov property and thereby fulfills the requirement for being
a Markov decision process (MDP).

RL problems have the Markov property if the state signal, received by the agent
from the environment, contains all relevant information about the environment in all
situations. This means that the agent has a perfect observation of the environment at
all times. An example of a problem fulfilling the Markov property is chess playing,
where the position of the board gives the agent perfect state information. If a
problem has the Markov property the new state is only depending on the current
state and the action selected by the agent.

Formally, in the general case the response of the environment at time t is de-
pending on all earlier events: st, at, rt, . . . , r1, s0, a0, expressed as the probability
distribution in Equation 2.4. If a problem has the Markov property the response
is only depending on the current state, st, and the action at, as seen in Equa-
tion 2.5. The Markov property is satisfied if and only if Equation 2.4 is equal to
Equation 2.5.

P
{
st+1 = s′, rt+1 = r|st, at, rt, . . . , r1, s0, a0

}
(2.4)

P
{
st+1 = s′, rt+1 = r|st, at

}
(2.5)

for all s′, r, and all possible earlier events: st, at, rt, . . . , r1, s0, a0.
If the Markov property is satisfied, the RL task is a MDP. More specifically if

the action and state spaces are finite sets the RL task is a finite MDP. A finite MDP
is completely defined by the action space, state space and the 1-step dynamics of
the environment defined as

P (s′|s, a) = P
{
st+1 = s′|st = s, at = a

}
(2.6)

R(s′|s, a) = E
{
rt+1|st = s, at = a, st+1 = s′

}
(2.7)

P (s′|s, a) is the probability distribution for the next state being s′, given state s and
action a. R(s′|s, a) is the expected value of the next reward, given state s, action a
and the next state s′.

All RL tasks do not satisfy the Markov property and many RL algorithms do
not assume a perfect model of the environment. Although, it is appropriate to think
of the state signal from the environment as an approximate of the Markov property,
where the policy and the value functions are only functions of the current state and
the selected action.

7

2.1.3 Value Functions

To realize the maximization of discounted return, almost all RL algorithms estimate
the value functions. The value functions are the expected return for the agent to be
in a state or to perform a given action in a state, according to the current policy.

The state-value function for a policy π, V π(s), is the value of starting in state s
and thereafter following policy π, defined for a MDP as

V π(s) = Eπ {Rt|st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

}

=
∑
a

π(s, a)
∑
s′

P (s′|s, a) [
R(s′|s, a) + γV π(s′)

]
, (2.8)

where Eπ is the expected value given that the agent follows the policy π and s′ is the
next state. Equation 2.8 is called the bellman equation for V π and expresses that
the value function can be defined recursively as a relationship between the value of
current state and the value of the next state.

The action-value function for a policy π, Qπ(s, a), is the expected return starting
in state s, taking action a, and thereafter following policy π, defined for a MDP as

Qπ(s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}

=
∑
s′

P (s′|s, a)
[
R(s′|s, a) + γ

∑
a′

π(s′, a′)Qπ(s′, a′)

]
, (2.9)

where Equation 2.9 is the bellman equation for Qπ.
As the value functions are defined for a policy, reinforcement learning algorithms

try to find the best policy for solving the task, the optimal policy π∗. An optimal
policy for a definite MDP is defined as π∗ ≥ π if and only if V π∗(s) ≥ V π(s) for
all s ∈ S and all policies π. All optimal policies, there is at least one policy that
is better than all other policies, share the same state-value function, the optimal
state-value function, V ∗(s), and it is defined as

V ∗(s) = max
π

V π(s)

= max
a∈A(s)

∑
s′

P (s′|s, a) [
R(s′|s, a) + γV ∗(s′)

]
, (2.10)

8

for all s ∈ S. The optimal policies also share the same optimal action-value function,
defined as

Q∗(s, a) = max
π

Qπ(s, a)

=
∑
s′

P (s′|s, a)
[
R(s′|s, a) + γ max

a′
Q∗(s′, a′)

]
, (2.11)

for all s ∈ S and all a ∈ A(s).

To illustrate the ideas so far consider the following example. Figure 2.2 shows a

S CLIFF G

Figure 2.2. Cliff walking task

cliff walking task. The environment is a grid world and the goal for the agent is to
move from start state, S, to the terminal goal state, G. The agent has four actions
that move the agent 1-step up, down, right or left. The agent receives a −1 reward
for every state transition, except for moving into the cliff region. In this case the
agent receives a −100 reward and the agent is placed in start state, S, again. This
is a standard undiscounted episodic task.

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-13 CLIFF 0

Figure 2.3. Optimal state-value function for the cliff walking task

Figure 2.3 shows the optimal state-value function for the cliff walking task. The
optimal state-value function for the start state, S, is −13, corresponding to that the
shortest path contains 13 steps, moving along the edge of the cliff.

2.1.4 Action Selection

An important issue in RL is the so called exploration-exploitation problem during
learning. In every state it is always at least one action whose estimated action value
function is the largest, i.e. the greedy action, a∗t = argmaxa∈A(st) Q(st, a). If the

9

agent chooses the greedy action, the agent exploits the current knowledge. This is
often the right thing to do, especially if the learning has converged or if the agent
wants to maximize the immediate reward. During learning, especially in the early
stages, the agent has to explore the environment, by taking non-greedy actions. By
exploring the environment the agent gets new knowledge and improves the estimates
of the value functions.

To allow for exploration, the ε-greedy action selection is a simple alternative to
the greedy action selection. The agent selects the greedy action most of the time,
but with a small probability, ε, the agent selects a random action. The problem
with ε-greedy action selection is that the agent selects all actions with the same
probability when exploring. The natural alternative is to rank the actions according
to their estimated action-value functions in the current state. This is called softmax
action selection and the most common method uses a Boltzmann distribution. The
selection probability for an action, at, at time step t is defined as

P(at) =
eQt−1(st,at)/τ∑

b∈A(st)
eQt−1(st,b)/τ

, (2.12)

where the positive parameter τ is called the temperature. When τ approaches in-
finity the action selection becomes random and when τ approaches zero the action
selection becomes greedy. The right mix between exploration and exploitation de-
pends strongly on the task and therefore it is very important to set the right τ or ε
when designing RL algorithms. It is common to start with a large part of explora-
tion and then gradually decrease the exploration rate, by decreasing τ or ε. In such
case the agent acts randomly in the beginning of the learning and acts greedier as
the learning converges.

2.1.5 Temporal Difference Learning

In RL there are three standard types of RL algorithms: dynamic programming (DP)
methods, Monte Carlo methods and temporal difference (TD) learning methods. DP
methods are algorithms that can calculate the optimal policy, given a perfect model
of the environment as a MDP. The big drawback of DP methods are that they are
computationally expensive. Monte Carlo algorithms do not need a perfect model of
the environment, but are all based on averaging sample returns. They are therefore
only applicable for episodic tasks, because good return estimates are only available
after completing an episode. In this thesis only TD learning has been used and is
the only type of RL that is covered in detail.

TD methods have the following features:

• They do not need a complete model of the environment.

• They estimate the state-value function or action-value function based on other
earlier estimates of the value functions, i.e. they do not have to wait an episode
until updating the estimates of the value functions, only 1 time step. This is
called bootstrapping.

10

• They are naturally implemented online, due to the bootstrapping.

The central part of TD learning is the TD error, δt, defined as

δt = rt+1 + γV (st+1)︸ ︷︷ ︸
value prediction

−V (st). (2.13)

The TD error, the difference between temporally successive value predictions, is
used to learn the value function. A positive TD error indicates that the action-
value for selecting action at in state st, Q(st, at), shall be larger and a negative TD
error indicates that the action-value shall be smaller. The learning rule for updating
the state-value function, V (st), and the action-value function, Q(st, at) in the most
simple TD methods, TD(0) and SARSA(0), have the following definitions

V (st) ← V (st) + α [rt+1 + γV (st+1) − V (st)]︸ ︷︷ ︸
δt

(2.14)

Q(st, at) ← Q(st, at) + α [rt+1 + γQ(st+1, at+1) −Q(st, at)]︸ ︷︷ ︸
δt

, (2.15)

where α is a step size parameter, called learning rate, 0 ≤ α ≤ 1. In each time step
the value function estimate is updated by the TD error multiplied with the learning
rate. The learning rate decides how much of the TD error that is going to be used
in the update in each time step. In general, a low α gives slower but stable learning
and a high α gives quicker but sometimes unstable learning. The pseudo code for
the TD(0) algorithm is shown in Algorithm 2.1.

Algorithm 2.1 TD(0)
1: Initialize V (s) arbitrarily and π to the policy to be evaluated
2: for each episode do
3: Initialize s
4: repeat
5: a ← action given by π for s
6: Take action a, observe reward r, and next state s’
7: V (s) ← V (s) + α [r + γV (s′) − V (s)]
8: s ← s′

9: until s is terminal
10: end for

The most famous reinforcement algorithm is maybe Watkins’s Q-learning [19].
In Q-learning the agent estimates the optimal action-value function, Q∗, directly,
instead of estimating the state-value function for a policy, V π, or the action-value
function for a policy, Qπ, as in previous algorithms. In the simplest form, 1-step
Q-learning, the Q-values are updated as

Q(st, at) ← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a) −Q(st, at)

]
(2.16)

By taking the maximum over all actions, a, of the Q-values for the next state, st+1,
Q-learning becomes independent of the policy. It has been proved that Q-learning

11

converges relatively fast with the probability one to Q∗. This holds under some
basic constraints, such as that the learning rate is sufficiently small and that all
state-action pairs are continually visited and updated. The pseudo code for 1-step
Q-learning is shown in Algorithm 2.2. Note that the policy is still important. The
policy is responsible for that all state-action pairs are visited, i.e. to handle the
exploration-exploitation problem.

