
The State of Mind
Reinforcement Learning with Recurrent Neural Networks

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op donderdag 29 januari 2004
klokke 14.15 uur

door

Pieter Bram Bakker

geboren te Leidschendam
in 1972

Promotiecommissie

Promotor:
Prof.dr. P.T.W. Hudson Universiteit Maastricht/Universiteit Leiden

Referent:
Dr. J. Schmidhuber IDSIA

Overige leden:
Prof.dr. G.A.M. Kempen Universiteit Leiden
Prof.dr. J.N. Kok Universiteit Leiden
Prof.dr. E.O. Postma Universiteit Maastricht
Prof.dr. J.M.J. Murre Universiteit Maastricht/Universiteit van Amsterdam
Dr. B.J.A. Kröse Universiteit van Amsterdam
Dr. M.A. Wiering Universiteit Utrecht
Dr. F. v. d. Velde Universiteit Leiden
Dr. G. Wolters Universiteit Leiden

Contents

List of Figures xii

List of Tables xiii

Preface xv

1 Introduction 1
1.1 Understanding and constructing intelligence 1
1.2 The main focus of this thesis . 2
1.3 The structure of this thesis . 3
1.4 Notation and terminology . 4

2 The adaptive behavior approach to cognitive science 5
2.1 Introduction . 5
2.2 Mainstream cognitive science . 6

2.2.1 Theoretical foundations . 6
2.2.2 Functions and functional modules 7
2.2.3 Experiments and effects . 10
2.2.4 Mathematical and computational models 12

2.3 The adaptive behavior approach . 13
2.3.1 General capabilities, as opposed to experimental effects 13
2.3.2 Basic behavior, as opposed to high-level behavior 14
2.3.3 Learning by constructing, as opposed to learning by measuring . 15
2.3.4 Mild functionalism, as opposed to extreme functionalism 16
2.3.5 Detailed models, as opposed to abstract models 17
2.3.6 Perception to action loops, as opposed to functional modules . . 19
2.3.7 Decentralized control, as opposed to centralized control 20
2.3.8 Distributed, continuous representation, as opposed to symbolic

representation . 21
2.3.9 Bottom-up engineering, as opposed to top-down engineering . . . 22
2.3.10 A posteriori analysis, as opposed to a priori analysis 24

2.4 Examples of adaptive behavior research 25
2.4.1 Locomotion . 25
2.4.2 Navigation . 28
2.4.3 Collective behavior . 29

iii

iv CONTENTS

2.5 Discussion . 31

3 Reinforcement learning 33
3.1 Introduction . 33
3.2 Elementary concepts of reinforcement learning 34

3.2.1 The basic reinforcement learning problem 34
3.2.2 Relationship with human and animal learning 35
3.2.3 Reinforcement learning versus supervised and unsupervised learn-

ing . 36
3.2.4 Exploration versus exploitation 37
3.2.5 Structural and temporal credit assignment 38
3.2.6 Discrete versus continuous tasks 38
3.2.7 Online versus offline learning . 39

3.3 Reinforcement learning formalized . 40
3.3.1 Formal model of the environment 40
3.3.2 Formal model of the agent . 41
3.3.3 Measures of long-term reward . 43
3.3.4 MDPs versus POMDPs . 43

3.4 Solution techniques . 46
3.4.1 Model-based versus model-free techniques 46
3.4.2 Direct policy search versus value functions 47
3.4.3 Value functions and the Bellman equation 48

3.5 MDP solution techniques . 50
3.5.1 Model-based MDP solution techniques 50
3.5.2 Model-free MDP solution techniques 54

3.6 POMDP solution techniques . 67
3.6.1 Internal state . 67
3.6.2 Model-based POMDP solution techniques 67
3.6.3 Model-free POMDP solution techniques 72

3.7 Discussion . 82
3.7.1 Learning a model or learning without a model? 82
3.7.2 Representations? . 83
3.7.3 Value functions or direct policy search? 83

4 The trade-off between perception and internal state 85
4.1 Introduction . 85
4.2 Setup of the simulation experiments . 87

4.2.1 Learning task . 87
4.2.2 Architecture and learning algorithm 89
4.2.3 Related work . 92

4.3 Results . 93
4.3.1 Analysis of the agents’ behavior 93
4.3.2 FSA extraction . 96
4.3.3 Time needed to reach the termination criteria 102

4.4 Discussion . 104

CONTENTS v

5 Reinforcement learning in POMDPs with Advantage(λ) learning and
Elman networks 107
5.1 Introduction . 107
5.2 Advantage learning with Elman networks 108

5.2.1 Architecture of the recurrent neural network 108
5.2.2 Advantage learning . 108
5.2.3 Bellman equation and learning algorithm 109

5.3 Advantage(λ) learning . 110
5.3.1 The λ-return . 110
5.3.2 Eligibility traces . 111
5.3.3 The forward and backward view of Advantage(λ) learning 112
5.3.4 Related work . 113

5.4 Partially observable pole balancing . 113
5.4.1 The experiment . 114

5.5 Maze navigation task . 117
5.5.1 The experiment . 118
5.5.2 Cognitive maps in rats and robots 121

5.6 Discussion . 128

6 Reinforcement learning with Long Short-Term Memory 129
6.1 Introduction . 129
6.2 LSTM . 131

6.2.1 Memory cells . 131
6.2.2 Activation updates . 131
6.2.3 Learning . 133

6.3 RL-LSTM . 133
6.3.1 Model-free RL-LSTM . 133
6.3.2 Advantage(λ) learning using LSTM 134
6.3.3 Exploration . 136

6.4 Experiments . 138
6.4.1 Long-term dependency T-maze. 138
6.4.2 T-maze with noise. 142
6.4.3 Non-regular reinforcement learning 147
6.4.4 Multi-mode pole balancing . 153
6.4.5 McCallum’s cheese maze . 155
6.4.6 89-state stochastic office navigation problem 156

6.5 Discussion . 159

7 Reinforcement learning with unsupervised event extraction 161
7.1 Introduction . 161
7.2 The learning system . 162

7.2.1 Unsupervised event extraction 162
7.2.2 Reinforcement learning on the extracted concepts 164
7.2.3 Hierarchical control . 165
7.2.4 Related work . 166

7.3 Experiments . 167

vi CONTENTS

7.3.1 T-maze . 167
7.3.2 Complex maze . 168

7.4 Discussion . 171

8 Conclusions 173
8.1 Contributions of this thesis . 173

8.1.1 Technical contributions . 173
8.1.2 Conceptual contributions . 175

8.2 Interesting directions for future research 179
8.2.1 Model-based versus model-free reinforcement learning 179
8.2.2 Value functions versus direct policy search 179
8.2.3 Hierarchical reinforcement learning 180
8.2.4 Practical applications . 181

8.3 Final remarks . 182

A Input-output FSA extraction and minimization 185

B Equivalence of the forward and backward view of Advantage(λ) learn-
ing 191

References 197

Publications 215

Samenvatting 217

Curriculum Vitae 221

List of Figures

2.1 An overview of the human information processing system. Adapted
from Ashcraft (1998). Similar overviews appear in many textbooks. . . . 8

2.2 A model of language production. Adapted from Levelt, Roelofs, &
Meyer (1999). 9

2.3 A model of working memory. Adapted from Baddeley (1990). 9

2.4 Semantic inhibition in the picture-word interference task where subjects
have to name the picture, as a function of Stimulus Onset Asynchrony
(SOA). Adapted from Glaser & Düngelhoff (1984). 11

2.5 Part of the neural locomotion controller connected to a single leg. From
Beer & Gallagher (1992). 26

2.6 Phase space plot of the limit cycle of the leg controller depicted in figure
5. The output of the Foot, Backward Swing (BS), and Forward Swing
(FS) motor neurons are plotted. From Beer (1995). 27

2.7 Cognitive map learned by a robot in a cluttered office environment. LW8
means Left Wall heading south, for instance. Arrows denote the spread-
ing of activation from the goal (gray node). Adapted from Mataric (1991). 28

2.8 Flocking boids. The flock has split up to avoid the obstacles in the flight
path, and will reassemble after the obstacles. Reprinted with permission
from Craig W. Reynolds. 30

3.1 Schematic representation of the situation considered by reinforcement
learning. 34

3.2 Fig. a (left). Moore input-output FSA. There are two inputs, 0 or 1,
and two outputs, y (yes) or n (no). Outputs are associated with states.
Fig. b (right). Mealy input-output FSA. Outputs are associated with
edges. This Mealy machine is equivalent to the Moore machine depicted
on the left. Adapted from Hopcroft & Ullman (1979). 42

3.3 Schematic representation of a Markov Decision Process. The agent’s
observation is equivalent to the state of the environment, and it can
simply learn a direct mapping from observations (states) to actions to
accomplish an optimal policy. 44

vii

viii LIST OF FIGURES

3.4 Schematic representation of a Partially Observable Markov Decision
Process. The observation provides some information about the environ-
mental state but not complete information; this is indicated by the <

symbol. For optimal performance the agent may have to use some form
of internal state. 45

3.5 Schematic representation of backpropagation through a model. The
gray, dotted arrows illustrate how the errors, based on the difference
between desired, high rewards and actual rewards, are backpropagated
through the model to the controller. 52

3.6 Example of a PWLC value function in a 1-dimensional belief state space
(2 states). Each linear segment corresponds to a policy tree which is
optimal for that part of the belief state space. 69

4.1 Example of a 5-parity, corridor condition 1 maze. The agent is at the
central T-junction, oriented to the north. Black circles denote its sensors
for walls (W) and for the goal (G). Bold lines indicate the area encoding
the odd parity pattern 10011, which can be perceived using wall sensors.
S is the starting position and G is the goal. One step before the T-
junction one grid cell on the same side as the goal has been turned into
open space. 88

4.2 Q-Elman neural network. The solid lines indicate unidirectional, fully
connected, learning weights. The dashed line represents the copy oper-
ation of the hidden units to the context units. 90

4.3 The tendency toward internal state as a function of N-parity and corri-
dor condition. 95

4.4 Extracted single-state FSA corresponding to a perception-based policy,
from the 1 parity, corridor 1 condition. Within this single state, an even
parity pattern (number 2) is correctly dealt with by emitting output 0
(go left), an odd parity pattern (number 6) is correctly dealt with by
emitting output 2 (go right). 98

4.5 Extracted two-state FSA corresponding to an internal state-based pol-
icy, from the 4 parity, corridor 1 condition. When the agent detects that
the right wall cell in the corridor is turned into open space (observation
5, “Corridor Right”), action 1 (go forward) is emitted and the state
changes to state 1. All odd and even parity patterns are subsequently
dealt with by emitting output 2 (go right). 99

4.6 Extracted two-state FSA corresponding to a mixed policy, from the 3
parity, corridor 1 condition. Input number 10, corresponding to an odd
parity pattern, is correctly dealt with in both states by emitting action
2 (go right). 100

4.7 Extracted four-state FSA corresponding to an internal state-based pol-
icy, from the 5 parity, corridor 4 condition. State 0 and 1 code for
corridor patterns that indicate the left goal position, state 2 and 3 do
the same for the right goal position. All states are connected to all states.101

4.8 Average number of iterations needed to reach the termination criteria
as a function of N-parity and corridor condition. 102

LIST OF FIGURES ix

4.9 Average number of iterations per N-parity condition for corridor condi-
tion 3, sorted by the kind of policy converged upon. 103

4.10 Average number of iterations per corridor condition for N-parity condi-
tion 4, sorted by the kind of policy converged upon 103

5.1 The pole balancing task. 114

5.2 Fig. a (left). Number of successful runs (out of 10) in the pole balancing
task as a function of learning rate α and temperature of action selection
τ for Q(λ)-learning (κ = 1). Fig. b (right). Average number of iterations
until success, given that the success criteria are reached, for the same
conditions. 116

5.3 Fig. a (left). Number of successful runs (out of 10) in the pole balancing
task as a function of learning rate α and temperature of action selection
τ for Advantage(λ)-learning (κ = .1). Fig. b (right). Average number
of iterations until success, given that the success criteria are reached,
for the same conditions. 116

5.4 The partially observable maze. The agent is depicted, oriented to the
north, together with its sensors for walls (W) and the goal (G). The
goal location G is in the upper right corner. Many states are ambiguous
with respect to observations, i.e. many position/orientation combina-
tions give rise to the same observation. Three typical paths are depicted
when the agent starts from different random starting positions. 118

5.5 Fig. a (left). Number of successful runs (out of 10) in the maze navi-
gation task as a function of learning rate α and temperature of action
selection τ for Q(λ)-learning (κ = 1). Fig. b (right). Average number
of iterations until success, given that the success criteria are reached,
for the same conditions. 119

5.6 Fig. a (left). Number of successful runs (out of 10) in the maze navi-
gation task as a function of learning rate α and temperature of action
selection τ for Advantage(λ)-learning (κ = .1). Fig. b (right). Average
number of iterations until success, given that the success criteria are
reached, for the same conditions. 120

5.7 Fig. a (left). Number of successful runs (out of 10) as a function of λ

for Advantage(λ)-learning (κ = .1). Fig. b (right). Average number of
iterations until success, given that the success criteria are reached, for
the same conditions. 121

5.8 The partially observable maze in which the agent was trained to go
from the starting position S to the goal G. The agent always learned
the shortest path, indicated by the solid line. The dotted line indicates
a typical route when the agent is put in a different starting position
than S. The dashed line indicates the route taken when an obstacle is
introduced in the position indicated by B. 123

5.9 Typical model of the cognitive map as it is assumed to be implemented
in neural structures. Note the isomorphic mapping from the real world
to the neural structure. Adapted from Trullier & Meyer (1998). 123

x LIST OF FIGURES

5.10 The weights of the Elman network after learning. A brightness coding
is used, in which lighter means a higher value. 124

5.11 Fig. a (left). Context unit activations over time within an episode in
the maze task. Fig. b (right). The same context unit activations over
time, but now plotted against the activation of context unit 1, yielding
a phase space trajectory plot. 125

5.12 The Mealy FSA extracted from the trained Elman network, after Hopcroft
minimization. The FSA has 26 states. 127

6.1 Fig. a (left). The general LSTM architecture used in this chapter. Ar-
rows indicate unidirectional, fully connected weights. The network’s
output units (2, in this illustration) directly code for the Advantage
values of individual actions. Each output unit has its own associated
hidden layer feeding into it. Fig. b (right). One memory cell. 132

6.2 Schematic representation of the overall action selection mechanism. The
current observation goes into both the RL-LSTM network and the adap-
tive exploration feedforward neural network. The latter network outputs
a measure of the system’s “uncertainty” about the value of the current
state. This measure is linearly scaled and used as the temperature of
a Boltzmann action selection rule, which operates on the Advantage
values estimated by the RL-LSTM network. 137

6.3 Long-term dependency T-maze with length of corridor N = 10. At the
starting position S the agent’s observation (X) indicates where the goal
position G is in this episode. 139

6.4 Fig. a (left). Number of successful runs (out of 10) as a function of
N , length of the corridor, for each of the tested reinforcement learning
systems in the noise-free T-maze task. Fig. b (right). Average number
of iterations until success as a function of N 141

6.5 Fig. a (left). Number of successful runs (out of 10) as a function of
N , length of the corridor, for each of the tested reinforcement learning
systems in the noisy T-maze task. Fig. b (right). Average number of
iterations until success as a function of N 143

6.6 Advantage values over time within one episode of the noisy long-term
dependency T-maze task. Fig. a (left). An episode where X is to the
north of the starting position. Fig. b (right). An episode where X is to
the south of the starting position. 144

6.7 CEC activations over time within one episode of the noisy long-term
dependency T-maze task. Fig. a (left). An episode where X is to the
north of the starting position. Fig. b (right). An episode where X is to
the south of the starting position. 144

6.8 Input gate activations over time within one episode of the noisy long-
term dependency T-maze task. Fig. a (left). An episode where X is to
the north of the starting position. Fig. b (right). An episode where X
is to the south of the starting position. 145

LIST OF FIGURES xi

6.9 Output gate activations over time within one episode of the noisy long-
term dependency T-maze task. Fig. a (left). An episode where X is to
the north of the starting position. Fig. b (right). An episode where X
is to the south of the starting position. 146

6.10 Memory cell outputs over time within one episode of the noisy long-
term dependency T-maze task. Fig. a (left). An episode where X is to
the north of the starting position. Fig. b (right). An episode where X
is to the south of the starting position. 146

6.11 Non-regular T-maze. In this particular example n = 5, the length of
the corridor is 10, and the sequence is grammatical. 147

6.12 The probability of correct action selection at the T-junction as a func-
tion of the number of learning iterations, for typical runs of each of the
three methods. Only LSTM gets significantly higher than chance and
reaches the success criterion. 149

6.13 The proportion of correct action selection at the T-junction as a function
of n, plotted separately for grammatical and ungrammatical sequences.
RL-LSTM generalizes well to sequences of much greater lengths than
the maximum length it was trained on (indicated by the vertical line). . 150

6.14 CEC activations over time within one episode of the non-regular T-
maze task. Fig. a (left). A grammatical episode. Fig. b (right). An
ungrammatical episode. 151

6.15 Input gate activations over time within one episode of the non-regular
T-maze task. Fig. a (left). A grammatical episode. Fig. b (right). An
ungrammatical episode. 151

6.16 Output gate activations over time within one episode of the non-regular
T-maze task. Fig. a (left). A grammatical episode. Fig. b (right). An
ungrammatical episode. 152

6.17 Memory cell outputs over time within one episode of the non-regular
T-maze task. Fig. a (left). A grammatical episode. Fig. b (right). An
ungrammatical episode. 152

6.18 Memory cell outputs over time within one episode of the multi-mode
pole balancing task. After 50 iterations, the input unit coding for the
mode of operation information is switched off. Fig. a (left). Mode A
episode. Fig. b (right). Mode B episode. In this particular episode, it
takes somewhat longer to dampen the oscillations of the pole, as shown
by the oscillations of the memory cell outputs. 154

6.19 The cheese maze. G indicates the goal location, where the only reward
of the task is given. 155

6.20 The 89-state maze. G indicates the goal location, where the only reward
of the task is given. The agent is also depicted, oriented to the north,
together with its sensors which detect walls versus open space. 157

7.1 A schematic representation of event extraction. The horizontal dimen-
sion represents time. First, the continuous sensor vector is classified.
Next, only changes in classification are passed on as significant events. . 163

xii LIST OF FIGURES

7.2 Schematic architecture of the ARAVQ network. The raw sensory inputs
stored in the input buffer are first averaged to yield a filtered input. The
filtered input is compared to the stored model vectors. If no good match
is found, a new model vector is allocated corresponding to the filtered
input. 164

7.3 An illustration of the functioning of ARAVQ on a simple, one-dimensional
sensor signal. For roughly the first half of this timeseries, the input is
stable (falls within the boundaries set by ε). Then the input changes
suddenly, and for a while ARAVQ considers the input too unstable.
Next, the input more or less settles down and the stability criterion is
again fulfilled. The new stable input is closer to stored model vector 2,
therefore the categorization changes and a new event is thrown at that
point. 165

7.4 The complete hierarchical control system. In response to events de-
tected by ARAVQ, RL-LSTM produces high-level actions which select
low-level behaviors. 166

7.5 The T-maze, depicted together with the simulated Khepera robot and
the events it detects along the way from the starting position S to the
current goal position G (the “wrong” goal position is shown in gray). . . 167

7.6 Results for the T-maze task. Fig. a (left). Probability of reaching the
goal in the T-maze task as a function of the number of iterations for one
run. Fig. b (right). Average number of high-level actions to the goal,
provided the goal is reached, as a function of the number of iterations
for one run. 169

7.7 The more complex maze, depicted together with the robot taking the
optimal path to the right goal position. The number of events between
the road sign and the final T-junction is 6. 170

7.8 Results for the complex maze task. Fig. a (left). Probability of reaching
the goal in the complex maze task as a function of the number of itera-
tions for one run. Fig. b (right). Average number of high-level actions
to the goal, provided the goal is reached, as a function of the number
of iterations for one run. 170

7.9 The memory cells’ internal states zj during two episodes, the first with
the goal to the left and the second with the goal to the right. The
reward signal is also shown. After the first reward, the new episode
starts (event 10). 171

A.1 Discretization of a two-dimensional internal state space. Each dimen-
sion is partitioned into 5 equal regions. The FSA states that are ex-
tracted have numbers in their corresponding grid cells. One state tran-
sition is indicated: the FSA is in state 6, it receives input 12, emits
output 2, and goes to FSA state 2. 187

B.1 Schematic representation of how an episode is made up of subepisodes.
The moments at which exploring actions are taken mark the beginning
of a new subepisode. 192

List of Tables

4.1 Number of policies converged upon in different conditions. Par stands
for N-parity condition, Cor stands for Corridor condition. 94

6.1 Results on the 89-state maze task for different methods. As compar-
isons, both a random walk policy and the results of a human trained
on this task are included. The “seeded” algorithms are seeded with the
values computed by QMDP. Results, other than those of RL-LSTM, are
taken from Littman et al. (1995a) and Loch and Singh (1998). 158

xiii

xiv LIST OF TABLES

Preface

In doing the research for this thesis, I have had the privilege to work in a group of
people that have allowed me to largely pursue my own ideas and interests, while at
the same time providing the resources I needed and providing many opportunities for
stimulating discussions of my work and theirs. For this I am very grateful. In this
context, a number of colleagues deserve special mention.

First of all, I wish to thank the various colleagues that I shared a room with over
the years and that were always the first in sharing the joys and inevitable annoyances
of PhD research: Arjan de Boer, with whom I enjoyed many hours of discussions
about the good and bad in science, society, and soccer; Antonino Raffone, whose
enthusiasm about neural networks was contageous; and Jiska Memelink, who often
lent a sympathetic ear when I was complaining about the life of a PhD student.

Several colleagues discussed with me topics vital to my own research. Of all col-
leagues in Leiden, Fred Keijzer’s work was probably most similar in spirit to my own
work. The papers he let me read when I was still an undergraduate student were very
influential in my choices of topics as a PhD student, and I appreciate greatly our many
discussions about adaptive behavior and dynamical systems—even if usually we did
not agree. Mark de Kamps taught me some valuable dynamical systems concepts and
discussed with me a lot of work on neural networks. Bart Happel’s work on combining
genetic algorithms and neural networks was very inspiring to me as an undergraduate
student, and I thoroughly enjoyed the regrettably few discussions about our work and
the grander goals of AI later on.

In addition to discussions related directly to my own work, I appreciated the many
scientific and non-scientific conversations I had during lunch and coffee breaks, and
occasionally dinner or drinks, with many other colleagues, including my regular lunch
partners Nomi Olsthoorn, Guido Band, Ineke Bloem, and Fenna Poletiek.

I had very pleasant and fruitful cooperations with three PhD students at other
universities that led to publications, Paul den Dulk, Michiel de Jong, and Fredrik
Lin̊aker. The work with Paul and with Michiel did not end up in this thesis in explicit
form, but many of the ideas developed in our cooperations are there implicitly, and
both Paul and Michiel helped in clarifying many issues for me. The work done with
Fredrik ended up in chapter 7, and is to me a good example of how cooperation
between people working in different countries and relatively different fields can still be
both pleasant and mutually beneficial.

I have had the good fortune to work with two very clever undergraduate students
who did research with me, and I am very pleased that both went on to become PhD

xv

xvi

students themselves. Gwendid van de Voort van de Kleij cooperated with me on the
early work for chapter 4, executing and analyzing the first extensive simulations on
internal state in MDPs (“handy state” as we liked to call it). Michel van Dartel coop-
erated with me on parts of the work described in chapter 5, analyzing the “cognitive
map” capabilities of a recurrent neural network trained for navigation. Besides doing
very useful work for me, both Gwendid and Michel made great company inside and
outside the university.

As in every research group, in the Unit of Cognitive Psychology in Leiden a pivotal
role is played by the secretaries. I wish to thank Karin Honsbeek, Marina Bouhuis,
Romke Biagioni, and Albertien Olthoff for taking care of countless administrative
issues that I couldn’t keep track of, keeping me up to date of important news, protecting
my spot in a good room, organizing trips and birthday parties, and lifting my spirits
by once making me employee of the month.

I wish to thank those people who took the time and effort to read parts of the
unfinished thesis and reports on which this thesis is based, and who provided many
useful comments: Michiel de Jong, Edwin de Jong, Dagmar van der Neut, Gwendid
van de Voort van de Kleij, Michel van Dartel, Fred Keijzer, Ingmar Visser, Viktor
Zhumatiy, Jelle Kok, and Matthijs Spaan. I want to single out Edwin de Jong, who
read a draft of the complete thesis, made encouraging remarks, and provided very
to-the-point feedback both on a detailed level and on a conceptual, overall level.

I would like to thank the members and former members of our AI discussion club
“Emergentsia”, Edwin de Jong, Michiel de Jong, Dick de Ridder, David Tax, Rens
Kortmann, Paul den Dulk, Martijn Brinkers, Hendrik-Jan Hoeve, Jelle Kok, Sjaak
Verbeek, Matthijs Spaan, Sander Bohté, Martijn van Otterlo, and Marco Wiering, for
the many interesting discussions about diverse topics in AI. I learned much from these
meetings, thanks to the diversity of discussed papers and the diversity of expertise in
the club; whatever general AI context I missed in my own research group I found in
Emergentsia.

Edwin de Jong, Michiel de Jong, and Paul den Dulk were among the earliest
members of Emergentsia, but more importantly, they have been good friends for many
years, and their ideas about AI and cognitive science have influenced me greatly from
when I was in the first years of my undergraduate studies. In fact, the enthusiasm
invoked by our conversations played an important role in my decision to apply for a
PhD student position in the first place, so I owe special thanks to them.

My life as a PhD student in Leiden revolved not about work alone, fortunately,
and I would like to thank all my friends, who provided plenty of fun distractions from
my research, who understood when to inquire carefully about my research and when
not to ask anything, who pointed out the relativity of it all by making fun of my thesis
(“scriptie”) and my topic (pole balancing in particular is hilarious, apparently), but
who also expressed serious interest, faith, and support during many rounds of tea,
coffee, and still stronger beverages.

I wish to express immense thanks to my parents for their unconditional love, belief
in me, and support through thick and thin.

Finally, the person I want to thank most of all is Dagmar, for her unfailing love,
help, patience, and understanding, especially during the last and most difficult period
of finishing this thesis.

Chapter 1

Introduction

1.1 Understanding and constructing intelligence

The general, long-term goals behind the research described in this thesis are to con-
tribute to our understanding of biological intelligence and to the construction of
artificial intelligence. These two goals are purposively stated together, because I be-
lieve that they are intimately connected. Understanding the complexities of biological
intelligence requires the insights of an advanced science of artificial intelligence, and
vice versa, artificial intelligence can benefit a great deal from insights into how na-
ture solved the problems of building intelligent systems. That is not to say that true
artificial intelligence must necessarily mimic biological intelligence precisely, or that
biological intelligence will necessarily turn out to function exactly as the best artifi-
cially intelligent systems. However, I do believe that general principles can be found,
general principles of intelligence, and in uncovering those principles, either from stud-
ies on biological intelligence or from studies on artificial intelligence, we actually learn
about both biological and artificial intelligence.

The methodology of the work in this thesis reflects this idea. First and foremost, al-
gorithms and simulation experiments are presented which aim to contribute to artificial
intelligence. However, the algorithms and architectures that are used, reinforcement
learning and neural networks, were chosen not only because of their promise for arti-
ficial intelligence per se, but also because of their relationship with biological learning
and biological nervous systems. It is difficult to predict the insights into “general
principles of intelligence” which may, in the long run, be yielded by this methodology,
and in this thesis no specific “hypotheses” about those principles are formulated and
tested in a rigorous way. However, the proposed architectures and algorithms could
be viewed as implicit hypotheses about what might constitute certain principles of
intelligence. Examples are the use of value function approximation for learning and
control throughout the thesis, the use of a single system, a recurrent neural network,
to construct a useful state signal by generalizing over perceptual information where
possible and supplementing it with short-term memory where necessary, and the use
of hierarchical control for difficult tasks. Occasionally, general principles of intelligence
are more explicitly debated, for example in the discussion about the trade-off between

1

2 1. INTRODUCTION

perception and internal state in chapter 4, and in the discussion about cognitive maps
in chapter 5.

1.2 The main focus of this thesis

The work in this thesis is part of the general framework of adaptive behavior research.
More specifically, it is part of the machine learning paradigm of reinforcement learning.
The main focus of the thesis is to build and understand mechanisms and algorithms
for reinforcement learning tasks where perception of the environment may or must be
supplemented with internal state (short-term memory). Much of adaptive behavior
research and reinforcement learning is concerned with “reactive” tasks, where good
behavior can be accomplished using a direct mapping from perception of the envi-
ronment to actions. This thesis considers more difficult but also more realistic tasks
where that is not practical or possible, i.e. where immediate perception of the environ-
ment does not yield useful or sufficient information, and the system needs to learn to
use internal state in combination with perception for good behavior. Such tasks can
be called “representation-hungry” tasks (Clark, 1997), and the reinforcement learning
equivalent is known as Partially Observable Markov Decision Processes (POMDPs).
They pose important challenges for reinforcement learning, as well as for adaptive
behavior research in general.

The specific learning tasks considered in different chapters are all tasks of this na-
ture. They are basically variations of two types of tasks, navigation and pole balancing.
However, it should be noted that this thesis is not about navigation and pole balancing
as applications per se. They are only used to illustrate how policies can be learned,
using the methods described in this thesis, in different types of partially observable
domains and in domains with varying degrees of complexity. Besides the distinction
between navigation and pole balancing, another dimension in which the investigated
learning tasks can be distinguished is the following. One class consists of tasks which
are conceptually simple and which look fairly “fabricated”. They are designed such
that we can easily determine optimal policies, easily vary specific difficulties of the
task, and easily determine when and why the proposed methods succeed and fail. In
some cases, these are tasks where one could fairly easily write a program that would
solve the task; but that is beside the point. These are tasks that investigate particular
difficulties for the learning algorithms, difficulties that are also important in more com-
plex tasks, for which it would be much harder to program the solution by hand. The
second category of tasks is more complex and realistic. They are used to demonstrate
the power of the proposed methods and to show that the methods work in somewhat
more realistic settings than the fabricated tasks of the first category, settings in which
it is already more difficult to handcode the solution. The disadvantage of this class of
tasks is that it is often harder to determine their optimal policies, harder to understand
the specific difficulties they pose for the algorithms, and harder to analyze successful
and failing agents.

1.3. THE STRUCTURE OF THIS THESIS 3

1.3 The structure of this thesis

The chapters in this thesis can largely be read individually, with occasional references
to previous chapters. At the same time, the chapters have a more or less logical
ordering and I believe it is valuable to read them in their intended order. Each chapter
builds on the previous chapters, in the sense that the previous chapters serve as a
theoretical introduction, or in the sense that a chapter deals with problems or extends
algorithms that were described in previous chapters. References to literature related to
specific research questions can be found in the individual chapters; a general overview
of the literature is presented in the next two chapters.

The next chapter, chapter 2, provides an introduction to adaptive behavior re-
search, which provides the general research context or philosophy behind the work
of this thesis. It explains, in much more detail than this introduction, how adaptive
behavior research contributes to our understanding of biological and artificial intelli-
gence. In this sense, it sets the stage for the next chapters, which zoom in to more
specific, technical research questions.

Chapter 3 describes the specific paradigm used in this thesis, reinforcement learn-
ing. It focuses especially on problems and methods related to those investigated in this
thesis. This helps in understanding the position that the methods used in this thesis
take within the field of reinforcement learning, and in understanding the relevance of
the specific research questions investigated in this thesis.

Chapter 4 is the first chapter in which a specific technical research question is
addressed. It describes simulation experiments where the reinforcement learning algo-
rithm known as Q-learning is combined with simple recurrent neural networks (Elman
networks) to solve reactive tasks (MDPs). Such tasks could in principle be solved
by learning a direct mapping from perception to actions, for instance using tables or
feedforward neural networks. This chapter shows that even in this case, the internal
state provided by the recurrent activations in the network can be useful, and in fact,
a trade-off between the use of perception and internal state can be identified.

Chapter 5 considers the case where internal states are not just useful but nec-
essary: POMDPs. It investigates the validity of the approach of using recurrent
neural networks approximating value functions of a reinforcement learning algorithm
for both continuous and discrete partially observable tasks. It focuses, in particular,
on analyzing the resulting outward behavior of the agents and internal functioning of
the networks. In this chapter, instead of Q-learning a reinforcement learning algo-
rithm is used which can be viewed as an extension or transformation of Q-learning:
Advantage(λ) learning.

Chapter 6 extends the work presented in chapters 4 and 5 by using a more sophis-
ticated recurrent neural network architecture. Chapters 4 and 5 use Elman networks,
chapter 6 uses Long Short-Term Memory (LSTM) networks. The LSTM network al-
lows the reinforcement learning agent to solve significantly more difficult POMDPs,
which have complex and long-term temporal dependencies between events that must
be remembered and actions that depend on them. In addition, instead of straightfor-
ward undirected exploration as in the previous chapters, this chapter proposes a more
sophisticated adaptive, directed exploration technique.

4 1. INTRODUCTION

Chapter 7 extends the system described in chapter 6 by combining it with an
unsupervised learning component, making the methods of the thesis more applicable
to real robot applications. The overall system can be understood as a hierarchical
control system: the unsupervised learning component preprocesses the robot’s raw
sensory inputs and provides a higher-level representation of the robot’s environment
to the reinforcement learning component, which learns to select low-level behaviors for
execution.