Algorithm 2.2 1-step Q-learning
1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s
4: repeat
5: Choose a from s using policy derived from Q (e.g. ε-greedy or softmax)
6: Take action a, observe reward r, and next state, s′

7: Q(s, a) ← Q(a, a) + α[r + γ maxa′ Q(s′, a′) −Q(s, a)]
8: s ← s′

9: until s is terminal
10: end for

2.1.6 Function Approximation

To calculate the optimal value functions it is required that the values for all states
are stored, for example in a lookup-table. For large scale problems or for problems
where the state signal is continuous this is not possible. In general, the learning
time grows exponentially with the size of the state space.

To handle large state spaces or continuous state information the value functions
have to be approximated. The idea is that the approximator, the function approx-
imator, has the ability to generalize from experience gathered in a limited subset
of the state space to a larger subset of the state space. Function approximation is
a form of supervised learning and almost all supervised learning techniques can be
used as function approximators, such as artificial neural networks, pattern recogni-
tion techniques and statistical methods. For example, the maybe most successful
RL application yet, Gerry Tesauro’s TD-gammon [17], uses a neural network to ap-
proximate the state-value function for a state space of size larger than 1020. The
latest version of TD-gammon plays backgammon at the same level as the best human
players.

When using function approximation the approximated state-value function at
time t, Vt, is represented as a parameterized functional form with parameter vector
�θt. As the purpose of the function approximation is to generalize, the number
of parameters is normally much fewer than the number of possible states. If one
parameter, θt(i), is changed the estimated values for several states are affected. It
is therefore almost impossible to reduce the difference between the approximated
value, Vt(s), and the true value, V π(s), to zero for all states. The most widely used

12

performance measure in supervised learning is the mean squared error (MSE) over
some distribution, P , of the inputs. For RL tasks the inputs are states, which give
the following MSE for the approximation of the true value V π(s) by Vt(s), using the
parameter vector �θt

MSE(�θt) =
∑
s∈S

P (s) (V π − Vt(s))2 , (2.17)

where P is a distribution weighting the errors of different states.
One widely used type of function approximator is gradient-descent function ap-

proximation. The function approximator is represented by the column parameter
vector �θt = (θt(1), θt(2), . . . , θt(n))T , where the approximated state-value function
at time t, Vt(s), is a smooth differentiable function of �θt for all s ∈ A(s). Here T
denotes the vector transponate. The idea of gradient-descent methods is to adjust
the parameter vector with a small amount in the direction that reduces the MSE the
most, in every time step. This direction is equal to the negative gradient direction.
If f(�θt) denotes the squared error, (V π − Vt(s))2, the gradient, ∇�θt

f(�θt), is equal
to the vector of partial derivatives, (∂f(�θt)/∂θt(1), ∂f(�θt)/∂θt(2), . . . , ∂f(�θt)/∂θt(n))T .
The MSE is reduced by successively adjusting the parameter vector as

�θt+1 = �θt − 1
2
α∇�θt

(V π(st) − Vt(st))
2

= �θt + α (V π(st) − Vt(st))∇�θt
Vt(st). (2.18)

The problem is that it is not possible to use the true value of V π(st), because it is
unknown. Instead an approximate has to be used and in TD learning the approx-
imate is equal to the value prediction, rt+1 + γVt(st+1). This gives the following
general update rule for TD learning

�θt+1 = �θt + α (rt+1 + γVt(st+1) − Vt(st))∇�θt
Vt(st). (2.19)

A special case of gradient-descent methods is linear gradient-descent methods.
In the linear case the approximated state-value function, Vt(s), is a linear function
of the parameter vector �θt, which gives

Vt(s) = �θTt
�φs =

n∑
i=1

θt(i)φs(i), (2.20)

where �φs is a column vector of features, �φs = (φs(1), φs(2), . . . , φs(n))T , for every
state, s, and with same length as �θt. Linear function approximators have the nice
property that the gradient is only function of �φs,

∇�θt
Vt(st) = �φs. (2.21)

A natural function approximator for continuous state input is normalized Gaus-
sian radial basis functions (normalized Gaussian RBFs). A normalized Gaussian

13

feature, φs(i) is defined as

φs(i) =
e
− ‖s−ci‖2

2σ2
i

∑n
j=1 e

− ‖s−cj‖2
2σ2

j

. (2.22)

The response of a normalized Gaussian is only depending on the distance between
the center position of the feature and the current state, ‖s− ci‖, and the variance of
the feature, σi. Figure 2.4 shows an example, with 5 normalized Gaussian features
placed equidistantly in the interval [−60◦, 60◦], with σi = 10. The continuous input
state signal is 1-dimensional and represents some sort of angle input to the agent.

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle

A
pp

ro
xi

m
at

ed
 a

ct
io

n−
va

lu
e

fu
nc

tio
ns

Figure 2.4. Five normalized Gaussian features

Similarly, the action-value function, Qπ(s, a), is approximated by Qt(s, a) as

�θt+1,at = �θt,at + α (rt+1 + γQt(st+1, at+1) −Qt(st, at)) �φst , (2.23)

using a linear gradient-descent function approximator, where Qt(s, a) = �θTa
�φs. For

each action, a, there is a column parameter vector, �θa, representing the action-
value function. The computation of the approximated value functions become a
linear Gaussian RBF network. Figure 2.5 shows a linear Gaussian RBF network
approximating the action-value function, where the state space is of size m, the
action space is of size k and there is n Gaussian features. A parameter θa(i) can
be seen as a weight, deciding how much the feature φs(i) affects the computation
of the action-value function for an action a. The outputs from the RBF network in

14

a state, s, are equal to the approximated action-values, Qt(s, a), for all actions in
that state, a ∈ A(s).

s1 Σ

Σ

Σ

Input layer,
state si

sm

s2

RBF layer,
features φs(i)

θ1(1)

θ2(1)θk(1)

Output layer,
action-values Qt(s,ai)

θ1(2)

θ2(2)

θk(2)

θ1(n)

θ2(n)

θk(n)

Qt(s,a1)=Σiθ1(i)φs(i)

Qt(s,a2)=Σiθ2(i)φs(i)

Qt(s,ak)=Σiθk(i)φs(i)

φs(n)

φs(2)

φs(1)

Figure 2.5. A linear RBF network approximating Qt(s, a)

Algorithm 2.3 shows the pseudo code for 1-step Q-learning using a normal-
ized Gaussian RBF-network as function approximator and ε-greedy action selection.
Note that function approximators only approximate the input, i.e. the state signal.
To handle continuous output, i.e. the actions, other methods not covered here are
required.

2.2 Hierarchical Reinforcement Learning

As already mentioned RL suffers from the curse of dimensionality: the learning time
grows exponentially with the size of the state space. Hierarchical RL algorithms are
methods for introducing abstraction to the RL framework, to be able to apply RL
to large scale problems. The goal of hierarchical RL is to find hierarchical structures
in complex MDPs. This is realized by breaking down an overall task into smaller
suitable subtasks. This gives a task hierarchy for the problem, where the actions

15

Algorithm 2.3 1-step Q-learning, using normalized Gaussian RBF network as func-

tion approximator, φs(i) =
exp

„
− ‖s−ci‖2

2σ2
i

«
Pn

j=1 exp

− ‖s−cj‖2

2σ2
j

! , and ε-greedy action selection.

1: Initialize the parameter vectors �θa arbitrarily
2: for each episode do
3: Initialize s
4: for all a ∈ A(s) do
5: Qa ←

∑n
i=1 θa(i)φs(i)

6: end for
7: repeat
8: with probability 1-ε do
9: a∗ ← argmaxaQa

10: else
11: a∗ ← random action ∈ A(s)
12: Take action a∗, observe reward r, and next state s′

13: δ ← r −Qa∗

14: for all a ∈ A(s′) do
15: Qa ←

∑n
i=1 θa(i)φs′(i)

16: end for
17: a′ ← argmaxaQa
18: δ ← δ + γQa′

19: �θa∗ ← �θa∗ + αδ�φs
20: s ← s′

21: until s is terminal
22: end for

of the subtasks are other subtasks or primitive commands. In general the subtasks
learn their own policies for a subset of the state space.

There are several different hierarchical RL algorithms. The probably most well
known are the options formalism by Sutton, Precup and Singh [16], the hierarchies
of machines (HAMs) by Parr and Russel [14], and the MAXQ framework by Di-
etterich [3], which is used in this thesis and is the only method that is covered in
detail.

2.2.1 Semi-Markov Decision Process

Many of the subtasks in the task hierarchy represent abstract subgoals that often
can not be accomplished in one time step. A subtask is therefore extended in time
and the subtask is active until a well defined termination condition is fulfilled. A
termination condition is either fulfilled because the goal of the subtask is completed
or because the subtask is not applicable in the current state. For example, a subtask
for an agent is to capture a battery pack using the angle to the battery pack, given

16

by a vision system. The goal is naturally that the agent captures the battery pack,
but if the agent looses sight of the battery pack the subtask also terminates, because
the agent has no valid state information.