Chapter 8, finally, presents the general conclusions. It summarizes the technical
as well as conceptual contributions of this thesis, and it suggests some interesting
directions for future research.

1.4 Notation and terminology

I have tried to make the terminology and mathematical notation in the various chapters
maximally consistent with each other and with existing work on reinforcement learning
and neural networks. A few exceptions are inevitable, but I believe they do not have
to lead to confusion. For example, in this thesis parameters of function approximators
adapted by reinforcement learning algorithms are sometimes referred to as wi and
sometimes as wim. The latter usage is prevalent when we specifically consider neural
networks as the function approximator, in which case such a parameter is always
associated with a connection between a unit m and a unit i. Furthermore, time is
always indicated by t, but sometimes as in s(t) and sometimes as in st. Which one
is used depends on the focus and readability of the corresponding equations, but it is
always consistent at least within any one chapter. When we speak about the “state”,
without further qualifications, this always refers to the state of the environment. The
state within an agent or neural network is referred to as “internal state”. Similarly,
the symbol s is, consistent with the reinforcement learning literature, reserved for
indicating the state of the environment. For this reason, the CEC activation of an
LSTM network’s memory cell is not indicated by scv

j
, as is common in papers on

LSTM, but by zcv
j
.

Chapter 2

The adaptive behavior
approach to cognitive science

Summary

This chapter discusses the field of adaptive behavior, a relatively new approach to
cognitive science and artificial intelligence, that provides the general framework for
the research described in this thesis. The goal of adaptive behavior research is to learn
about intelligent behavior by constructing agents exhibiting that behavior, but it is
different from traditional artificial intelligence. It is argued that rather than providing
mere implementations of the abstract theories of mainstream cognitive science and
artificial intelligence, the adaptive behavior approach yields many new insights, as well
as indications that some of mainstream cognitive science’s assumptions and theoretical
ideas may be in need of revision. Specific examples of adaptive behavior research are
presented to support these claims.

2.1 Introduction

Cognitive science is the scientific discipline that studies the basic mechanisms under-
lying human and animal intelligent behavior. Its ultimate goal is to understand how
perception comes about, how memory works, how muscles are controlled, how language
is produced and perceived, how emotions work, etc.; in short, how all the faculties func-
tion that make up the mind. Derived from that goal are the goals of understanding how
those faculties may fail and how they behave in different circumstances, and applying
the insights of cognitive science to clinical, educational, or industrial settings.

In recent years, forceful arguments have been put forward to the effect that cog-
nitive science will and must become more intimately related to the neural sciences
(Crick, 1988; Churchland, 1986). Among other developments, technological advances
have made it possible to “look” inside the active brain, using techniques with acronym
names such as PET, fMRI, ERP, and MEG. The new insights into brain mechanisms

5

6 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

that are likely to emerge from those developments will have to be taken into account
by cognitive science.

The work described in this thesis is part of another rapidly evolving field with
great relevance for cognitive science. It is the field of adaptive behavior, alternatively
referred to as the field of autonomous agents, animats, behavior-based cognitive sci-
ence, bottom-up cognitive science, or synthetic psychology. This chapter provides a
general introduction to the key ideas and philosophy of the field of adaptive behavior
and in this way sets the stage for the more technical chapters to follow.

The field of adaptive behavior takes an artificial intelligence approach to cognitive
science (although it is very different from traditional artificial intelligence), in that
systems are constructed that are capable of intelligent behavior. The idea is that by
constructing an artificial system one can learn something about the biological system.
In the process of construction one may encounter the same problems that the biological
system encounters, and hypotheses about how the biological system overcomes these
problems can be put to the test.

One might expect that this approach amounts to straightforward “implementation”
of the abstract theories of mainstream cognitive science as concrete models. At best,
this would lead to arbitration between competing abstract theories, and the filling in
of some of the details left open by those abstract theories. In contrast, this chapter
argues that the adaptive behavior approach yields insights that are far more revolu-
tionary. The systems that are constructed and that work best are, in many cases, very
different from any of the systems described in mainstream cognitive science literature.
Where attempts have been made to implement existing abstract theories directly, in-
surmountable problems have often appeared—suggesting falsification of those theories
rather than a mere filling in of the details.

To back up this argument it is necessary to describe the current standard view of
human and animal information processing in cognitive science, and to present results
from the adaptive behavior approach that are different from or even incompatible
with that view. Section 2 contains a description of current mainstream cognitive
science, together with some representative examples. Section 3 describes the adaptive
behavior approach by contrasting it with mainstream cognitive science. Section 4
presents a number of examples of artificial systems or “agents” that are very different
in architecture and functioning from what was or would be expected given the standard
view. In that way they serve to back up the argument that some of the assumptions
and ideas in mainstream cognitive science may be in need of revision, and that a
closer relationship between cognitive science and adaptive behavior research is needed.
Section 5, finally, contains a general discussion of the ideas presented in this chapter.

2.2 Mainstream cognitive science

2.2.1 Theoretical foundations

After the behaviorist era with its exclusive focus on behavior (Skinner, 1938, 1991),
the cognitive revolution halfway through the 20th century brought renewed atten-
tion for the internal mechanisms underlying behavior (Chomsky, 1959; Tolman, 1948).

2.2. MAINSTREAM COGNITIVE SCIENCE 7

Theoretical ideas regarding those mechanisms were heavily influenced by another de-
velopment of that time. The theory of computation showed that a very large class of
mathematical functions could be performed by machines that mechanistically follow
stored procedures, computers. In fact, it was made plausible that no physical ma-
chine could reliably perform functions beyond this class. Importantly, all computable
functions can be performed by one and the same machine, the “hardware”, only by
changing the stored procedures, the “software” (e.g. Pylyshyn, 1984). Actual com-
puter applications displayed capabilities such as arithmetic, pattern recognition, and
game playing, which were previously thought to require human intelligence, and which
in many cases outperformed human capabilities.

Ever since then, the internal mechanisms of the mind have been theorized to amount
to a kind of computer. Combining several ideas from computation theory, Newell and
Simon (1976) stated the symbol system hypothesis: for a system to be capable of
human-level intelligence, it is both necessary and sufficient for it to constitute a sym-
bol system, a computer. Just like a computer, the brain is viewed as a single piece of
hardware capable of a wide variety of tasks. One idea of computation theory has been
particularly important in that respect. That idea is that a computer can in principle
be realized (implemented) in many different types of hardware, whether they are me-
chanical switches, electronic circuits, or even beer cans. Thus, an implementation in
neural tissue is also possible. The end result of the computation is not dependent on
the specific implementation, in the same sense in which Microsoft Word works equally
well (or equally badly) on Windows computers and Macs. In that sense, the hardware
is irrelevant. This has led to a widespread doctrine called functionalism, which states
that for this reason cognitive science does not need to be concerned with the phys-
ical implementation, the brain, but only needs to focus on the functional level, the
“software running on” the brain (e.g. Pylyshyn, 1984).

2.2.2 Functions and functional modules

The theoretical foundations described above should be considered in combination with
a number of practical principles of scientific methodology to understand current cog-
nitive science. These practical principles amount to ideas about how research on the
mechanisms underlying behavior should proceed. It is clear that the entire human
brain or mind is too complex and multi-faceted to oversee and assess for single re-
searchers, or to describe all aspects and details of its functioning in terms of a single
simple model. For this reason, and influenced by the computer analogy, the system
is decomposed into different functions: perception (itself sorted by sensory modality),
memory, language, attention, motor control, reasoning, etc. In practice, each function
has its own, more or less separate community of researchers and a distinct body of
literature. Figure 2.1 presents a fairly characteristic general overview of the human
information processing system as it appears in many textbooks (e.g. Ashcraft, 1998).

Within each function, a similar decomposition into constituent functional com-
ponents or modules is assumed. Each component is dedicated to some subfunction.
Information is exchanged between components through communication lines although,
in close analogy with computer systems, these communication lines are often assumed
to have a “limited bandwidth”, i.e. have a limited capacity. Exchanged information

8 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

Long-term
 memory

Sensory
memory

Short-term
working
memory

Attention
Stimulus
information

Response

Figure 2.1: An overview of the human information processing system. Adapted from
Ashcraft (1998). Similar overviews appear in many textbooks.

consists of the results computed by one module which are the prerequisite for another
module. Many models assume strictly serial processing; an array of modules acti-
vated one after the other, each one using the final results of the previous module as
input. Other models, recent ones in particular, allow parallel processing. Multiple
modules may be active at the same time and possibly interact, and the results are
integrated into a final, response module. Components are usually represented visually
as boxes and communication lines as arrows, yielding what are known as box-arrow
models. Figures 2.2 and 2.3 show two well-known models representing this approach,
one model of language production (Levelt, Roelofs, & Meyer, 1999) and one model of
working memory (Baddeley, 1990).

The idea of decomposition into functions and functional modules is not just based
on practical considerations and the computer analogy. Even though functionalism
dictates that the hardware of the brain is, in an important sense, irrelevant for the
functioning of the mind, cognitive scientists have been quick to embrace findings from
the neural sciences that seem to support the idea of decomposition into functions.
It is known from studies where animal brains were purposely lesioned, as well as
from brain imaging and cell recording studies, that different anatomical regions in
brains are involved in different aspects of animal and human functioning. Furthermore,
neuropsychological studies show that people with accidental brain lesions, e.g. caused
by car accidents, strokes, or bullet wounds, often display fairly specific defects rather
than an overall deterioration of functioning. For instance, a person may lose the ability
to produce language but still comprehend language, or a person may be able to visually
recognize all objects except faces.

2.2. MAINSTREAM COGNITIVE SCIENCE 9

conceptual preparation
in terms of lexical concepts

lexical selection

morphological encoding

phonological encoding
syllabification

phonetic encoding

articulation

lexical concept

lemma

morpheme

phonological word

phonetic gestural score

sound wave

Mental Lexicon

lemmas

word forms

self-
monitoring

Syllabary

Figure 2.2: A model of language production. Adapted from Levelt, Roelofs, & Meyer
(1999).

 Central
executiveVisuo-spatial

sketch pad
Phonological
loop

Figure 2.3: A model of working memory. Adapted from Baddeley (1990).

10 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

Many models in mainstream cognitive science assume as one of the functional
modules some kind of central workspace or central processor where information from
different sources comes together, where selections are being made, where information is
temporarily stored and manipulated, and where decisions are made regarding actions.
In figure 2.1, for instance, there is a short-term working memory, which, guided by
attention, receives information from long-term memory and from sensory memory.
In working memory this information is processed, and the appropriate response is
given as output. Figure 2.3 depicts a central executive, which has, as slave systems,
temporary stores for auditory information and visuo-spatial information, and which
uses that information for its reasoning and decision processes. Figure 2.2 has a central
executive in disguise, in the form of the self-monitoring process. Central processors
and workspaces are based on the way computers function. There are hardly any data
from the neural sciences which indicate that such central processors or workspaces
actually exist in animal and human brains (Dennett, 1994, 1991), but in this case such
objections are brushed aside by referring to functionalism.

2.2.3 Experiments and effects

Other practical considerations that have been important in establishing current cogni-
tive science concern not the theoretical models themselves but the experiments that are
being done to develop and support the models. Experimental data are the foundation
for cognitive science’s theories, but they have the problem of providing only indirect
information on the architecture and functioning of internal mechanisms. This is true
even for brain imaging data, because these may, for instance, give rough indications
as to which brain area receives more blood than others, but not say in what way that
brain area is involved exactly. However, the problem is even more acute for the kind
of data on outward behavior that experimental cognitive science typically works with:
reaction time, strength, frequency, and accuracy of responses. Interestingly, these mea-
sures have in large part remained the same since the dawn of experimental psychology
in the late 19th century. To cope with the indirectness of those data, experiments
are usually set up such that a manipulation of a single controlled variable results in a
changed response from the subjects, a so-called effect. The type and direction of the ef-
fect may then be used to derive conclusions about the underlying mechanisms that are
involved and affected by the experimental manipulation. The subtractive procedure
or the method of additive factors, developed by Donders (1862) and still widely used,
is a particular instance of this idea. An experimental manipulation results in a change
of responses, in this case longer reaction times, and this is interpreted as indicating an
additional stage of processing or an additional involved functional component.

However, drawing straightforward conclusions from such effects can be difficult.
Even if we have a large, clear-cut effect, its implications for the underlying mechanism
are often unclear. Consider a case from language production research based on picture-
word interference experiments (e.g. Glaser & Düngelhoff, 1984; Levelt et al., 1999).
These experiments are based on the Stroop task, an experimental paradigm that is
more than 60 years old (Stroop, 1935). In picture-word interference experiments,
the subject must name a picture (or classify it or respond in another way). Within
the boundaries of the picture, a distracting word appears before, during, or after the

2.2. MAINSTREAM COGNITIVE SCIENCE 11

−400 −300 −200 −100 0 100 200 300 400

−150

−100

−50

0

50

100

150

Fa
ci

lit
at

io
n

In
hi

bi
tio

n

SOA

Figure 2.4: Semantic inhibition in the picture-word interference task where subjects
have to name the picture, as a function of Stimulus Onset Asynchrony (SOA). Adapted
from Glaser & Düngelhoff (1984).

appearance of the picture itself. A reliable finding is that if the so-called Stimulus Onset
Asynchrony (SOA), the time between the presentation of the picture and the word,
is roughly between -100 milliseconds and +100 milliseconds, and the distractor word
is semantically related to the picture (such as the word “dog” is related to a picture
of a cat), naming the picture takes significantly longer than in other conditions. This
finding is displayed in figure 2.4.

What does this semantic inhibition effect mean for models of language produc-
tion? In the interpretation of additive factors, it could mean that an additional stage
of processing or functional module is involved. Alternatively, it could mean that se-
mantically related words are stored closely together in memory, and “activation” of
words “spreads out” to their neighborhood in a kind of blurring process, making it
harder to distinguish semantically related words and pick out the correct one. Yet
another interpretation is that the distractor word is processed faster than the picture
and prepares the response component for saying the wrong word, which subsequently
needs to be suppressed before the right word can be said.

The standard way to decide between the alternatives is to run new experiments.
However, effects may disappear or even be reversed by slight changes to the experi-
mental setup or by alternative manipulations. In the case of picture-word interference
tasks, the effect is indeed reversed and becomes a facilitation effect when the pictures
must be categorized rather than named (Levelt et al., 1999). In many cases research
then tends to “zoom in” on details regarding those changes and manipulations, map-
ping out exactly when effects appear and how large they may become. In doing that,

12 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

researchers are following the seemingly reasonable principle that one must first come
to grips with the subtleties of the effect before one can move on. In addition, in new
experiments a completely new effect may appear, much to the delight of its discoverers.
The details of this new effect are then explored in more detail, etcetera.

In effect (no pun intended), the end result is that much of cognitive science is
more concerned with effects by themselves than with the implications of effects for
theoretical models. Measurements and the effects derived from them take on a life of
their own, with models being postponed to a later time “when we have more data”.
The argument that “there is not yet enough data” is similarly used to justify the usual
state of affairs that if a model is proposed, it is not specified beyond the very abstract
level of a small number of boxes and arrows, as described above and illustrated by
figures 2.1–2.3.

2.2.4 Mathematical and computational models

In those rare cases where a cognitive science model is further specified and a math-
ematical or computational model is implemented, an observation can be made that
illustrates the strong focus of mainstream cognitive science on raw experimental data
and effects. Such models typically replicate the raw experimental data and effects
very precisely, but they do not aim to replicate the general behavior that the research
initially set out to investigate.

For example, the computational model of language production proposed by Levelt
et al. (1999), which is an implementation of the box-arrow model depicted in figure
2.2, replicates the semantic inhibition effect very well, along with a number of other
experimental effects, but it says little about language production in general: how the
picture is “transformed” into processes dedicated to language, what those processes
look like and how they are operated upon, how the complex structure of language
and the very large number of words are dealt with, and how processes concerned
with language are in turn transformed into muscular movements corresponding to
saying a word. In other words, one cannot present an actual picture of a cat to
the computational model and obtain an auditory response “cat”—let alone have the
language production model produce language as it is normally produced, in the form of
comprehensible sentences. Reaction times and errors are produced, rather than actual
language. Again this is justified by referring to the intuitively reasonable arguments
that there is not enough data and that one must stay close to the data that one has
got, before one can go on and “generalize to the unknown”. However, this results in
the peculiar situation that data that were initially gathered to say something about
the mechanisms underlying a general capability of behavior, become the primary focus
of the model at the expense of those general mechanisms. Such models explain the
errors in and speed of certain behavior, without explaining the behavior itself.

The (implicit) idea behind this is that successive models of raw data and effects
will encompass more and more data and, in the long run, converge to models which
will indeed be able to produce actual behavior. After all, if we keep doing experiments,
more and more data will become available, and if all conceivable data are eventually
taken into account, this should include data on actual behavior. However, we have seen
that more data often amounts to more details regarding the existence, disappearance

2.3. THE ADAPTIVE BEHAVIOR APPROACH 13

and reversal of an effect under different experimental variations, and not necessarily to
more data on actual behavior in natural circumstances. In practice, after many years
of careful experimentation and corresponding theorizing, models have rarely, if ever,
converged to models aiming more and more to replicate actual behavior in natural
circumstances.

2.3 The adaptive behavior approach

Adaptive behavior research takes a very different approach to the study of the mech-
anisms underlying behavior. This approach is conveniently and effectively described
by contrasting it with mainstream cognitive science on a number of issues.

2.3.1 General capabilities, as opposed to experimental effects

The previous section ended with a discussion of the kind of data that current models
in cognitive science focus on, and ideas about how successive models will encompass
more data. In general, this concerns the question of deciding where to start: which
kind of data should be modeled first? Mainstream cognitive science usually opts for
the kind of exact and quantitative but, as we saw, very indirect data that can be and
have been obtained in carefully controlled experiments.

The adaptive behavior approach can be understood as choosing another kind of
“data” to focus on first. It attempts to replicate general capabilities of behavior that
humans or animals exhibit. A system, or agent, is constructed that is capable of,
for instance, locomotion behavior, or navigation behavior, or cooperation behavior,
etc. These capabilities are not data in the regular sense of that which is gathered
in controlled experiments, but they are data in the sense that they are non-trivial
phenomena exhibited by humans and animals and they should be accounted for by
a model. The idea is that a good model of the mechanisms underlying behavior
should first and foremost account for what those mechanisms are for, what makes
them interesting in the first place: the generation of successful behavior.

Viewed from this perspective, it is clear that the adaptive behavior approach is
not merely a branch of engineering. It is a branch of cognitive science, in that it
attempts to explain known facts about the behavior of organisms, facts concerning
the existence, complexity, and limitations of that behavior. The difference between
mainstream cognitive science and the adaptive behavior approach is not that the first
explains actual data on organisms and the latter does not; the difference is in the type
of data that is being explained.

Obviously, the type of data described as “general capabilities” cannot be measured
as rigorously and quantitatively as the typical data gathered in experimental cognitive
science. In some cases, we may only be able to say that there is a qualitative fit between
the constructed agent’s behavior and an organism’s behavior: the agent is capable
of some behavior, but the degree to which it matches the capability of a particular
organism is not entirely clear. In other cases, it may be possible to determine this fit
more quantitatively, by taking measures of effectiveness and efficiency. However, in

14 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

many cases an agent’s behavior is not even intended to model the behavior of a specific
species, but rather a type of behavior exhibited by many species.

Mainstream cognitive science often stays close to quantitative data gathered in
neatly controlled experiments at the expense of the actual behavior itself. The adaptive
behavior approach does the opposite: sacrificing some quantitative measures in favor
of “qualitative data” that are claimed to have at least as high a priority.

2.3.2 Basic behavior, as opposed to high-level behavior

Building a system capable of behavior is difficult. At the moment, complex behavior
is out of reach. For this reason, the adaptive behavior approach simplifies by focusing
on very basic behavior first (Keijzer, 2001). This can be contrasted with most of
experimental cognitive science which can be characterized as simplifying by taking
simple behavioral measures of mostly high-level cognition such as natural language,
decision making, complex perception and attention, and intentional processes. It can
similarly be contrasted to “traditional” artificial intelligence, which has focused on
mimicking those higher-level cognitive processes. Traditional artificial intelligence has
met with some success, but mainly when the domain to which the high-level cognitive
process applies is very limited, such as chess or medical diagnosis. The idea of going
back to basic behavior first, which adaptive behavior research adopts, is based in part
on the brittleness of traditional artificial intelligence systems in real-world domains.

The adaptive behavior approach has the disadvantage that, initially, many of the
most interesting types of behavior, especially the ones exhibited uniquely by humans
and not by other animals, are not dealt with. On the other hand, this may not be
such a bad idea given the history of research in biology, for instance. Taking an
example from Cliff (1991), the very successful field of genetics has worked its way
up from the relatively simple genomes of the fruit fly up to more and more complex
genomes, with the human genome coming into the picture only recently. Similarly,
adaptive behavior research starts with the very basic behaviors exhibited by virtually
all animals and slowly works its way up: locomotion, orientation, approach to desirable
stimuli and movement away from danger, collision detection and collision avoidance,
simple navigation, prey following and fleeing, cooperation, communication, etc.

This initial focus on basic behavior, as opposed to a focus on high-level cognition,
does not imply a return to behaviorism or a denial of the existence and importance of
high-level cognition. It is mainly a pragmatic choice, based on perceived limitations
of our understanding of the mechanisms underlying even very basic behavior. In
sharp contrast with behaviorism, adaptive behavior research is very much concerned
with the internal mechanisms behind behavior, and it does not view behavior as simple
stimulus-response relationships. In the long run, the adaptive behavior approach hopes
to tackle more high-level cognitive behavior. In fact, there are already some efforts
in this direction, especially with regard to planning (Nolfi & Floreano, 1998; Mataric,
1997; Sutton, 1991), communication using higher-level concepts (de Jong, 1999), and
even language (Steels, 1997).

2.3. THE ADAPTIVE BEHAVIOR APPROACH 15

2.3.3 Learning by constructing, as opposed to learning by mea-
suring

By constructing an agent capable of a certain type of behavior, one can learn some-
thing about how biological systems, organisms, accomplish that behavior (Braitenberg,
1984). At the very least, one will learn about the problems that are involved in accom-
plishing that behavior, which are the same problems that the biological system must
overcome. We can think of the evolved mechanisms underlying behavior as a solution
to those problems. It seems reasonable that understanding that solution requires a
sufficient understanding of the problems.

Interestingly, during construction one’s intuitions about what will be and what
will not be severe problems are often falsified. The history of the field of artificial
intelligence is very illuminating in this regard. On the one hand, problems may turn
out to be much more severe than was envisioned. In research on navigating robots it
was initially thought that the process of transducing sensory information into a world
model, as well as the process of transducing planned actions into motor commands was
fairly trivial, and that all the hard work is done in sorting out a plan given the world
model (Nilsson, 1984; Moravec, 1982). This turned out to be a gross underestimation
of the difficulties of those “transduction” processes, and research on navigating robots
stalled for many years as a result (Brooks, 1991a).

On the other hand, problems that seem to be very serious may turn out to be pretty
easy. It was previously thought that transforming English verbs from the present tense
into the past tense requires a complicated system of rules, containing the rules and
how they are applied, as well as the exceptions to which they do not apply. However,
it was shown that this task can be performed relatively successfully and even learned
as a straightforward nonlinear input-output mapping, using a basic feedforward neural
network (Rumelhart & McClelland, 1986a). This system learned the past tenses of
both regular and irregular verbs, and generalized reasonably well to both regular and
irregular verbs it had never seen before.

In general, the history of artificial intelligence shows that construction of an in-
telligent system is by no means a trivial enterprise. This suggests that it is not true
that for any abstract theory on how to achieve some behavior, it will be easy or even
possible to construct an implementation of that theory that works. The conclusion
that the adaptive behavior approach draws from this observation is that the test of
implementation is a much more serious one than is usually assumed by mainstream
cognitive science. Implementation reveals genuine problems associated with accom-
plishing a particular type of behavior; and it reveals weaknesses (if any) of abstract
theories in overcoming those problems.

Conversely, properties of a successful artificial system may suggest ideas, and even
specific hypotheses, about how the biological system does the job. The engineered
solution can be compared and contrasted with the biological solution. Having some-
thing to compare with may help in making sense of the data on biological mechanisms
that are available from psychology and the neurosciences, data that are there in large
quantities but that are often hard to interpret.

16 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

2.3.4 Mild functionalism, as opposed to extreme functionalism

The degree to which constructed solutions, agents, tell us anything about nature’s
solutions, organisms, is a matter of some debate. The extreme form of functionalism
that is usually adhered to in mainstream cognitive science tells us that the same
function can be accomplished in a virtually unlimited number of ways. For this reason,
investigating one possible implementation of a function in an engineered agent is not
very relevant. The way the engineered agent performs the function may be completely
different from the way the organism performs it, and what we are interested in, in the
end, is only the latter. How much does an airplane really teach us about how birds
fly? Perhaps surprisingly, the answer to that question is: quite a lot. One example is
that even though airplanes do not flap their wings and the wings are (fairly) rigid, the
principle by which their wings accomplish their task is very similar to birds. Airplane
wings and bird wings have similar, though not exactly the same, curvatures that cause
lower air pressure above the wing than below during horizontal movement, creating
lift. This understanding of bird wings almost completely depends on the development
of airplanes and the corresponding understanding of aerodynamics.

In general, there are not as many possible ways to accomplish a particular capability
effectively as seems to be implied by extreme functionalism. The original idea from
computation theory on which functionalism is based only says that the end result of
a computation can be accomplished in multiple ways. Firstly, it says nothing about
how long it will take. The archetypical computer, the Turing Machine, would be
impractically slow for nearly all functions if it were implemented. In other words,
different implementations are good for different functions.

Secondly, computation theory does not claim that just any idea about how to
achieve a capability will work. In the enormous space of possibilities of different
systems, or “design space”, only a few regions amount to systems that are actually
capable of accomplishing anything interesting. One can reduce the number of regions
even more and zoom in to the region of interest by using self-imposed constraints on the
“building blocks” of the artificial system. Sure enough, a wheeled robot does not tell
us very much about legged locomotion. However, if the robot has legs and its artificial
brain consists of artificial neurons, it becomes a different matter altogether. It then
becomes more likely that one lands in more or less the same region of possibilities as
the biological system, and the constructed solution has accordingly more similarities
with the biological solution.

Thus, extreme functionalism’s suggestion that the particular implementation of an
abstract function is irrelevant is rejected. The implementation is neither irrelevant nor
trivial; in contrast, in order to understand a system’s functioning one must understand
the implementation and in principle be able to construct one.

There seems to be a paradox here. If a system’s functioning is so closely tied to
its implementation, how can we ever expect to learn something about an organism’s
functioning, with its biological implementation, by studying an artificial implemen-
tation? To solve this apparent paradox, it is necessary to specify the functionalism
dimension further. At one end of the spectrum, there is extreme functionalism, which
says that a system’s functioning has nothing to do with the system’s implementation.
In the extreme, this would imply that any random stack of bricks could be intelligent.

2.3. THE ADAPTIVE BEHAVIOR APPROACH 17

At the other end, there is extreme “implementationism”, which says that a system’s
functioning is inseparably linked to all details of its implementation. Extreme imple-
mentationism implies that each and every protein used in the cell is critical in achieving
a neuron’s function, and an artificial neuron that leaves out one such protein will fail
(this is sometimes called “carbon chauvinism”). The argument that was made here
really argues for mild functionalism. Not every detail in an implementation is crucial
for a system’s functioning. It is possible and necessary to abstract away from many
of the details (such as a particular protein) when constructing an artificial system and
make meaningful comparisons with the biological system. In other words, within a
single region of design space, there are still many systems whose details differ to some
extent, but whose functioning is not affected significantly by those details. Of course,
it is not known a priori which details are essential and which are not; this has to be
found out.

In a way, the basic idea behind functionalism was always good: it is possible and in
fact essential to discard irrelevant implementation details so as to arrive at abstract,
scientific understanding of the functioning of complex systems (this is what I mean by
mild functionalism here). However, in mainstream cognitive science this idea gradually
transformed into a dogma that says that one should not consider concrete implemen-
tations because they are irrelevant for scientific understanding (radical functionalism);
and this is wrong.

The adaptive behavior approach follows mild functionalism and attempts to con-
struct successful implementations as a route to understanding intelligence. In the pro-
cess, the constructed agent’s capabilities, its limitations, and the problems it overcomes
can be understood; and the agent can be compared to biological implementations. In
most cases, adaptive behavior research takes inspiration from biology and attempts to
use in its implementations the same type of building blocks as nature does, in order to
facilitate meaningful comparisons. Sometimes it even becomes a matter of testing spe-
cific hypotheses about how the biological system works (e.g. Webb, 1994; Beer, 1990).
As an extra advantage of the adaptive behavior approach, known biological features
can be added to and removed from the agent at will, and the effects on the resultant
behavior can be observed. In this way, it may become clear whether that particular
feature is essential for the organism’s functioning or not. These suggestions can subse-
quently be put to the test by the neuroscience and psychology communities (see Webb,
1994; Beer, 1990 for examples). These are important ways in which adaptive behavior
research feeds back to neuroscience and psychology and fruitful interactions may take
place.

2.3.5 Detailed models, as opposed to abstract models

In accordance with mild functionalism, the adaptive behavior approach proposes im-
plemented agents that actually demonstrate some capability of behavior, and which
are therefore specified in great detail. This is in contrast with the very abstract models
typically proposed by mainstream cognitive science. Those abstract models usually
consist of a few boxes and arrows (see figures 2.1–2.3) and they contain hardly any
details, sometimes to the point where one may wonder how much information they
contain at all. A box labeled “short-term memory” contains only the information

18 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

that humans are capable of remembering information presented to them a little while
before; it says nothing about the underlying mechanisms.

Mainstream cognitive science often takes the position that details are bad, because
the “principle of parsimony” says that models should be as simple as possible. The
adaptive behavior approach takes the position that details are good or at least un-
avoidable, because actual behavior cannot be accomplished without them, neither in
artificial systems nor in biological systems. As argued above in the context of “learning
by constructing”, it is very hard to predict in advance which details are arbitrary and
which are crucial. Only by implementing them will this become clear. In any case, a
constructed agent that is successful at its behavior can be seen as an “existence proof”
that proposed mechanisms deemed necessary for functioning actually do the job, and
this requires the details to be filled in. Such an existence proof can never be given by
an abstract box-arrow model.

A related objection is that details make it hard to see the bigger picture: the general
principles that govern the mechanisms behind the behavior. If there are too many
details, one may not be able to see “the wood for the trees”. First of all, if a detail turns
out to be crucial in the implementation phase, it is apparently not part of the trees,
but of the wood: without it, the bigger picture would not be complete, and without
implementing it, the bigger picture could not have been obtained at all. On the other
hand, one should not drastically go the other way toward extreme implementationism,
reasoning that all details may be important, and concluding that therefore one should
always start by modeling individual molecules, or atoms, or elementary particles. One
should constrain oneself to details for which it is reasonable to suppose that they may
have relevance for the system’s functioning; the details by virtue of which the system
may be doing what it is doing. Admittedly, finding this right level of detail is an art
in itself. It is as easy to become too detailed as it is to become too abstract.

The agents that are constructed within the adaptive behavior approach are either
actual robots or computer simulations. In both cases, the agent is investigated as
a complete system of brain and body interacting with an environment, to make the
behavioral task as realistic as possible. Both computer simulations and robots have
advantages and disadvantages. An important advantage of computer simulations is
that they are easy to work with and easy to modify. In addition, certain things are
practically impossible to realize in robots but are possible to simulate in the computer,
such as evolution, large populations of agents, muscles, a variety of environments, etc.
On the other hand, it is very hard to simulate the full complexity of the real world.
There is a danger of oversimplifying the problems that the agent is faced with. This is
not a problem if one uses real robots. A real robot needs to confront the real world and
show it is capable of successful behavior there—one may argue that only then there
is a genuine existence proof that proposed mechanisms underlying behavior actually
work. On the other hand, research on robots is very difficult and can get stuck in
technical problems which are not interesting from an AI/cognitive science point of
view. Usually, the types of behavior exhibited by robots are simpler than the ones in
simulation, because it is so hard to achieve even the simple ones.

2.3. THE ADAPTIVE BEHAVIOR APPROACH 19

2.3.6 Perception to action loops, as opposed to functional mod-
ules

Mainstream cognitive science decomposes the animal and human information pro-
cessing system into separate functions, and each function in turn into functional
components. Each function is studied in isolation, with little attention for interac-
tions with other functions or with the environment. The adaptive behavior approach
uses another kind of decomposition, one that isolates all mechanisms that are involved
in the specific, usually simple behavior of interest. Since the goal is to achieve com-
plete behavior, all aspects from perception to action which are critical in achieving
that particular type of behavior must be dealt with. This also includes interaction
of the brain with the body and with the environment. Actions typically change the
state of the body and the world and what is perceived next in an immediate feedback-
like way, and the next actions should depend on these new percepts. This temporal
aspect is central to virtually any behavioral task, and it must be taken into account
if successful behavior is to be generated. Mainstream cognitive science does not usu-
ally acknowledge the importance of this fact, and it treats body and environment as
“passive”, independent receivers of actions and providers of sensations.

Dealing with all aspects from perception to action sounds like adding up all prob-
lems involved in different functions. If an individual function studied in isolation is so
complex as to warrant a large, separate field of research, how can we expect to deal
with all those functions at once? The trick is to study and solve only those problems of,
for instance, perception or memory or motor control that are necessary to accomplish
the single behavior of interest. Agreed, full-blown human perception is very complex
and cannot be simply built into an agent. That is why the focus is on basic behav-
ior and on the corresponding aspects of perception, memory, and motor control that
by themselves are relatively simple when compared to the full complexity of human
perception, memory, and motor control. However, much can be and has been learned
from how these simple aspects of a task constrain each other, how they interact with
each other, and how interaction with the environment constrains the whole system
(Brooks, 1989, 1991a; Mataric, 1991).