The semi-Markov decision process (semi-MDP) 1 model is a generalization of
the MDP model. In a semi-MDP the actions take a variable amount of time to com-
plete and semi-MDP is therefore a natural mathematical foundation for hierarchical
reinforcement learning. For discrete semi-MDPs the state transition probability
function, expressed as Equation 2.6 for MDPs, is extended to a joint distribu-
tion of the next state, s′, and number of discrete time steps, N, given the action a
executed in state s:

P (s′, N |s, a) = P
{
st+1 = s′, N |st = s, at = a

}
. (2.24)

The expected reward, equation 2.7 for MDPs, is also depending on the number of
time steps, which gives

R(s′, N |s, a) = E
{
rt+1|st = s, at = a, st+1 = s′, N

}
. (2.25)

Using this two definitions the semi-MDP versions of the Bellman equations, see
Equation 2.8 and 2.9 for the MDP versions, become

V π(s) =
∑
a

π(s, a)
∑
s′,N

P (s′, N |s, a) [
R(s′, N |s, a) + γNV π(s′)

]
(2.26)

Qπ(s, a) =
∑
s′,N

P (s′, N |s, a)
[
R(s′, N |s, a) + γN

∑
a′

π(s′, a′)Qπ(s′, a′)

]
. (2.27)

Note that the discount factor, γ, is decreased exponentially by the number of time
steps, N , it takes to complete action a.

2.2.2 MAXQ

MAXQ [3] is a hierarchical RL framework. To be able to use the MAXQ framework
the designer has to be able to decompose an overall task into suitable subtasks.
This gives a MAXQ graph of the task. The tree graph consists of two different
types of subtasks: primitive subtasks, leaf nodes, that execute commands to the
agent and composite subtasks, inner nodes, that select other subtasks to solve their
tasks. The MAXQ method uses the MAXQ graph to describe how to decompose
the overall value function for a policy into a collection of value functions for the
subtasks, recursively.

To illustrate the MAXQ method Dietterich’s taxi problem [3] is used as an ex-
ample. Figure 2.6 shows a 5x5 grid world, where the task is for a taxi agent to
pickup and putdown passengers at specified locations, taxi stands. There are four

1This formulation of semi-MDPs follows Dietterich’s [3], which is different from the standard
formulation. The difference is due to that in the standard formulation do an action, a, terminate
after the continuous time t, which gives more complex expressions.

17

B

GR4

3

2

1

Y0

0 1 2 43

Figure 2.6. The taxi problem

taxi stands marked with R, B, G, and Y in the figure. A passenger is placed ran-
domly at one of the taxi stands (the “source”) and the destination of the passenger
is one of the taxi stands (the “destination”), which can be the same as the “source”.
The task for the taxi agent is to go to the “source”, pickup the passenger, go to the
“destination” and putdown the passenger there.

The taxi problem consists of six primitive actions:

• four moving actions that move the taxi 1-step in the directions North, South,
East or West.

• a Pickup action.

• a Putdown action.

The taxi agent receives a −1 reward for every primitive action executed. In addition
the taxi agent receives a +20 reward for successfully delivering the passenger at the
“destination” and a −10 reward for executing an illegal Pickup or Putdown action.

Figure 2.7 shows a task decomposition graph for the taxi problem. The Root
node represents the overall task. The overall task is decomposed into two main sub-
tasks: Get, for getting the passenger and Put, for delivering the passenger. The Get
and Put subtasks use the Navigate(t) subtask to move the taxi to the right location,
t, and the Pickup and Putdown subtask, respectively, to complete their tasks.

Formally, the MAXQ decomposition takes a given MDP M and decomposes it into
a set of subtasks {M0,M1, . . . ,Mn}, where M0 is the root subtask.

Definition 2.1. A subtask is a three-tuple, (Ti, Ai, R̃i), defined as follows

• Ti(si) is a termination predicate that partitions S into a set of active states,
Si, and a set of terminal states, Ti. The policy for a subtask Mi can only be
executed if the current state si ∈ Si.

18

Root

PutGet

Navigate(t)

North South WestEast

Pickup Putdown
t/source t/destination

Figure 2.7. Task decomposition of the taxi problem

• Ai is a set that can be performed to achieve subtask Mi. These actions can
either be primitive actions ∈ A, the set of primitive actions for M , or they can
be other subtasks, denoted i.

• R̃i(s′|s, a) is the pseudo-reward function, which specifies a pseudo-reward for
each transition from a state s ∈ Si to a terminal state s′ ∈ Ti. The pseudo-
reward tells how desirable each of the terminal states is for the subtask. Typ-
ically, goal terminal states have a pseudo-reward of 0 and all non-goal terminal
states have negative pseudo-rewards.

Each primitive action a from M is a primitive subtask in the MAXQ decomposition,
such that a is always executable, it always terminates immediately after execution,
and its pseudo-reward function is uniformly zero.

In the MAXQ method the subtasks have their own policies. The collection of policies
is called a hierarchical policy. A hierarchical policy, π, is a set containing a policy
for each of the subtasks in the problem: π = {π0, . . . , πn}. In a hierarchical policy
each subroutine executes until it enters a terminal state ∈ Ti for its subtask i.

The objective of learning in the MAXQ method is to find a recursively optimal
policy, defined as

Definition 2.2. A recursively optimal policy for MDP M with MAXQ decompos-
ition {M0, . . . ,Mk} is a hierarchical policy π = {π0, . . . , πk} such that for each sub-
task Mi, the corresponding policy πi is optimal for the semi-MDP defined by states
Si, the set of action Ai, the state transition probability function P π(s′, N |s, a), and
the reward function of the original reward function R(s′|s, a) and the pseudo-reward
function R̃(s′).

19

Recursive optimality is a form of local optimality, in which the policy at each node
is optimal given the policy of its children. A subtask tries to find the optimal policy
without reference to the parent node’s policy.

The pseudo-reward function specifies how good each terminal state is for a sub-
task. As for the normal reward function it is very important that the designer
carefully defines the pseudo-reward function, to achieve the desired behavior of the
agent. It is of course possible to design a very specific pseudo-reward function for a
problem, but the following very simply definition of R̃ has proven to work well [3].
For each subtasks two predicates is defined: the termination predicate, Ti, and the
goal predicate, Gi. The goal predicate defines a subset of the terminated states that
are goal states for the subtask, and these have the pseudo-reward of 0. All other
terminated states have a fixed constant negative pseudo-reward. This tells the agent
that it is always better to terminate in a goal state than in a non-goal-state.

The value function, V π(s), for executing a hierarchical policy, π, is called the
projected value function. The projected value function is the value for executing
π, starting in state s and at the root of the task hierarchy. The projected value
function, V π(i, s), for subtask i in state s is decomposed into two parts, defined as

V π(i, s) =
{

Qπ(i, s, πi(s)) if i is composite∑
s′ P (s′|s, i)R(s′|s, i) if i is primitive, (2.28)

where R is the reward function for the primitive subtasks andQπ(i, s, a) is recursively
defined as

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a). (2.29)

Cπ(i, s, a) is called the completion function and is defined as the discounted cumu-
lative reward for completing subtask Mi after invoking the subroutine for subtask
Ma in state s:

Cπ(i, s, a) =
∑
s′,N

P πi (s′, N |s, a)γNQπ(i, s′, π(s′)). (2.30)

Equations 2.28, 2.29 and 2.30, the decomposition equations, tell how to decompose
the projected value for the root, V π(0, s), into projected value functions for the
individual subtasks, {M0,M1, . . . ,Mn}, and the individual completion functions,
Cπ(j, s, a), for j = 1, . . . , n. The projected value function is stored explicitly as V
values for all primitive actions and implicitly as C values for all composite subtasks.

The MAXQ task decomposition is graphically represented by a MAXQ graph.
The MAXQ graph for the taxi problem is shown in Figure 2.8. The MAXQ graph
contains two kind of nodes, Max nodes and Q nodes. The Max nodes represent
the subtasks in the task decomposition, see Figure 2.7. The Q nodes represent the
actions that are available for each subtask. The Max nodes can be seen as computing
the projected value function V π(i, s), for subtask i, by asking the Q nodes for the
value of Qπ(i, s, a). The Q nodes obtain these values by asking the children, a,
for the projected value function, V π(a, s), and then adding the completion function

20

MaxRoot

QGet QPut

QPickup QNavigateForGet QNavigateForPut QPutdown

MaxGet MaxPut

Pickup PutdownMaxNavigate(t)

QNorth QSouth QWestQEast

North WestEastSouth

t/source t/destination

10

10

12

-2

-2

-1

-1

-1

-1

0

Figure 2.8. MAXQ graph of the taxi problem. Triangles denote Max nodes and
rounded boxes show Q nodes.

Cπ(i, s, a). For example, consider the situation for the taxi problem in Figure 2.6,
denoted as state s1. Suppose that the passenger is at taxi stand R and wants to go
to taxi stand B, and that the taxi agent executes the optimal hierarchical policy, π∗.
The value of the state s1 is 10: it will cost 1 unit to move the taxi to R, 1 unit to
pickup the passenger, 7 units to move the taxi to B, 1 unit to putdown the passenger
and finally the agent receives 20 units for completing the task. The MAXQ graph,
Figure 2.8, also shows the Q and C values for the relevant nodes in state s1. The
recursive computation of the projected value function for the root node V π

∗
(0, s1)

is performed as follows

21

• Qπ
∗
(Navigate(R), s1,North) = −1 + 0

• V π
∗
(Navigate(R), s1) = −1

• Qπ
∗
(Get, s1,Navigate(R)) = −1 + −1

(−1 to perform Navigate plus −1 to complete Get)

• V π
∗
(Get, s1) = −2

• Qπ
∗
(Root, s1,Get) = −2 + 12

(−2 to perform Get plus +12 to complete the Root task).

In general the decomposition of the projected value function can be expressed as

V π(0, s) = V π(am, s)+Cπ(am−1, s, am)+ . . .+Cπ(a1, s, a2)+Cπ(0, s, a1), (2.31)

where a0, a1, . . . , am is the path of Max nodes from the root node to a primitive leaf
node, given by the hierarchical policy, π.

The learning algorithm in the MAXQ method is called MAXQ-Q. To be able to
learn recursively optimal policies MAXQ-Q uses two completion functions, C and
C̃. C is the normal completion discussed so far in this thesis. C is used by the
parent task to compute V (i, s), the expected reward for performing action i starting
in state s. The second completion function, C̃, is only used inside node i in order
to discover the local optimal policy for Mi. C̃ uses both the “real” reward function,
R(s′|s, a) and the pseudo-reward function, R̃i(s′).

The pseudo code for MAXQ-Q is shown in Algorithm 2.4. The learning rule
for updating C̃, line 16, is a kind of Q-learning for semi-MDP and the learning rule
for C, line 17, is similar to SARSA for semi-MDP. The learning of the projected
value function for the primitive actions, line 5, is accomplished by SARSA or Q-
learning where the discount factor, γ, is set to zero. This means that the primitive
actions only try to maximize the immediate reward and do not perform any value
prediction. Note that MAXQ-Q uses batch updating of the completion functions.
The recursive call at line 11 returns a list of all states visited during the execution
of the call. At line 16 and 17 the completion functions are updated for all visited
states, starting with the most recent visited state.

The projected value function, V (a, s), for the composite subtasks, line 13, 16
and 17, is recursively computed as shown in Algorithm 2.5. At line 8, C̃ is used
to find the local optimum “inside” the node, but when returning, at line 9, C is used
to compute the projected value function “outside” the node.

2.3 Genetic Algorithms

Genetic algorithms (GA) are adaptation or optimization algorithms inspired by nat-
ural selection and evolution. As for all optimization problems, the task is to max-
imize or minimize an objective function f(x) over a given space x ∈ X of arbitrary

22

Algorithm 2.4 MAXQ-Q
1: function MAXQ-Q(MaxNode i, State s)
2: seq ← {} is the sequence of states visited while executing i
3: if i is a primitive MaxNode then
4: execute i, receive r, and observe next state s′

5: V (i, s) ← V (i, s) + α[r − V (i, s)]
6: push s into the beginning of seq
7: else
8: count ← 0
9: while Ti(s) is false do

10: choose an action a according to the current policy πi(s)
11: childSeq ←MAXQ-Q(a, s), where childSeq is the sequence of states visited

while executing action a.
12: observe next state s′

13: a∗ ← argmaxa′ [C̃(i, s′, a′) + V (a′, s′)]
14: N ← length(childSeq)
15: for each s ∈ childSeq do
16: C̃(i, s, a) ← C̃(i, s, a)+α(i){γN [R̃i(s′)+C̃(i, s′, a∗)+V (a∗, s)]−C̃(i, s, a)}
17: C(i, s, a) ← C(i, s, a) + α(i){γN [C(i, s′, a∗) + V (a∗, s′)] − C(i, s, a)}
18: N ← N − 1
19: end for
20: append childSeq onto the front of seq
21: s ← s′

22: end while
23: end if
24: return seq

Algorithm 2.5 Recursive computation of the projected value function in MAXQ-Q
1: function EvaluateMaxNode(MaxNode i, State s)
2: if i is a primitive MaxNode then
3: return V (i, s)
4: else
5: for each j ∈ Ai do
6: V (j, s) ← EvaluateMaxNode(j, s)
7: end for
8: j∗ ← argmaxj[V (j, s) + C̃(i, s, j)]
9: return V (j∗, s) + C(i, s, j∗)

10: end if

dimension. In GA the potential solutions of the optimization problem are represen-
ted by a population of competing individuals. After each generation the individuals
are evaluated according to how well they are able to maximize or minimize f(x)
and are thereby assigned a fitness value. After a lifetime of the current population

23

a new generation is evolved by applying genetic operations to the current popula-
tion, where selection of individuals are based on their fitness values. The genetic
operations are inspired by reproduction and mutation in biological evolution, where
selection of individuals are based on Darwin’s “survival of the fittest” principal.

2.3.1 Concept

The terminology in GA comes from biology and the basic concepts are described
below.

• gene, a functional entity that encodes a certain feature. In animals there is for
example a certain gene that codes eye color.

• genome, the set of genes that completely defines the individuals in the popu-
lation, i.e. the encoding of the individuals.

• genotype, the genome of a specific individual.

• phenotype, the interpretation of the genotype for the given optimization prob-
lem. In biology the genome is represented by the DNA of a species and the
phenotype is represented by the physical make-up of an individual of that
species.

• population, the set competing genotypes/individuals.

The encoding of the individuals is of course a very important issue. In the
simplest encoding scheme, binary encoding, the genome consists of a bit string of
fixed length. Each gene is a single bit, as shown in the example below.

genome︷ ︸︸ ︷
0 1 1 0︸︷︷︸

4th gene

1 1 0 1

To evaluate the performance of the individuals in the population, each individual
is assigned a fitness value, corresponding to how well the individual solves the optim-
ization problem. The fitness values are calculated either directly from the genotypes
in simple cases or from the phenotypes in more complex cases, e.g. when learning
is involved.

The selection of individuals for genetic operations is based on the fitness val-
ues, according to Darwin’s survival principal. A basic selection method is to select
individuals proportionate to their fitness value:

P(xi) =
f(xi)∑n
i=1 f(xj)

, (2.32)

where f(xi) is the fitness value for individual xi, i = 1, . . . , n. Another widely used
selection method is tournament selection. In tournament selection with tournament

24

size of k, k individuals are chosen randomly with uniform probability and the indi-
vidual with the largest fitness value, among the randomly chosen, is selected.

There are three types of genetic operators: reproduction, crossover andmutation.
Reproduction is simply to copy the genome of one or more individuals to the next
generation. The reproduced individuals can either be chosen by some selection
method or be the individuals with the largest fitness values, to ensure that the best
individuals survive.

Crossover corresponds to reproduction in biology and therefore requires two par-
ent individuals. To create the offsprings a crossover position is chosen randomly
with uniform probability and substrings are then switched between the parents, ac-
cording to the crossover point. Figure 2.9 shows two types of crossover, 1-point
crossover and 2-point crossover, for bit strings.

1 0 0111

0 0 1101

Parent a

Parent b

1 0 1

0 0 1

Offspring a

Offspring b 011

110

(a) 1-point crossover

1 0 0111

0 0 1101

Parent a

Parent b

1

0

Offspring a

Offspring b

01

110 1 1

0 1 0

(b) 2-point crossover

Figure 2.9. Crossover in GA

Mutation corresponds to genetic mutation in biology. The purpose of the muta-
tion operator is to maintain genetic diversity in the population. The mutation oper-
ator works like the reproduction operator, but some part of the genome is randomly
altered. For bit strings this equals that one or more bits are flipped. Figure 2.10
shows an example of mutation for a bit string, where a randomly chosen bit is
flipped, the 5th bit in this example. In general, mutation shall occur with very low
probability, pm ∈ [0.001 . . . 0.1].

The evolution process stops when some predefined termination condition is ful-
filled. Examples of termination conditions are that a predefined percentage of popu-
lation has the same genome, the difference between the best solution and the optimal
solution is sufficiently small (requires that the optimal solution is known), or that a
fixed predefined number of generations have been evolved. Algorithm 2.6 shows

25

0

Mutation of
the 5th gene

1 0 0111

1 0 011

Figure 2.10. Mutation in GA

the general scheme for the evolutionary process in GA.

Algorithm 2.6 Evolutionary scheme for GA
1: Create the initial population of individuals
2: loop
3: Evaluate the fitness of each individual
4: if Termination condition is fulfilled then
5: break {Terminate the evolution process}
6: else
7: Create a new population by reproduction, crossover and mutation of indi-

viduals
8: end if
9: end loop

An example of an evolutionary approach to solve the Brachystrochrone problem
by a GA is shown in Figure 2.11. The objective is to optimize the track between
the start and the end point, so that a frictionless point mass travels the path in
minimal time. The fitness of individuals is computed as the time for point mass
to travel from the start point to the end point. The genome represents heights of
the track at n points along the track and the parameters are binary encoded by bit
strings: y : {y0, y1, . . . , yn}. A parameter, yi, is the height of the track at point
i: yi =

∑k
j=1 sj2

k−1, where k is the length of the parameters and sj is the bit at
position j. The parameters has the range [0, 2k − 1] and to scale the parameters to
a range suitable for the problem, [a, b], the following equation is used

yi = a +
(b− a)
2k − 1

k∑
j=1

sj2k−1 (2.33)

The type of evolution discussed so far is called Darwinian evolution, where only

26

Start

End

y0
y1 y2 yn

Figure 2.11. GA applied to the Brachystrochrone problem

genome of the individuals is inherited to the next population. Another type of evol-
ution is Lamarckian evolution, where both the genome and the skills or behaviors
learned during the lifetime of the individuals are inherited to the next population.
Lamarckian evolution has no correspondence to biological evolution; in such a case
can skills like riding a bike be inherited to newborn human babies. In evolutionary
computation Lamarckian evolution is both possible and can speed up the evolution-
ary process, since the individuals in newly created populations do not need to learn
behaviors from scratch.

2.3.2 Genetic Programming

GP [9] is a specialization of GA where the genome is represented by a tree structure.
The most common application of GP is automation of computer programs written
in the LISP language. The programs are represented by a parse tree of LISP ex-
pressions, as shown in Figure 2.12. The tree structure consists of a function set
and a terminal set. The function set corresponds to the inner nodes and represents
functions like

• arithmetic functions {+,−,×, /}
• logarithmic functions {sin, exp, . . .}
• if-else statements

The terminal set corresponds to the leaf nodes and represents

• input variables {x1, x2, . . .}
• constants

27

The trees are parsed from left to right, giving the following expression for the tree
in Figure 2.12

(+x1(×x2x3)) =⇒ x1 + (x2 × x3) (2.34)

x1

+

x

x3x2

Figure 2.12. Parse tree of LISP expressions

The crossover operation in GP is accomplished by choosing a crossover node in
each parent tree structure randomly with uniform probability. The two offsprings are
then created by switching subtrees at the crossover nodes between the two parents.
An example of crossover in GP is shown in Figure 2.13.