Often, adaptive behavior researchers take a “minimalist” approach to constructing
perception to action loops capable of a certain behavior (Wilson, 1991). That is, they
attempt to accomplish as much intelligence as possible with as simple an architecture
as possible. An architecture is only extended when absolutely necessary. The idea is
that in this way one can better understand what part of an overall architecture the
capability can be attributed to and one can better understand the power as well as
limitations of different architectures.

As we shall see in the next section as well as in the rest of the thesis, one of the most
important insights resulting from adaptive behavior research is that successful agents
sometimes resist a clear-cut decomposition into functions and functional modules.
Memory may be distributed across the whole agent rather than located in a separate
component (Rumelhart & McClelland, 1986b; Dennett, 1994). Perception and action
may be intricately linked to the point where they are no longer usefully thought of as
two separate components (Brooks, 1989, 1991a; Beer, 1990; Beer & Gallagher, 1992).
Agents may behave “as if” they pay selective attention to certain sensory information,

20 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

without having an explicit, separate mechanism or component for attention (Werner,
1994; McCallum, 1996). For these agents, the intuitively natural decomposition into
functions and functional components is not the most fruitful one. This in turn suggests
that it is not necessarily the most fruitful one when one thinks about biological systems.

What about those findings from the neural sciences, described above, that seem
to support the idea of decomposition into functions and functional modules? First
of all, it should be noted that many of those findings do not directly implicate such
clear-cut functional isolation, but rather show something much weaker: there is some
level of specialization, not all brain areas are directly involved in a particular task, but
only parts of the brain. The same is usually true of constructed agents: there is some
level of specialization, some parts of the artificial brain are involved in some tasks, and
other parts in other tasks.

Within biological brain regions that are involved, it is usually unclear how to further
assign subtasks to brain areas. However, what is suggestive is that there are typically
many connections back and forth to brain areas; a finding that argues against strict
functional isolation. Furthermore, one should be careful with deriving conclusions from
failing systems. If a radio starts to make a howling sound if one particular transistor is
broken, this does not mean that this transistor is the “howl inhibitor” (Arbib, 1989).
In general, the phenomenon that only a specific capability fails if one of the physical
building block is broken, is a characteristic of many systems, and not only systems
with clear-cut, isolated functional modules.

Nevertheless, there are good reasons for assuming some level of modularity (e.g. Si-
mon, 1962), in the sense that one element in a system does not and should not always
depend heavily on (all) other elements; and as described above, the brain certainly
seems to exhibit a certain level of modularity. However, the extent and the nature of
this modularity should be found out rather than assumed and a priori defined.

2.3.7 Decentralized control, as opposed to centralized control

Mainstream cognitive science usually proposes as one of the functional modules a cen-
tral workspace where information is temporarily stored for processing and organization
by a central controller. There is a danger of attributing all capabilities that are not
yet understood to this central controller, which is not specified in more detail. Some-
times this central controller can rightly be called a “homunculus”, a little man in the
head, which takes over all the hard work that the overall system is supposed to do.
Such a model does not explain the capabilities of the system, but only “pushes back”
the problems deeper into the system, into an unspecified functional component named
“central controller” (Dennett, 1991).

By its very nature, the adaptive behavior approach cannot resort to this strategy
because it forces itself to replicate the capabilities. If a central controller were to
be proposed, it would have to be implemented for behavior to be accomplished. In
the process, its mechanisms have to be made explicit, and its weaknesses, if any, are
revealed.

Almost all of traditional artificial intelligence has used central controllers and
workspaces in its systems. This has met with very limited success, and it is there-
fore an example of a specific cognitive science idea about underlying mechanisms that

2.3. THE ADAPTIVE BEHAVIOR APPROACH 21

seems to be falsified whenever put to the test of implementation. Among the problems
is the creation of a serious bottleneck if everything has to pass through the central
workspace, slowing down performance tremendously. There is also the problem of
information access (Dennett, 1994; Lenat & Guha, 1990). One can have a long-term
memory storing huge amounts of information, but how does one get the relevant piece
of information into working memory in time? Furthermore, for systems that interact
with the world, it has proven to be very hard to maintain and update the central model
of the world that the central processor is operating upon. Using sensory information
to decide what has to be changed in the central world model, as well as predicting
what will change in the world model if some action is executed, is notoriously dif-
ficult (e.g. Brooks, 1991a; Moravec, 1982; Nilsson, 1984; Dennett, 1991; Krotkov &
Simmons, 1996; see Hutter, 2003 for the theoretically optimal but computationally
intractable approach to this and related problems).

For these reasons, the adaptive behavior approach typically attempts to accomplish
behavior without using a central controller or workspace. Control is decentralized,
distributed among local controllers operating in parallel. Each local controller performs
a simple task, such as moving a single leg when its own sensors say so, or activating
another local unit when its sensors detect a specific feature in the world. Through the
interaction of these local controllers between themselves and with the environment,
the behavior as a whole “emerges”, without a need for a central guiding or monitoring
mechanism. This is sometimes called self-organization, because there is no central
system actively organizing the behavior.

2.3.8 Distributed, continuous representation, as opposed to
symbolic representation

Based on the computer analogy, the content of the central workspace (as well as long-
term memory) is usually theorized to amount to so-called symbolic representations.
These are language-like structures consisting of arrays of symbols, manipulated by log-
ical operations. Symbols are the atoms of knowledge that “stand for” something in the
outside or inside world, such as “Mary” or “love”. An important, powerful property
of symbolic representations is their combinatorial structure. Symbols can be com-
bined into large symbol structures in many different ways, representing many different
meanings. Certain operations on these representations may depend on the combina-
tion of the symbols, rather than the meaning of the individual symbols themselves.
This is called structure-sensitive processing, and it allows a single type of operation to
generalize to many different contexts.

Just as there are no indications that there is a central workspace in the brain, it
is not obvious at all where and how the symbolic representations are encoded. That
is not to say that there are no symbolic representations in the brain. However, the
structure of and processes in the brain suggest other types of encoding that are used
next to, or perhaps even instead of symbolic encodings. These other types of encodings
are investigated in depth in the field of artificial neural networks or “connectionism”
(see Rumelhart & McClelland, 1986b). Artificial neural networks are simplified models
of biological neurons and biological neuron interactions. They are inherently based on
decentralized control. Furthermore, no clear distinction can be made between the

22 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

controlling part and the information used by the controller, which is very different
from standard computers and models in mainstream cognitive science. As it turns
out, the type of continuous-valued, distributed internal states encoded by artificial
neural networks, and therefore—it is hypothesized—by biological nervous systems,
affords a type of processing well suited for many parts of intelligent behavior.

Symbolic representations are best suited for logical, all-or-nothing types of reason-
ing and applications of strict rules. Much of intelligent behavior is handled better and
perceived more fruitfully as recognition and classification of patterns, completion of
partial information, association between related pieces of information, and decisions
based on incomplete information and on the satisfaction of multiple, “soft” constraints.
Those types of tasks are done more naturally and effectively in neural networks than in
symbol systems. This is particularly acute for a system interacting with the environ-
ment, which is an important focus of adaptive behavior research. As described above,
the transduction process from sensory information to a central world model, which is
supposed to consist of symbolic representations, is very hard. The type of continuous,
distributed internal states of neural networks lends itself much better to connections
and interactions with sensory and motor apparatus than discrete, symbolic represen-
tations. As for structure-sensitive processing, it was shown that this is not limited
to symbolic representations but can also be done in neural networks (e.g. Chalmers,
1990; Elman, 1990).

For these reasons, a lot of adaptive behavior research uses artificial neural net-
works, or some other type of system based on distributed internal states. However, in
contrast with the modeling approach in cognitive science known as “connectionism”,
no absolute commitment is made to distributed internal states. If it turns out that for
some types of behavior (e.g. high-level cognition) symbolic representations are neces-
sary or very useful, the adaptive behavior approach, with its focus on making systems
work, will use them. There are more differences with connectionism, so it is certainly
a mistake simply to equate the two approaches. In a way, connectionism is situated
in between mainstream cognitive science and adaptive behavior research. Like the
adaptive behavior approach, it emphasizes implementations and decentralized control.
However, unlike the adaptive behavior approach, connectionist models are often in-
tended as straightforward implementations of the functional modules of mainstream
cognitive science theories, and they are often used to fit typical experimental cognitive
science data directly on reaction times and errors. The adaptive behavior approach
emphasizes much more than connectionism the importance of building complete agents
interacting with realistic environments, exhibiting general capabilities of behavior.

2.3.9 Bottom-up engineering, as opposed to top-down engi-
neering

The decomposition into functions and functional modules that mainstream cognitive
science assumes reflects—and is probably inspired by—standard engineering principles.
In fact, it is basically how traditional artificial intelligence constructs an artificially
intelligent system.

First, it is determined what the system is supposed to do, what its overall task is.
Next, this task is divided into subtasks which are handled by dedicated components.

2.3. THE ADAPTIVE BEHAVIOR APPROACH 23

Each component’s subtask is relatively independent and well-defined, such that the
component can be individually built and tested. To avoid the notorious problem of
unwanted side effects and complications caused by interactions between components,
each component’s functioning is isolated as much as possible from other components.
Finally, all components are put together. This can be called top-down engineering,
because one starts with the abstract idea of the overall task, working one’s way down
to more and more concrete subtasks and finally physical realization of the components
and combination into a complete system.

However, this is not the way nature constructs systems. Nature does not start
with an abstract idea about what the final system should do. It does not neatly figure
out subtasks and assign these to functionally isolated subsystems. It does not care
about whether or not any clear-cut decomposition into subfunctions is possible at all,
or whether the end result is easy to comprehend for scientists; and it does not build
and test the subsystems individually before they are recombined. In contrast, nature
blindly tries out many kinds of systems without any foresight on what the system
should do or how it should do it. It builds on systems that were successful before,
varies them randomly and selects the lucky ones that happened to work one way or
another. It selects a system as a whole and does not develop subsystems in isolation,
opportunistically allowing side effects and complex interactions between subsystems
as well as multiple functions within a subsystem if they happen to be beneficial.

To contrast this with top-down engineering, it may be called bottom-up engineering
(e.g. Dennett, 1994): starting with building blocks from previous generations, those
building blocks are varied and more or less randomly combined into a new system,
allowing strong interdependencies and interactions between them, without a precon-
ceived and neatly worked out plan on the overall design; but the system is selected on
the basis of success in its environment, such that unsuccessful systems (most systems,
in fact) are filtered out and we are left with successful ones. Only with hindsight, then,
can one say that a successful system is “designed to perform a particular task”.

It seems plausible that top-down engineering often leads to different types of sys-
tems than bottom-up engineering. Thinking again in terms of the metaphorical space
of possibilities of systems, design space, top-down engineering is constrained to certain
regions of design space; in particular, regions where systems are easily decomposable
into functional modules (these may be very good systems: airplanes are an example).
Bottom-up engineering does not have those constraints. Of course, it has other con-
straints, such as the constraint that a design is always heavily based on a previous
design. Because of these differences in constraints, bottom-up engineering may end up
in very different regions of design space. Those regions may yield systems from the
easily imaginable to the bizarre—the only criterion used by bottom-up engineering is
success of the system.

In order to learn more about the systems designed by nature and to have access to
the same regions in design space that nature uses, a lot of adaptive behavior research
attempts to mimic nature’s bottom-up engineering processes. Agents are developed
over many generations using a simulated evolution process, employing so-called evo-
lutionary algorithms; or they are developed using learning, nature’s way of developing
an organism during its lifetime. As it turns out, in many cases the artificial sys-
tems developed in this way are indeed very different from what was expected given

24 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

the standard top-down view in traditional artificial intelligence and cognitive science
(e.g. Beer, 1995; Beer & Gallagher, 1992; Nolfi & Floreano, 1998). This challenges
the (usually implicit) assumption in cognitive science that the top-down approach is
the most logical and fruitful one, when it comes to understanding and reconstructing
biological intelligence.

2.3.10 A posteriori analysis, as opposed to a priori analysis

The overall emphasis on constructing working systems, the fact that bottom-up engi-
neering does not work from an abstract theory, and the explicit rejection of extreme
functionalism, all seem to suggest that the adaptive behavior approach is not very
interested in abstract theories. The main concern seems to be with building an agent
that is specified in detail and that is successful at its particular task, and not so much
with finding more generalized, high-level theories of behavior and of the mechanisms
behind behavior. This is not, however, necessarily true.

First of all, it is true that the adaptive behavior approach has a somewhat different
attitude towards abstract theories. Adaptive behavior research looks at organisms
from an engineering perspective. This leads to a general view of cognitive science
as an enterprise that is more like reverse engineering than like physics. A “reverse
engineer” attempts to understand complex machinery made by someone else, with the
goal of being able to build a similar device himself (Dennett, 1991). He does not come
up with a single “theory of video cassette recorders” or a single “theory of cars”, in
the same sense as there is a theory of elementary particles. What he is looking for is
insights in the workings of the machine. This requires descriptions of many parts and
their interactions, and a number of general principles; but not a single theory. In the
same way, it may be an idle hope to find a relatively simple “theory of behavior” for
complex, bottom-up engineered systems such as organisms.

Having said that, the goal is still to uncover those general principles of the mech-
anisms underlying behavior, and taken together, the general principles can be said to
constitute the abstract theory. It is important to note that constructing detailed im-
plementations does not preclude an adaptive behavior researcher from thinking about
the abstract theory, both in the process of constructing and in the analysis of the
completed agent. In the end, abstract theories (general principles) are what the whole
enterprise is about; not single, detailed agents, built for one specific environment. The
adaptive behavior researcher is, in fact, in one of the best positions to understand the
general principles, because he has constructed a complete agent himself and knows,
like no one else, about the problems that have been overcome and how the solution
works.

The doctrine called mild functionalism does not say that one should not be con-
cerned with the abstract theory; it says that one should build and look at implementa-
tions if one wants to find the abstract theory. Compared to cognitive science based on
extreme functionalism, the order of doing things can be said to be reversed. Cognitive
science based on extreme functionalism starts out, a priori, with an abstract theory,
based on an analysis of the demands of the task and on preconceived ideas on how to
deal with the demands, and expects that an implementation can easily be found which
realizes this theory in a physical machine. Adaptive behavior research, in contrast,

2.4. EXAMPLES OF ADAPTIVE BEHAVIOR RESEARCH 25

focuses first and foremost on building a successful machine and only then on analyz-
ing it, a posteriori, so as to arrive at the abstract theory. If one employs bottom-up
engineering to construct the agent, this is the only possible methodology.

The idea is that it does not make sense to establish the abstract theory until one
has extensively investigated the feasibility of different ideas on how to accomplish a
certain capability. In other words, implementation is part of the process of theorizing
right from the start. Once there are successful implementations, it becomes possible to
say which ideas worked and which failed and, with hindsight, it may become easier to
see why certain ideas worked and others failed. This then yields the more generalized,
abstract theories.

As one example, implementations of multilayer feedforward neural networks in de-
tailed computer simulations have yielded the general theoretical insight that a lot of
complex rule-like behavior can be accomplished with, and understood as a nonlinear
mapping of vectors (e.g. Rumelhart & McClelland, 1986b). This is the abstract theory
behind multilayer feedforward networks, but it was not and probably could not have
been conceived a priori by functionalist cognitive science. The whole concept of “non-
linear mappings of vectors” emerged from and depended on investigations of detailed
implementations of neural networks.

An example that is more typical of adaptive behavior research is Beer’s (1995)
analysis of an evolved locomotion controller, described in more detail in the next
section. The high-level abstract theory describing the evolved controller is stated in
terms of dynamical systems, and again it is very different from anything that was or
even could have been conceived a priori.

2.4 Examples of adaptive behavior research

In this section a number of examples of adaptive behavior research are presented that
are intended to illustrate the issues described in the previous section. At the same
time, they are examples of some of the theoretical insights that have been gained using
the adaptive behavior approach. A number of these insights directly oppose ideas in
mainstream cognitive science. This suggests that those classical concepts should not
be taken for granted, but may be in need of revision.

2.4.1 Locomotion

Locomotion, in particular legged locomotion, was one of the first types of behavior
investigated using the adaptive behavior approach. In part, this resulted from dissat-
isfaction about traditional artificial intelligence efforts on locomotion. Those efforts
had resulted in large robots using a central controller which carefully planned and
executed each single step or change of position before anything else could happen,
yielding very slow and unnatural locomotion (e.g. Krotkov & Simmons, 1996).

Taking inspiration from biology, researchers, most notably Brooks (1989, 1991b,
1991a), decided to use simple decentralized controllers in small, insect-like legged
robots. Each leg is controlled in a local, reflexive way, aided by individual timers:
if the leg is down and forward, swing backward; if it is down and backward, lift the

26 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

Figure 2.5: Part of the neural locomotion controller connected to a single leg. From
Beer & Gallagher (1992).

leg and swing forward, etc. Coordinating these six moving legs such that successful
locomotion is accomplished seems like a complex problem. In contrast, this can be
achieved by simply letting the robot move about in the world and exploiting the sensors
on the legs, using simple inhibition between the legs. If a leg is swinging forward, the
other legs that stand on the ground are told to swing backward a little, etc. When put
into action, the robot quickly settles into an efficient, lifelike gate of locomotion and
is even able to negotiate somewhat rough terrain. It can easily be supplemented with
similar reflex-like mechanisms that allow it to detect and deal with collisions. This
work was an important “step” because it showed how complex coordinated movements
can arise from parallel, distributed control, without a central coordinating mechanism
and without using explicit central representations of the task and the environment.
Thus, it is one of the first successful examples of exploiting self-organization to achieve
complex behavior.

Following up on this work, Beer and co-workers (Beer, 1990; Beer, Chiel, Quinn,
Espenschied, & Larsson, 1992) used a neural network as locomotion controller for their
simulated insects and real robots. This artificial neural network was a simplified model
of the nervous system of the cockroach. Previously, locomotion of this type of animals
was thought to be controlled by a central locomotion system carrying out a fixed motor
program and sending commands to the legs at precisely timed moments (see Simmons
& Young, 1999): a typical model within mainstream cognitive science. In contrast, the
neural network model uses highly distributed control and, again, inhibition between
legs, but this time only local inhibition between neighboring legs.

The cockroach is known to have different gaits, which it uses at different speeds.
To explain this, classical models have to assume that the central locomotion system
contains different motor programs, one for each gait. In the neural network model,
however, these different gaits arise spontaneously when the speed is varied—another

2.4. EXAMPLES OF ADAPTIVE BEHAVIOR RESEARCH 27

Figure 2.6: Phase space plot of the limit cycle of the leg controller depicted in figure
5. The output of the Foot, Backward Swing (BS), and Forward Swing (FS) motor
neurons are plotted. From Beer (1995).

instance of self-organization. If one is to understand how this works, one cannot
fruitfully think in terms of the classical concepts of motor programs, functional com-
ponents, and the like, but one has to view the neural network in interaction with body
and environment as a single dynamical system in which different periodic attractors
are stable at different speeds.

Later work by Beer and colleagues (Beer, 1995; Beer & Gallagher, 1992) included
the development of neural network locomotion controllers using evolutionary algo-
rithms, thus mimicking nature’s bottom-up engineering style. This provided additional
support for the idea that, at least for organisms exhibiting this type of behavior,
dynamical systems notions may provide better explanations than cognitive science’s
classical notions. A part of the overall neural network that is connected to a single
leg is shown in figure 2.5 (Beer & Gallagher, 1992). It cannot be meaningfully de-
composed into different functional modules, nor is it functionally isolated from other
parts of the network; and there is no central control. Rather, each neuron continuously
affects and is affected by the other neurons as well as the body and the environment,
and the overall capability emerges from the interactions. To illustrate the difference
in the type of explanations of the mechanisms underlying behavior, figure 2.6 depicts
a so-called phase plot of the limit cycle of this single leg’s local controller interacting
with the environment (Beer, 1995). What is important here is that this new, dynam-
ical systems type of abstract theory (and the diagram illustrating the theory) is very
different from mainstream cognitive science theories, and this insight depended on the
implementation of agents.

28 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

C8 LW8 LW12 C12 LW0 J LW4

Figure 2.7: Cognitive map learned by a robot in a cluttered office environment. LW8
means Left Wall heading south, for instance. Arrows denote the spreading of activation
from the goal (gray node). Adapted from Mataric (1991).

2.4.2 Navigation

Locomotion can be used by an organism just to wander around at random, until food
is encountered. Locomotion can be employed much more efficiently, however, if the
animal knows where it is and where to go to achieve its goals. This is called navigation,
and all but the simplest animals use it. The animal exploits cues in the environment
available through its sensors, or a memory of what it has done and experienced since
it left “the nest”, or a combination of these options, to decide where to go next.

It was navigation which prompted Tolman (1948) to suggest that pure stimulus-
response behavior was insufficient to account for certain behavior, in one of the studies
leading up to the cognitive revolution. Tolman argued that rats trained in a maze learn
a cognitive map, a map encoded in the brain, representing their environment and
their current position. Early efforts to implement such cognitive maps by traditional
artificial intelligence were not very successful. A robot developed at Stanford failed
dramatically when the angle of the sun changed over time, changing the shadows in an
otherwise static environment (Moravec, 1982; Brooks, 1991a). Shakey the robot at SRI
had some success at navigation, but it stood still for long periods of time to “think”
(in the meantime shaking a bit, hence its name), and it operated in a highly simplified,
small world of a few rooms and brightly colored boxes (Nilsson, 1984; Dennett, 1991;
Brooks, 1991a). These examples illustrate the difficulty of using sensory information
and planned actions to maintain a central world model, in this case a central cognitive
map module, even when the layout of the cognitive map is carefully programmed in
beforehand.

More recent attempts by adaptive behavior researchers have taken another route.
Rather than using a central functional module containing the cognitive map, separate
from sensory and motor apparatus and operated upon by a central controller, they
use systems based on distributed control and close interaction with the environment.
In addition, they use learning, one of nature’s bottom-up engineering methods, rather
than a preprogrammed cognitive map.

One example is Mataric (1991). A robot was constructed capable of navigating
successfully in a cluttered office environment. It applies the perception-action loop
philosophy described earlier. One perception-action loop (or “layer”) is used to avoid
obstacles and follow walls. Building upon the first loop, another loop detects and

2.4. EXAMPLES OF ADAPTIVE BEHAVIOR RESEARCH 29

registers landmarks in combination with its own concurrent movements. A third loop
uses that information to develop a kind of cognitive map (see figure 2.7).

However, this cognitive map is different from traditional conceptions of the cogni-
tive map. It consists of a network of nodes, each representing a registered landmark
and corresponding movement. The current location of the robot is represented by one
of the nodes being active. Activation spreads to other nodes, thus generating “ex-
pectations” about what will be perceived when the robot performs the corresponding
movement. A goal location can also become active, and activation will similarly spread
out to neighboring nodes. This spreading of activation depends on the physical dis-
tance between landmarks. Consequently, locally at each landmark suggestions can be
made as to which direction to go to reach the goal most rapidly. Overall, this results in
the robot choosing the globally shortest path to the goal. Determination of the current
position, map building, and action selection are not separated into distinct functional
components, but they are all combined in this single map. There is no central planning
mechanism figuring out the optimal path to the goal; the navigation behavior emerges
as the result of interacting local units. Chapter 5 discusses the issue of navigation and
cognitive maps again and in more detail.

2.4.3 Collective behavior

As a final example of a line of research in the adaptive behavior community, let us
have a look at work that is concerned not just with one agent, but with multiple
agents interacting with each other. Interestingly, complex collective behavior can arise
from the interaction of simple agents. This can be viewed as the previously discussed
principle of self-organization in systems with decentralized control, but applied on a
larger scale.

As early as 1950, Grey Walter experimented with a pair of very simple robots
interacting with each other. He noted that the resultant behavior from the robots could
become surprisingly complex: “Crude though they are, they give an eerie impression
of purposefulness, independence, and spontaneity” (Walter, 1950). Reynolds (1987)
showed how the adaptive and well-coordinated behavior exhibited by flocking birds
could be replicated by agents, “boids”, that follow very simple rules based on the
distance to their immediate neighbors (see figure 2.8). The resultant behavior is very
smooth, adaptive, and life-like.

Work by Steels and co-workers demonstrates cooperation in learning agents. In
one study (Steels, 1995), there is potentially mutual benefit for robots to cooperate,
because they are hindered by parasites in obtaining energy. Even though in principle
the robots compete for the same energy source, and cooperation behavior is neither
programmed in beforehand nor suggested by explicit instruction, cooperation emerges
spontaneously. Even stronger forms of altruism can arise. Brinkers and den Dulk
(1999) investigated groups of evolving agents changing over generations because of
simulated evolution. The experiment was set up such that some members of a group
of agents will do much better if some other members sacrifice their “lives”. Even
though agents are selected on an individual basis, as is the case in natural selection,
and therefore selfish behavior is the default expectation, such radically altruistic agents
evolve and the altruistic behavior is evolutionarily stable.

30 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

Figure 2.8: Flocking boids. The flock has split up to avoid the obstacles in the flight
path, and will reassemble after the obstacles. Reprinted with permission from Craig
W. Reynolds.

In many animals, cooperation is accomplished with the help of communication. In
a simulation study by de Jong (1999), agents can potentially benefit from warnings by
other agents that a certain type of predator is present. Each type of predator makes
a specific location unsafe, e.g. the presence of a snake makes it unsafe to stay on the
ground. The warning signals are learned in a bottom-up way. The agents start out
using different, random warning signals for situations where different predators are
present. Eventually they converge to common, reliable signals, to the point where
they learn to rely on the other agents’ warnings and avoid an unsafe location even if
their own perception indicates that this location is safe.

These were all examples of cooperative behavior. The darker side of nature can be
replicated as well. Nolfi and Floreano (1998) show, both in computer simulations and
in robots, how co-evolution of predator and prey may yield relatively quick bottom-up
development of complex behavioral strategies that oppose each other. The evolution
of a slightly smarter strategy on one side pushes the other side to evolve a strat-
egy that can cope with that, which in turn pushes the first side to develop an even
smarter strategy, etc. This can be described as an “arms race”. The predator species
developed intricate pursuit and ambush strategies, while the prey species developed
effective escape and avoidance strategies. These strategies, which betray sophisticated
anticipation capabilities, are encoded as distributed information in artificial neural
networks. Once again, the bottom-up engineering approach leads to a system without
distinct or central functional components for storing the strategies, for planning the
behavior according to the strategy, or for explicit anticipation representation.

2.5. DISCUSSION 31

2.5 Discussion

The arguments and examples presented in this chapter showed that the field of adaptive
behavior does not provide mere implementations of the abstract theories of mainstream
cognitive science. In contrast, in many cases successful agents are controlled by mecha-
nisms that are very different in architecture and functioning from what was or would be
expected given the abstract theories. Understanding those mechanisms often required
completely new types of explanation, rather than explanations derived from those ab-
stract theories. On the other hand, direct attempts of straightforward implementation
of ideas from the abstract theories turned out to be problematic or unnecessary.

What does this mean? It was argued that implementation is neither trivial nor
irrelevant for cognitive science. In contrast, if the implementation tells a different story
than the abstract theory, suggesting that the abstract theory cannot be implemented
or that some behavior is best achieved using other mechanisms than was anticipated,
this has implications for the abstract theory. In this case, implementation of agents
suggests that certain standard ideas in cognitive science, such as centralized control,
cognitive maps, separation between working memory and long-term memory, and in
general decomposition into isolated functional components, are in need of revision or,
at the very least, should not be taken for granted as much as they are now.

Many of these standard ideas in cognitive science were arrived at and supported
using the standard methodology of collecting data in controlled experiments. The
fact that now some of those standard ideas are rejected prompts rethinking of that
methodology. Experiments are important, but perhaps not for the same purpose as
much of mainstream cognitive science has it. In some cases, there is an overly strong
preoccupation with finding effects, without worrying what the effects mean. It seems
to me that certain types of data—reaction time, strength, frequency, and accuracy of
responses—are measures that are usually too indirect to straightforwardly derive from
them reliable conclusions about the underlying mechanisms, and collecting additional
indirect data does not help (they may have much practical significance, though, if they
can be applied to industrial, clinical, or educational settings).

The most interesting data from cognitive science experiments, in terms of relevance
for models of underlying mechanisms, may be data that indicate a capability unknown
beforehand that humans or animals have, that map out what the capabilities are, or
that disprove a previously assumed capability. Such data have direct implications for
models of the mechanisms underlying behavior, in that they say what those models
should be able to do and what they need not do. In that way, cognitive science heavily
constrains adaptive behavior research. The exact speed and accuracy of the behavior
are constraints that become important only later on, once we have successful models
that account for the behavior itself. Adaptive behavior research, in turn, constrains
cognitive science in the kinds of systems that are proposed as models. Certain kinds
of systems work very well and other kinds of systems cannot be made to work at all.
The test of implementation is crucial and should be brought into theorizing as early
as possible. In addition, from successful agents the adaptive behavior approach can
derive hypotheses about the biological mechanisms, which can subsequently be tested
by experimentalists.

32 2. THE ADAPTIVE BEHAVIOR APPROACH TO COGNITIVE SCIENCE

It was shown in adaptive behavior research that multiple agents may benefit from
cooperating with each other. The same may be true for the two approaches discussed
here. A stronger relationship between mainstream cognitive science and adaptive
behavior research may be mutually beneficial.

Chapter 3

Reinforcement learning

Summary

This chapter provides a broad overview of the general concepts, methods, and im-
portant problems of reinforcement learning. The chapter discusses how reinforcement
learning is situated within the broader context of other machine learning techniques
and the adaptive behavior approach. Special attention is given to the distinction
between Markovian and non-Markovian tasks, and how this has implications for the
necessary mechanisms of agents dealing with these different classes of tasks.

3.1 Introduction

The adaptive behavior approach described in the previous chapter provides the general
framework for this thesis’ research, but the specific paradigm that is used is the machine
learning paradigm called reinforcement learning. This chapter provides an introduction
to reinforcement learning. Even though it is by no means a complete review of the
field (see Sutton & Barto, 1998; Kaelbling, Littman, & Moore, 1996 for reviews), it
attempts to describe many of the basic concepts, methods, and important problems
associated with reinforcement learning. Special emphasis is given to those issues and
methods that are the main focus of this thesis.

The next section describes the basic idea of reinforcement learning. It explains
how reinforcement learning fits in with the general framework of the adaptive behavior
approach, and how it relates to other machine learning paradigms and to psychology
and biology. Section 3 formalizes the basic notions, and describes the distinction
between Markov Decision Processes (MDPs) and Partially Observable Markov Decision
Processes (POMDPs), which is an important distinction in reinforcement learning, and
especially for this thesis. Section 4 describes the basic ideas behind different classes
of solution techniques. Section 5 then discusses in more detail solution techniques
for MDPs. Here, and in the rest of this thesis, a “solution technique” means any
method that computes exact or approximate solutions. Section 5 also describes how
the important problems of exploration and generalization can be dealt with. Section 6

33

34 3. REINFORCEMENT LEARNING

action a

ag
en

t

environm
ent

environmental
state s

observation o

reward r

Figure 3.1: Schematic representation of the situation considered by reinforcement
learning.

discusses in more detail solution techniques for POMDPs. The final section contains a
general discussion, focusing again on the basic ideas and distinctions between different
solution techniques.

3.2 Elementary concepts of reinforcement learning

3.2.1 The basic reinforcement learning problem

Reinforcement learning corresponds to a broad class of machine learning methods that
allow an agent to learn how to behave in an environment based on scalar reward
signals. The methods are so diverse that it is best to define the field by the problem
they attempt to solve: the reinforcement learning problem.

The reinforcement learning problem considers an agent interacting with an envi-
ronment (see figure 3.1). In control theory, the agent is called the controller and the
environment the plant, but they mean virtually the same. The agent emits actions a

that may change the state s of the environment, for example the position of a robot
in its world, or the orientation of a robot arm; and the agent makes observations o,
which provide the agent with information about the current state.

The agent’s behavior is described by its policy π, which defines the actions it
chooses in different situations. The goal of reinforcement learning is to learn a policy,
based on a specific type of feedback from the environment to the agent called rewards
r. Rewards are scalar values which indicate how good a particular situation is. The
agent may focus on only maximizing the direct reward obtained after one action, but
most of reinforcement learning is concerned with the case of delayed rewards, in which
actions change the state and rewards in the future should also be taken into account.
The objective, then, is to learn a policy which maximizes some measure of long-term
reward.

3.2. ELEMENTARY CONCEPTS OF REINFORCEMENT LEARNING 35

It is widely accepted in artificial intelligence that the more complex desired be-
havior becomes, the more difficult it becomes to program the behavior. Thus, one
of the holy grails of artificial intelligence is a system that can develop itself, more or
less autonomously, on the basis of its own experiences with the world (Turing, 1950).
Reinforcement learning, no matter how simple and limited it is at this point, may con-
tribute to this long-term goal of artificial intelligence. It does not require a person to
program the desired behavior by hand, or even show the agent desired actions in differ-
ent situations. Instead, it potentially allows the agent to learn virtually autonomously,
based only on reward signals if the agent reaches particular goals.