The general strength of evolutionary computation, GP as well as GA, is the
ability to explore large solution spaces without getting trapped in local minimums.
Evolutionary methods are therefore referred to as global optimization methods. The
special strength of standard GP is that the obtained solutions are another computer
program, not a quantities as in GA. This makes GP very flexible and GP is espe-
cially suitable for problems without an analytical solution or when the solution is
constantly changing.

The main weakness of evolutionary computation is that it is very time consuming.
Another limitation of the use of evolutionary computation is that the algorithms
have to be adjusted to the current problem. The designer has to select and fine-tune
population size, selection method, termination condition and other problem depend
properties. For GP the designer also has to select good terminal and function sets,
which is non-trivial for many problems.

28

x1

+

x

x3x2

x3

\

-

x2

Parent a Parent b

+

x3x1

\

-

x2

Offspring b

+

x3x1

x1

+

x

x3x2

x3

Offspring a

Figure 2.13. Crossover in GP

29

Chapter 3

Exploration of the MAXQ Hierarchies
by GP

The MAXQ method learns a good policy much faster than the standard flat RL
methods, but MAXQ provides no way of learning or adapting the structure of the
task hierarchy. In this thesis genetic programming is applied to obtain the appro-
priate task hierarchy, according to the environmental settings.

The basic assumption of the proposed method is that the agent has a number
of competing strategies for solving different tasks. A few simple basic behaviors are
the building blocks for these strategies. By combing the basic behaviors with more
abstract behaviors the agent builds different task hierarchies to solve the tasks. The
purpose of the abstract behaviors is to select the correct basic behaviors according
to current state information. During the lifetime of the agent, the agent mixes the
competing strategies, to come up with a strategy that is adapted to the learning
task and environment.

3.1 MAXQ Implementation

MAXQ graphs represent different strategies for the agent to solve a given task. The
leaf nodes in the MAXQ graphs represent the basic behaviors that the agent already
know and that function as building blocks for the hierarchies. Therefore, there exists
only one copy of the trained basic behaviors represented by the leaf nodes in the
MAXQ graphs and they are shared by all hierarchies in the population.

In the standard MAXQ method the task is decomposed down to the level where
each primitive action corresponds to exactly one command to the agent. In this
thesis the considered task is not decomposed down to that level of detail. The
primitive subtasks, for example approach the nest or a battery pack, are simple tasks
that use multiple states and actions. Therefore, in the proposed method each leaf
node in the MAXQ decomposition (hereafter denoted primitive subtask) represents
a simple subtask with several actions, corresponding to primitive commands to the
agent, to select from in each state. Instead of storing the state-value function directly

30

the primitive subtasks store the action-values function, Qπprim(i, s, a), where a ∈ Ai.
This modifies the first decomposition equation, Equation 2.28, as

V π(i, s) =
{

Qπ(i, s, πi(s)) if i is composite
Qπprim(i, s, πi(s)) =

∑
s′ P (s′|s, πi(s))R(s′|s, πi(s)) if i is primitive.

(3.1)

The computation of the decomposed value function for the primitive subtasks at
line 3 in Algorithm 2.5 is therefore modified as

V π(i, s) = max
a

Qπprim(i, s, a) (3.2)

and the learning rule for the primitive subtasks, line 5 in Algorithm 2.4, is replaced
by

Qprim(i, s, πi(s)) ← Qprim(i, s, πi(s)) + α(i) [r −Qprim(i, s, πi(s))] . (3.3)

All types of composite subtasks representing abstract behaviors have also to
be given by the designer. For each type of composite subtask all properties that
are required by the MAXQ framework have to be provided, such as state space,
termination set and goal set. The possible actions of a composite subtask, i.e other
composite subtasks and primitive subtasks, are determined by the state spaces of
the subtask and the actions. This gives a restriction on the number of possible
hierarchies that is allowed to be constructed.

One aim of this study is that the agent shall behave as an autonomous agent,
using local and continuous state information. To handle the continuous state in-
put the value functions and completion functions are approximated by normalized
Gaussian RBF networks. The approximate of the completion functions, C̃t and Ct,
and the approximate of the action-value function for the primitive subtasks, Qt,prim,
are represented with the parameter vectors �θ C̃

i,a, �θ C
i,a and �θ

Qprim

i,a , respectively. The
learning rules at line 5, 16 and 17 in Algorithm 2.4 are modified according to
Equation 2.23 as

�θ C̃
i,a ← �θ C̃

i,a + α(i)
[
γN

[
R̃i(s′) + C̃t(i, s′, a∗) + Vt(a∗, s)

]
− C̃t(i, s, a)

]
�φ C̃
i,s (3.4)

�θ C
i,a ← �θ C

i,a + α(i)
[
γN

[
Ct(i, s′, a∗) + Vt(a∗, s′)

] − Ct(i, s, a)
]
�φ C
i,s (3.5)

�θ
Qprim

i,a ← �θ
Qprim

i,a + α(i) [r −Qt,prim(i, s, a)] �φ Qprim

i,s (3.6)

where

C̃t(i, s, a) = �θ C̃
i,a

T
�φ C̃
i,s (3.7)

Ct(i, s, a) = �θ C
i,a

T
�φ C
i,s (3.8)

Qt,prim(i, s, a) = �θ
Qprim

i,a

T
�φ
Qprim

i,s (3.9)

Softmax action selection is used in the MAXQ framework, according to Equa-
tion 2.12. Each subtask is assigned an initial temperature, τinit. The temperature

31

is then exponentially decreased by multiplying the current temperature, τ , with a
temperature decrease factor, τdf . The decreasing of temperature is made after a sub-
task has terminated, i.e. after line 22 in Algorithm 2.4. Experience has shown that
is important to keep an amount of stochasticity in the action selection, to maintain
the exploration of the environment. Therefore, the temperatures are only decreased
down to a lower limit, τlimit. Also, if the probability for selecting an action exceeds
an upper limit, ρlimit the softmax action selection is replaced by ε-greedy action
selection, with ε set to 1 − ρlimit. This ensures that the probability for selecting a
non-greedy action never becomes less than ε.

3.2 GP Implementation

The MAXQ task decomposition graphs represent the genome of the individuals in
the population. The function and terminal sets are the composite subtasks and the
primitive subtasks, respectively. To be able to apply GP to MAXQ graphs, the
graphs are not allowed to contain cycles. For example the MAXQ graph for the taxi
problem in Figure 2.8 contains a cycle where both the subtasks Get and Put are
connected to the subtask Navigate. The solution is that Get and Put are connected to
identical subtrees representing the Navigate subtask, as shown in Figure 3.1 (only
Max nodes are shown). The learning of identical composite subtasks in a hierarchy
is performed separately.

To limit the number of bad hierarchies that is allowed to be constructed a form
of strongly typed GP [12] is used. In general, strongly typed GP allows the designer
to assign a type to the arguments and the return value of each function. In the
proposed method the type of a subtask is equal to its state space and the state
space of a child node has to be a subset of its parent’s state space.

In each generation each individual performs a fixed number of trials, in random
order, to solve the task. The fitness value of the current population is computed over
the last half of the trials. The aim of the evolutionary process, i.e. the termination
condition for GP, is that the best performing half of the population, according to
the fitness values, has identical hierarchical structures.

A small fixed number of the best performing hierarchies in the current genera-
tion survive and are reproduced to the next generation. An equal small number of
the worst performing hierarchies die. The remaining hierarchies in the next popula-
tion are created by crossover. The parent hierarchies involved in one crossover are
chosen by tournament selection. When the tournament selection finds two parents,
a crossover between the parents is performed until the following requirements are
fulfilled.

• The new child node’s state space has to be a subset of the parent node’s state
space.

• A hierarchy is only allowed to have a maximum of one copy of each composite
subtask.

32

MaxRoot

MaxGet MaxPut

Pickup Putdown

MaxNavigate(t)
t/source t/destination

MaxNavigate(t)

North

West

East

South

North

West

East

South

Figure 3.1. Acyclic MAXQ graph of the taxi problem.

• The root node, representing the overall task, has to be able to select an action
in all types of states.

Crossover sites in the parents are chosen randomly among the Max nodes, excluding
the root nodes. The crossover is performed by switching subtrees at the crossover
nodes as shown in Figure 2.13, with the difference that the tree structures represent
MAXQ graphs instead of LISP parse trees.

As the evolution is occurring within one agent during the agent’s lifetime, Lamar-
ckian evolution is used. Both the genome, the learning structure, and the learned
behaviors in the hierarchies are inherited to the next population. Because the learn-
ing structure is changed in the hierarchies created by crossover it is not desirable
to continue the learning process in the composite subtasks that are affected by the
crossover. Therefore, the learning parameters are set to their initial values for the
subtasks in the path from the parent of the new subtree to the root of the hier-
archy. To prevent that the reproduced hierarchies, whose learning structures are
unchanged, get an advantage over the hierarchies created by crossover the repro-
duced hierarchies perform only the last half of the trials, when the fitness values are
computed. Algorithm 3.1 shows the evolutionary scheme of the proposed method.

33

Algorithm 3.1 Evolutionary scheme for the proposed method
1: Hand code the initial population.
2: loop
3: Let the hierarchies perform a fixed number of trials to solve the learning task,

except for reproduced hierarchies that only perform the last half of the trials.
4: Evaluate the fitness of each hierarchy, according to the performance of the

last half of the trials.
5: if the best performing half of the population has identical structure then
6: break {Terminate the evolution process}
7: else
8: Reproduce a fixed number of the best performing hierarchies
9: Create the remaining hierarchies in the new population by crossover opera-

tions. Reset the learning parameters in composite subtasks in path from the
parent of the new subtree to the root in the hierarchies created by crossover.

10: end if
11: end loop

The initial population in the evolutionary process has to be carefully hand coded,
line 1 in Algorithm 3.1. When only crossover is used to create new types of
hierarchies it is not possible to add or remove the number of actions of the composite
subtasks. The initial population has therefore to include hierarchies of as many
types as possible, to ensure that the initial population has the potential of evolving
all types of good hierarchies.

To hand code the initial population is, of course, not an ideal solution. For large
scale problems it can be very difficult and also time consuming to design a good
initial population. It is therefore important in the future, as an extension of the
work presented in this thesis, to include a method for automatic construction of the
initial population.

34

Chapter 4

Experiments

4.1 The Cyber Rodent Robot

Figure 4.1. The Cyber Rodent robot with a battery pack

To achieve the goals of the Cyber Rodent project, see Section 1.1, a rodent
like robot, Cyber Rodent, has been developed as experimental platform. The Cyber
Rodent, see Figure 4.1, is a two-wheel driven mobile robot with a wide-angle
C-MOS camera, an infrared range sensor, seven infrared proximity sensors, 3-axis
acceleration sensors, 2-axis gyro sensors, a magnetic actuator for catching a battery
pack, color LEDs for visual signaling, an audio speaker and two microphones for
acoustic communication, an infrared port for communication with a near-by agent,
and a wireless LAN card for communication with a host computer.

35

The experiments conducted in this thesis are performed in a simulated envir-
onment. The 2D-simulator is developed in MATLAB by the author and Anders
Eriksson for the Cyber Rodent project [6]. The simulator simulates the proximity
sensors and the vision system of the Cyber Rodent. In the experiments the five front
proximity sensors are used, placed at 0◦ ±30◦ and ±90◦, according to the real Cyber
Rodent robot. The proximity sensors give accurate information about the distance
to walls and obstacles in the effective range, set to 70-350 mm in the experiments.
The vision system gives information about the distance and angle to colored targets,
such as battery packs or the Cyber Rodent’s nest. In the experiments the vision
system has an angle limit of ±60◦ and a maximum visible distance of 3500 mm.
For both the vision system and the proximity sensors 10% of noise is added to the
readings in the experiments.

4.2 Learning Task and Provided Subtasks

The learning task used as experimental test bed in this thesis is a foraging task.
The Cyber Rodent shall find, approach and capture a battery pack and then return
the battery pack to the its nest. The performance of a hierarchy is measured as the
number of time steps to perform the learning task. A small number of time steps is
considered a good performance. In the context of GP the fitness value is computed
as the number of time steps to perform the last half of the trials in a generation. To
solve the task the Cyber Rodent uses continuous vision information about the angle
and distance to the closest battery and the nest, and continuous distance sensor
information from the five front proximity sensors.

During the performance of the task the agent can be in four different types of
state as shown in Table 4.1.

State type Description Relevant state information
1 A battery is not visible and the Proximity sensors

agent has not captured a battery
2 A battery is visible and the Proximity sensors, angle and

agent has not captured a battery distance to closest battery
3 The nest is not visible and the Proximity sensors

agent has captured a battery
4 The nest is visible and the Proximity sensors, angle and

agent has captured a battery distance to the nest

Table 4.1. The four different types of state for the foraging task

Figure 4.2 shows an example of a complete task decomposition of the foraging
task, using all subtasks, composite and primitive, that is provided to the Cyber
Rodent. The different types of states are closely related to the composite subtasks
that are provided to the Cyber Rodent for solving the task. Table 4.2 shows the

36

MaxRoot

QCapture QDeliver

QFindBattery QVisibleBattery QFindNest QVisibleNest

MaxCapture MaxDeliver

QAvoid QWander

Max
FindBattery

QApproach
Battery

QAvoid

Max
VisibleBattery

Max
FindNest

Max
VisibleNest

QApproach
Nest

QTurn

Max
Wander

Max
ApproachBattery

Max
Turn

Max
Avoid

Max
Avoid

Max
ApproachNest

Figure 4.2. MAXQ graph of the foraging task, including all available subtasks

available composite subtasks with a description of the goals of the subtasks and in
which types of states the subtasks are active, according to Table 4.1. The subtasks
in the lowest abstraction layer, Find battery, Visible battery, Find nest and Visible
nest, are active in one type of state each. The subtasks in the next abstraction
layer, Capture and Deliver, are active in separate halves of the state space. The top
abstraction layer, the Root node, is of course active in the entire state space. For
all composite subtasks the pseudo-reward, R̃i, is set to 0 for the goal states and −1
for all other states. The provided primitive subtasks are shown in Table 4.3. The

37

Subtask Goal Active states
Root Solve the overall task 1,2,3,4
Capture Find, approach and capture a battery 1,2
Deliver Find the nest and deliver a battery 3,4
Find battery Find a battery 1
Visible battery Approach and capture a visible battery 2
Find nest Find the nest 3
Visible nest Deliver a battery to the visible nest 4

Table 4.2. Provided composite subtasks for the foraging task

Subtask Behavior Active states Input
Avoid Avoid hitting walls 1,2,3,4 Proximity sensors
Wander Explore the environment 1,2,3,4 Proximity sensors
Approach Approach and capture 2 Angle to closest battery
battery a battery
Approach Deliver the battery 4 Angle to the nest
nest to the nest
Turn Rotate to a battery 2,4 Angle to closest battery

or the nest or the nest

Table 4.3. Provided primitive subtasks for the foraging task. The targets, battery
packs and the nest, are identified by their colors: green for battery packs and red for
the nest

primitive subtasks are simple reactive behaviors using one type of state input and 4
or 5 discrete actions to accomplish their tasks. The actions are pairs of right and left
wheel velocities, in the range from -1300 mm/s to 1300 mm/s, as shown Table 4.4.
The vision system is able to identify the targets, battery packs and the nest, by
their color coding. The battery packs are green and the nest is red. The design of
exact values of the wheel velocities of the actions, and also the reward functions, Ri,
have been a trial and error process during the work with this thesis. The primitive
subtasks shall function as good basic behaviors, using a few well designed actions.
Also, there shall be a balance between the reward given to the different primitive
subtasks, to achieve an efficient learning in the MAXQ hierarchies.

The reward functions, Ri, for the primitive subtasks are designed to promote the
Cyber Rodent to move a long distance forward and keep a small angle to a target,
i.e. the closest battery pack or the nest, in each time step. The reward given in
each time step is in the interval [−1, 0]. The reward functions are linear functions
of either movement, for Avoid and Wander, or the angle to a target, for Approach
battery, Approach nest and Turn. Naturally the subtasks receive maximum negative
reward, −1, if the subtasks fail, i.e. if the smallest proximity sensor reading is below
the minimum effective range, 70 mm, for Avoid and Wander, or if the target is not

38

Subtask Actions
1 2 3 4 5

Avoid (250,150) (150,250) (300,-300) (-300,300) (-200,-200)
Wander (600,600) (600,400) (400,600) (600,100) (100,600)
Approach (450,450) (675,225) (225,675) (900,0) (0,900)
battery
Approach (450,450) (675,225) (225,675) (900,0) (0,900)
nest
Turn (-100,100) (100,-100) (-200,200) (200,-200) —

Table 4.4. Actions, pairs of right and left wheel velocities, for the primitive subtasks

visible anymore, for Approach battery, Approach nest and Turn. The reward functions
used in the experiments are shown in Equation 4.1 below.

Ravoid =




−0.5 action 1 or action 2
−0.75 action 3 or action 4
−0.875 action 5
−1 smallest sensor reading ≤ 70 mm

Rwander =




−0.25 action 1
−0.45 action 2 or action 3
−0.67 action 4 or action 5
−1 smallest sensor reading ≤ 70 mm

Rapproach battery =
{

− |αb|
60 |αb| ≤ 60◦

−1 |αb| > 60◦, i.e. not visible

Rapproach nest =
{

− |αn|
60 |αn| ≤ 60◦

−1 |αn| > 60◦, i.e. not visible

Rturn =
{

−0.25 − |αt|
80 |αt| ≤ 60◦

−1 |αt| > 60◦, i.e. not visible
(4.1)

Here the actions corresponds to Table 4.4, αb is the angle to the closest battery, αn
is the angle to the nest and αt is the angle to the target, either the closest battery
pack or the nest, according to the current type of state, see Table 4.1.

As presented in the previous chapter the primitive subtasks, functioning as basic
behaviors, are already trained before the evolution starts. Figure 4.3 shows the
trained behaviors of Approach battery, Approach nest and Turn. The action-value
functions approximated by a Gaussian RBF networks are plotted as functions of the
input angle. The action-value functions increase as the angle decrease, because the
immediate rewards increase as the angle decrease. The learned greedy policy of the
trained behaviors is that the Cyber Rodent turns in opposite direction of the input
angle and that the Cyber Rodent turns more as the angle increase.