Reinforcement learning realizes many of the commitments of the general adaptive
behavior framework: it emphasizes the close interaction of an agent with its environ-
ment, it focuses on perception to action cycles and complete behaviors rather than
separate functions and functional modules, it uses bottom-up development (learn-
ing) of intelligence, it is not based on symbolic representations, etc. Because of this,
studying reinforcement learning is a way of working on the basis of adaptive behavior
principles, while at the same time having the benefit of a somewhat more solid theoret-
ical and mathematical basis than much of adaptive behavior research. We will see in
the remainder of this chapter, as well as in other chapters, how reinforcement learning
provides a way to study, in a more or less formal way, specific challenges identified in
adaptive behavior research, such as scaling up to more complex tasks and going from
“reactive” to “representation-hungry” problems.

3.2.2 Relationship with human and animal learning

This basic picture of learning on the basis of rewards is shared with an influential
branch of psychology, called behaviorism. Behaviorist psychology has studied learning
on the basis of rewards in animals and humans since the early 20th century, usually
under the name “operant conditioning” (Skinner, 1938, 1991). The central idea was
already formulated by Thorndike (1911) as the Law of Effect (p. 244):

Of several responses made to the same situation, those which are accom-
panied or closely followed by satisfaction to the animal will, other things
being equal, be more firmly connected with the situation, so that, when
it recurs, they will be more likely to recur; those which are accompanied
or closely followed by discomfort to the animal will, other things being
equal, have their connections with that situation weakened, so that, when
it recurs, they will be less likely to occur. The greater the satisfaction or
discomfort, the greater the strengthening or weakening of the bond.

Operant conditioning has proven to be a very powerful and useful teaching method.
Animals have been taught surprisingly complex tasks in this way; for instance, pi-
geons learned how to play table tennis. Children with severe mental disabilities have
got rid of self-destructive behaviors and have acquired social skills no one thought pos-
sible (Malott, Whaley, & Malott, 1993). In these studies the rewards were controlled
explicitly by the experimenter. However, the success of the behaviorist techniques
suggests that reinforcement learning is an important learning method for animals in

36 3. REINFORCEMENT LEARNING

their natural surroundings as well. This is possible because the world “contains natu-
ral rewards”, e.g. food and sex, as well as natural penalties, e.g. pain. Of course, the
world does not really “contain” rewards and penalties as such, independent of organ-
isms who seek and avoid them. In fact, evolution has shaped organisms so that certain
stimuli function as rewards or penalties—and this can be very different for different
organisms.

Thus, like a lot of other adaptive behavior research, the formalized models of rein-
forcement learning are inspired by and have some similarity with biological systems.
And as in other adaptive behavior research, the influence goes both ways. The early de-
velopments on temporal difference learning (see below), for instance, were based in part
on psychological ideas about “secondary reinforcers”, which correspond to situations
that reliably precede reward. Conversely, animal learning data have been modeled
using formal reinforcement learning models (Sutton & Barto, 1981; Hallam, 1999),
and recently there have been neuroscience studies that suggest that several important
concepts in reinforcement learning, such as temporal difference errors and exploration,
have fairly direct neural correlates in the brain (Schultz, Dayan, & Montague, 1997;
Kakade & Dayan, 2000).

Even though the work of this thesis is not directly concerned with behavioral or
neuroscience experiments, it may, therefore, still contribute to explaining them in the
long run, by contributing to formal reinforcement learning. The relevance for biology
is, I believe, increased by this thesis’ commitment to neural networks. Nevertheless,
whenever one takes an artificial intelligence approach and attempts to build machines
that can learn interesting things, at some points one has to make fairly arbitrary
choices that have nothing to do with biology, and that in some cases can immediately
be seen to be biologically unrealistic. That is the price that is paid for making things
work, and that is what is done in this thesis.

3.2.3 Reinforcement learning versus supervised and unsuper-
vised learning

In order to understand reinforcement learning’s place within the entire field of ma-
chine learning, it is instructive to classify learning approaches based on the quality
of the training information provided by the environment of an agent (Hinton, 1987;
Gullapalli, 1991).

In supervised learning tasks, the environment tells the agent exactly what the
output should be for each input. The agent must learn the mapping from inputs to
outputs, based on a limited number of input-output examples, and it must learn to
generalize correctly to new cases. In unsupervised learning tasks, the environment only
presents inputs to the network, without providing any information about the output.
Learning consists of autonomously clustering the inputs, based on some measure of
similarity between inputs.

Reinforcement learning tasks are in between supervised and unsupervised learn-
ing tasks. Unlike unsupervised learning, the agent receives some information from
its environment on how well the output is doing in the environment. However, this
information from the environment is evaluative rather than instructive. In supervised
learning, if the output consists of a vector, the training information consists of a vector

3.2. ELEMENTARY CONCEPTS OF REINFORCEMENT LEARNING 37

of the same size. In reinforcement learning the training information is only a scalar,
a single number evaluating the success or failure of an entire sequence of outputs. As
a consequence of this, reinforcement learning will usually take more time than su-
pervised learning to learn the same input-output mapping, if the correct outputs are
known such that supervised learning can be used. For obvious reasons, reinforcement
learning is sometimes called semi-supervised learning (Arbib, 1995).

Even if one wishes to use supervised learning, determining a desired output vector
may be difficult; for example, when the output vector serves as a control signal for
a robotic arm with many degrees of freedom. The difficulty lies in the fact that the
control signal has a very complex relationship with the end result in the environment.
Therefore, errors in the end result cannot be translated straightforwardly into errors in
the output vector. This is called the distal error problem (Jordan & Rumelhart, 1992;
Barto, 1995). One solution is to first learn a model of what happens between control
signal and end result. This model can then be used to compute supervised errors for
the output vector (Jordan & Rumelhart, 1992, see also section 3.5.1.3). Another way
to approach this is to use the distal error as the basis for a scalar reward signal, such
that the task can be considered a reinforcement learning task.

Reinforcement learning can, in principle, be more flexible than supervised learning.
The system “keeps an open mind” to any solution for the problem at hand, instead of
being constrained to the one solution the supervisor has decided on and which may not
even be the best one. It can always keep striving for better performance rather than
hold on to a fixed or pre-determined solution; and whereas the supervised solution
may work in one, stable environment, once the environment changes, that solution
becomes worthless. The supervisor would have to specify a new solution. When a
reinforcement learner notices that the success of its behavior deteriorates, perhaps as
a result of a changing environment, it can automatically start exploring again, looking
for outputs that do well in this new environment.

Unsupervised learning has been suggested as a natural alternative to supervised
learning for many tasks (Kohonen, 1995; Murre, 1992). Some tasks indeed lend them-
selves to unsupervised learning. However, such tasks can, by definition, not be directed
toward the satisfaction of constraints imposed by the task, since the agent receives no
environmental feedback about its outputs. An example will clarify this. Suppose a
robot’s world contains two distinct landmarks L and R. One task for the robot may
require it to turn left at landmark L and turn right at landmark R; but another task
may require it to turn right at landmark L and left at landmark R. Clearly, it does not
suffice to just learn to see the difference between landmarks L and R, which is all that
unsupervised learning can accomplish. Landmarks L and R each have to be associated
with either action “left” or action “right”, depending on what works best in the partic-
ular task. The only way to learn how to behave in an initially unknown environment
is by being told what to do (supervised learning) or by taking into account what the
consequences are of actions tried out in the environment (reinforcement learning).

3.2.4 Exploration versus exploitation

The reinforcement learning agent is rewarded for “good” sequences of actions. How-
ever, it is not told what the correct actions are. It has to learn this by trial and error.

38 3. REINFORCEMENT LEARNING

The process of trying out actions in order to determine how good they are is called
exploration. Once the agent has found good actions, it can instead do exploitation
of the learned policy. The agent is faced here with a dilemma. Once it has found a
policy that appears to do well, should it be content with its performance and look no
further? On the one hand, there may be much better policies. On the other hand,
more exploration usually means sacrificing current performance without a guarantee
of finding a better policy. This is the exploration/exploitation dilemma.

3.2.5 Structural and temporal credit assignment

Consider the case where an agent does not yet have a very good policy, and it receives
a reward after a long sequence of states and actions. Now it has to decide which of the
many actions were responsible for that reward. It seems natural to at least attribute
responsibility to the last action. In addition, many actions before the last action must
have also contributed. But which ones? It is likely that not all actions contributed
equally; in fact, it is likely that many actions were in fact bad, and the reward was
obtained despite these bad actions. The challenge is to determine which actions in
an action sequence are good and which are bad, and similarly, which states are good
because they precede reward and which are bad. This is the problem of temporal credit
assignment.

Given that we have identified which states and actions in a sequence deserve credit
for a delayed reward, there is still the problem of structural credit assignment. This
is the problem of assigning credit to the individual adjustable parameters that define
the policy. Suppose the policy is represented by a neural network. Then an individual
weight change may influence the probability of not just one action but many of the
possible actions. The challenge is to determine how to change the weights such that
actions that deserve credit are indeed made more likely. For example, the backpropa-
gation procedure may be used to propagate errors on the output (action) side of the
network to individual weights. Backpropagation and variations of backpropagation are
the solution to the structural credit assignment problem in most of the reinforcement
learning agents described in this thesis. Note that in direct reward problems we have
only the structural credit assignment problem and not the temporal credit assignment
problem.

3.2.6 Discrete versus continuous tasks

So far we have talked about discrete timesteps, actions, and states, without making
this assumption of discrete problems explicit. Most of the theory and practice in
reinforcement learning is concerned with discrete tasks, but it is possible to extend
many of the concepts and methods to continuous tasks. In many cases, and similar to
other fields, this boils down to “discretizing” or “quantizing” the continuous variables,
and then applying the same or somewhat adapted methods as we use for discrete
tasks (Doya, 2000). For instance, continuous time may simply be sampled at a fixed
frequency such that we obtain discrete timesteps. However, at the same time it is
important to realize that direct application of the methods developed for discrete
methods is not always practical, even if it is theoretically possible. For example,

3.2. ELEMENTARY CONCEPTS OF REINFORCEMENT LEARNING 39

discretization of a continuous state space may lead to a prohibitively large number of
states. Chapters 4, 5, 6, and 7 all contain elements dealing with (parts of) this problem.
In the remainder of this chapter, however, we will focus mainly on the discrete case,
for reasons of ease of presentation.

3.2.7 Online versus offline learning

It is useful to distinguish between online reinforcement learning and offline reinforce-
ment learning (see also Wyatt, 1995). These really correspond to different goals of
reinforcement learning research.

Let’s say the final application that we have in mind is robot control. In online
reinforcement learning, the goal is to build a learning robot: we want to construct a
robot which, when put in various unknown environments, can learn to perform certain
tasks. The value of this is that we could then use a single type of robot in various tasks
and various environments, and use the robot for unknown environments (for example,
enemy terrain or other planets). In this case, one of the most important constraints
is the number of learning experiences needed to learn the task: if it takes millions
of learning experiences before the task is learned the robot would usually be useless.
Furthermore, the exploration/eploitation dilemma is very important here, because we
want the robot to start to exploit its knowledge as soon as possible. Finally, safety is
important: above all, we want to prevent the robot from harming others or itself.

In offline reinforcement learning, on the other hand, the goal is to develop a good
controller for some task, and to develop the controller using reinforcement learning.
Note that in this case we do not aim for a learning robot as a goal in itself, we only
want a robot that can perform some task(s), and we happen to use learning as the
means to get there. The value of this approach is that it is in general very difficult to
program robot controllers, and learning may yield a controller that is better than a
handcoded one. In this case, the main constraint is the final performance of the robot
controller. We do not care so much about the number of learning experiences needed
to train the controller. Learning can be done in a simulated version of the robot,
making learning experiences much cheaper than if all learning was done on the real
robot. For the same reason, the exploration/exploitation dilemma and safety issues are
much less important than in online learning. Balancing exploration and exploitation is
only important to allow reinforcement learning to reach satisfactory solutions within
a reasonable time, and the simulated robot may kill itself as often as it likes.

Of course, online and offline reinforcement learning are not necessarily completely
independent enterprises. It may be a good approach to combine the two. We could
first develop, offline in simulation, a controller for the robot. The controller developed
in this way is likely to be imperfect for the real robot, e.g. because of errors in the
simulation. We could then “finetune” the controller on the real robot, using online
reinforcement learning. This is then feasible within a reasonable time, because at this
point we already have a fairly good controller.

40 3. REINFORCEMENT LEARNING

3.3 Reinforcement learning formalized

3.3.1 Formal model of the environment

In the finite, discrete case, a reinforcement learning problem contains:

• A time counter t = 0, 1, 2, 3,

• A finite set of environmental states S = {S1, S2, S3, . . . , SN}. The state at time
t is denoted by st. To simplify notation, s ∈ S and s′ ∈ S are also used to refer
to states from this set.

• A finite set of actions A = {A1, A2, A3, . . . , AM}. The action at time t is denoted
by at. To simplify notation, a ∈ A and a′ ∈ A are also used to refer to actions
from this set.

• A finite set of observations O = {O1, O2, O3, . . . , OL}. The observation at time
t is denoted by ot. To simplify notation, o ∈ O and o′ ∈ O are also used to refer
to observations from this set.

• A finite set of reward values K = {K1,K2,K3, . . . ,KP }, where each Ki ∈ R.
The reward received after executing action at in state st is denoted by rt+1. To
simplify notation, r ∈ K and r′ ∈ K are also used to refer to reward values from
this set.

In the most general case, the dynamics of the environment may be specified by the
probability distribution

Pr{st+1 = s, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0} (3.1)

for all s′, r, and all possible values of past events st, at, rt, . . . , r1, s0, a0. If the environ-
ment has the Markov property, then the environment’s response at time t + 1 depends
only on the events at time t, and the following holds:

Pr{st+1 = s, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0} =

Pr{st+1 = s, rt+1 = r | st, at}.
(3.2)

Thus, the direct reward and the next state depend only on the current state and the
current action, and not on events before that time. This is a reasonable assumption,
and one that is made also in other fields such as physics and systems theory (Ashby,
1960). It basically says that the state summarizes all that has happened in the world
and that is relevant for knowing how the world will develop from now on (given the
same actions). If the state variables identified by the experimenter do not have this
property, it means that the state is not really identified, and other information must
be incorporated into the state variables to arrive at the true state (Ashby, 1960).

Given that the environment has the Markov property, the environment is defined
by:

• A state transition function fs : S × A → Pr(S), which defines a probability
distribution over states. Pa

ss′ denotes the probability of making a transition
from state s to state s′ given action a. At every timestep t, the state is set to st.

3.3. REINFORCEMENT LEARNING FORMALIZED 41

• An observation function fo : S → Pr(O), which defines a probability distribution
over observations. Ps

o denotes the probability of making observation o given state
s. At every timestep t, the observation is set to ot.

• A reward function fr : S ×A×S → Pr(K), which defines a probability distribu-
tion over direct rewards. Ra

ss′ denotes the expected direct reward given action
a in state s and a transition to state s′. At every timestep t, the reward is set
to rt.

3.3.2 Formal model of the agent

The agent dealing with the reinforcement learning problem is defined by:

• An input or observation space, which corresponds to the set of observations O.

• An output or action space, which corresponds to the set of actions A.

• An internal state space Z.

• A parameter space W .

• An internal state transition function fz : Z × O × W → Pr(Z), which defines
a probability distribution over internal states. At every timestep t, the internal
state is set to zt.

• An action function fa : Z ×O ×W → Pr(A), which defines a probability distri-
bution over actions. At every timestep t, the action is set to at.

• A parameter transition function fw : Z ×O×W ×A×K → W which is defined
by the reinforcement learning algorithm and which computes wt.

The combination of the internal state transition function and the action function com-
prises the agent’s policy π, and this policy is completely defined by the parameters w.
Note that, by definition, the internal state has the Markov property.

The internal state and the parameters are both internal variables of the agent,
and in principle we could merge them into one set of variables. Nevertheless, in
many cases it is practical to distinguish them. The parameters are the variables
that are modified by the learning algorithm, and they typically change on a long
timescale. They constitute the agent’s long-term memory. For example, the weights
in a neural network are parameters. The internal state, on the other hand, consists
of those internal variables that are not part of either the observation space or the
action space, that may change over time even without learning, and that together
with the current observation determines the action using the action function, which is
parameterized by the parameters. Internal states typically change on a short timescale,
and they constitute the agent’s short-term memory. For instance, the state of a Finite
State Automaton (FSA) constitutes an internal state, and the recurrent activations
in a recurrent neural network constitute an internal state. However, note that the
distinction between parameters and internal states can be blurry. For instance, there
are studies where the weights of a neural network, traditionally thought of as the

42 3. REINFORCEMENT LEARNING

n n n

y y

1

0
1

0

0
01

1

0 1

start

start

0/n

1/n

1/n 0/n

1/y

0/y

Figure 3.2: Fig. a (left). Moore input-output FSA. There are two inputs, 0 or 1, and
two outputs, y (yes) or n (no). Outputs are associated with states. Fig. b (right).
Mealy input-output FSA. Outputs are associated with edges. This Mealy machine
is equivalent to the Moore machine depicted on the left. Adapted from Hopcroft &
Ullman (1979).

parameters, can change on a short timescale, providing the system with short-term
memory (Schmidhuber, 1992b; Urzelai & Floreano, 2001).

Even with the distinction between parameters and internal state in place, for one
and the same agent there are still multiple, but equivalent ways to “divide the work”
between internal state transition function and action function. This corresponds to
different choices of what the internal states correspond with in the system under study.
The action function can be written as a function of only the internal state and the
parameters: at = fa(zt, wt). In the language of input-output FSAs, that corresponds
to the Moore machine: the action is associated with states of the FSA (Hopcroft &
Ullman, 1979, see figure 3.2a). Alternatively, the action function may, as above, be
written as a function of internal state (different from before) and parameters and the
observation: at = fa(zt, ot, wt). In the language of input-output FSAs, this corre-
sponds to the Mealy machine: the action is associated with edges of the FSA (see
figure 3.2b). As we know from discrete automata theory (Hopcroft & Ullman, 1979),
the Moore machine and Mealy machine interpretations are equivalent and can always
be rewritten into each other (see figure 3.2). Rewriting changes the internal state
transition function and action function, and it also changes the number of internal
states and what the internal states correspond with in the agent.

If the agent does not use observations for its action selection at all, i.e. the action
function can be written as at = fa(zt, wt) and the internal state transition function
as zt = fz(zt−1, wt), in the language of control theory it is said to perform open loop
or feedforward control. In that case, it basically emits a fixed series of actions (or
probability distributions over actions), independent of sensory feedback. Feedforward
control is rarely studied in reinforcement learning (but see Hansen, Barto, & Zilber-
stein, 1996), because it is not very flexible, and not very robust in the face of noise and
uncertainty about the state of the environment and the results of actions. When the
agent does use observations for its action selection, it performs closed loop or feedback
control. This thesis, like virtually all reinforcement learning work, is only concerned
with feedback control.

3.3. REINFORCEMENT LEARNING FORMALIZED 43

Within feedback control, we can make another distinction. If the action function
can be written as a function of only the observation and the parameters, i.e. at =
fa(ot, wt), then we say the agent uses a perception-based or reactive or memoryless
policy. In this case, the agent makes no use of internal state or short-term memory for
its action selection. If, on the other hand, the action function must include internal
state to be an accurate description of the action selection, i.e. zt = fz(zt−1, ot, wt) and
at = fa(zt, ot, wt) (Mealy interpretation) or zt = fz(zt−1, ot, wt) and at = fa(zt, wt)
(Moore interpretation), the agent uses an internal state-based policy.

3.3.3 Measures of long-term reward

The reinforcement learning agent’s job is to maximize some measure of long-term
reward. The rewards received after timestep t are denoted by rt+1, rt+2, etc., and the
measure of long-term reward is called the return Rt, which is defined as some function
of this sequence of rewards. The objective may be to maximize the sum of future
rewards:

Rt = rt+1 + rt+2 + rt+3 + . . . + rT (3.3)

where T is the final timestep. This definition of the return makes sense if the task of
the agent is composed of separate episodes which end at time T , after which a new
episode starts. For example, a robot must accomplish a certain goal, such as cleaning
a room, and then start again (in a different room). These are called episodic tasks.
If there are no such episodes, we are dealing with continuing tasks. In the case of
continuing and possibly infinite tasks the definition of Rt as the sum of future rewards
does not make much sense because it may become infinite. In that case, we may use
the following definition of the return, the discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞
∑

k=0

γkrt+k+1 (3.4)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. If γ < 1, this discount rate
basically makes rewards that are further in the future less valuable. This corresponds
to the intuition, also found in economic theory, that the same reward is worth more if
it is available immediately than if it is available only after a long time. Mathematically,
one desirable property of this definition is that the infinite sum always has a finite value
(as long as rewards are bounded). One might argue that for real-world agents truly
continuing tasks do not exist because all agents have a finite life. However, independent
of whether we consider episodic or continuing tasks, another desirable property of the
discounted return definition is that it automatically favors policies that get to rewards
faster. This is practically always what we want, regardless of whether we consider
continuing or episodic tasks. If γ = 0, the agent does not care at all about delayed
rewards, only about direct rewards. If γ = 1, on the other hand, this definition reduces
to definition 3.3. Rt as defined by 3.4 is used throughout this thesis.

3.3.4 MDPs versus POMDPs

In a Markov Decision Process (MDP, Markovian task), the observation probabilities
as defined by the observation function are not really probabilities but reduce to one

44 3. REINFORCEMENT LEARNING

action a

ag
en

t

environm
ent

environmental
state s

reward r

observation o = environmental state s

direct mapping

Figure 3.3: Schematic representation of a Markov Decision Process. The agent’s ob-
servation is equivalent to the state of the environment, and it can simply learn a direct
mapping from observations (states) to actions to accomplish an optimal policy.

particular observation for each particular state. In other words, the observation simply
is the environmental state, and the concepts observation and state are interchangeable
(see figure 3.3). The environment’s response at time t + 1 (defined by 3.2) can then
be said to depend only on the current observation ot and the current action at:

Pr{st+1 = s, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0} =

Pr{st+1 = s, rt+1 = r | ot, at}.
(3.5)

This means that optimal prediction of how the environment will develop is a function
only of ot and at, and optimal control can be accomplished by an agent that sim-
ply maps current observations to actions. For this reason, virtually all work on MDPs
employs agents that learn direct mappings from observations (states) to actions: mem-
oryless policies, that do not make use of internal state. Chapter 4, however, challenges
this conventional wisdom for certain cases. Note that an MDP can be viewed as a
Markov Chain with a distinct state transition matrix for each action.

In a Partially Observable Markov Decision Process (POMDP, or non-Markovian
task1), the observation function is a more complex function than the simple one ob-
servation per state mapping of an MDP. Different states may have similar probability
distributions over observations. Thus, different states may look the same to the agent,
and the same state may look different at different times. For this reason, POMDPs
are said to have hidden state or perceptual aliasing. See figure 3.4 for a visual repre-
sentation of this idea. A POMDP can be viewed as a Hidden Markov Model (HMM)
with a distinct state transition matrix for each action.

1Technically speaking, non-Markovian tasks can also be interpreted as including those tasks where
the underlying process itself does not have the Markov property, and the “state”, even if it were
known, does not depend only on the last state and the last action. For the sake of simplicity, when
we speak about non-Markovian tasks in this thesis, we always mean POMDPs, where the underlying
process is an MDP, such that if we reconstruct the state perfectly, we again have an MDP.

3.3. REINFORCEMENT LEARNING FORMALIZED 45

action a

ag
en

t

environm
ent

environmental
state s

reward r

observation o < environmental state s

internal
state z

Figure 3.4: Schematic representation of a Partially Observable Markov Decision Pro-
cess. The observation provides some information about the environmental state but
not complete information; this is indicated by the < symbol. For optimal performance
the agent may have to use some form of internal state.

In a POMDP, the environment’s response is no longer a function of only the current
observation and action, i.e. equation 3.5 no longer holds. This means that a memo-
ryless policy may no longer be optimal, compared to what is theoretically possible if
one remembered the entire history of observations, actions, and rewards. For instance,
two hallways in a building may look the same for a robot’s sensors, but in the first
hallway the optimal action is “go left” and in the second hallway the optimal action
is “go right”. A memoryless policy cannot deal with this situation, but an internal
state-based policy can. For instance, it may be possible to disambiguate two hallways
that look identical by remembering that the robot has just passed the men’s room.

Note that many realistic problems are partially observable in this sense. An agent’s
sensors will in general be noisy, and limited in the amount of detail they can pick up.
Even with very good sensors, it is often the case that different places in the world
look the same (such as hallways). An alternative to internal state for solving partial
observability is to add or improve sensors. For example, a mobile robot may be fitted
with specific sensors helping it to disambiguate hallways. To the extent that that
is possible or affordable or desirable, this provides an alternative to internal state.
However, note that sensors will always have some noise and associated uncertainty;
and adding sensors will not help in cases where an agent must act differently in the
same perceptual situation depending on a context that cannot be perceived at that
moment. This is the case, for example, when an agent first has to move to location A
and then to location B in the same world, passing through the same states, or when a
certain action depends on instructions or observations the agent has received earlier
on. For example, consider the case where a robot observes that a certain door is locked,
blocking the path to its goal. It turns back to take a different route. When it now
arrives at a junction, from where it earlier took the route towards the locked door, it
should not have forgotten that the door was locked and again take the previous route
to the locked door. Instead, it should use short-term memory to decide that now this

46 3. REINFORCEMENT LEARNING

junction, which the robot can perceive perfectly and tells the robot exactly where it is,
should no longer be associated with the action corresponding to the old path, but to
another path. In any case, biological intelligence can certainly deal with the problem
of partial observability to some extent, so if we wish to understand how that works,
we need to consider partially observable problems.

POMDPs are the reinforcement learning equivalent of so-called “representation-
hungry” (Clark, 1997), “anticipatory behavior” (Keijzer, 2001), or “minimally cogni-
tive” (Slocum, Downey, & Beer, 2000) tasks in the adaptive behavior literature. Like
POMDPs, these are tasks where good behavior cannot be accomplished by a reactive
agent that responds directly and only to environmental inputs. In adaptive behav-
ior research, this has spawned a lot of debate about whether or not this creates a
need to return to the full-blown world models that adaptive behavior researchers have
rejected from the outset. Specifically, the question has been raised whether the repre-
sentations (which can be interpreted as internal states) that must supplement direct
sensory information have to be symbolic in nature, signifying a return to symbolic
reasoning systems (Clark, 1997; Keijzer, 2001; van Gelder, 1998). POMDPs allow us
to investigate these questions within the reinforcement learning framework, and solu-
tion techniques for POMDPs may therefore shed some light on these general adaptive
behavior debates. Most of the work in this thesis is concerned with POMDPs and the
issues that are associated with this difficult, but also interesting and realistic class of
problems.

3.4 Solution techniques

3.4.1 Model-based versus model-free techniques

One dimension in which solution techniques for MDPs and POMDPs can be distin-
guished is whether or not they use a model of the environment. Here a model of
the environment means an explicit representation of the environment’s state transi-
tion function, observation function, and reward function. In forward models, this is
more or less literally so, and the model behaves as if it is the environment. In inverse
models, really the inverse of the environment’s state transition function, observation
function, and reward function are modeled (given that the inverses are well-defined),
such that it takes as inputs observations and rewards and gives as outputs actions that
lead to those observations and rewards. The advantage of an inverse model is that it
may be used directly for control: the inverse model is given “high reward” as input,
and it provides an action as output that accomplishes a high reward, because this is
an action that in this environment is apparently associated with high reward. Note
that this only works in the case of direct reward. Forward models are more general in
that they can be used in the delayed reward case, but they can only be used in a less
straightforward way. Several such ways are described below. In the remainder of this
chapter and this thesis, when models are discussed they refer to forward models.

Model-based or indirect reinforcement learning methods use a model as the basis for
their search for a good policy. Model-free or direct reinforcement learning methods,
on the other hand, do not use a model, and instead learn directly on the basis of

3.4. SOLUTION TECHNIQUES 47

online interactions with the environment. In model-free work, the environment may of
course be simulated in a computer, but the agent does not have access to an explicit
representation of the environment’s state transition function, observation function, and
reward function. It is possible, in many cases, to go from the model-free case to the
model-based case by first learning a model, using the interaction with the environment.
After a sufficiently correct model has been learned, model-based solution techniques
can be applied to it. This is reminiscent of adaptive control theory ideas where a
system identification phase is followed by an actual control design phase.

This thesis’ technical chapters only discuss model-free solution techniques, but in
the current chapter model-based techniques are discussed as well. This is done not only
to provide a more complete survey of the field, but also because in many cases model-
free methods can be viewed as approximations to model-based techniques. Moreover,
understanding exact model-based methods may help us to better understand the na-
ture of reinforcement learning problems in general, and to better understand what the
objective should be for model-free methods. Furthermore, a description of model-based
methods makes clear what their limitations are, especially in terms of computational
complexity, and therefore helps in understanding some of the reasons for turning to
model-free methods. Model-based methods may inspire model-free methods or help de-
lineate constraints which model-free methods have to take into account or can exploit.
Conversely, model-free methods may inspire novel model-based techniques. These
novel model-based techniques may, for instance, be useful approximations to exact
model-based techniques, which are computationally intractable for large problems.

3.4.2 Direct policy search versus value functions

Another, more or less independent dimension in which solution techniques can be
distinguished is whether they take a direct policy search approach or a value function
approach. In its simplest form, direct policy search searches directly in the space of
policies to find one that works well. That is, it evaluates policies as a whole, and adjusts
the parameters that define a policy based on these global evaluations. For instance, an
evolutionary algorithm can be used to search for the parameters of a policy, and the
fitness measure may correspond to the average long term reward measure obtained by
the policy.

In the other approach, based on value functions, the basic idea is to associate
individual states or state-action pairs with values. Those values are typically updated
based on the direct rewards and the values of the next states or state-action pairs, such
that states or state-action pairs that precede high rewards get high values themselves.
Policies are derived more or less indirectly, by determining which action has or leads
to the highest value in the learned value function. Most of the reinforcement learning
methods in the literature use value functions in one way or another, and so do the
methods investigated in this thesis.

Even though the distinction between direct policy search and value functions may
seem quite clear-cut, in practice it really is not. As we shall discuss in more de-
tail below, approaches that are described by many researchers as direct policy search
methods may use something like a value function to aid the mechanism that adjusts
the policy parameters directly (Sutton, McAllester, Singh, & Mansour, 2000; Baird

48 3. REINFORCEMENT LEARNING

& Moore, 1998; Meuleau, Peshkin, Kim, & Kaelbling, 1999). Such methods are still
considered direct policy search methods because the policy has a representation inde-
pendent of the value function, and the value function could be replaced by another
function that guides the policy search toward good policies. On the other hand, value
function methods may be adjusted such that values are transformed toward something
like “preferences” for different actions, which are there for policy determination pur-
poses only and which have little to do with values in the traditional sense (Harmon
& Baird, 1996; Baird, 1999). Despite this blurriness, the distinction between direct
policy search and value functions remains useful in aiding our thinking about different
methods.

3.4.3 Value functions and the Bellman equation

As noted above, the work of this thesis and most of the work in the reinforcement
learning literature uses value functions. States or state-action pairs are associated
with values that indicate how “good” the states or state-action pairs are. A value
associated with a state or state-action pairs represents the expected return from that
particular state or state-action pair, given a certain policy. Formally, the state-value
V π(s) of a state s given policy π is defined as

V π(s) = Eπ{Rt | st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s
}

(3.6)

where Eπ denotes the expected value given that the agent follows policy π. Similarly,
the action-value Qπ(s, a) of action a in state s given policy π is defined as

Qπ(s, a) = Eπ{Rt | st = s, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s, at = a
}

. (3.7)

The nice thing about values as defined in this way is that they can be written recur-
sively, that is, in terms of the values of possible successor states or state-action pairs.
For state-values, this corresponds to

V π(s) = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s
}

= Eπ

{

rt+1 + γ

∞
∑

k=0

γkrt+k+2 | st = s
}

=
∑

a

π(s, a)
∑

s′

Pa
ss′

[

Ra
ss′ + γEπ

{

∞
∑

k=0

γkrt+k+2 | st = s
}]

=
∑

a

π(s, a)
∑

s′

Pa
ss′ [Ra

ss′ + γV π(s′)]

(3.8)

where π(s, a) is the probability of choosing action a in state s under policy π. This
is called the Bellman equation for V π(s). V π(s) is the unique solution to its Bellman

3.4. SOLUTION TECHNIQUES 49

equation. For Qπ(s, a), we have a similar Bellman equation. Bellman equations form
the basis for many MDP and POMDP solution techniques.

What we were interested in, in the end, is finding a good or preferably the best
policy. There may be more than one best policy, but there is always at least one.
For convenience, all optimal policies are denoted by π∗. They share the same optimal
value function. For states, this is defined as

V ∗(s) = max
π

V π(s) (3.9)

and for state-action pairs, it is defined as

Q∗(s, a) = max
π

Qπ(s, a). (3.10)

The corresponding Bellman equation, known as the Bellman optimality equation, for
V ∗(s) is

V ∗(s) = max
a

Q∗(s, a)

= max
a

Eπ∗

{

∞
∑

k=0

γkrt+k+1 | st = s, at = a
}

= max
a

Eπ∗

{

rt+1 + γ

∞
∑

k=0

γkrt+k+2 | st = s, at = a
}

= max
a

E{rt+1 + γV ∗(st+1) | st = s, at = a}

= max
a

∑

s′

Pa
ss′ [Ra

ss′ + γV ∗(s′)]

(3.11)

and for Q∗(s, a) the Bellman optimality equation is

Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, a
′) | st = s, at = a}

=
∑

s′

Pa
ss′ [Ra

ss′ + γ max
a′

Q∗(s′, a′)].
(3.12)

The goal of value function-based solution techniques is to find V ∗(s) or Q∗(s, a). Once
that is accomplished, the optimal policy simply consists of taking that action a in
each encountered state s for which Q∗(s, a) is highest or, equivalently, that action that
leads to the highest expected direct reward plus discounted V ∗(s′) in the next state
s′. After all, that corresponds to the action that leads to the highest expected return.
Thus, in this way globally optimal behavior can be accomplished by examining values
that are available locally at the current state.

50 3. REINFORCEMENT LEARNING

3.5 MDP solution techniques

3.5.1 Model-based MDP solution techniques

3.5.1.1 Policy iteration

The classical solution techniques for MDPs given an exact model of the environment
are collectively known as dynamic programming. These techniques iteratively com-
pute the exact value function using the model. They do not actually interact with
the environment, so they do not really do trial and error learning, and they do not
need to concern themselves with the exploration/exploitation dilemma, for instance.
For these reasons, most authors do not regard dynamic programming algorithms as
“genuine” reinforcement learning algorithms. In any case, these techniques do consider
the reinforcement learning problem, in the general sense, and they are important to
understand if one wants to understand genuine reinforcement learning techniques.

One algorithm developed and studied in dynamic programming is policy iteration.
Policy iteration consists of two phases that are performed consecutively and repeat-
edly: policy evaluation and policy improvement. Starting with a random current
policy, policy evaluation computes, using an iterative algorithm, the value function of
the current policy. Policy improvement then improves the current policy, using this
value function. Policy evaluation next computes the value function of this new policy,
etcetera. This process is guaranteed to converge to the optimal value function and
corresponding optimal policy.

Policy evaluation evaluates the current policy by transforming the Bellman equa-
tion for V π (equation 3.9) into the following update rule:

V π
k+1(s) =

∑

a

π(s, a)
∑

s′

Pa
ss′ [Ra

ss′ + γV π
k (s′)] (3.13)

for all s. After an entire sweep through the set of states is completed, the procedure
starts again, using the new estimations of V π. Each such iteration brings the value
function closer to the real value function for policy π, and it is guaranteed to converge
to V π as k → ∞.

After a sufficiently close approximation to V π has been found using this policy eval-
uation procedure, e.g. when the largest change in V π

k+1(s) is below a certain threshold,
the policy improvement phase starts. Policy improvement simply chooses those actions
for the new policy2 which seem best according to the current value function:

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

E{rt+1 + γV π(st+1) | st = s, at = a}

= arg max
a

∑

s′

Pa
ss′ [Ra

ss′ + γV π(s′)]

(3.14)

for all s. The policy improvement theorem (see Sutton & Barto, 1998) shows that the
new policy π′ must be as good as or better than the old policy π. Next, the value of

2For convenience, only deterministic policies are considered here. The ideas extend straightfor-
wardly to stochastic policies, however. Then different actions of maximal but equal value must each
get some probability of being selected, and all suboptimal actions must get zero probability.

3.5. MDP SOLUTION TECHNIQUES 51

the new policy is computed by applying policy evaluation again, etcetera. If the new
policy is as good as the old policy, that is V π′

= V π, then from 3.14 it follows that for
all s:

V π′

(s) = max
a

E{rt+1 + γV π′

(st+1) | st = s, at = a}

= max
a

∑

s′

Pa
ss′ [Ra

ss′ + γV π′

(s′)].
(3.15)

This is the same as the Bellman optimality equation (3.11). Therefore, V π and V π′

must equal V ∗, and π and π′ must be optimal policies π∗. Thus, the consecutive
phases of policy evaluation and policy improvement will eventually lead to the optimal
value function and optimal policy. However, note that in general, both the policy
evaluation and policy improvement phases require many sweeps through the entire
state and action set. With large numbers of states and actions, this can become a
computationally very expensive procedure.

3.5.1.2 Value iteration

The policy evaluation phase of policy iteration consists, by itself, of many iterations
until the value of the current, intermediate policy is computed. It turns out to be
possible to simply truncate policy evaluation after one sweep through the whole state
set, and then immediately do policy improvement with respect to the imperfect value
function thus obtained. By repeatedly doing this, we are again guaranteed to finally
end up with the optimal value function and optimal policy.

This algorithm is known as value iteration, and it corresponds to the following
backup operation:

Vk+1(s) = max
a

E{rt+1 + γVk(st+1) | st = s, at = a}

= max
a

∑

s′

Pa
ss′ [Ra

ss′ + γVk(s′)]
(3.16)

for all s. Note that value iteration can be interpreted as simply transforming the
Bellman optimality equation (3.11) into an update rule. As with the policy evaluation
phase of policy iteration, the process is stopped once the value function changes by
only a small amount.

Having understood both policy iteration and value iteration as particular com-
binations of policy evaluation and policy improvement, it is easy to envision other,
intermediate schemes (Sutton & Barto, 1998). For example, we may do some fixed
number of policy evaluation sweeps through the state set before doing policy improve-
ment. Or we may do policy evaluation for only a subset of the total number of states
before doing policy improvement (asynchronous dynamic programming). This may be
advantageous in cases with large numbers of states to reduce the computational load.

3.5.1.3 Backpropagation through a model

A model of the environment does not have to be used to compute value functions, like
the dynamic programming techniques described above. It can also be used for direct

52 3. REINFORCEMENT LEARNING

controller model

observation

reward

action

observation

high reward

Figure 3.5: Schematic representation of backpropagation through a model. The gray,
dotted arrows illustrate how the errors, based on the difference between desired, high
rewards and actual rewards, are backpropagated through the model to the controller.

policy search. One way of doing this is by extending the idea of backpropagation
through a model (Werbos, 1990; Jordan & Rumelhart, 1992; Kawato, 1990; Nguyen
& Widrow, 1990) to the reinforcement learning case (Schmidhuber, 1991c).

Backpropagation through a model is based on the idea that if you have a model,
consisting of differentiable functions, that maps inputs to resulting outputs, then it
is possible to determine, by backpropagation, how the inputs should change so as
to change the outputs in some desired direction. This same principle is used, in
backpropagation learning in multilayer neural networks (Werbos, 1974; Rumelhart,
Hinton, & Williams, 1986), to determine how hidden layer activations should change
so as to change the outputs of the network in some desired reaction. There it is used
to determine how to change the weights in the network. In backpropagation through
a model, the weights of the model are fixed, and the errors that are backpropagated
through the model reflect not prediction errors (the model is assumed to be accurate),
but differences between desired outcomes in the environment and actual outcomes.
These errors are backpropagated to the input side of the model, where they represent
how the actions should change so as to improve the outcomes in the environment.
A separate controller, connected to the input side of the model, can then learn the
correct actions on the basis of these errors in a supervised learning way, again using
backpropagation (see figure 3.5).

In the supervised learning version of backpropagation through a model (Werbos,
1990; Jordan & Rumelhart, 1992; Kawato, 1990; Nguyen & Widrow, 1990), desired
outputs of the model (desired environmental states) are used to determine the errors
that are to be backpropagated to the controller. In the reinforcement learning case
(Schmidhuber, 1991c), one output of the model is reward (and possibly one more
for “pain”). The “desired output” then simply corresponds to “high reward” on this
output line.

In the general, delayed reward case, the environment has non-trivial state (see
figure 3.1). Therefore, the model of the environment must have internal state. For
example, the model may consist of a recurrent neural network (Schmidhuber, 1991c)
or time-delay neural network (Jordan & Rumelhart, 1992). This allows the system
to compute the influence of past actions on current rewards. The procedure used
to accomplish this is the extension of backpropagation to recurrent neural networks,

3.5. MDP SOLUTION TECHNIQUES 53

called backpropagation through time (BPTT, Rumelhart et al., 1986).3 BPTT through
a model effectively propagates errors at the current timestep backwards to inputs of
previous timesteps. The controller can then use the errors propagated backwards in
time as supervised errors for actions at those previous timesteps, and thus learn the
correct actions at those previous timesteps.

The model of the environment must consist of differentiable functions, and in most
studies using this technique, both in supervised and reinforcement learning contexts,
the model is learned, and it corresponds to a neural network. An elegant property of
this approach is that both the model and the controller can be neural networks, and
a single procedure, backpropagation, can be used to adjust the weights of the model,
to compute the errors for the controller, and to adjust the weights of the controller. A
disadvantage, on the other hand, is that this approach can be sensitive to small errors
in the model, which may lead to large errors in the signals propagated back to the
actions (Jordan & Rumelhart, 1992; Werbos, 1990; Barto, 1990).

The outputs (actions) of the controller, which corresponds to the inputs to the
model, can be vectors in the backpropagation through a model approach. The errors
backpropagated to the controller are vectors indicating in which direction the action
vector should change. For this reason, in contrast to many other approaches, this
approach can be used in tasks with high-dimensional, continuous actions. An example
of such a task is robot arm control where many motors of the robot arm must be
controlled concurrently using real-valued signals.

An interesting variation of the backpropagation through a model approach adds
value functions. The “model” of the environment may be trained to output values
of state-action pairs (Schmidhuber, 1990; Werbos, 1990), using techniques similar to
other value function approaches described in this chapter. Since a state-action value
already represents long-term reward as a function of the current state and action, we
can use simple backpropagation to the model’s input side rather than backpropagation
through time. In other words, the value function takes care of temporal credit assign-
ment to actions in the past, rather than backpropagation through time. However, we
still have the advantage of being able to backpropagate error vectors toward action
vectors. This approach is sometimes called backpropagation through a critic (Werbos,
1990).

3.5.1.4 Learning a model

When the agent is not provided with a model of the environment, it may first learn a
model of the environment, and then apply any of the methods described above. Learn-
ing a model can be done using supervised learning techniques, which simply attempt
to learn the mapping from current observations (states) and actions to observations
(states) and rewards obtained at the next timestep.

3Or one may use a functionally equivalent procedure, such as Real-Time Recurrent Learning
(RTRL, Williams & Zipser, 1989; Schmidhuber, 1991c.)

54 3. REINFORCEMENT LEARNING

3.5.2 Model-free MDP solution techniques

3.5.2.1 Learning without a model

One approach to the absence of a model is to learn a model, as described above.
A different approach is to attempt to learn value functions and/or policies directly,
without using a model.

3.5.2.2 Q-learning and Sarsa

Probably the most widely used algorithm for learning value functions without using
a model is Q-learning (Watkins, 1989; Watkins & Dayan, 1992). This thesis also uses
Q-learning and variations of Q-learning. The basic idea is to incrementally estimate
values of state-action pairs, Q-values, based on experienced rewards in the environment
and the agent’s own estimated Q-values. The update rule of Q-learning in its simplest
form is

Qt+1(st, at) = Qt(st, at) + α[rt+1 + γ max
a

Qt(st+1, a) − Qt(st, at)] (3.17)

where α is a learning rate parameter. Thus, the Q-value of a state-action pair that the
agent has just “visited ” in the environment is updated on the basis of the direct reward
and the maximally attainable Q-value in the new state. The difference between square
brackets is computed based on two consecutive timesteps, and is therefore called the
temporal difference error (Sutton, 1988). As in dynamic programming, an update of
the value of a state-action pair does not have to wait until all subsequent rewards are
in, but can be done “locally”, based on the value of the next state-action pair.

Interestingly, recent neuroscience findings indicate that certain dopaminergic neu-
rons in the mammal brain, which have long known been known to be involved in
learning on the basis of rewards, actually fire correlated with temporal difference er-
rors rather than rewards per se (Schultz et al., 1997). That is, they fire strongly when
an unpredicted reward comes in, but they fire only at baseline level when a predicted
reward comes in. On the other hand, when a predicted reward fails to come in, these
neurons’ firing rate drops below baseline level, indicating a negative temporal differ-
ence error. These findings suggest that the mammal brain uses something like temporal
difference-based reinforcement learning. In general, it is an excellent example of how
computational research may guide empirical research, and how artificial intelligence
may lead to better theories about biological intelligence.

Similar to value iteration, Q-learning simply transforms the Bellman optimality
equation (3.12) into an update rule. For this reason, Q-learning and similar rein-
forcement learning algorithms are sometimes called approximate or heuristic dynamic
programming techniques (e.g. Watkins, 1989; Werbos, 1992; Bertsekas & Tsitsiklis,
1996). However, unlike value iteration, updating in Q-learning is not done by sweep-
ing through the whole state set and explicitly using the state transition probabilities
and expected rewards from a model, but instead by “sampling” the environment. This
sampling depends on the current policy and the exploration around the current policy.
A possible computational advantage of this sampling technique over sweeping through
the whole state set, as happens in value iteration, is that only possible and reasonable

3.5. MDP SOLUTION TECHNIQUES 55

trajectories through the state space are sampled, which may lead to more efficient
learning, especially when the state set is large (Sutton & Barto, 1998; Meuleau et al.,
1999).

A common exploration strategy is to usually take the action with the highest
currently estimated Q-value in that state, but to sometimes take a random action.
Convergence to the optimal values Q∗(s, a) is guaranteed when all state-action pairs
continue to be updated, when the value of each state-action pair has its own, tabular
representation, and when certain standard conditions of decreasing learning rates are
fulfilled (Watkins, 1989; Watkins & Dayan, 1992; Sutton & Barto, 1998). Once a
sufficiently close approximation to the optimal Q-values has been found, the optimal
policy simply consists of taking that action in a state that has the highest Q-value.

Q-learning learns about the optimal policy π∗ by following a policy that is not
optimal (yet). This is called off-policy learning. One can also modify Q-learning such
that the policy that the agent learns about is the same as the one that the agent is
following. This is on-policy learning, and a corresponding learning algorithm is called
Sarsa (for State-Action-Reward-State-Action), which has the following update rule
(Sutton & Barto, 1998):

Qt+1(st, at) = Qt(st, at) + α[rt+1 + γQt(st+1, at+1) − Qt(st, at)]. (3.18)

This rule will still converge to the optimal values and optimal policy as long as the
policy converges in the limit to the greedy policy, that is the policy that does not do
any exploration any more.

Sarsa can have an advantage over Q-learning when the agent must always keep
exploring during its lifetime, for instance because it should never stop learning. In
that case, we want to learn about that policy that keeps exploring, and not about the
hypothetical greedy policy that the agent will never use anyway. Another advantage
is related to the use of function approximators instead of tables to represent the Q-
function (see below): in some cases Q-learning can diverge due to its off-policy nature,
where Sarsa will not. However, usually it seems to make more sense to learn the value
of a state based on the estimated best action that the agent can take in the next state
(Q-learning), rather than the action that the agent actually takes, which may well be
an exploring action and far from the best one (Sarsa).

3.5.2.3 Actor-critic architectures

Historically, the idea of learning values based on temporal difference errors obtained in
the interaction with the environment precedes Q-learning and Sarsa. Witten (1977),
Barto, Sutton, and Anderson (1983), Sutton (1984), and (Anderson, 1987) proposed
architectures where one part of the system, the critic, learns state-value functions
V (s), and another part, the actor, learns the policy π(s) on the basis of signals from
the critic. Both the actor and the critic learn on the basis of temporal difference
errors. The formal theory behind temporal difference (TD) learning was in large part
developed in this context, by Sutton (1988).

The critic learns the value of the policy of the actor, for instance using the following
temporal difference update rule:

Vt+1(st) = Vt(st) + α[rt+1 + γVt(st+1) − Vt(st)]. (3.19)

56 3. REINFORCEMENT LEARNING

The actor explores different actions, for instance with a probability proportional to
“preference” p(s, a). When these exploring actions lead to a positive temporal differ-
ence error (a positive value between the square brackets, corresponding to a better
than expected result), the actor receives this positive temporal difference error as an
internal reward. This then makes it more likely that the responsible action is tried
again in the same situation. Conversely, a negative temporal difference error makes
the responsible action less likely. One update rule accomplishing this can be:

pt+1(st, at) = pt(st, at) + β[rt+1 + γVt(st+1) − Vt(st)] (3.20)

where β is another learning rate parameter. Since at the same time the temporal
difference error is used to update the critic, the critic will come to expect better
results and the actor must do better still to get internal rewards.

For successful performance, the critic should not learn too quickly, for that would
prevent the actor from getting sufficient internal reward to learn good actions. On
the other hand, the critic should not learn too slowly, otherwise the actor would get
too much internal reward for better than chance, but still suboptimal performance,
and the actor might get stuck in that suboptimal performance. In practice, getting
this balance right has often been found difficult. This is one of the reasons for the
subsequent prevalence of Q-learning and Sarsa, which, in a way, combine the actor
and the critic in one, simpler system.

Nevertheless, actor-critic architectures have certain advantages, which have caused
a recent revival in interest. Like backpropagation through a model, actor-critic systems
can be used in cases with high-dimensional and continuous actions. The corresponding
action selection is quick; unlike Q-learning and Sarsa, which must search through the
possibly large set of state-action values to find the one action with the highest Q-value.
Furthermore, actor-critic architectures can learn explicitly stochastic policies, which
can be important for certain tasks (e.g. Singh, Jaakkola, & Jordan, 1994). An advan-
tage related to formal reinforcement learning theory is that actor-critic architectures
may not have the same convergence problems as Q-learning when combined with func-
tion approximators (Sutton et al., 2000). Finally, the actor-critic architecture may be
more realistic biologically: (Houk, Adams, & Barto, 1995) propose a model of mam-
mal reinforcement learning based on the actor-critic architecture, tying the various
components to circuits in the mammal brain’s basal ganglia.

A special variation of the actor-critic architecture is the REINFORCE architecture
of Williams (1992). In the delayed reward case, temporal credit assignment is not
done using a value function learned by the critic. Instead, the “critic” may, for ex-
ample, learn the expected direct reward at each timestep. The difference between the
actually obtained direct reward and the expected direct reward, which can be called
the reinforcement comparison error (Sutton, 1984), is the internal reward fed to the
actor. This internal reward is fed to the actor’s weights using yet another variation of
backpropagation through time, which in this way takes care of temporal credit assign-
ment. Thus, the actor must consist of differentiable functions and internal feedback
loops; e.g. a recurrent neural network. Note the similarities with the backpropagation
through a model approach and backpropagation through a critic approach described
above.

3.5. MDP SOLUTION TECHNIQUES 57

REINFORCE clearly is a direct policy search method, since it does not use value
functions. Some authors (e.g. Murphy, 2000; Sutton et al., 2000) also consider actor-
critic architectures in general as direct policy search methods, because of several
differences with “clear-cut” value function learning methods such as Q-learning and
Sarsa. First, the policy (the actor) has its own parameters, independent of the value
function parameters. Second, the policy is not directly derived from the value function
(e.g. by taking the maximum over state-action values), but is instead determined by
computing the output of the actor. Third, the critic does not have to learn actual
values V (s) or Q(s, a). Instead, it may suffice to learn the relative values of actions in
each state (Sutton et al., 2000).

3.5.2.4 Eligibility traces

The approaches discussed above based on value functions and temporal difference
learning perform, in their simplest form, back-ups in the direction of the direct reward

plus a discounted value in the next state. This is called the 1-step return, or R
(1)
t . For

instance, in Q-learning it is defined as

R
(1)
t = rt+1 + γ max

a
Qt(st+1, a). (3.21)

Now consider a task where rewards are sparse. In the beginning of learning, only
state-action pairs just preceding the rewards will have significant updates. The value
“contained” in the rewards will only disperse to other state-action pairs very slowly, as
the state-action pairs immediately preceding the rewards take on significant value. It
is natural to wonder if we may speed up learning by updating state-action values not
just on value information from one timestep later, but also from multiple timesteps
later. In this way, state-action pairs a number of actions away from a sparse reward
may start doing significant value updates right from the start. In other words, we
want to base updates not only on the 1-step return, but also on multiple-step returns.
For example, the update may be done toward the average of the 1-step return and the

2-step return R
(2)
t , where R

(2)
t is defined as

R
(2)
t = rt+1 + γrt+2 + γ2 max

a
Qt(st+2, a). (3.22)

Or the update may be done toward the average of the 1-step, 2-step, and 3-step return,
etc.

It may seem that the only way to do this updating toward multiple-step returns is to
postpone updates until those multiple timesteps later, and in the meantime remember
exactly which state-action pairs were visited in which order. However, it turns out that
there is a simple, elegant way to do updates toward multiple-step returns that is still
local in time. Algorithms doing this are members of the TD(λ) family of algorithms
(Sutton, 1988). In the case of Q(λ)-learning (Watkins, 1989; Sutton & Barto, 1998;
Wiering & Schmidhuber, 1998), updates are now done towards the λ-return, defined
in the following way:

Rλ
t = (1 − Λt+1)R

(1)
t + Λt+1(1 − Λt+2)R

(2)
t + Λt+1Λt+2(1 − Λt+3)R

(3)
t + . . . (3.23)

58 3. REINFORCEMENT LEARNING

where

Λt =

{

λ at = arg maxa Q(st, a)
0 otherwise

(3.24)

where 0 ≤ λ ≤ 1 is a constant that weighs the importance of long-term rewards as
opposed to short-term rewards. If λ = 0 (Q(0)-learning), this reduces to standard
Q-learning’s 1-step return. If λ = 1 (Q(1)-learning), on the other hand, the update
is done based only on actual rewards obtained during the episode. Thus, in that case
estimating Q-values is not based on other estimated Q-values; in other words, there
is no bootstrapping. In the intermediate cases, 0 < λ < 1, an average of multiple-step
returns is taken, weighted in a particular way.

The λ-return is truncated at the point where an exploring action is chosen: at 6=
arg maxa Q(st, a). This corresponds to the notion that rewards obtained after that
point no longer reflect the value of the currently estimated best policy. After all, in Q-
learning we wish to learn about the best policy, and not about a policy with exploring,
probably suboptimal actions.

Now, the beautiful property of this approach is that this update of a value toward
the λ-return can be accomplished by maintaining a simple scalar measure, called the
eligibility trace, for each parameter of the reinforcement learning agent. In tabular Q-
learning, this corresponds to one eligibility trace per state-action pair. The eligibility
trace et(s, a) (Watkins, 1989) is then defined as

et(s, a) =

{

γΛtet−1(s, a) + 1 st = s, at = a

γΛtet−1(s, a) otherwise.
(3.25)

The eligibility trace of a state-action pair can be viewed as information that says to
what extent this state-action pair can be held “responsible” for rewards obtained later
on. If the state-action pair is not visited, it decays exponentially. If it is visited, it is
increased to denote its responsibility for possible later rewards. If an exploring action
is taken, Λt = 0: the eligibility traces are reset to 0.4 e0(s, a) is also 0 for all state-
action pairs. The update rule for Q(λ)-learning, implemented using eligibility traces,
then becomes

Qt+1(s, a) = Qt(s, a) + α[rt+1 + γ max
a′

Qt(st+1, a
′) − Qt(st, at)]et(s, a) (3.26)

for all s and a. For Sarsa and actor-critic systems we have similar versions of eligibility
traces (Sutton, 1988; Sutton & Barto, 1998), and even for Q-learning there are several
variations on this version (Peng & Williams, 1996; Sutton & Barto, 1998). It is fairly
easy to show that eligibility traces as defined in this way lead, when we consider
an entire episode (or lifetime), to value updates toward the λ-return (Sutton, 1988;
Watkins, 1989; Sutton & Barto, 1998).

In other words, Q-learning using the λ-return and Q-learning with eligibility traces
can be viewed as two equivalent views on the same process. The first view, Q-learning
using the λ-return, is called the forward view because from a state this view looks

4At least in off-policy methods such as Q-learning. In Sarsa, an on-policy method, the eligibility
traces do not have to be reset with an exploring action, because the policy that the agent learns about
is the policy actually followed, including the exploring actions.

3.5. MDP SOLUTION TECHNIQUES 59

forward in time for rewards and values in the future. The second view, Q-learning
with eligibility traces, is called the backward view because from a state it looks back
to previous states and actions to see which ones led to the current situation.

The backward or mechanistic view is important because it has an elegant and
straightforward implementation, used throughout this thesis. It allows for learning
that is local in time, doing value updates as each new experience comes in. This
makes it both desirable as an artificial intelligence tool and increases its relevance for
understanding biological intelligence (and as stated in the Introduction chapter, this
thesis is interested in both). Furthermore, the backward view can give us an intuitive
understanding of how an action in a given state can be held “responsible” for outcomes
later in time.

The forward or theoretical view corresponds to a learning algorithm that is not
local in time: value updates at a particular time depend on rewards that are available
only later. However, it gives a different, more formal perspective that shows what
exactly learning with eligibility traces accomplishes. In other words, it shows what
error the value function system actually attempts to minimize.

A natural question to ask is why we would use bootstrapping methods, i.e. λ < 1,
at all. After all, non-bootstrapping methods, λ = 1, can be implemented just as
easily with eligibility traces, and they do value updates based on actually obtained
rewards rather than on other, estimated values which may be unreliable. The simple
answer is that in practice, it turns out that bootstrapping methods often outperform
non-bootstrapping methods (Sutton & Barto, 1998). Formal reasons for this are not
known. An intuitive reason may be that to the extent that estimated values go some
way toward the correct values, they provide useful “subgoal” information, even when
they themselves are still some distance away from actual rewards. Sequences of actions
reaching such high-value subgoal states could then be learned more efficiently than
when the actual rewards must have been reached. After all, between reaching the
high-value subgoal state and the actual rewards one still needs to do a number of
actions, each of which can be done incorrectly.

3.5.2.5 Evolutionary algorithms

An alternative to value functions is direct policy search. One direct policy search ap-
proach uses evolutionary algorithms to search directly in the space of policies (Moriarty,
Schultz, & Grefenstette, 1999; Moriarty & Miikkulainen, 1996; Whitley, Dominic, Das,
& Anderson, 1993; Yamauchi & Beer, 1994). A population of individual policies, en-
coded by initially random genomes, is subjected to “artificial evolution”. Individuals
that have a higher fitness (in this case, performance of the policy) than others have
a higher chance to survive and reproduce than individuals with a low fitness. During
reproduction genomes are changed in a more or less random way, changing the result-
ing individuals’ policies, and possibly improving fitness, the policy’s performance. The
idea is that thanks to this process of variation and selection, over time the fitness of
individuals in the population will improve, hopefully resulting in good or even optimal
policies.

In the simplest case, the genome consists of a string of genes (parameters), each of
which represents the action taken in a given state (Moriarty et al., 1999). The fitness

60 3. REINFORCEMENT LEARNING

of each genome in the population can simply be the average return Rt obtained by the
policy encoded by the genome. The variation during reproduction can be accomplished
by applying typical operators used in evolutionary algorithms, such as mutation and
crossover.

Mutation changes a gene with some small probability, in the above example chang-
ing the action to be taken in a given state. Crossover accomplishes recombination of
different genomes. In the example where each gene represents the action taken in a
given state, this corresponds to combination of different subpolicies into new policies.
The idea here is that subpolicies that contribute to good performance in entire poli-
cies, and that do that more or less independently from other subpolicies, will become
more prevalent in the population. Such successful subpolicies, or “building blocks” in
the language of evolutionary algorithms, may be combined with other such successful
subpolicies, leading to overall successful policies. This of course depends heavily on
these subpolicies having a more or less independent positive contribution to the overall
policy’s success. In some cases this may be a justifiable assumption. However, in many
cases, the success of a subpolicy depends strongly on other subpolicies. Consider an
example where there is one subpolicy that takes the agent close to an exit door of a
maze, and another which takes the last few actions and goes through the exit door, at
which point the agent gets a reward. Each subpolicy’s contribution to overall success
is heavily dependent on whether the other subpolicy does its job.

Genes do not have to literally represent actions taken in a given state. One alter-
native is to use the genome to represent the weights or other parameters of a neural
network that represents the policy (e.g. Whitley et al., 1993; Yamauchi & Beer, 1994).
Again, the success of this approach, at least when one uses recombination operators
such as crossover, depends on there being building blocks, in this case individual
weights or sets of weights that contribute to high fitness, more or less independently
from other weights. Given the distributed nature of neural networks and typically
strong interdependence of weights, this is often doubtful. However, the advantage of
this approach is that it can be used with arbitrary neural network architectures. A
related approach, which to the best of my knowledge is not tested in genuine reinforce-
ment learning environments, is to evolve only the general architecture of the neural
network and use another learning algorithm to learn the weights (Whitley, Gruau, &
Pyeatt, 1995; Happel & Murre, 1994).

The problems with finding building blocks when evolving neural networks have
inspired variations of the evolutionary approach. Moriarty and Miikkulainen (1996)
propose an approach based on symbiosis, called SANE. In this approach, individuals
do not represent complete neural networks (complete policies), but only parts of neural
networks. Such a part may be a hidden unit of a feedforward neural network, together
with connections from a particular input and output unit and corresponding weights
(SANE, Moriarty & Miikkulainen, 1996). In the fitness computation phase, a subset of
the individuals is selected stochastically and combined into one neural network. The
neural network represents the policy, and the policy is tested in the environment for
some time to compute the policy’s fitness. This is done a number of times for different
combinations of individuals, and each individual’s fitness is computed as the average
fitness of the different complete neural networks in which they participated. The idea is
that different individuals, i.e. different parts of neural networks, will take on different,

3.5. MDP SOLUTION TECHNIQUES 61

complementary roles; and thus will serve as building blocks which can be evolved more
or less independently and combined into overall successful neural networks.

3.5.2.6 Classifier systems

Classifier systems (Holland, 1975; Goldberg, 1989; Wilson, 1994; Baum, 1999; Kwee,
Hutter, & Schmidhuber, 2001) are a mixture of evolutionary algorithms, which are
prototypical direct policy search methods, and a kind of value functions. The agent’s
policy is represented by a set of classifiers, which correspond to rules mapping partic-
ular observations to actions. A classifier has an associated strength, which has certain
similarities to a state-action value. When an observation comes in, the classifiers
whose observation conditions match this observation become active. Each active clas-
sifier makes a bid to be executed which is equivalent to its strength. One of the bidding
classifiers is executed, with a probability proportional to its bid. When a direct reward
is obtained, the classifier that led to this reward has its strength increased. However,
this classifier also “pays” part of its own strength to classifiers that preceded it; those
classifiers do the same, etc. This is the way classifier systems attempt to take care of
temporal credit assignment.

(Dorigo & Bersini, 1994) showed that in certain restricted cases, classifier systems
are equivalent to Q-learning. In recent years classifier systems have moved even more
towards other reinforcement learning algorithms, by using Q-learning like update rules
(Wilson, 1998). The main difference with algorithms such as Q-learning, then, lies in
the way the policy’s rules, the classifiers, are modified. Classifiers are modified as in
other evolutionary algorithms (see above), by mutation and crossover. Mutation, in
this case, randomly changes a classifier’s observation condition or its action. Crossover
can combine the observation conditions (which correspond to observable “features”
in the environment) of different classifiers into a new classifier, as well as change
associated actions. Again, to the extent that building blocks can be found in the
genome representation, the evolutionary process can develop these building blocks
more or less independently and combine them into overall successful classifiers using
crossover.

3.5.2.7 Direct policy search based on the success story algorithm and
metalearning

An entirely different class of direct policy search methods was developed by Schmidhu-
ber, Zhao, and Wiering (1996), Schmidhuber, Zhao, and Schraudolph (1997), Zhao and
Schmidhuber (1998), and Schmidhuber and Zhao (1999). A key idea in this approach
is to blur the distinction between actions, internal state transitions, and learning. The
policy’s “actions” may be “normal”, outward actions in the environment, but they
may also be actions that change the agent’s internal state, or actions that change the
policy itself (thus, here we have an instance where the distinction between internal
state and parameters becomes unclear). Thus, the system may execute “learning ac-
tions” that correspond to policy modifications. What the learning actions amount to,
in terms of how and what they actually change internally, can also be part of the policy.

62 3. REINFORCEMENT LEARNING

This means that if learning actions change those parts of the policy, they change the
learning algorithm itself! In this way, the system may “learn to learn”: metalearning.

At certain so-called “checkpoints”, the success story algorithm is invoked. This
algorithm evaluates policy modifications that have been done since the last checkpoint.
If these policy modifications have not led to an increase in average reward per timestep,
they are undone (this of course requires that policy modifications and previous policies
have been stored). Furthermore, the previous checkpoint is removed. This means that
now the policy modifications made just before that previous checkpoint are evaluated
by the success story algorithm, and they in turn can be removed if they turn out to
be bad in light of the new evidence. In this sense, no previous policy modification is
sacred. If the success story algorithm reveals that in the long run a policy modification
made long ago does not contribute to performance improvement, either because the
policy modification was detrimental in terms of long-term reward, or simply because
the environment has changed, it can be removed. Interestingly, the decisions when
to invoke the success story algorithm, i.e. the checkpoints, can be part of the policy
and can be learned too. For example, the system may be able to learn that in very
stochastic environments it is better to wait a longer time to the next checkpoint, so as
to get a more reliable estimate of the policy improvement.

An important advantage of this approach is that this approach makes very few
assumptions about the environment, about the type of policy, or even about the mo-
ments at which the policy should be evaluated. This means it can be applied in
situations where the assumptions made by other, less general methods are violated.
Furthermore, the metalearning capacity has the potential, in principle, to let an agent
develop learning algorithms itself that are well-suited to the tasks typically faced by
the agent. This amounts to creating learning algorithms that have just the right bias
for the task at hand.

3.5.2.8 Exploration issues

All these model-free methods try to improve the policy by deviating from the current
policy (temporarily or not) and evaluating the consequences of these deviations. This
is the process of exploration. In most cases, small changes are made to the policy,
such that not all that has been learned so far is thrown away, but instead exploration
helps to improve the current policy. The challenge is to explore sufficiently but not
too much.