39

−60 −40 −20 0 20 40 60
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Angle to closest battery

A
ct

io
n−

va
lu

e
fu

nc
tio

ns

Action 1

Action 3 Action 2

Action 5

Action 4

(a) Approach battery

−60 −40 −20 0 20 40 60
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Angle to the nest

A
ct

io
n−

va
lu

e
fu

nc
tio

ns

Action 1

Action 5

Action 3

Action 4

Action 2

(b) Approach nest

−60 −40 −20 0 20 40 60
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Angle to a target, i.e. a battery or the nest

A
ct

io
n−

va
lu

e
fu

nc
tio

ns Action 1 Action 2

Action 3 Action 4

(c) Turn

Figure 4.3. The approximated action-value functions for the three primitive sub-
tasks that use angle as state information. The figures show the already learned
behaviors before the evolutionary process begins. The numbering of the actions are
according to Table 4.4.

4.3 Environmental Settings

The environment for the Cyber Rodent is a 3-by-3 m play pen, containing wall
obstacles, battery packs and a nest. In the experiments three different environmental
settings are used, as seen as snapshots from the simulator in Figure 4.4. The small
filled light gray circles are the battery packs and the larger filled dark gray circles
are the nests.

The hypothesis tested in the experiments in this thesis is that the genetic pro-
gramming is able to obtain a good hierarchy that is adapted to the environmental
setting and that the complexity of the environment is thereby reflected in the com-
plexity of the obtained hierarchy. The first environment, Figure 4.4(a), is very

40

(a) Environment 1 (b) Environment 2

(c) Environment 3

Figure 4.4. Experimental environmental settings

simple, containing no walls blocking the vision system. The expectation is that a
good task hierarchy

• has a simple structure with only a few composite subtasks.

• needs only one primitive subtasks to accomplish the task in each type of state,
according to Table 4.1.

41

In second environment, Figure 4.4(b), it is more difficult to accomplish the
deliver subtask than the capture subtask. This is due to that walls surround the
nest and that the two battery packs are located in open spaces. The expectation is
that for a good task hierarchy

• the subtree of the task hierarchy solving the deliver subtask is more complex,
containing more composite and primitive subtasks, than the subtree of the
task hierarchy solving the capture subtask.

The third environment, Figure 4.4(c), contains a lot of obstacles making it rel-
atively difficult to complete both the capture and deliver subtasks. The expectation
is that a good task hierarchy

• contains all or almost all of the available subtask.

4.4 Learning and Evolution Settings

In the MAXQ framework a general approach to set the initial values and the para-
meters of learning is used. All subtasks have the same values, except for the decrease
factor of the temperature, τdf . For Avoid and Wander which are the behaviors most
difficult to learn and therefore requiring a slower decrease of the temperature, τdf is
set to 0.9995. For the rest of the subtasks τdf is set to 0.995. The common values of
the learning parameters and initial values are summarized in Table 4.5, where θinit
is the initial value of the elements in the parameter vectors and the value, 0.123, is
used for debugging purpose, according to [3].

Parameter Value
α 0.2
γ 0.9
τinit 2
τlimit 0.05
ρlimit 0.98
ε 0.02
θinit 0.123
time-step 0.1 s

Table 4.5. Learning parameters and initial values common for all subtasks

The normalized Gaussian-RBFs, approximating the completion functions or the
action-value functions of the subtasks, are placed equidistantly along each dimension
of the input state space. The variance of the normalized Gaussian-RBFs are set to√

2 multiplied by the distance between the centers of two adjacent RBFs. The
input state space is normalized, according to the ranges of the input states, to
handle differences in magnitude between the input states, i.e. to be able to use both

42

angle and distance input to the RBF networks. The number of RBFs used in the
normalized Gaussian RBF networks is shown for each subtask in Table 4.6.

Subtask Nr. of RBFs
Root 128
Capture 64
Deliver 64
Find battery 32
Visible battery 320
Find nest 32
Visible nest 320
Avoid 32
Wander 32
Approach battery 11
Approach nest 11
Turn 7

Table 4.6. Number of RBFs in the normalized Gaussian RBF networks

Table 4.7 shows the GP parameters used in the experiments. The small pop-
ulation size, 16, is related to that the maximum depth of the hierarchies is only 4,
limiting the number of hierarchies that can be constructed.

Parameter Number
Trials/generation 16
Population size 16
Tournament size 2
Reproduced hierarchies 2
Maximum depth 4

Table 4.7. GP parameters

4.5 Experimental Results

The results presented are for typical examples of evolved hierarchies for the three
environments. GP did not find the same hierarchy in each simulation. The important
thing though is that the obtained hierarchy, for an environment, represents the same
behavior each time.

4.5.1 Evolved Hierarchies

Figure 4.5 shows the hierarchies obtained by GP for the three environments, as
MAXQ graphs (only Max nodes are shown). In accordance with the expectation

43

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
ApproachBattery

Max
Avoid

Max
Avoid

Max
ApproachNest

(a) Environment 1

MaxRoot

MaxDeliver

Max
FindNest

Max
VisibleNest

Max
Wander

Max
Avoid

Max
Avoid

Max
ApproachNest

MaxCapture

Max
FindBattery

Max
ApproachBattery

Max
Avoid

(b) Environment 2

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
VisibleBattery

Max
FindNest

Max
VisibleNest

Max
Wander

Max
ApproachBattery

Max
Turn

Max
Avoid

Max
ApproachNest

Max
Turn

Max
Wander

Max
Avoid

(c) Environment 3

Figure 4.5. Hierarchies obtained by GP

44

in Section 4.3, there is a strong connection between the complexity of the envir-
onments and the complexity of the obtained hierarchical structures. The general
conclusion is that GP for a simple environment obtains a simple and specialized
hierarchy and that GP for a complex environment obtains a complex and general
task hierarchy, as can be seen from Figure 4.5(a) and Figure 4.5(c), respectively.
In environment 2, Figure 4.4(b), the expectation is that the Cyber Rodent has
greater difficulties to solve the deliver subtask than the capture subtask. This is also
the conclusion that can be drawn from Figure 4.5(b), based on that the obtained
hierarchy has

• a simple structure for solving the capture subtask. The sub-hierarchy for the
capture subtask actually has same structure as for environment 1.

• a complex structure for solving the deliver subtask. The sub-hierarchy for the
deliver subtask is complete including all available composite subtasks and four
primitive subtasks.

The hierarchy for environment 3, figure 4.5(c), shows an artifact of the proposed
method. The Turn primitive subtask, which is an action of the capture subtask, is an
unnecessary and strange subtask. The reason it occurs in the hierarchy is that the
proposed method, as mentioned earlier, has no pruning capability. This results in
that the composite subtasks often have a number of actions, representing the same
primitive subtasks.

4.5.2 Similarity in Structure

To picture how the evolutionary search process works, it is interesting to see how
the difference in hierarchical structure is changing over time. A measurement of the
difference between two hierarchies can be achieved by assigning different values to
different abstraction layers: 4 for deliver and capture, 2 for the rest of the composite
subtasks and 1 for all the primitive subtasks. When performing the structural
difference measurement between two hierarchies, see Figure 4.6, negative points
are received, according to the assigned values, for all composite subtasks that differ
between the two hierarchies. Then, an extra negative point, equals the assigned
value, is received for each primitive subtask that differs between the hierarchies for
each composite subtask. By comparing the average difference for the hierarchies
ranked 2-8 in each generation with the best performing hierarchy, the development
of the structural changes can be shown.

For all performed simulations the structural differences have been changing ac-
cording to the same pattern, see Figure 4.7. In the beginning of evolutionary search
process the average difference is large. At some time approximately in the middle of
the process, the difference rapidly becomes smaller. The difference then stays very
small until GP terminates, i.e. when the difference becomes zero. This indicates
that GP first searches to find what type of structure that is suitable. When a suit-
able type of structure is found, the GP only fine-tunes the structure, by adjusting
the selection of primitive subtasks.

45

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
ApproachBattery

Max
Avoid

Max
Avoid

Max
ApproachNest

MaxRoot

MaxCapture

Max
ApproachBattery

Max
Avoid

Max
Avoid

Max
VisibleNest

Max
ApproachNest

-2

-1

-1

-1

-2

-4

-1

-1

-1

Difference in learning structure between Hierarchy A and B =
- 4 - 2 - 2 - 1 - 1 -1 -1 -1 -1 = - 14

Hierarchy B

Hierarchy A

Figure 4.6. Measurement of structural differences between two hierarchies.

4.5.3 Performance Improvement and Intermediate Structures

The development of the performance over the generations has been approximately
the same for all environments and simulations, as can be seen in Figure 4.8 for the
8 best performing hierarchies in each generation in environment 2. In general, the
performance improvement is large for the higher ranked hierarchies and small for
the lower ranked hierarchies. For the best performing hierarchy the fitness value is
approximately the same over the generations, meaning that the performance is not
improved. The reason for the lack of improvement for the best performing hierarchy
is that there is wide variety of hierarchies that can perform the task with a close to
optimal result in the current environment. Many of these hierarchies, however, are
not really stable solutions, which mean that the fitness values of these hierarchies
vary a lot over the generations. The solution that GP obtains is therefore a solution
that is stable over time.

Figure 4.9 shows the best performing hierarchy for 8 selected generations for

46

5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

Generations

A
ve

ra
ge

 d
iff

er
en

ce
 in

 le
ar

ni
ng

 s
tr

uc
tu

re

Figure 4.7. Average difference in hierarchical structure between the best performing
hierarchy and the hierarchies ranked 2-8, measured for each generation in environment
1.

environment 2, i.e. the same simulation as for the performance development, see
Figure 4.8. The best performing hierarchies in the intermediate generations confirm
the conclusions from the analyzes of the similarity in structure and the performance
development. In the early stages of the evolutionary process the structure of the best
performing hierarchy is varying a lot, from very simple to very complex structures.
Note that, even if the structures are very different the performance of the best
performing hierarchy is stable, as seen in Figure 4.8. As early as in generation 10,
GP has found a type of hierarchy that is stable. During the rest of the evolutionary
process only the primitive subtasks are modified, as mentioned in the analyzes of
the similarity in structure.