One simple and common exploration strategy is to normally choose the action that
currently seems best in a given state (“greedy” action selection), but to choose a ran-
dom different action with some small probability ε. This is called ε-greedy exploration.
Another common, slightly more sophisticated strategy is to make the probabilities of
different actions dependent on their computed “preferences” or values in the given
state, e.g. using the Boltzmann (or Gibbs) distribution. In Q-learning, for instance,
the probability p(s, a) of each action a in state s is then computed according to

p(s, a) =
eQ(s,a)/τ

∑M
m=1 eQ(s,am)/τ

(3.27)

3.5. MDP SOLUTION TECHNIQUES 63

where M is the number of possible actions and τ is the so-called temperature parame-
ter. The higher the temperature, the flatter this distribution, and the more exploration
the method does. In the limit, as τ → 0, action selection becomes greedy. Even with
constant τ , as learning proceeds and the Q-values become increasingly different from
each other, exploration gradually decreases and exploitation of the learned policy grad-
ually increases. Boltzmann exploration and variations are used throughout this thesis.

The amount of exploration may also be decreased explicitly with time. For instance,
ε in ε-greedy exploration may gradually be made smaller, or τ in Boltzmann exploration
may gradually be made smaller. This reflects the intuition that the learned policy
will likely improve significantly over time, such that much exploration is no longer
necessary. Furthermore, decreasing exploration with time is usually necessary for
proofs of convergence of reinforcement learning algorithms.

More sophisticated still is to let the amount of exploration depend on statistics
associated with states or actions. The idea behind this is that you want to focus
exploration on those states and actions about which you are uncertain or that are
somewhat promising with respect to reward. Exploration mechanisms that do this do
directed exploration, as opposed to the undirected exploration techniques described
above.

For example, exploration of an action may depend on how often an action has been
tried out in the same situation in the past (Sutton, 1990; de Jong, 1997). Or explo-
ration may depend on a confidence interval associated with the expected returns from
a state, a technique known as exploration based on Interval Estimation (Kaelbling,
1990). The directed exploration mechanism may itself be a learning method, in which
case it is called adaptive exploration. For instance, it may learn to predict the next en-
vironmental state, and correlate exploration with the prediction error (Schmidhuber,
1991b; Thrun & Möller, 1992).

3.5.2.9 Generalization

In most realistic tasks, there are many states and possibly many actions. States and
actions may even be continuous. In these cases, the agent cannot possibly gain suffi-
cient experience with every single state-action pair in a limited amount of time. We
want the agent to generalize, that is, to use its experience with a limited number of
experienced states and actions in new states and actions. In most cases, generalization
over states boils down to assuming that states that look similar, i.e. in terms of observa-
tions, are often similar in value. Likewise, generalization over actions usually assumes
that similar actions (say, similar action vectors) have similar effects. Generalization
over actions has not been studied extensively in the reinforcement learning literature,
but since it presumes high-dimensional and/or continuous action vectors, actor-critic
architectures (Gullapalli, 1991) or backpropagation through a model (Werbos, 1990)
are more natural choices than, for instance, Q-learning and Sarsa (but see Baird &
Klopf, 1993). In the remainder of this chapter and this thesis, we will limit ourselves
to generalization over states, and not consider generalization over actions.

Of course, generalization is not a problem only for reinforcement learning. It has
been studied extensively in the context of supervised and unsupervised learning. In

64 3. REINFORCEMENT LEARNING

fact, many of the approaches to generalization in reinforcement learning simply apply
methods from supervised or unsupervised learning to reinforcement learning.

A simple, classical approach is to discretize the state space into (hyper-)cubes
of equal size, so-called BOXES, and treat all observations within a box as a single
state (Michie & Chambers, 1968), after which we can apply a standard reinforce-
ment learning algorithm based on limited sets of states. This is a state aggregation
method. Classifier systems use a variation of state aggregation: the classifier’s obser-
vation condition, which checks a number of observation features, can contain so-called
“wildcards”, meaning that the associated observation features can take on any value
and still satisfy the observation condition.

State aggregation methods decompose the state space into discrete regions, usually
with boundaries perpendicular to the observation dimensions. Each discrete region
corresponds to a separate discrete state. For this reason, state aggregation methods
cannot learn a smooth function over the state space, whereas in many cases such a
smooth function may be preferable. For instance, it will in many problems be reason-
able to assume that a state intermediate between two other states has an intermediate
value, rather than the exact same value as either one or the other state.

An approach that can learn such smooth functions over the state space, studied by
many researchers, uses some kind of parameterized function approximator to approx-
imate the policy or value function. Usually, the function approximator’s parameters
wi are learned using a gradient descent method. This is also the approach taken in
this thesis. The input to the function approximator is an observation vector (and pos-
sibly an action vector), and the output represents policy actions, state-action values
(Q-learning, Sarsa), or state values (critics).

The function approximator will generalize to new, unseen states. However, there
is no guarantee that the assumption is correct that similar-looking states have similar
values or should lead to the same actions. Furthermore, function approximators can
sometimes generalize in unpredictable ways, and the more powerful and complex ones
can get stuck in local optima with gradient descent learning. For these reasons, there
is rarely a guarantee of finding the optimal policy or the optimal value function over
the entire state space. Nevertheless, in many cases “satisficing” performance can be
achieved in these cases where exact solutions are out of the question anyway. Bert-
sekas and Tsitsiklis (1996) discuss the issues of reinforcement learning combined with
function approximation at length, especially from a formal perspective.

In the case of Q(0)-learning with a function approximator trained using gradient
descent, the update for each parameter wi of the function approximator becomes

wi,t+1 = wi,t + α[rt+1 + γ max
a

Qt(st+1, a) − Qt(st, at)]
∂Qt(st, at)

∂wi,t
(3.28)

where α is again a learning rate parameter. If the function approximator has learned a
sufficiently close approximation to the optimal values Q∗(s, a), we can simply compute,
using the function approximator, Q(s, a) for each of the possible actions in the current
state and greedily select the action that has the highest Q(s, a). Note that standard
table-based Q-learning can be viewed as a special case of this equation, if we consider
the Q-values stored in the table as the parameters wi.

3.5. MDP SOLUTION TECHNIQUES 65

What ∂Qt(st,at)
∂wi,t

looks like and the complexity of its computation depend of course

on the function approximator. Simple linear function approximators have been used,
where the value function is just a weighted sum of independent observation features,
all of which can be either “on” or “off” (Sutton & Barto, 1998). Somewhat more
complex variations of linear function approximators use overlapping tilings (“recep-
tive fields”) covering the state space, such that each point in the state space gives
rise to a distributed, “coarse coded” feature representation. To this class belong
CMACs, e.g. Watkins (1989), Sutton (1996), Kretchmar and Anderson (1997), and
RBFs, e.g. Kretchmar and Anderson (1997), Acharyya (2000)).

Just as in supervised learning, there is a limit to the complexity of the function as-
sociated with the reinforcement learning algorithm that linear functions can represent.
For this reason, many authors have used more complex function approximators, such
as multilayer feedforward neural networks. Multilayer feedforward neural networks
have been used to represent the value function of Q-learning (Lin, 1992; Anderson,
1993; Crites & Barto, 1996; Humphrys, 1997; Abul, Polat, & Alhaji, 2000; ten Hagen
& Kröse, 1998), the value function of Sarsa (Rummery & Niranjan, 1994), the state
value function of a critic (Tesauro, 1992, 1994), and to represent both actor and critic
(Barto et al., 1983; Anderson, 1987). Tesauro’s (1992, 1994) work, a backgammon
player known as TD-gammon, is one of the most impressive and well-known appli-
cations in reinforcement learning. TD-gammon consists of a multilayer feedforward
neural network whose input is a representation of the board position and whose out-
put represents the value of that board position. A function approximator is needed
because of the huge number of possible board positions in backgammon. The value
is learned with standard TD(λ)-learning, using experience gathered by playing many
games against itself. In this way, TD-gammon learned to play backgammon at a world
class level.

As discussed above, neural networks have also been used as the policy represen-
tation in direct policy search methods, such as backpropagation through a model
(Schmidhuber, 1991c), and in certain approaches based on evolutionary algorithms
(Whitley et al., 1993; Yamauchi & Beer, 1994; Moriarty & Miikkulainen, 1996). In
those direct policy search methods, too, one of the main reasons for turning to neural
networks was generalization.

Even with simple, linear function approximation, it is possible to construct re-
inforcement learning tasks where TD-learning and Q-learning diverge (Baird, 1995;
Tsitsiklis & Roy, 1997; Boyan & Moore, 1995). That is not particularly promising
with respect to value-function based reinforcement learning with function approxima-
tors in general. However, as of yet it is completely unclear how serious the convergence
problems are in practice. It may be that the constructed problematic tasks are not
typical for most reinforcement learning tasks, or that different or more sophisticated
types of reinforcement learning algorithms or function approximators do not suffer as
much from these problems (Baird, 1995; Sutton & Barto, 1998; Sutton et al., 2000;
Anderson, 2000). In any case, these are important issues to resolve if one wants to use
reinforcement learning reliably in large tasks.

It is also possible to use eligibility traces with function approximators, for the
same reasons as in the discrete, table-based case. We then need a separate eligibility
trace ei for each parameter wi (Sutton, 1989). For instance, a parameter update for

66 3. REINFORCEMENT LEARNING

Q(λ)-learning using a function approximator trained by gradient descent is

wi,t+1 = wi,t + α[rt+1 + γ max
a

Qt(st+1, a) − Qt(st, at)]ei,t (3.29)

where

ei,t = γΛtei,t−1 +
∂Qt(st, at)

∂wi,t−1
. (3.30)

Thus, in this case the eligibility trace ei says to what extent the corresponding param-
eter wi is responsible for possible rewards later on. The function approximator still
does gradient descent, but the error surface is now defined by the λ-return rather than
the 1-step return.

Ideally, we want strong generalization in areas of the state space where that is pos-
sible, while making finer distinctions between states where that is necessary. Methods
designed to accomplish that are called adaptive resolution methods. A class of adap-
tive resolution methods based on state aggregation, proposed by several researchers
(Chapman & Kaelbling, 1991; McCallum, 1995; de Jong, 1999), keeps statistics about
returns obtained from different state-action pairs. These methods start out by assum-
ing that the whole state space, perceived by the agent through an observation vector
of multiple features, corresponds to a single state. If the statistics, gathered during
exploration, indicate that there are significant differences in returns for different re-
gions within a single observation dimension, this observation dimension is split into
different regions, thus making a finer distinction in the state space. Because splitting
is done on the basis of differences in returns, these methods obtain a higher resolution
in areas of the state space where that is “important”.

A disadvantage of these methods is that they only consider single dimensions at
a time (but see McCallum, 1995 for a very limited extension). Therefore, they have
trouble making distinctions when different observation dimensions need to be consid-
ered in combination, such as parity problems (of which XOR is the simplest case).
Note that multilayer feedforward neural networks, in contrast, can learn to make such
distinctions (see Rumelhart et al., 1986, and chapter 4). In fact, multilayer feedforward
neural networks trained with gradient descent can also be viewed as adaptive resolu-
tion methods. After all, they form decision boundaries in their input space based on
the errors in the outputs. Thus, they will attempt to form “useful” decision boundaries
(without a guarantee of optimality), treating areas of the input space as equivalent
where possible (low errors), while making finer distinctions in the input space where
necessary (high errors). This is reflected in the hidden unit representation, which typi-
cally has more units dedicated to areas of the input space that are “important” in this
sense (Rumelhart et al., 1986). In the reinforcement learning case, similar states which
can safely be generalized over will lead to small errors (e.g. small temporal difference
errors) in the neural network, whereas similar states which cannot be generalized over
will lead to large errors. Therefore, the neural network that is used as the reinforce-
ment learning algorithm’s function approximator will likely realize adaptive resolution
implicitly. This is one of the reasons why this thesis uses neural networks.

Rosen, Goodwin, and Vidal (1991) and Kröse and van Dam (1992) present a vari-
ation of this idea, based on Kohonen neural networks (Kohonen, 1995) rather than

3.6. POMDP SOLUTION TECHNIQUES 67

perceptron-like feedforward neural networks. In these studies, input vectors are classi-
fied onto winning neurons in the Kohonen network. The classification in the Kohonen
network is used as the input to an actor-critic system. As is normally the case in Ko-
honen networks, in addition to moving the weight vector of the winning neuron in the
direction of the input vector, the weight vectors of neighboring units also move toward
the same input vector. However, in these particular studies, this effect is larger with
larger temporal difference errors. This results in more neurons in the Kohonen map
being assigned to those states that are important in the sense that they are associated
with large temporal difference errors, in this way accomplishing adaptive resolution in
the state space.

3.6 POMDP solution techniques

3.6.1 Internal state

In MDPs the agent’s observation is equivalent with the environment’s state. Therefore,
all MDP solution techniques discussed above learn a policy which maps observed states
to actions. In a POMDP, such a memoryless or perception-based policy will in general
not suffice, and the agent must learn an internal state-based policy. Again, approaches
doing that can be divided into model-based approaches, where the state transition
function, the reward function, and the non-trivial observation function are known,
and model-free approaches.

3.6.2 Model-based POMDP solution techniques

3.6.2.1 Exact POMDP solutions based on belief states and PWLC value
functions

If an exact model of the environment is available, an exact solution to POMDPs can,
in theory at least, be computed. Like dynamic programming techniques for MDPs,
the model-based exact POMDP solution techniques consider the problem not so much
as a learning problem—there is no trial and error, and no exploration/exploitation
dilemma—but rather as a (probabilistic) planning problem. The objective is to com-
pute a plan, formulated as a policy saying what to do in what situation. This
computation can be divided into two elements: belief state computation and value
function computation based on belief states.

The belief state component outputs a belief state, a (Moore) internal state which
says what state the agent believes it is in. It does not just indicate the most likely state,
but rather the entire probability distribution over all possible environmental states.
Thus, the agent’s uncertainty is explicitly represented and taken into account. The
belief state is computed based on the previous belief state, the action and the obser-
vation, and the model’s state transition and observation probabilities, using Bayesian
statistics. Given an old belief state b, an action a, and a new observation o, the new

68 3. REINFORCEMENT LEARNING

belief of being in state s′, b′(s′), is computed according to

b′(s′) = Pr(s′ | o, a, b)

=
Ps′

o

∑

s∈S Pa
ss′b(s)

∑

s′′∈S Ps′′

o

∑

s∈S Pa
ss′′b(s)

.
(3.31)

The belief of being in a state s′ is updated proportionally to the probability of seeing the
current observation given the state s′ and to the probability of arriving in this state s′

given the action and our previous belief, probabilities which are given by the model. For
example, consider a robot application where the robot is initially completely uncertain
about its location. Seeing a door may, as specified by the model’s Ps′

o , occur in three
different locations. All probability mass then collapses into these three states. Suppose
that the agent takes an action, and now observes a T-junction. It may be that given
this action, only one of the three possible states can lead to a new state in which a
T-junction can be observed. We now know with certainty which state the agent is
in. In this example the uncertainty in the belief state completely disappeared after a
number of observations and actions. In general however, the uncertainty may increase
or decrease, depending in large part on how specific the incoming observations are.

The belief state is a sufficient statistic, which means that we cannot do better even
if we remembered the entire history of observations and actions. This implies that
we have now transformed the POMDP into an MDP. However, it is an MDP with a
continuous state space, because the belief state is a vector of continuous probabilities.

The belief state is the input to the second component of the method, the value
function computation. The belief state is a point in a continuous space of N − 1
dimensions (the probability of the last state N is determined by the probabilities of
the other states). Thus, the value function must be defined over this N−1 dimensional
continuous space. This renders direct application of dynamic programming techniques,
which assume discrete sets of states, impossible. However, it is known that the value
function is subject to various constraints, which can be exploited by solution methods.
Specifically, the value function either is or can be approximated arbitrary closely by
a piecewise linear and convex (PWLC) function (Kaelbling, Littman, & Cassandra,
1998). Figure 3.6 illustrates this in a 1-dimensional belief state space (2 states).

The convex nature makes some intuitive sense if one considers that being completely
certain that the agent is in a particular state should always have a higher value than
being fairly certain that the agent is in that state. After all, you can choose more
appropriate actions if you are certain about what situation you are currently in. For
this reason, actions in the optimal policy can sometimes be directed solely toward
decreasing the uncertainty. This means that the optimal agent may sometimes take
an information-gathering action: look around for a certain landmark, for instance. An
elegant property of this approach is that such information-gathering actions are not
distinguished from conventional actions; both are associated with values and can be
incorporated in the optimal policy.

Now the value function defined over the continuous belief state space can have
a finite representation, by representing each of the linear segments of the PWLC
function. The PWLC value function depends on the number of actions one wants
to take, or, in planning terms, the horizon of the planning process. If the agent has

3.6. POMDP SOLUTION TECHNIQUES 69

V

b(s1)0 1

policy tree 1

policy tree 2

policy tree 3
Figure 3.6: Example of a PWLC value function in a 1-dimensional belief state space
(2 states). Each linear segment corresponds to a policy tree which is optimal for that
part of the belief state space.

to take only one action, the value depends only on the direct reward that can be
obtained after this action. If the agent takes two actions, the value depends also on
rewards obtainable from the next state, etc. Using a variation of value iteration, the
horizon 2 value function can actually be computed on the basis of the horizon 1 value
function, etc. In this way, the PWLC value function for a certain desired horizon can
be computed iteratively.

Each of the linear segments in the PWLC value function can be understood as
corresponding to a “policy tree”, which determines the first action to be taken given
that the agent is in this segment of the belief state space, as well as the actions to be
taken next, depending on the different possible observations that can occur at the next
timesteps, up until the horizon of the planning process. This gives some intuition for
the most important problem with this exact solution method: the number of linear
segments in the optimal PWLC value function may grow superexponentially with the
horizon of the planning process! However, in many cases a large number of possible
policy trees are completely dominated by others. In terms of the PWLC value function:
for many possible linear segments there are no points in the belief state space where
their values are the highest of all linear segments. Therefore, their corresponding policy
trees can be pruned away. Modern exact solution techniques (Cheng, 1988; Cassandra,
Littman, & Zhang, 1997) boil down to cleverly generating only policy trees that have
some hope of surviving in the final value function and cleverly pruning away hopeless
ones. Still, for problems larger than very small ones (consisting of only a handful of
states, observations, and actions), these exact solution methods are not practical.

70 3. REINFORCEMENT LEARNING

3.6.2.2 Approximations based on belief states

The main bottleneck in computing exact optimal solutions for POMDPs (given a
model) lies in the computation of the horizon-n value function, and not so much in the
belief state computation. Several authors have therefore suggested to keep the belief
state computation element, and to approximate the value function heuristically.

One approach is to truncate the value iteration process long before actual conver-
gence. The idea is that in many cases a near-optimal policy may already be derived
from a suboptimal value function (Littman, Cassandra, & Kaelbling, 1995a, 1995b).

Another approach is to first solve the POMDP’s underlying MDP, using standard
dynamic programming techniques. This is much more feasible than solving the full
POMDP, in terms of computation time. The Q-value for each action a in a belief state
b can then be estimated as a simple weighted sum of the MDP’s Q-value:

Q(b, a) =
∑

s∈S

b(s)QMDP(s, a). (3.32)

One problem with this approach is that one loses the advantage (of exact solution
methods) that optimal actions may sometimes be directed towards gathering infor-
mation and decreasing uncertainty about the current state. In the underlying MDP,
such information gathering is never necessary, so a corresponding action can never get
a value because of that. In other words, the optimal value function of the POMDP’s
underlying MDP can deviate in important ways from the optimal value function of the
POMDP. For the same reason, using the value function of the underlying MDP can
lead to situations where the agent’s actions causes it to get stuck in a loop (Littman
et al., 1995a).

Yet another approach is to combine belief states with a variation of Q-learning,
which is a model-free technique originally developed for MDPs. This approach basi-
cally treats the belief state as a distributed feature representation of the environment’s
state, very similar to what researchers have done in model-free reinforcement learning
aimed at generalization over states (see above). Two types of simple, linear value
function approximations have been tried, where each state has an associated parame-
ter, and the parameters are trained using gradient descent-like procedures (Chrisman,
1992; McCallum, 1993; Littman et al., 1995a). However, while this linear approach
may work in many cases, it can also lead to arbitrarily poor performance, because its
representation of the value function can never be sufficiently complex to accurately
approximate the optimal PWLC value function (Littman et al., 1995a; Hauskrecht,
2000).

Even in cases where the environment has many or continuous states, such as robot
domains, belief state estimation can still be done relatively reliably and efficiently,
such that it can be combined with value function approximation. An interesting re-
cent technique in this context is particle filtering (a.k.a. condensation algorithms,
Monte Carlo localization). This technique (e.g. Dellaert, Fox, Burgard, & Thrun,
1999; Thrun, 2000; Vlassis, Terwijn, & Kröse, 2002) distributes a limited set or popu-
lation of particles across the continuous environmental state space. Each particle has
an associated measure of likelihood given the action and new observation, called the
importance factor, which is updated using a variation of the Bayesian rule described

3.6. POMDP SOLUTION TECHNIQUES 71

above. At the next timestep, a new population of particles is computed based on
the previous population. However, the probability of particles being incorporated in
the new population is proportional to their importance factors (note the similarity to
evolutionary algorithms). In this way, the density of particles comes to represent the
probability distribution of states: an estimated belief state. This estimated belief state
can subsequently be used for value function approximation (Thrun, 2000).

3.6.2.3 Backpropagation through a model

The backpropagation through a model approach, described above for MDPs, can be
applied to POMDPs with relatively few conceptual changes (Schmidhuber, 1991c).
However, the learning task for the controller is now significantly more difficult. This
difficulty stems from the fact that the state is not given now. Therefore, the controller
can no longer simply learn a mapping from observations to actions. Instead, it must
learn a mapping from inferred states to actions.

It is natural to use the state as inferred by the model as input to the controller
(see Schmidhuber, 1992a for a similar idea in a different context). The controller
can then learn the mapping from the inferred state to actions, again based on errors
backpropagated through the model. Or the controller can infer the environmental
state itself, if it is also a recurrent neural network. These ideas carry through to
backpropagation through a critic (Schmidhuber, 1990).

3.6.2.4 Learning a model

As in MDPs, when the model of the environment is not given, the agent can learn a
model and then apply any of the methods described above. In POMDPs, this learning
task is significantly harder, however. The model can no longer learn a mapping from
current state (observation) and action to next state (observation) and reward. Instead,
it must learn, either explicitly or implicitly, to infer the state on the basis of the
sequence of observations and actions, and use the inferred state as the basis for its
predictions of the next observation and reward.

One example of this strategy is the work of Schmidhuber (1991c), described in the
previous section on backpropagation through a model. The model is learned using
supervised learning of a fully recurrent neural network. The network is trained to pre-
dict the next observation and reward (and pain), and learns to infer the environment’s
state implicitly, using BPTT or RTRL.

In Lin and Mitchell (1993), a model is also learned using supervised learning of
a recurrent neural network, in this case an Elman network. However, in this work
the recurrent neural network model is not used for backpropagation through a model.
Instead, the model’s internal state, which represents the environmental state, is input
to a separate feedforward neural network trained to approximate the Q-function using
Q-learning.

Another example of the strategy of learning a model has also been mentioned
before: Chrisman’s (1992) Perceptual Distinctions method learns a model of the en-
vironment using a variation of Hidden Markov Modeling (HMM) techniques. The
system starts out using a model with two states, and adds states so as to improve its

72 3. REINFORCEMENT LEARNING

predictions of next observations and rewards. A probability distribution over these
states is maintained: a belief state. A linear Q-learning rule is applied to the belief
state (see section 3.6.2.2).

McCallum’s (1993) Utile Distinction Memory also attempts to learn a model of the
environment using a variation of HMM techniques. However, the important variation
here is that states are added only if that helps to predict the expected return, rather
than next observations and rewards. Thus, no attempt is made to learn a full-blown
predictive model independent of expected returns. Instead, the model is “utility-
based”: states are only distinguished if that is relevant with respect to returns. In a
way, this is therefore an intermediate method between model-based approaches and
model-free approaches. The algorithm that is used to accomplish this basically looks
at statistics on expected returns maintained at the incoming transitions of each model
state. If the statistics indicate significantly different returns on the incoming transi-
tions of a model state, this means that this particular model state cannot correspond
to just one environmental state, and the model state is split. Similar to Chrisman
(1992), something like a belief state, i.e. a probability distribution over the model
states, is computed, and linear Q-learning is applied to this belief state.

3.6.3 Model-free POMDP solution techniques

3.6.3.1 Learning without a model

As in MDPs, when the model of the environment is not given, the agent can either
learn a model, or attempt to learn a satisficing policy without learning a model.

This section discusses approaches that follow the latter strategy when no model is
given: they attempt to learn internal state-based policies without learning a predictive
model of the environment. In most of these approaches, the basic idea is that it
may be possible to infer (something like) the environmental state directly from the
experienced sequence of observations, actions, and rewards, without a model. What
the agent must effectively learn (or have built in) is some kind of algorithm that
stores relevant information from the experienced sequence in a short-term memory.
If this algorithm functions properly, this information constitutes a (Mealy) internal
state which together with the current observation yields a Markovian environmental
state signal. This Markovian environmental state signal can, as we know, directly be
mapped to actions to obtain an optimal policy, using model-free learning techniques.

3.6.3.2 Reactive policies

Many model-free approaches to the problem of partial observability use internal state,
but another approach to the problem is to simply ignore it. In some cases, a reac-
tive policy mapping observations to actions can have satisficing performance (Littman,
1994; Loch & Singh, 1998). However, this approach can also have arbitrarily bad per-
formance, when two states associated with the same observation require very different
actions. It can also easily cause the agent to get stuck in a loop, for instance when
one of the perceptually aliased states leads to a dead end when using the action that
is optimal in the other perceptually aliased state.

3.6. POMDP SOLUTION TECHNIQUES 73

The latter problem can in some cases be alleviated by using explicitly stochastic
reactive policies rather than deterministic ones (Singh et al., 1994). In perceptually
aliased states the agent can then learn to take one action with some probability, and
another action with the remaining probability, thus providing a mechanism to get out
of loops. However, performance can still be arbitrarily bad, for instance when one of
the stochastically chosen actions leads to severe penalties in one of the perceptually
aliased states.

3.6.3.3 Finite history windows

Possibly the simplest model-free approach which directly uses the experienced history
to create an internal state is the approach that adds to the agent’s normal observa-
tion a finite history window of the n most recent observations and actions. This is a
well-known approach in supervised learning and control theory, where it is sometimes
referred to as a tapped delay line approach. If the delay lines contain only past obser-
vations, Williams (1990) calls this a “conservative” approach. If the delay lines contain
past observations and past actions, Williams (1990) calls this a “liberal” approach.

In reinforcement learning, using a finite history window corresponds to assuming
that the POMDP can be modeled as an n-order MDP, a POMDP in which the state
is always disambiguated by looking at the n previous observations and/or actions.
The finite history window approach has been studied by (Lin & Mitchell, 1993, 1992),
who used multilayer feedforward neural networks with delay lines to approximate Q-
learning’s value function. In cases where the POMDP can be viewed as an n-order
MDP with limited n, this approach is simple and effective. With larger n, that is,
longer-term dependencies between past events and current predictions or actions, this
approach quickly becomes infeasible, however. The difficulty lies not only in deter-
mining the proper n, but also in the rapidly increasing number of weights (in the case
of neural networks) associated with all extra input lines. The problem of long-term
dependencies is more extensively discussed in chapter 6.

It is easy to construct POMDPs which can never be solved using a finite history
window. Consider a task (Williams, 1990) where the agent first sees a symbol, say
either A or B, then has to wait for an arbitrary amount of time, until it sees another
symbol, Z. At this point, the agent has to do action 1 if it has previously seen an
A to obtain a reward, and action 2 if it has previously seen a B. Effectively, the
agent has to implement a flip-flop, setting one bit of short-term memory to either 0
or 1, ignore all irrelevant events, and use its short-term memory when it sees Z. Even
though this task requires only one bit of short-term memory, it can never be solved
by a finite history window approach, because the time between A/B and Z can be
arbitrarily long. In the terminology of Williams (1990), this task has strongly hidden
state, as opposed to the weakly visible state which can be solved using a finite history
window. Strongly hidden state requires a “radical approach” (Williams, 1990), where
the algorithm that controls the internal state is more complex than any history window
approach can provide.

74 3. REINFORCEMENT LEARNING

3.6.3.4 Tree-based variable depth history windows

A more sophisticated variation of the finite history window approach is to use a vari-
able depth history window (Utile Suffix Memory, McCallum, 1995, U-tree, McCallum,
1996), which allows the history window’s depth to be different in different parts of the
environmental state space.

These algorithms basically extend Chapman and Kaelbling’s (1991) adaptive reso-
lution method, discussed above in the context of generalization (section 3.5.2.9), from
the spatial to the temporal domain. The system starts out with zero history. Like
Chapman and Kaelbling’s (1991) adaptive resolution method, statistics are gathered
on expected returns for certain observation dimensions hypothesized to be relevant
for the state representation. However, now this concerns an observation dimension
(or action) from one timestep ago, rather than the current timestep. If, within that
observation dimension from one timestep ago, different regions lead to significantly dif-
ferent returns, that dimension is split, and this distinction becomes part of the state
representation. The system can build on the 1-step history, and subsequently look
at observation dimensions or actions 2 timesteps ago, to determine if splitting them
is useful, etc. In this way, a “history tree” can be built which has variable depth in
different dimensions of the observation and action vectors.

Note that this method suffers from a similar problem as Chapman and Kaelbling’s
(1991) adaptive resolution method: it cannot easily discover combinations of feature
distinctions that may be useful for predicting returns. Thus, temporal parity prob-
lems would be difficult for this method. However, (McCallum, 1995, 1996) solve this
problem to a limited extent by allowing the depth of the variable history window to
increase by more than one step at a time (this does, of course, have repercussions for
the amount of computation needed to investigate hypothesized distinctions).

U-tree (McCallum, 1996) also realizes adaptive resolution in the spatial domain, on
the current observation. The idea is that the agent can “have both too much sensory
data and too little sensory data at the same time” (McCallum, 1996). Too much
sensory data is handled by generalization over the current observation vector, too little
sensory data is handled by using the history of observations and actions. The elegant
thing is that both tasks, often seen as opposite problems, are performed by one and the
same adaptive resolution mechanism, and a single, “useful” state representation comes
out of this mechanism. This state representation can be associated with Q-values, and
the Q-values can be learned using Q-learning or, in McCallum (1995, 1996), value
iteration5.

3.6.3.5 Nearest Sequence Memory

Another variation of the history window approach is the Nearest Sequence Memory
(NSM, McCallum, 1997). The basic idea of disambiguating states using the history of
observations and actions is the same. However, in NSM all the experiences of the agent

5Value iteration is a model-based method, but the variable depth history window approach is
discussed in the context of model-free methods because it is so closely related to fixed size history
window approaches, and as with (McCallum, 1993), this method does not lead to a complete predictive
model of the environment but only to state representations distinguishable in terms of expected
returns.

3.6. POMDP SOLUTION TECHNIQUES 75

are explicitly stored, and whenever the agent is about to take an action, it looks in the
stored experiences for histories of observations and actions that are most similar to the
currently experienced history of most recent observations and actions. Those similar
histories are considered the k nearest neighbors. The current state’s Q-values are
simply the averaged Q-values of the k nearest neighbors. As in regular Q-learning, the
agent simply chooses the action with the highest Q-value as computed in this way (or
it explores with some probability). Regular Q-learning is used to update the Q-values
of the nearest neighbors that “voted” for the chosen action. Note how this algorithm
can be considered the POMDP equivalent of the k-nearest neighbor algorithm studied
in pattern recognition.

Despite its simplicity, this algorithm can work surprisingly well and learn quickly. It
is not very robust in the face of noise, however (McCallum, 1997). Of course it also has
large memory requirements if the number of experiences keeps growing. Furthermore,
note that it will have difficulties if the last n observation-action pairs are irrelevant or
even misleading with respect to the currently best action, but the observation-action
pair n + 1 timesteps ago is relevant (see chapters 6 and 7 for examples of such tasks).
NSM can also be sensitive to sample densities (McCallum, 1997), i.e. the prevalence
of certain arbitrary experiences during exploration. For instance, if the agent has
experienced early on that a goal can be reached using some detour, it may tend to
keep using that detour, because its previous experiences were like that. However,
other model-free methods may similarly get stuck in such suboptimal, but satisficing
behavior.

3.6.3.6 HQ-learning

In certain restricted cases, a POMDP can be hierarchically decomposed into a set of
“pseudo-Markovian” tasks, each of which can be solved by a separate reactive policy
mapping observations to actions (Wiering & Schmidhuber, 1997).

For example, suppose the task is to navigate to a certain goal position. It may be
that this is impossible for a pure reactive policy, because it requires the agent to turn
right at the first T-junction and left at the second T-junction, and the T-junctions
cannot be distinguished on the basis of how they look (a POMDP). However, it may
be possible to have a combination of two reactive policies that does solve the task: one
that leads to the first T-junction and then turns right, and one that subsequently takes
over and turns left at the second T-junction and proceeds to the goal. Hierarchical
Q-learning (HQ-learning) can learn such combinations of reactive subpolicies (Wiering
& Schmidhuber, 1997).

The number of reactive subpolicies is fixed a priori, and subpolicies are executed
strictly sequentially. The elegant property of HQ-learning is that it can identify the
points at which there should be a switch to the next subpolicy, and make that point’s
associated observation a subgoal for the previous subpolicy. This is done by learning
for each subpolicy a table of so-called HQ-values, which represent the “value” of cer-
tain observations as a subgoal. An observation’s HQ-value is updated based on this
subpolicy’s own expected return plus the maximum HQ-value from the next subpol-
icy, if it was invoked after this observation was reached. In this way, an observation
functioning as a subgoal that leads to good performance, because of rewards collected

76 3. REINFORCEMENT LEARNING

by the current subpolicy itself or because of good performance by successor subpoli-
cies, will get a high HQ-value and will be strengthened as a subgoal. The subpolicy
associated with this subgoal can learn its reactive task as normally, using Q-learning.
A higher-level controller passes control from one reactive subpolicy to the next when
a subgoal is reached. The only internal state of the system resides in the higher-level
controller, and basically corresponds to a pointer which says which subpolicy currently
has control.

3.6.3.7 Memory bits

Various model-free MDP solution methods can be applied to POMDPs by extending
those methods with memory bits. Memory bits constitute the (Mealy) internal state
of the agent. They can be switched on (1) and off (0) by “internal” actions. These
internal actions are part of the total action set, they are not explicitly distinguished
from normal, outward actions. Thus, the agent can learn the internal actions in the
same way as it learns the outward actions. The memory bits are treated as part of the
observation. In this way, the internal state, modified by internal actions, can, in turn,
be used to determine new outward and internal actions.

The internal actions can literally be separate actions in the action set, e.g. “set
memory bit 1 to 0”. Alternatively, they may always be part of a combination with
outward actions. The actions then become something like “go left, and set memory
bit 1 to 0”. An advantage of the latter strategy is that the number of actions needed
to reach a goal is smaller, leading to shorter temporal credit assignment paths. For
this reason, most authors have used the latter strategy, even though it does increase
the action set by a greater amount than the first strategy.

Because increasing the number of memory bits quickly increases the size of both the
action set and the observation set, most authors have used only one or a few memory
bits. This limits the applicability of this technique to simple problems which require
only one or a few bits of short-term memory. However, in contrast to history window
approaches, it can be used in tasks with strongly hidden state. Furthermore, it is a
natural and easily implementable extension of a number of model-free MDP solution
techniques that are relatively well understood.

One such technique is tabular Q-learning. Each additional memory bit doubles
the number of observations in the table. (Littman, 1993, 1994; Peshkin, Meuleau,
& Kaelbling, 1999; Lanzi, 2000) have shown that tabular Q-learning extended with
memory bits in this way can solve various non-Markovian tasks. Lanzi (2000) identifies
a problem with this technique, which he calls “aliased pay-offs”. It turns out that in
certain POMDPs, the expected return in a perceptually aliased situation may be the
same when a memory bit is set to 0 as it is when this memory bit is set to 1. This
can lead to situations where the agent cannot learn how to set this memory bit before
entering this perceptually aliased state. Chapter 6 discusses one task in more detail
that has this problem.

Another technique that has been used in combination with memory bits is classi-
fier systems (Cliff & Ross, 1994; Kwee et al., 2001). An advantage over table-based
systems is that each additional memory bit only increases the size of the observation
feature vector by one, and generalization (using state aggregation, see above) can be

3.6. POMDP SOLUTION TECHNIQUES 77

done over the entire observation vector, including the memory bits. In fact, short-
term memory has been part of the classifier systems formulation from the start, but
early implementations did not work very well (Wilson, 1994, 1995), apparently due to
an insufficient credit assignment mechanism and a short-term memory that was too
complex. Only with the introduction of better credit assignment mechanisms (Wilson,
1994, 1995; Baum, 1999) and memory bits (Cliff & Ross, 1994) did classifier systems
begin to work well in POMDPs.

3.6.3.8 Recurrent neural networks approximating value functions

Neural networks have been used to approximate value functions in MDPs (see sec-
tion 3.5.2.9). One can do the same in the context of POMDPs. However, instead of
feedforward neural networks, in POMDPs it makes sense to use recurrent neural net-
works (see Werbos, 1974; Rumelhart & McClelland, 1986b; Williams & Zipser, 1989;
Williams, 1990; Elman, 1990; Pollack, 1991; Hertz, Krogh, & Palmer, 1991; Arbib,
1995; Hochreiter & Schmidhuber, 1997 for introductions, overviews, and well-known
examples of recurrent neural networks). The difference between feedforward neural
networks and recurrent neural networks is that the latter do not only have connec-
tions going one-way in the direction of the output units; they also have recurrent
connections, allowing past activations to influence the current activations. The recur-
rent activations can provide the agent with the necessary internal state in a POMDP
application. The computed value is now some nonlinear function of the observation
vector, possibly the action, and the internal state, implemented as a real-valued re-
current activation vector. Again, the idea is that after some amount of learning the
observation plus the (Mealy) internal state will together constitute a Markovian state
signal, with which values can reliably be associated.

The internal state is some function of the history of the network’s inputs, i.e. the
history of observations and possibly actions. What this function is depends on the
weights. The weights are usually trained using some variation of backpropagation
through time, propagating back temporal difference errors of the value function-based
reinforcement learning algorithm. In this case the backpropagated errors not only
affect the mapping from the network’s input to the network’s output, but also the
internal state transition function. In principle, recurrent neural networks can store, in
their internal state, information from arbitrarily long ago, and thus deal with strongly
hidden state POMDPs. In practice, however, it can be difficult to train the network
to do that. Chapter 6 discusses this issue in much more detail.

Schmidhuber (1990) investigates an actor-critic architecture, where both actor and
critic are fully recurrent neural networks, both trained using RTRL. Meeden, McGraw,
and Blank (1993) use an Elman-style recurrent neural network (Elman, 1990), but
only for the direct reward case, and trained using standard backpropagation. Lin and
Mitchell (1992, 1993) also use Elman networks, which approximate Q-learning’s value
function and which are trained using BPTT.

All of the technical work presented in this thesis falls in this category of recurrent
neural networks approximating value functions. Among the especially attractive prop-
erties of this approach are the fact that like several other model-free approaches, the
recurrent neural network can learn to remember only information which is relevant

78 3. REINFORCEMENT LEARNING

with respect to performance. Furthermore, like McCallum’s (1996) U-tree, a single
system is used to deal with the problem that the agent can have both too much and
too little sensory information at the same time, and this system does generalization
with adaptive resolution in different parts of the state space. In this sense, this is
an elegant approach: a unified approach to constructing a useful state signal is used,
which throws away useless and confusing details in the current observation where pos-
sible, and fills in the gaps in the current observation where necessary—and this is all
learned on the basis of experienced rewards.

Unlike McCallum’s (1996) U-tree and most other methods, the value function can
be a complex, nonlinear function over the state space, smooth or rugged depending
on the problem and the region in state space. And unlike most other methods, the
observations can be either continuous or discrete, and the internal state can adapt to
problems that require discrete internal state, continuous internal state, or a combina-
tion of discrete and continuous internal state (see Williams, 1990, and chapter 6). The
use of a value function allows the system to do effective temporal credit assignment,
aided by the backpropagation through time (or related) procedure. Backpropagation
through time also does relatively sophisticated and directed structural credit assign-
ment, compared to many other structural credit assignment schemes: it adapts an
individual parameter based on the computed gradient of the error function with re-
spect to that parameter. Finally, one of the attractive properties of this approach with
respect to the goals of this thesis is that the use of artificial neural networks, with its
disputed but nevertheless obvious similarities with biological nervous systems, may
give some insight into how the brain works and learns.

There is no such thing as a free lunch, so obviously there also disadvantages to
this approach. One disadvantage can in fact be the power and generality of recurrent
neural networks. This power and generality can also be viewed as a lack of bias toward
specific problems (Mitchell, 1980; Geman, Bienenstock, & Doursat, 1992). Therefore,
compared to methods that have just the right bias for a specific problem, this approach
can be relatively slow on that specific problem. However, there are ways in which one
could introduce additional bias into this approach. Moreover, there are interesting
tasks for which we need the power of recurrent neural networks, and for which very
few other types of systems could be used at all. This thesis investigates several such
tasks. In general, this thesis is more concerned with the principles of learning difficult
reinforcement learning tasks than with optimizing learning times. The idea is that
if we understand how to get fairly general systems to learn complex tasks (within a
reasonable timeframe, of course), we gain some insights into the essential aspects of
learning, and we can then apply these insights to more biased systems geared toward
specific tasks. It remains, however, an important research problem how to construct
systems with the right bias for specific tasks.

Another possible disadvantage of using recurrent neural networks approximating
value functions is the lack of convergence guarantees. Actually, this is a problem for
virtually all the approaches described in this section, and, for that matter, for most of
the methods described earlier—but somehow, this is an argument that is always used
especially in the context of neural networks. We have seen above that even simple linear
function approximators may diverge when used to approximate value functions. For
more complex, nonlinear function approximators such as neural networks the situation

3.6. POMDP SOLUTION TECHNIQUES 79

may not be better. There are few, if any, guarantees of convergence to global optima
or guarantees of stability. This is the case even for feedforward neural networks (but
see Suykens, De Moor, & Vandewalle, 1997), and even more so for recurrent neural
networks. In fact, Doya (1992) shows that during learning of many interesting tasks,
recurrent neural networks must pass through bifurcation points, at which points there
is no gradient to be exploited by gradient descent procedures such as BPTT. The
position held in this thesis is that even though there may be few theoretical guarantees,
this is offset by the potential power of these systems compared to simpler systems which
may be proven to converge for certain tasks, but that cannot be used in more complex
tasks. In practice, as is also shown in this thesis, the power of recurrent neural networks
combined with value functions can be harnessed and be put to good use in complex
reinforcement learning tasks, without necessarily having problems of convergence and
stability. Nevertheless, understanding and possibly proving convergence and stability
are important research issues for the future.

3.6.3.9 Higher order neural networks

Ring (1993a, 1993b) has proposed the use of a different type of neural network for
POMDPs. In fact, this is a system which can be viewed as a (historically preceding)
variation of the variable history window approaches of McCallum (1995, 1996). It
employs higher order neural networks, i.e. neural networks where units may directly
feed into a weight so as to dynamically alter it temporarily.

The network is, besides the higher order units, a standard feedforward neural net-
work. It has input units that represent observations, and output units that represent
actions. A higher order unit is added whenever the weight to which it might be con-
nected is pulled strongly in opposite directions by the learning algorithm, as measured
by statistics maintained for each weight. This indicates a “problem” with this con-
nection in terms of the error function, and it suggests that adding a higher order
unit which dynamically adjusts the weight may alleviate the problem. Importantly, a
higher order unit affects the weight it connects to only one timestep later than its own
activation computation. In this way, information from the past may affect the current
network activations and with that the current action.

The process of adding new higher order neurons is applied recursively, leading to the
possibility of using information from more than one timestep ago. This incremental
adding of ever higher order units which make the system sensitive to ever longer-
term dependencies is what makes this system resemble other variable history window
approaches. For this reason, like those other variable history window approaches,
finding longer-term dependencies if there are no short-term dependencies to build
on will be difficult, and the system will not generalize correctly when the relevant
past event has even the slightest different temporal delay. However, empirical results
indicate that the system can learn surprisingly fast and effectively on certain test
problems (Ring, 1993a, 1993b).

80 3. REINFORCEMENT LEARNING

3.6.3.10 Eligibility traces

As in MDPs, model-free POMDP solution techniques based on value functions can
be combined with eligibility traces. Eligibility traces have been found by several re-
searchers (Loch & Singh, 1998; Wiering & Schmidhuber, 1997) to significantly improve
learning in POMDPs. Chapter 5 discusses this issue in more detail.

The special benefit of eligibility traces in POMDPs is probably related to the fact
that with λ > 0, the updates do not bootstrap as much as with λ = 0. That is,
they do not base the update only on the estimated value at the next timestep, but
instead on actually obtained rewards at the next timesteps together with estimated
values. The point is that in POMDPs the estimated value at the next timestep may
be very unreliable (much more so than in MDPs), because the state estimation is
unreliable. Using the actual rewards may therefore provide more reliable information.
Moreover, multiple estimated values are included in the λ-return. Thus, the effect of
one incorrectly estimated value, due to a perceptually aliased state, is compensated
for by other estimated values, which may be associated with unambiguous states. For
these reasons, in most of the work described in this thesis, eligibility traces are used.

3.6.3.11 Evolutionary algorithms

Evolutionary algorithms can also be used in POMDPs. Now the evolutionary algo-
rithm must search in the space of policies with internal state. Several authors have
again used recurrent neural networks as the internal state-based policy representa-
tion. An advantage of using evolutionary algorithms for developing recurrent neural
networks can be that it can be difficult to use standard learning procedures for re-
current neural networks with arbitrary architectures. Evolutionary algorithms do less
directed structural credit assignment than gradient descent-based learning procedures,
but they can practically always be used, also in architectures where no gradients can
be computed (e.g. because of non-differentiable functions).

Yamauchi and Beer (1994) evolve the weights of a fully recurrent neural network
controlling the legs of a simulated cockroach. Slocum et al. (2000) evolve the weights
of a fully recurrent neural network controlling an agent that catches objects which may
disappear from view and must therefore be remembered.

Gomez and Miikkulainen (1999) extend Moriarty and Miikkulainen’s (1996) symbi-
otic evolution approach, SANE, from feedforward neural networks to recurrent neural
networks. In the resulting algorithm, called ESP, each evolved individual corresponds
to a unit of a recurrent neural network, together with its connections to neighboring
units and the corresponding weights. Another difference with SANE is that in ESP
different subpopulations are explicitly maintained. During the test phase of a recurrent
neural network, a member of one subpopulation is always combined only with members
from other subpopulations. On the other hand, during the reproduction phase only
members within one subpopulation can be recombined with each other. In this way,
specialization is encouraged more than in SANE. Hopefully, useful specialized building
blocks are evolved, corresponding to individual neurons that contribute significantly
to the policy’s performance by taking on a specific role and cooperating well with the

3.6. POMDP SOLUTION TECHNIQUES 81

other units. This approach has been demonstrated on fairly difficult non-Markovian
versions of pole balancing. Chapters 5 and 6 consider similar pole balancing tasks.

3.6.3.12 Finite state automata

Meuleau et al. (1999) propose a technique that learns the parameters defining a finite
state automaton (FSA) which represents the policy. It is an extension of Baird and
Moore’s (1998) VAPS algorithm, which is limited to reactive policies. Now internal
state-based policies can be learned: the state of the FSA represents the experienced
history. One limitation (at least at present) is that the number of states of the FSA, and
therefore the possible complexity of the internal state-based policy, must be determined
beforehand.

The FSA parameters are updated using a stochastic gradient descent method.
The method estimates partial derivatives of a very general error measure, defined
over expected episodes (it is therefore limited to episodic tasks), with respect to the
FSA parameters. Possible error measures include but are not limited to Q(0) and
Q(1) temporal difference errors—again, we cannot readily classify this technique as
direct policy search or based on value functions. Using an FSA with 10 states, a
fairly successful policy was learned for a non-Markovian version of pole balancing (see
chapters 5 and 6 for similar tasks).

3.6.3.13 Direct policy search based on the success story algorithm and
metalearning

As described in the context of MDP solution techniques, the direct policy search
method based on the success story algorithm and metalearning (Schmidhuber & Zhao,
1999; Zhao & Schmidhuber, 1998; Schmidhuber et al., 1997, 1996) makes very few
assumptions about the nature of the task, including assumptions concerning complete
observability of the state. Therefore, this method can be used straightforwardly for
POMDPs—and in fact, it has been from its conception.

Now the agent’s learned policy must include internal actions that successfully set
internal states which can be subsequently used by the agent. Again, all policy changes
are evaluated by the success story algorithm, invoked at certain moments called check-
points. Schmidhuber et al. (1997) and Zhao and Schmidhuber (1998) present results
of successful learning in POMDPs of considerable sizes.

3.6.3.14 Exploration issues

Exploring in a clever way is more important but also more difficult in POMDPs than
in MDPs (Chrisman, 1992; McCallum, 1996; Wiering & Schmidhuber, 1997). This
is due to the fact that in POMDPs the states are not given to the agent. Part of
the exploration must be aimed at discovering the environment’s state space structure.
Until the state space structure is discovered, the agent may not even be able to tell the
difference between regions of the state space it has explored extensively and regions it
has not explored much.

In many cases, the POMDP will provide unambiguous observations indicating the
state in some parts, while providing ambiguous observations (hidden state) in other

82 3. REINFORCEMENT LEARNING

parts. In general, it seems reasonable for the agent to do more exploration in the
ambiguous parts, so as to discover the state structure there, and not converge too
quickly to particular actions. This suggests that directed exploration is particularly
useful in POMDPs. Chapter 6 proposes a new directed exploration mechanism based
on these ideas.

3.7 Discussion

3.7.1 Learning a model or learning without a model?

In both MDPs and POMDPs, when we do not have a model of the environment,
the agent can either learn a model and apply a model-based technique to the learned
model, or use a model-free learning technique. Which is better?

On the one hand, in the interaction with the environment more information is
available, specifically concerning next observations, than is typically used by model-
free techniques. This information can be used to learn a predictive model of the
environment.

In POMDPs, in particular, it may in some cases be easier to first learn a model
and then learn the policy using a model-based POMDP method than it is to learn an
internal state-based policy directly: in a model-free method, learning to infer the state
may be confounded by the additional difficulty of learning a value function or policy
actions at the same time. On the other hand, in some cases it may require a lot of
effort to learn the model, whereas learning the value function or policy directly may be
relatively easy. For instance, in certain POMDPs it may be very difficult to learn to
infer the complete state of the environment and predict exactly which observations will
follow, but the optimal control policy may not require all that. All that is necessary
for optimal control is that state estimation is sufficient to learn the correct actions, not
to predict everything that will happen next in the world. For example, consider an
office environment where a robot roams around equipped with a camera. It is probably
very difficult to predict the next images perceived by the robot, but it may be possible
to perform many tasks successfully by exploiting simple features extracted from the
visual images.

A virtue of model-based methods is that once we have an accurate model, the
information captured by the model can be used over and over again by a model-
based technique to learn a policy, without a need for more, and possibly “expensive”
experiences in the actual environment. Moreover, when we have a model that is at
least partly independent of rewards, we can fairly easily learn different policies, if the
agent’s objectives change. Model-free methods learn only one policy. If the objective
changes, all knowledge accumulated by the model-free method must be thrown away.
A model can also be used by the agent to do more or less sophisticated forms of
look-ahead planning. Furthermore, in learning the model the system may discover
certain regularities about how rewards change over time, which may suggest that
certain actions which were optimal until now will no longer be optimal in the future
(Schmidhuber, 2002).

3.7. DISCUSSION 83

On the other hand, an approach based on first learning a model and then deriving
a policy from the model can be sensitive to the accuracy of the learned model. A
model-free method, in contrast, receives immediate feedback from the environment
about the success of its policy, without the complicating and possibly confounding
intermediate stage of the model. In this way, a model-free method may be corrected
more directly for errors in its expectations about the environment. Furthermore, it is
possible for a model-free method to reuse past experience, like model-based methods,
simply by storing past experiences and using them later to train or adjust the policy
(Lin & Mitchell, 1993, 1992; McCallum, 1997, 1996).

3.7.2 Representations?

In a way, the discussion about models in reinforcement learning is reminiscent of the
older AI debate about the use of world models, which was briefly discussed before
in sections 2.3.7 and 2.3.8. One of the arguments of the adaptive behavior approach
against classical AI’s world models was that it is notoriously difficult to learn and
update a complete and exact world model. Instead, a “reactive approach” was pro-
posed, in which an agent reacts directly to environmental stimuli and “uses the world
as its own best model” (Brooks, 1991a). In POMDPs it is clear that a purely reactive
approach cannot possibly work in all cases. There must be some internal state, but
this internal state does not have to be in the form of a complete and exact world
model. Instead, the internal state may correspond to a purposively incomplete model
or to a model which takes into account its own uncertainty and which is therefore rel-
atively robust against noise and inaccuracies. Or the internal state may, in model-free
techniques, have a very different form, such as a limited set of past observations and
actions, memory bits, FSA states, pointers to subpolicies, or real-valued activation
vectors. In none of these approaches there is a need to go back to exact, full-blown
world models or symbolic representations to obtain successful policies for moderately
complex “representation-hungry” tasks.

Whether or not we should call the internal state a “representation” or not (van
Gelder, 1998; Clark, 1997; Keijzer, 2001) then becomes a matter of taste. If one’s
definition of a representation requires it to be a symbolic representation or to always
correspond straightforwardly to easily identifiable properties of the environment, then
these different forms of internal state are not representations. If one’s definition of
a representation only requires it to correspond to some process or structure that is
maintained inside the agent and which contains information that is not contained in
the immediate sensory input, then these different forms of internal state are represen-
tations.

3.7.3 Value functions or direct policy search?

Now that a number of value function approaches and direct policy search approaches
have been discussed, we are in a better position to discuss their relative merits.

One advantage of value functions over direct policy search, at least direct policy
search in its simplest form, is that the information contained in individual states can
be used more efficiently. For example, if a state reliably precedes high reward, a value

84 3. REINFORCEMENT LEARNING

function method will give that state a high value. This state will then start to function
as a “subgoal”, and “subpolicies” that lead to that state will be rewarded. In this way,
value functions can automatically break down a problem into subproblems, each of
which may be learned more or less independently.

A direct policy search method that varies and evaluates policies as a whole does
not automatically do this. Put another way, because the information contained in
individual states and state transitions is used more explicitly, value function approaches
can do more focused structural and temporal credit assignment than simple direct
policy search. However, as we saw above, there are ways of extending direct policy
search methods such that they can also do more focused structural and temporal
credit assignment and exploit some type of subgoal or building block information
(e.g. Schmidhuber et al., 1997; Moriarty & Miikkulainen, 1996; Gomez & Miikkulainen,
1999).

A separate issue is the issue of convergence and stability. As discussed before in the
section on generalization (3.5.2.9), a number of studies have shown that certain value
function approaches can be unstable and fail to converge when they are combined
with even simple function approximators. This is one reason why in recent years
several people have started to take a closer look at methods which represent the policy
directly rather than indirectly as in straightforward value function methods. Such
methods may not suffer in the same way or to the same extent from problems with
convergence and stability. However, most of those methods still have also some sort of
value function component, which guides the policy component to good policies, e.g. in
an actor-critic style architecture.

There are a variety of other factors that determine the relative advantages of direct
policy search and value functions. One factor is the number of successful policies in
policy space. If there are a lot of policies that all work well, then direct policy search
has a greater chance of finding one in a reasonable time, especially if one searches in
parallel, e.g. using an evolutionary algorithm. Another factor is the complexity of the
policy representation. If a successful policy can be represented by a limited number
of parameters, a relatively undirected direct policy search method has a reasonable
chance of finding it. In both of these cases, learning a possibly complex value function
can be just an inconvenient detour.

In any case, any advantage that value functions may have over direct policy search
requires the state to be known, which is not immediately the case in POMDPs. This
makes the situation radically different for POMDPs than for MDPs. If the POMDP
is such that observations contain very little useful information about the state of the
environment, values cannot be reasonably estimated and associated with states, and
it may be better to search directly in the space of policies. If, on the other hand,
observations contain at least a significant amount of information about the state, then
in many cases it would seem to be worth the effort to try to decompose the task into
subtasks which can be handled with reactive value function-based subpolicies (Wiering
& Schmidhuber, 1997), or to reconstruct the environmental state signal from the ex-
perienced history and associate values with these reconstructed states—the approach
taken in this thesis.

Chapter 4

The trade-off between
perception and internal state

Summary

An MDP can be dealt with by learning a memoryless or perception-based policy,
which directly maps perceptual inputs representing environmental states to actions.
However, this may involve a difficult pattern recognition problem when the agent
must learn to generalize over a large environmental state space. The main point of
this chapter is that this pattern recognition problem can become so severe that it
makes sense to partially sidestep this problem by using an internal state-based policy
which exploits temporal regularities inherent in many reinforcement learning tasks.
This point is demonstrated in a simulation experiment where both the difficulty of
using perception and the difficulty of using internal state are systematically varied.
The agent is controlled by a recurrent neural network capable of learning either type
of policy, and the different types of policies that the agent converges upon are analyzed
using behavioral tests, FSA extraction, and by looking at learning times.

4.1 Introduction

As explained in the previous chapter, a Markovian reinforcement learning task or MDP
can be solved using a reactive or perception-based policy, whereas a non-Markovian
task or POMDP requires an internal state-based policy. However, even in the Marko-
vian case, learning just the perception-based policy can be difficult. One common
problem is that the environmental state space can be very large. Because the agent
will not be able to obtain sufficient evidence for each state-action pair, it must learn to
productively generalize over the environmental state space. In most of these cases, the
perceptual input is a vector representation of the environmental state, such that the
generalization problem effectively becomes a problem of (static) pattern recognition.

The main point of this chapter is that this pattern recognition problem in a Marko-
vian task can become so severe that it makes sense to sidestep it (perhaps partially)

85

86 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

by learning to exploit information from previous timesteps. Rather than learning to
recognize complex regularities in individual inputs, it may in some cases be easier to
learn temporal regularities in sequences of inputs (and actions). Thus, even though a
Markovian task of this kind can in principle be solved using a perception-based policy,
it may be a good idea to use an internal state-based policy, which can exploit these
temporal regularities. This assumes that there are such temporal regularities. How-
ever, this seems a reasonable assumption: in most realistic environments transitions
to subsequent states are far from being completely random, so there will be temporal
regularities in the sequence of observations.

Internal state used in MDPs may be called supportive state, because even though
this internal state is not strictly necessary to solve the (Markovian) task, it provides
extra information that supports the agent in choosing its actions. Importantly, useful
supportive states need not simply be given to the agent. The idea is that even when the
agent first has to learn useful internal states before it can exploit them, this can still
be more efficient than just learning the perception-based policy. This is interesting
because it provides an argument against the strong tendency in the reinforcement
learning community to practically equate Markovian tasks with the use of perception-
based or memoryless policies.

A related but subtly different point was made previously in a different context:
research on recurrent neural networks has shown that in some cases, transforming a
static pattern recognition problem into a temporal pattern recognition problem can
make the problem easier to solve (Schmidhuber, personal communication). An example
is the parity problem: an 8-bit parity recognition problem that is very difficult to solve
using a feedforward neural network with 8-bit input vectors can become much easier
if the 8 bits are fed consecutively into a very small recurrent neural network with
one input line. The difference with the argument made in this chapter is that in this
chapter the input representation is not changed: the point is that in the same task
with the same inputs, using an internal state-based policy can make the MDP easier
to solve than with a perception-based policy.

More precisely, the hypothesis investigated in this chapter is that there is a trade-off
between perception and internal state. Depending on the relative difficulty of learning
to recognize the patterns in single inputs and the relative difficulty of learning useful
internal states, a perception-based policy or internal state-based policy may be easiest
to learn. In this chapter, “easiest to learn” means easiest to learn for an agent capable
of learning either kind of policy. The interesting thing about this is that the choice of
policy is up to the learning system itself: it can autonomously decide which information
it finds most useful for its policy, not based on explicit instruction, but based only on
experienced rewards. The capability to learn either kind of policy is realized by using
an Elman recurrent neural network (Elman, 1990). If the agent always learns an
internal-state based policy in a certain condition, this is taken as evidence that this is
the policy that is easiest to learn for the agent under that condition. However, we also
consider learning times of different policies under different conditions as a measure of
difficulty of learning different policies.

The next section describes the setup of the simulation experiments that were carried
out to demonstrate the trade-off, and it points out similarities to other work. Section 3

4.2. SETUP OF THE SIMULATION EXPERIMENTS 87

presents the results of the simulations and an analysis of the results. Section 4, finally,
contains a general discussion.

4.2 Setup of the simulation experiments

4.2.1 Learning task

The simulated agent’s environment is a small grid maze, consisting of open space and
impenetrable walls (see figure 4.1). The agent’s job is to move to the goal position,
starting from the fixed starting position (S). The goal is randomly located in one of
two possible positions, which can be referred to as “left” or “right”. In figure 4.1 the
goal (G) is in the right position, the left goal position is in the upper left corner. If
the agent reaches the goal position, it receives a reward of 1, at all other points the
reward is 0. The agent can be oriented to the north, east, south, or west. It has a
choice of 3 actions: go forward, turn left, or turn right. If the agent attempts to move
through a wall, it stays in the same grid position, but turning is possible. The agent’s
perceptual input is a 13-element vector representing the complete environmental state
(see figure 4.1): even though it detects walls, open space, and the presence of the
goal only locally around the agent, each environmental state corresponds to a unique
perceptual input.1

At the end of the corridor coming from the starting position the agent faces a
T-junction, at which point it must make a crucial decision whether to go left to reach
the left goal position, or right to reach the right goal position. This is the point
where the pattern recognition problem associated with a perception-based policy is
systematically varied in the experiment. When the goal is randomly placed either left
or right at the beginning of a learning episode, a “corresponding” pattern of walls
and open space is placed above the T-junction, in the area indicated by bold lines in
figure 4.1. Essentially, when the agent is at this T-junction facing north, part of its
perceptual input consists of a pattern of walls and open spaces that presents the agent
with the parity problem. If the number of 1s (open spaces) in that pattern is even, the
goal is on the left side, so the agent should turn left. If that number is odd, the goal
is on the right side so the agent should turn right.

The parity problem provides us with the means to gradually (though not necessarily
uniformly) increase the difficulty of the pattern recognition problem associated with
a perception-based policy by increasing N , the length of the pattern of bits. In this
experiment, N is varied from 1 (very easy) to 5 (very hard). In the 5-parity condition,
all 5 positions indicated by bold lines in figure 4.1 code for the parity. In the 1-parity
condition, only the upper left grid position with bold lines is used, and the other four
are frozen as walls.

The parity problem is a classic and challenging problem, even using supervised
learning. Feedforward neural networks without a hidden layer cannot solve this task
for N > 1 (Minsky & Papert, 1969), but feedforward networks with a hidden layer can

1To prevent a few positions in the maze from looking identical, the wall cells in the maze have small
variations in “color”. Leaving out this variation would technically make the task non-Markovian. The
task would still be Markovian with respect to rewards, and preliminary experiments made clear that
it makes little difference for the results.

88 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

W W

W WWW

W

W WW
G

GG

G

S

Figure 4.1: Example of a 5-parity, corridor condition 1 maze. The agent is at the
central T-junction, oriented to the north. Black circles denote its sensors for walls
(W) and for the goal (G). Bold lines indicate the area encoding the odd parity pattern
10011, which can be perceived using wall sensors. S is the starting position and G is
the goal. One step before the T-junction one grid cell on the same side as the goal has
been turned into open space.

(Rumelhart et al., 1986). N = 1 is easy: if the single input is 0, go left, if it is 1, go
right. N = 2 already amounts to the XOR problem.

At the same time, the environment presents the opportunity to develop useful
internal state—supportive state. This is so because, in addition to the parity pattern
being placed at the T-junction at the beginning of an episode, a pattern is placed in
the corridor from the starting position leading up to the T-junction. This pattern,
again encoded in walls and open space, also indicates where the goal is. If the agent
learns to extract this information and encode it in its internal state, at the T-junction
it does not have to rely on perception of the parity pattern, but it can instead rely on
its internal state.

The difficulty of learning to extract this information, which corresponds to the
difficulty of learning an internal state-based policy, is varied systematically as well.
It ranges from 1 to 4, where corridor condition 1 means that it is very easy to learn
the internal state-based policy, and corridor condition 4 means that it is very hard
to learn the internal state-based policy. In corridor condition 1, one wall cell on the
side of the goal position is turned into open space one step before the T-junction (see
figure 4.1). In corridor condition 2, this becomes two steps, so that the agent must
now learn to remember the information one extra timestep. Corridor condition 3 is the
same as condition 2, except that now one of the cells used in condition 1 is randomly
turned into open space, without this having any relation to the goal position. This
amounts to having extra noise which may perturb the agent’s internal state from the
previous timestep. In corridor condition 4, observation of a single grid cell is no longer
sufficient to determine where the goal is (in contrast with the other conditions). Now

4.2. SETUP OF THE SIMULATION EXPERIMENTS 89

the location of the goal depends on the pattern in two grid cells, one of which can only
be observed two steps before the T-junction and one of which can also be observed one
step before the T-junction. The difficulty of these 4 corridor conditions was determined
based in part on known factors (Cleeremans, Servan-Schreiber, & McClelland, 1989;
Lin & Mitchell, 1993), and in part on preliminary experiments.

The agent takes steps of 2 grid cells at a time. This prevents the agent from
perceiving the parity pattern at the T-junction over multiple time steps, which would
be the case if the agent took actions of 1 grid cell at a time and which would seriously
confound the experiment. Now the agent’s observation only gives information about
states that can be reached using one action.

This learning task may look somewhat “fabricated”, but this is necessary in order
to systematically investigate the trade-off between perception and internal state. Nev-
ertheless, the task shares a number of properties with many reinforcement learning
tasks and is realistic in some respects. Both the parity patterns and the corridor pat-
terns are part of the regular input to the agent, in the sense that they are perceived
by sensors that are also used to avoid the walls and navigate in general. Furthermore,
the parity patterns and corridor patterns are present at the beginning and middle of
the sequence of actions leading to the goal, not at the very end. Therefore, the “rele-
vance” of these patterns cannot be determined immediately. This relevance can only
be gradually learned, as the reward obtained at the goal position is eventually “fed
back” by means of the reinforcement learning algorithm.