4.5.4 Similarity in Policy

It is important to analyze the learned policy of the obtained hierarchies to verify
that they not only have the same hierarchical structure, but also the same behavior.
Therefore, the average probability to select primitive subtasks was computed for the
8 best performing hierarchies in each generation, as an approximate of the actual
policy. For the four types of states in Table 4.1 1000 states were sampled in the
three environments. The average probability was then computed in each generation.

In the obtained hierarchies, there exist only two cases for each type of state:

47

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 1

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 2

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 3

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 4

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 5

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 6

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500
Hierarchy ranked no. 7

5 10 15 20 25 30 35 40

1500

2000

2500

3000

3500

4000

4500

F
itn

m
es

s
va

lu
e:

 e
xe

cu
te

d
nu

m
be

r
of

 p
rim

iti
ve

 s
ub

ta
sk

s
ov

er
 th

e
la

st
 8

 tr
ia

ls

Hierarchy ranked no. 8

Generations

Figure 4.8. Performance development for the 8 best performing hierarchies in each
generation. The graphs show the development for the obtained hierarchies in envir-
onment 2.

1. the hierarchy can only select one primitive subtask in the current type of state.
A typical example of this case is seen in Figure 4.10(a) for environment 1 in
state type 1. At some point the average probability for one primitive subtask
becomes 1 and then stays at 1 until termination. In this case the policies of
the 8 best performing hierarchies in the final population are identical, because
the policies are completely determined by the hierarchical structure.

2. the hierarchy can select between two primitive subtasks in the current type of

48

state. This case is more interesting, as seen in Figure 4.10(b), for environ-
ment 3 in state type 3. In the beginning of the evolutionary search process
when the difference in structure is large, the relation between the average selec-
tion probabilities is very unstable. During the later stages, when the difference
in structure is smaller, the selection probabilities reaches a more stable rela-
tion. This gives indications that the hierarchies use approximately the same
policy to solve the task. In this case the evolution process determines which
subtasks can be selected and the learning process decides the policy, based on
the available subtasks.

49

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
VisibleBattery

Max
FindNest

Max
VisibleNest

Max
Wander

Max
ApproachBattery

Max
Avoid

Max
ApproachNest

Max
Turn

Max
Wander

Max
Avoid

Max
Wander

Max
Avoid

Max
Avoid

Max
Wander

Max
Turn

(a) Generation 1

MaxRoot

MaxCapture

Max
ApproachBattery

Max
Avoid

Max
Wander

Max
ApproachNest

Max
Avoid

(b) Generation 2

MaxRoot

MaxDeliver

Max
FindNest

Max
VisibleNest

Max
Wander

Max
Avoid

Max
ApproachNest

MaxCapture

Max
ApproachBattery

Max
Avoid

Max
Wander

Max
Wander

Max
Turn

(c) Generation 4

MaxRoot

Max
FindBattery

Max
VisibleBattery

Max
FindNest

Max
VisibleNest

Max
Wander

Max
ApproachBattery

Max
Avoid

Max
ApproachNest

Max
Turn

Max
Wander

Max
Avoid

(d) Generation 6

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
FindNest

Max
VisibleNest

Max
Wander

Max
Avoid

Max
ApproachNest

Max
Wander

Max
Avoid

Max
Avoid

Max
Wander

Max
Turn

Max
ApproachBattery

(e) Generation 10

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
FindNest

Max
VisibleNest

Max
Wander

Max
Avoid

Max
ApproachNest

Max
Wander

Max
Avoid

Max
Avoid

Max
Wander

Max
ApproachBattery

(f) Generation 18

MaxRoot

MaxCapture MaxDeliver

Max
FindBattery

Max
FindNest

Max
VisibleNest

Max
Wander

Max
Avoid

Max
ApproachNest

Max
Wander

Max
Avoid

Max
Avoid

Max
ApproachBattery

(g) Generation 23

MaxRoot

MaxDeliver

Max
FindNest

Max
VisibleNest

Max
Wander

Max
Avoid

Max
Avoid

Max
ApproachNest

MaxCapture

Max
FindBattery

Max
ApproachBattery

Max
Avoid

(h) Generation 36

Figure 4.9. The best performing hierarchies in 8 selected intermediate generations
in environment 2.

50

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

A
ve

ra
ge

 p
ro

ba
bi

lit
y

fo
r

se
le

ct
in

g
pr

im
iti

ve
 s

ub
ta

sk
s

Avoid
Wander

(a) Example of case 1 for state type 1 and environment 1

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

A
ve

ra
ge

 p
ro

ba
bi

lit
y

fo
r

se
le

ct
in

g
pr

im
iti

ve
 s

ub
ta

sk
s

Avoid
Wander

(b) Example of case 2 for state type 3 and environment 3

Figure 4.10. Average probability for primitive subtask selection.

51

Chapter 5

Discussion

In this thesis a method for automatic construction of the task hierarchy in hier-
archical RL has been presented. The method has proven successful in adapting the
task hierarchy to three different environments for a simple foraging task, through
experiments in a simulated environment. In an obtained hierarchy the complexity
of the environment is reflected in the complexity of the learning structure of the
hierarchy.

During the first stage of the evolutionary process there is a great differences
in both structure and policy of the best performing hierarchies. At some time
approximately at the middle of the evolutionary process these differences become
smaller. After termination the learning structures are identical, according to the
termination condition, and the policies are approximately the same, indicated by
the policy analyzes.

The major disadvantage of the method is that it is very time consuming, taking
several hours to perform a simulation for an environment. This is a general problem
of RL and evolutionary computation, but it becomes an even more serious problem
when the methods are combined. The time consuming calculations of the approx-
imated completion functions and the approximated action value functions are also
an important factor for the execution time.

As already mentioned the proposed method has no capabilities to add or remove
the number of actions of the composite subtasks. It would be relatively easy to
include pruning in the existing framework to be able to remove unnecessary actions.
A further improvement would be to include the capability to add actions to the
composite subtasks, maybe as a form of mutation operation.

Another improvement of the method would be to include memory capabilities
to the learning. This could radically improve the performance of the learning tasks.
At this stage the agent relies only on reactive behaviors to solve the tasks. For
example, in the foraging task the Cyber Rodent has no knowledge of the position of
the targets, battery packs and the nest. Therefore, the search for targets is almost a
random search, where the Cyber Rodent moves without hitting walls until a target
eventually becomes visible.

To investigate the properties of the proposed method future work would be to

52

• move the implementation from the simulator to the real hardware, the Cyber
Rodent robot. There are plans to do this in the near future at ATR, which
would be a good test of the applicability of the method.

• perform more extensive experiments to establish the robustness of the method.

• apply the proposed method to a large scale problem to examine the efficiency
of the method.

Lamarckian evolution is used to represent that the strategies the agent uses are
evolved during the agent’s lifetime. This could be interpreted as there are multiple
small agents competing inside the “brain” of the agent. The method for mixing
and thereby create new strategies is the GP crossover operator. The crossover
operator is a very rough mixing method and not neurophysiologically plausible.
A long term extension of this work would be to include methods for mixing and
creating hierarchies that are supported by neurophysiological evidence.

53

References

[1] D. Beasley, D. R. Bull and R. R. Martin. An Overview of Genetic Algorithms,
Part 1&2. University Computing, 15(2), 58-69, 1993.

[2] T. Bäck and H. Schwefel. Evolutionary Computation: An Overview. IEEE
Press, Piscataway NJ, 1996.

[3] T. G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value
unction Decomposition. Journal of Artificial Intelligence Research,13:227–303,
2000.

[4] K. L. Downing. Adaptive Genetic Programs via Reinforcement Learning. In
Proc. of the Genetic and Evolutionary Computation Conference, pages 19–33,
2001.

[5] K. Doya, K. Samejima, K. Katagiri, and M. Kawato. Multiple Model-Based
Reinforcement Learning. Neural Computation, 14:1347–1369, 2002.

[6] A. Eriksson. Evolution of Meta-parameters in Reinforcement Learning. Master’s
Thesis, NADA KTH, 2003

[7] G. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. Autonom-
ous Evolution of Gaits with the Sony Quadruped Robot. In Proc. of the Genetic
and Evolutionary Computation Conference, pages 1297–1357, 1999.

[8] L. Kaebling, M. L. Littman and A. W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

[9] J. R. Koza. Genetic Programming I : On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[10] M. C. Martin. Visual Obstacle Avoidance Using Genetic Programming: First
Results. In Proc. of the Genetic and Evolutionary Computation Conference,
pages 1107–1113, 2001.

[11] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[12] D. J. Montana. Strongly Typed Genetic Programming. Evolutionary Compu-
tation, 3(2):199 230, 1995.

54

[13] P. Nordin and W. Banzhaf. An On-Line Method to Evolve Behavior and to
Control a Miniature Robot in Real Time with Genetic Programming. Adaptive
Behavior, Vol.5, No. 2, pages, 107–140, 1997.

[14] R. Parr, and S. Russel. Reinforcement learning with hierarchies of machines.
In Advances in Neural Information Processing Systems 10, pages 1043–1049,
1998.

[15] R. S. Sutton, and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press/Bradford Books, March 1998.

[16] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence,
112:181-211, 1999.

[17] G. J. Tesauro. Temporal difference learning and TD-Gammon. Communications
of the ACM, 38:58–68, 1995.

[18] E. Uchibe, M. Nakamura, and M. Asada. Cooperative and Competitive Be-
havior Acquisition for Mobile Robots through Co-evolution. In Proc. of the
Genetic and Evolutionary Computation Conference, pages 1406–1413, 1999.

[19] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292,
1992.

55