In summary, the most important properties of the learning task are that it is
Markovian, and that both the complexity of patterns to be exploited by a perception-
based policy and the complexity of patterns to be exploited by an internal state-based
policy are systematically varied. Effectively, we have a 5× 4 experimental design, and
each agent is assigned to one particular condition in that experimental design.

4.2.2 Architecture and learning algorithm

The agent is controlled by a Simple Recurrent Network or Elman network (Elman,
1990), depicted in figure 4.2. An Elman network differs from a multilayer feedforward
neural network in that it has so-called context units. The context units hold a copy
of the hidden unit activations of the previous timestep. Because the hidden unit
activations, in turn, are determined in part by the context unit activations, the context
units can, in principle, retain information from many timesteps ago.

The network’s activations are computed as follows. The net input neth(t) of hidden
unit h at time t is calculated by

neth(t) =
∑

o

whoyo(t) +
∑

a

whaya(t) +
∑

z

whzyz(t) (4.1)

where yo(t) is the activation of observation unit o, ya(t) is the activation of action unit
a, and yz(t) is the activation of context unit z. who, wha, and whz are the corresponding
weights. There are as many action units as there are actions. All action units have
activation 0 except one action unit, which has activation 1 and which corresponds to
the action whose Q-value is computed. Furthermore, there as many context units as
there are hidden units. In the computation of the net input of the hidden layer units,

90 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

copy
Q

observation action context

Figure 4.2: Q-Elman neural network. The solid lines indicate unidirectional, fully
connected, learning weights. The dashed line represents the copy operation of the
hidden units to the context units.

the action vector and the context unit activations are treated as just another input.
The activation of hidden unit h at time t is next computed by

yh(t) = f(neth(t)) (4.2)

where f is the standard logistic sigmoid function, squashing the net input to the range
[0, 1], using

f(x) =
1

1 + e−x
. (4.3)

The net input netk(t) of the single output unit k is computed by

netk(t) =
∑

h

wkhyh(t) (4.4)

where wkh is the weight of the connection from hidden unit h to the output unit k.
The output unit’s activation is computed by

yk(t) = f(netk(t)). (4.5)

The activations of the context units at the next timestep are simply a copy of the
activations of the corresponding hidden units at the current timestep:

yz(t + 1) = yh(t). (4.6)

The activations of the context units at t = 0 are 0.
The Elman network learns to approximate the value function of one of the most

widely used reinforcement learning algorithms, Q-learning (Watkins, 1989, see section
3.5.2.2), and is therefore called a Q-Elman network. In this experiment, no eligibility
traces are used, so we have Q(0)-learning (Watkins, 1989). Compared to standard
Q(0)-learning, there are two major modifications. First of all, the Q-values are not
stored in a table, but approximated using a neural network. Secondly, the computed

4.2. SETUP OF THE SIMULATION EXPERIMENTS 91

Q-value at time t is not only a function of the observation o(t) and action a(t), but
also of the Mealy internal state z(t), encoded by the context units of the Q-Elman
network. Thus, the network computes Q(o(t), z(t), a(t)). The network’s single output
yk(t) codes for the Q-value in the following way:

Q(o(t), z(t), a(t)) = 2(yk(t) −
1

2
). (4.7)

Thus, in the beginning of learning, when the activations of the output unit are around
1
2 because the randomly distributed weights are around 0, the estimated Q-values
are around 0. At each iteration, the Q-value for each action in the current state is
computed. For each action, one of the units of the action input vector is set to 1 and
the others to 0, and subsequently the activations in the hidden units and the output
unit are computed, based on this action input vector, the observation vector, and the
context unit vector.

The Q(0)-learning algorithm is implemented as follows. Each iteration, after the
execution of an action and the environment’s response (an immediate reward and a
new observation is obtained), all weights in the network are updated according to

wim(t + 1) = wim(t) + αETD(t)
∂Q(o(t), z(t), a(t))

∂wim
(4.8)

where

ETD(t) = r(t + 1) + γ max
a

Q(o(t + 1), z(t + 1), a) − Q(o(t), z(t), a(t)) (4.9)

and wim is the weight from unit m to unit i. In this work, Q(o(t), z(t), a(t)) is a simple
linear function of the activation of the output unit, so

∂Q(o(t), z(t), a(t))

∂wim
= 2

∂yk(t)

∂wim
. (4.10)

The constant, 2 in this case, can be absorbed into the learning rate. The partial
derivatives with respect to the weights from the hidden layer to the output layer in
the Elman network are

∂yk(t)

∂wkh
= f ′(netk(t))yh(t) (4.11)

and the partial derivatives with respect to the weights to the hidden layer are

∂yk(t)

∂whm
= wkhf ′(netk(t))f ′(neth(t))ym(t). (4.12)

where m can be an observation unit, an action unit, or a context unit. The nice
thing about using the logistic function for our squashing function f is that f ′ can be
computed very easily:

f ′(net i(t)) = yi(t)(1 − yi(t)). (4.13)

In effect, ETD(t), the temporal difference error in equations 4.8 and 4.9, is back-
propagated through the Elman network (Werbos, 1974; Rumelhart et al., 1986; Elman,

92 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

1990). Standard backpropagation is used, which in this case can be viewed as back-
propagation through time truncated at one step back in time, because the context unit
activations represent the hidden unit activations from one timestep ago.

The number of observation units in this task is 13. The number of action units is
3 (one for each action: go forward, go left, go right). The number of hidden units and
context units used in this experiment is 10. γ is .9. The learning rate α is .1. This
relatively high value was chosen because the estimations of the Q-values often differ
by only small amounts (especially in the beginning of a run), so that backpropagated
errors are small.

The algorithm is applied as follows. First, the Q-values for all 3 actions are com-
puted in the Q-Elman network, using the current observation vector (which exactly
represents the environmental state) and the activations of the context units (inter-
nal state). Next, the action is selected using the probabilities p(s, a) of each action,
computed according to the Boltzmann distribution (see chapter 3):

p(s, a) =
eQ(s,a)/τ

∑M
m=1 eQ(s,am)/τ

(4.14)

where M is the number of possible actions (3) and τ is the temperature of the action
selection mechanism, in this experiment fixed at .05 for the entire duration of a run.
Thus, in this chapter undirected exploration is used. After selection of the action, the
action is executed and the environment feeds back the reward. The maximum of the
Q-value in the new situation is computed, again using the Q-Elman network. Together
with the reward this value is used to perform a single backpropagation sweep in the
network (thus, learning occurs at every timestep, and not in so-called batches). Then
a new iteration starts. If the goal is reached (r = 1) or the number of actions exceeds
the time-out value of 30, a new episode starts.

This reinforcement learning algorithm does not explicitly instruct the network on
what actions to take or what information to attend to. The network may “decide”
to ignore the context unit activations and only use the immediate perception of the
current environmental state. It then basically behaves as a feedforward network and
it implements a perception-based policy. Alternatively, the network may decide to
pay more attention to the context units, develop differentiated internal states, and
thus implement an internal state-based policy. In any case, this choice is based on
experienced success in the particular environment, and the hypothesis investigated in
this chapter says that there will be a trade-off between the two options.

4.2.3 Related work

Feedforward neural networks are combined with Q-learning by, among others, Lin
(1992), Anderson (1993), Crites and Barto (1996), Humphrys (1997), Abul et al.
(2000), ten Hagen and Kröse (1998), with SARSA in Rummery and Niranjan (1994),
and with TD-learning of state values in Anderson (1987), Tesauro (1992, 1994). In
Watkins (1989) and Sutton (1996) CMAC, another type of function approximator, is
used in combination with Q-learning and SARSA respectively.

Schmidhuber (1990) investigates fully recurrent neural networks that are trained
using TD-like reinforcement learning algorithms. Meeden et al. (1993) use Elman

4.3. RESULTS 93

networks, but with a direct reward reinforcement learning algorithm. Like the current
study, Lin and colleagues (Lin & Mitchell, 1993, 1992) combine a version of Q-learning
with Elman networks. There are a number of differences in learning algorithm and
architecture. First of all, they use a separate network for each action (as in Rummery
& Niranjan, 1994; Lin, 1992; Abul et al., 2000), whereas here just one network is used,
allowing for more generalization. They use backpropagation through time, whereas
here ordinary backpropagation is used. Finally, their specific learning algorithm (which
is essentially the same as the one used in Lin, 1992) allows updating only after the
completion of an entire episode, and they replay memorized episodes many times. In
contrast, the algorithm used here is completely online and local in time, like the one
used in Schmidhuber (1990).

4.3 Results

4.3.1 Analysis of the agents’ behavior

For each experimental condition, 10 runs were performed. Since we have a 5 × 4
experimental design, this makes 200 runs in total. The termination criteria were as
follows. Using greedy action selection (τ = 0), i.e. choosing the action with the highest
Q-value, the agent must reach the goal in at most 5 steps (the optimal number of steps
is 4). This must be the case for all parity and corridor patterns that the agent was
trained on. This means that the agent must always make the correct decision at the T-
junction. Secondly, using stochastic action selection (τ = 0.05), the agent must reach
the goal before the normal time-out of 30 steps in more than 95% of the episodes, and
the running average of the number of steps needed to reach the goal must be below 7.

The second criterion was added in order to enforce “robust” solutions. Note that
the optimal policy using greedy action selection can be found without the Q-values
having the exactly correct values. All that is necessary is that the right action has a
slightly higher Q-value than the others. This would lead to an optimal greedy policy,
but poor stochastic policy. The second criterion thus ensures that the Q-values for a
given situation are sufficiently different, so that the solution would not, for instance,
be too easily disturbed by noise. If a run did not reach the termination criteria within
100 million iterations, it was considered a failure. This occurred for a few runs in
the most difficult experimental conditions. After completion of the runs, they were
individually analyzed.

To determine the kind of policy followed by an agent (perception-based or internal
state-based), each agent was tested in two ways. The relationship of the parity in-
formation with the goal position was reversed, so even parity now corresponds to the
goal position being right and odd parity corresponds to left. If the agent now turns
left at the T-junction when it should turn right and vice versa, this means it relies on
perception of the parity information. If its performance is not affected, apparently it
uses internal state. As the other, complementary test, the relationship of the pattern
in the corridor with the goal position was reversed, with the normal parity to goal
relationship in place. Now, if the agent is misled and goes the wrong way at the T-
junction, this means it uses internal state. If it ignores the misleading information and

94 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

Table 4.1: Number of policies converged upon in different conditions. Par stands for
N-parity condition, Cor stands for Corridor condition.

Par Par Par Par Par

Policy 1 2 3 4 5

Cor Perception 10 5 0 0 0

1 Mixed 0 4 1 0 1

Internal State 0 1 9 10 9

Cor Perception 10 10 4 1 1

2 Mixed 0 0 3 5 3

Internal State 0 0 3 4 6

Cor Perception 10 9 8 6 3

3 Mixed 0 1 2 1 2

Internal State 0 0 0 3 3

Cor Perception 10 10 7 6 4

4 Mixed 0 0 3 1 0

Internal State 0 0 0 2 1

maintains good performance, this means it uses perception of the parity information.
The results of this analysis are shown in table 4.1.

When the pattern recognition problem associated with the perception-based policy
is very easy (parity condition N = 1), all agents learn a perception-based policy.
This shows, first of all, that agents do not develop internal state simply because the
Q-Elman network has recurrent connections. Apparently, there must be a reason
to develop internal state, and this reason is absent in the 1-parity cases. However,
when the parity problem is hard (N = 4 and N = 5) but the pattern in the corridor
is easy (corridor condition 1), then agents use an internal state-based policy. This
internal state can be called supportive state, because an agent could have relied on
perception alone, but instead develops internal state to support its action decisions.
In the intermediate conditions, a gradual transition from perception-based policies to
internal state-based policies can be observed. This result confirms our hypothesis,
for this setting at least, that there is a trade-off between perception and internal
state. When the pattern recognition problem associated with a perception-based policy
becomes difficult, perception may be traded for internal state, and vice versa.

Interestingly, a number of agents adopt mixed policies. Such agents make mistakes
in both behavioral tests. This means that for some parity patterns encountered at
the T-junction, the agent uses perception of that pattern, whereas for others it relies
on internal state. To explain this, we should note that as far as the hidden layer of
the Elman network is concerned, both perceptual input and context unit activations
appear as an input pattern. There is no compelling reason why the agent should not
exploit distinctive patterns in both types of input.

The results shown in table 4.1 can be visualized in a straightforward way. Using
the two tests described above, the proportion of pattern variations in the maze that

4.3. RESULTS 95

1

2

3

4 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

N−parity

Corridor condition

Te
nd

en
cy

 to
w

ar
d

in
te

rn
al

 s
ta

te

Figure 4.3: The tendency toward internal state as a function of N-parity and corridor
condition.

the agent deals with using internal state can be computed. Thus, this value is 1 for a
pure internal state-based policy, 0 for a pure perception-based policy, and somewhere
in between for a mixed policy (not shown in table 4.1). The average value, called the
tendency toward internal state, is plotted for each condition in the graph depicted in
figure 4.3. This graph shows the trade-off surface between perception and internal
state.

Several internal state-based and mixed agents developed a surprising strategy in
the corridor. When the goal is on one side, they proceed to the T-junction directly.
When the goal is on the other side, however, they make a turn at the starting position
before moving to the T-junction. This action prevents the agent from reaching the
optimal policy of 4 steps. Q-learning is only guaranteed to reach the optimal policy
under a number of conditions, one of which is that the Q-values must be stored in a
table (Watkins, 1989). If function approximation is used, the usual problem of local
optima applies. However, in this case, this extra action may actually be useful. It
may help in creating two very different hidden unit activation patterns for each of the
two goal positions, because it makes the sensory inputs and actions in the corridor
very different. This results in two very different internal states which subsequently
can be easily discriminated at the T-junction. Thus, this seems to be an instance of
spontaneous epistemic action, action that is not primarily intended to accomplish a
goal, but rather to facilitate the computational task faced by an agent by gathering
additional information. Humans and animals often use epistemic action to cope with

96 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

difficult tasks (Clark, 1997). It is similarly reminiscent of actions taken to decrease
the uncertainty in POMDPs, which in the formal POMDP framework can be shown
to be optimal in certain cases (see section 3.6.2.1).

When both the parity pattern and the corridor pattern are very complex, not all
runs reach the termination criteria. In those cases, the agent does not always make
the correct decision at the T-junction when using greedy action selection; but still it
always reaches the goal, because it turns around once it notices that it went the wrong
way. It is interesting to note that those runs that do reach the termination criteria
in these difficult conditions include both perception-based policies and internal-state
based policies. For the perception-based policy this means that, as was claimed in the
introduction, this kind of policy is indeed possible in the 5-parity case, but that the
internal state-based policy is in most conditions easier to learn for an agent capable of
learning either kind of policy. For the internal state-based policy it means that fairly
complex temporal regularities in reinforcement learning tasks can be picked up using
even a simple system such as an Elman network.

4.3.2 FSA extraction

It is possible to determine the kind of policy used by an agent by analyzing the internal
mechanisms, rather than inferring it from the behavioral tests described above. This
can provide additional confirmation for the results obtained with the behavioral tests
and it can help explain these results. In general, it is always interesting to attempt
to understand policy solutions learned by an agent, in order to better understand the
capabilities and weaknesses of the used algorithms. In this case, we may gain insight
into the mechanisms employed by the neural network when implementing a perception-
based, internal state-based, or mixed policy, instead of treating the neural network as
a “black box”, as happens in much neural network and machine learning research.
For instance, we may learn the number of internal states of an internal state-based
or mixed policy induced by the neural network, and we may learn when the network
changes its internal state during an episode.

One complication here is that the hidden units of the Elman network are used both
to recognize features in the perceptual input and, when they are copied to the context
units, as internal state. Because the perceptual inputs change constantly, the hidden
units change constantly and with that the context units. This makes it look as if the
network uses variable internal state. However, if the weights from the context units
to the hidden units are such that the variations in the context unit activations are
basically ignored and do not have an effect on the agent’s behavior, then the system
uses a perception-based policy. Thus, the question is to what extent these changes in
the context units functionally affect the network’s behavior.

The method used here to answer this question is Finite State Automaton (FSA)
extraction. One version of this method, based on extracting input FSAs, was used
by Crutchfield (1994) to analyze general dynamic systems and by (Giles et al., 1992;
Blair & Pollack, 1997; Casey, 1996) to analyze supervised learning recurrent neural
networks accepting or rejecting sentences from artificial grammars. Here the method is
generalized to input-output FSAs extracted from our reinforcement learning recurrent
neural networks.

4.3. RESULTS 97

The basic idea is to “discretize” the continuous internal state space so as to arrive
at discrete FSA states. In a second phase, the FSA is minimized by using a variation of
the Hopcroft minimization algorithm (Hopcroft & Ullman, 1979). In effect, different
FSA states, associated with continuous internal state vectors that can be far apart
in context unit activation space but that do not differ in their behavior, are merged,
so as to arrive at a minimized FSA whose states are functionally different. In some
cases, this reduced the number of states from as many as 228 to only 1 or 2 states.
This great reduction is possible because, as explained above, variations in context
unit activations often only reflect changing perceptual inputs rather than functionally
different internal states. Appendix A describes the algorithms for FSA extraction and
subsequent minimization in more detail.

An FSA where both input and output are stored with the edge is a Mealy machine
(Hopcroft & Ullman, 1979, and see section 3.3.2). For the purposes of this chapter, this
is to be preferred over the alternative input-output FSA convention, Moore machines,
where outputs are stored with the states (even though they can always be rewritten
into each other). This is so because it allows us simply to equate perception-based
policies with single-state input-output FSAs and internal state-based policies with
multiple-state input-output FSAs. The Mealy machine convention of edge labeling is
used: input/output. Output 0 stands for “go left”, output 1 stands for “go forward”,
and output 2 stands for “go right”. The FSA graphs were created automatically, the
text between brackets, indicating what certain important input numbers stand for,
was manually inserted later.

This procedure was applied to the successful agents. An example from the 1 parity,
corridor 1 condition is depicted in figure 4.4. It shows that this agent has learned a
perception-based policy. The agent has just one state, and it makes the decision
whether to go left (output 0) or right (output 2) at the T-junction based on recognition
of the (very simple) parity problem perceived there.

Figure 4.5 shows an example from the 4 parity, corridor 1 condition. Here the parity
problem is much harder, and the agent has solved the task by inducing two states: an
internal state-based policy. It goes from the initial state, state 0, to state 1 when it
sees that in the corridor one step before the T-junction the right wall cell is turned
into open space (“Corridor Right”). In state 1, it always turns right (output 2) at the
T-junction, no matter what the parity pattern is (“Even” or “Odd”). Conversely, in
state 0, the agent always turns left. When this particular agent is in state 1, after
making the turn at the T-junction it always changes its state back to state 0. When
it is in state 0, it only sometimes changes its state.

Figure 4.6 shows an example of a mixed policy, from the 3 parity, corridor 1 con-
dition. Similar to the example in figure 4.5, the FSA consist of two states. The agent
goes from the initial state 0 to state 1 when it perceives “Corridor Right” and stays
in state 0 when it perceives “Corridor Left”. In state 0 most odd parity patterns are
ignored and the agent turns left (output 0), but this is not the case for perceptual
input number 10, corresponding to odd parity pattern 100. Apparently, this pattern
is recognized at the T-junction, such that the agent knows it should turn right, even
when it is in the “wrong” internal state.

Figure 4.7, finally, shows a more complex internal state-based policy, from the 5
parity, corridor 4 condition. This agent has induced more states than the two states

98 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

Figure 4.4: Extracted single-state FSA corresponding to a perception-based policy,
from the 1 parity, corridor 1 condition. Within this single state, an even parity pattern
(number 2) is correctly dealt with by emitting output 0 (go left), an odd parity pattern
(number 6) is correctly dealt with by emitting output 2 (go right).

that are strictly necessary for a successful internal state-based policy. Every state is
connected to all other states and itself. The FSA uses state 0 (the initial state) and
1 to code for the two different corridor patterns that indicate the left goal position.
Conversely, it uses state 2 and 3 to code for the two different corridor patterns that
indicate the right goal position. Changes in the state occur at different timesteps for
different corridor patterns, and the FSA normally passes through state 1 on its way to
state 2 and 3. This agent also uses the kind of epistemic action described above. When
the goal is on the right side, it turns left at the starting position before proceeding to
the T-junction, presumably to create easily distinguishable internal states.

Inducing more states than strictly necessary for a successful internal state-based
policy actually occurred for many internal state-based and mixed agents, especially the
ones in the more difficult conditions. The number of induced states could be as high as
6. In most cases, these extra states only affect the behavior in the testing phase, when
the agent is misled by the corridor pattern, such that it goes the wrong way at the T-
junction; but this does prevent these extra states from being “minimized away”. The
agent’s subsequent behavior then depends in a subtle way on the particular history of
inputs, even though the agent did not rely on those inputs at the T-junction. Note that
it does not require any extra “effort” on the part of the recurrent neural network to
induce a few more states than is strictly necessary. Such redundant internal states are
therefore not very surprising. More surprisingly, even a few perception-based agents
contained some redundant internal states that could not be minimized away. However,

4.3. RESULTS 99

Figure 4.5: Extracted two-state FSA corresponding to an internal state-based policy,
from the 4 parity, corridor 1 condition. When the agent detects that the right wall
cell in the corridor is turned into open space (observation 5, “Corridor Right”), action
1 (go forward) is emitted and the state changes to state 1. All odd and even parity
patterns are subsequently dealt with by emitting output 2 (go right).

100 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

Figure 4.6: Extracted two-state FSA corresponding to a mixed policy, from the 3
parity, corridor 1 condition. Input number 10, corresponding to an odd parity pattern,
is correctly dealt with in both states by emitting action 2 (go right).

4.3. RESULTS 101

Figure 4.7: Extracted four-state FSA corresponding to an internal state-based policy,
from the 5 parity, corridor 4 condition. State 0 and 1 code for corridor patterns that
indicate the left goal position, state 2 and 3 do the same for the right goal position.
All states are connected to all states.

102 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

1

2

3

4

5

1

2

3

4

0

2

4

6

x 107

N−parity

Corridor condition

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

Figure 4.8: Average number of iterations needed to reach the termination criteria as
a function of N-parity and corridor condition.

since such agents still rely on perception at the T-junction and normal behavior is not
affected by the redundant internal states, we can still classify them as perception-based.

4.3.3 Time needed to reach the termination criteria

Figure 4.8 shows the average number of iterations until the termination criteria were
reached for each experimental condition, plotted in the same spatial layout as figure 3.
As expected, the more difficult the condition is both in terms of perception and in terms
of internal state (high N-parity and high corridor condition), the higher the average
number of iterations. If the parity pattern is easy, learning takes a relatively short time
because the perception-based policy can easily be learned. Conversely, if the corridor
pattern is easy, learning takes a relatively short time because the internal state-based
policy can easily be learned. A two-way analysis of variance of these data supports
these conclusions. The results indicate that there is a significant main effect (F=5.804,
p=.000), significant effects of both N-parity (F=4.092, p=.004) and corridor condition
(F=8.874, p=.000), as well as a significant interaction effect (F=3.552, p=.010).

Figure 4.9 shows the average number of iterations per N-parity condition for corri-
dor condition 3, and sorted by the kind of policy converged upon (similar findings are
obtained for other corridor conditions). It shows that the average number of iterations
needed to learn a perception-based policy increases rapidly with higher N-parity. For
N = 4 and N = 5, the internal state-based policy, which the agent can also converge
upon, takes much less time to learn than the perception-based policy. These findings

4.3. RESULTS 103

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
x 107

N−parity

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

Perception
Mixed
Internal State

Figure 4.9: Average number of iterations per N-parity condition for corridor condition
3, sorted by the kind of policy converged upon.

1 2 3 4
0

1

2

3

4

5

6

7

8
x 107

Corridor condition

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

Perception
Mixed
Internal State

Figure 4.10: Average number of iterations per corridor condition for N-parity condition
4, sorted by the kind of policy converged upon

104 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

suggest that also in terms of learning times, an internal state-based policy can be eas-
ier to learn than a perception-based one as the pattern recognition problem associated
with perception becomes more difficult.

Figure 4.10 shows the average number of iterations per corridor condition for N-
parity condition 4, and again sorted by the kind of policy converged upon. Here
the results are less clear. The graph does suggest that there is a positive correlation
between difficulty of the pattern in the corridor and average learning time of an internal
state-based policy. However, the average learning time for a perception-based policy
is never shorter than those for the internal state-based policies.

Even though there are not enough data points to statistically confirm these results
(the “average” learning time of the perception-based policy in corridor condition 2 is
even made up of just one run), similar results are obtained in other N-parity conditions,
and they are sufficiently clear to call for an explanation. An explanation may be found
by considering the learning algorithm. The learning algorithm is based on gradient
descent. This means that the learning process can be described in terms of the solution
in weight space being attracted to one of the local or global optima. Being in the basin
of attraction of one optimum does not necessarily say very much about the time until
that optimum is finally reached. Here it may be the case that even if the conditions
are such that the network will usually end up in the basin of attraction of a perception-
based solution, the time until the optimum is reached is longer than if the networks
ends up in the basin of attraction of an internal state-based policy. Thus, a preference
for a perception-based policy in a certain condition does not mean that this policy will
necessarily be learned much faster than the alternative, internal state-based policy.
This suggests that neither learning times nor the network’s own decisions which policy
to adopt should by themselves be taken as the only or unequivocal answer to the
question which kind of policy is “easiest to learn”.

4.4 Discussion

In the simulation experiments of agents in a Markovian reinforcement learning task
presented in this chapter, there is a trade-off between perception and internal state. If
the pattern recognition problem associated with perception becomes too hard, agents
develop internal states, called supportive states, that reduce the reliance on perception.
Conversely, if the development of internal state is made more difficult, agents rely on
perception more often. Of course, the environments used in this chapter were con-
structed in a way that made developing supportive states possible and, in many cases,
even relatively easy. However, it can be argued that in many reinforcement learn-
ing tasks there are temporal regularities that can be exploited by internal state-based
policies. In any case, this work presents a proof of principle that argues against the ten-
dency in the reinforcement learning community to consider the use of perception-based
or memoryless policies as a given when the task is Markovian.

Obviously, the general conclusions still hold in non-Markovian tasks. In non-
Markovian tasks too there is a trade-off between perception and internal state: when
the observation vector in principle provides an unambiguous state representation, but

4.4. DISCUSSION 105

the pattern recognition problem associated with the observation is severe, it may be
easier to use internal state.

The argument may even be generalized beyond reinforcement learning, for example
to supervised learning tasks. Even when solving a task can in principle be based on
direct input-output mapping, if there are temporal regularities in a task, exploiting
these temporal regularities may make learning easier. Indeed, it might in some cases
yield more robust systems, for instance when the system’s inputs are very noisy so the
pattern recognition process is unreliable. In the context of neural networks, it means
that even if a feedforward network could be used to solve a task, it might sometimes
be more efficient or effective to use recurrent neural networks.

Looking at a trade-off like the one investigated in this chapter has interesting
methodological advantages. First of all, a trade-off proves that the fact that under
certain conditions one kind of policy is better than the other is not an “artefact”
caused by a strong bias in the learning system to learn that kind of policy. After all,
in other conditions the other kind of policy is better. In general, a single finding that
one specific kind of policy or learning algorithm is better than another one for one
specific test problem can be sensitive to details of the test problem and the learning
algorithm. This makes it hard to draw general conclusions that are valid in other
settings. When one demonstrates a trade-off this is less of a problem, because an
array of findings is considered rather than a single finding, and the focus is on the
general shape of the trade-off surface rather than on a single difference.

In a way, the trade-off shows that the tendency to learn one or the other kind of
policy is “under the control” of the parameters that are varied, in this case the rela-
tive difficulties of perception and internal state. If the details of the learning system,
learning algorithm, and test problem were varied, this would probably not change that
qualitative result. For instance, it is likely that if Q-learning was implemented using
complete backpropagation through time (Rumelhart et al., 1986) rather than ordinary
backpropagation, or if a Long Short-Term Memory network (Hochreiter & Schmidhu-
ber, 1997) was used rather than an Elman network (see chapter 6), the agent would
have converged to an internal state-based policy in more conditions. The position of
the trade-off surface would have shifted, but we would still have the qualitative result
of the trade-off surface.

Therefore, the finding of a trade-off suggests that the trade-off is also important
in other settings that share these parameters. Thus, even though the usefulness of
demonstrating the trade-off is limited in the sense that we may not be able to say
where exactly the transition from one kind of policy to the other will occur in other
settings (because of differences in architecture, learning algorithm, and learning task),
we can safely predict that there will be such a point. This is useful because it shows
that one should take this trade-off into account whenever either one of the parameters
of the trade-off is varied.

In any case, finding a trade-off like the one investigated in this chapter amounts
to identifying factors that play an important role in the learning task. In this way, it
contributes to our understanding of reinforcement learning tasks and the corresponding
suitable learning systems.

106 4. THE TRADE-OFF BETWEEN PERCEPTION AND INTERNAL STATE

Chapter 5

Reinforcement learning in
POMDPs with Advantage(λ)
learning and Elman networks

Summary

This chapter investigates the same basic architecture as used in the previous chapter,
but now for the problem class of Partially Observable Markov Decision Processes. The
main technical contribution, compared to the previous chapter and to work by other
authors, is a new algorithm called Advantage(λ) learning. Another main focus of this
chapter lies in the behavioral and mechanical analysis of the agents.

5.1 Introduction

In the previous chapter, the application of reinforcement learning agents controlled
by recurrent neural networks to Markov Decision Processes (MDPs) was investigated.
It was shown that even in that case, where internal states are not strictly necessary,
internal states can still be useful, because they may make learning easier. In the
current chapter, the case is considered where internal states are strictly necessary:
Partially Observable Markov Decision Processes (POMDPs). Thus, we now start to
consider the particular class of problems which is the main focus of this thesis, and
which is why we turned to recurrent neural networks in the first place. The networks
must learn to induce internal states that compensate for the insufficient information
in the observations.

Two basic tasks (and variations on them) are investigated. The first is a con-
tinuous control task, a variation of the pole balancing or inverted pendulum control
problem. The second is a discrete maze navigation task, of a similar type as the one
investigated in the previous chapter. These tasks allow us to investigate the validity of

107

108 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

the approach of using recurrent neural networks that approximate value functions for
solving different types of POMDPs, and the strengths and weaknesses of this approach.

Another focus of this chapter is an investigation of how the recurrent neural net-
works solve particular POMDPs, and what the resulting agents’ behavior is in the face
of unexpected changes in the environment. Among other things, this investigation al-
lows us to make a connection to classical learning studies in psychology, and make
some observations regarding the classical cognitive science concept of the cognitive
map (Tolman, 1948), which has recently been re-examined in the adaptive behavior
literature (Mataric, 1991; Clark, 1997).

The main technical contribution of this chapter, compared to the previous chapter
and to work by other authors, is the particular reinforcement learning algorithm that
is used. Instead of Q-learning, now Advantage learning (Harmon & Baird, 1996; Baird,
1999) is used. To the best of my knowledge, this is the first time Advantage learning
is applied to partially observable reinforcement learning problems. Furthermore, Ad-
vantage learning is extended with eligibility traces, yielding the new algorithm called
Advantage(λ) learning. Experimental results are presented to show the benefit of using
Advantage(λ) learning.

The next section describes the modifications in the learning algorithm. Section
5.3 contains the description and results of the pole balancing experiments. Section
5.4 contains the description and results of the maze navigation experiments. The last
section presents conclusions.

5.2 Advantage learning with Elman networks

5.2.1 Architecture of the recurrent neural network

The network architecture used in this chapter is the same as in the previous chapter,
see section 4.2.2 for details. The only difference is that the output unit is now linear.
The activation of the output unit is simply its net input:

yk(t) = g(netk(t)) = netk(t) =
∑

h

wkhyh(t). (5.1)

The more important difference with the previous chapter is the particular reinforce-
ment learning algorithm that is used to train this Elman recurrent neural network. In
this chapter Advantage learning (Harmon & Baird, 1996; Baird, 1999) is used rather
than Q-learning. Furthermore, Advantage learning is extended with eligibility traces,
yielding the new algorithm called Advantage(λ) learning.

5.2.2 Advantage learning

Advantage learning (Harmon & Baird, 1996; Baird, 1999) is a reinforcement learning
(RL) algorithm derived from Advantage updating (Baird, 1994), which in turn was
designed as an improvement on Q-learning for continuous-time RL. In continuous-time
RL, values of adjacent states typically differ by only small amounts, relative to the
possible overall variance of values. This means that the optimal Q-values of different

5.2. ADVANTAGE LEARNING WITH ELMAN NETWORKS 109

actions in a given state, from which the policy is directly derived, differ by only small
amounts. These differences, then, can easily get lost in the noise, especially when we
use function approximators, such as neural networks.

Advantage learning remedies this problem by artificially decreasing the values of
suboptimal actions in each state. The differences between the values of different actions
in each state are thus greater than in Q-learning, and less likely to get lost in the noise.
Doya (2000) shows that Advantage updating (so presumably Advantage learning as
well) can be understood as one approach to deriving an efficient control policy for
continuous-time systems using the estimated gradient of the Q-value function.

Even though Advantage learning was originally designed for continuous-time RL,
it can be fruitfully used for discrete-time RL as well, as we will see in this chapter
and the next chapters. Note that the same problem of small differences between the
values of adjacent states applies to any RL problem with long paths to rewards, and
therefore the same solution might be beneficial.

Furthermore, Advantage learning may have a special edge over Q-learning when
applied to POMDPs. In POMDPs, in contrast to MDPs, the state of the environment
is not directly given to the agent in the form of the current observation. Therefore, the
agent cannot be as certain about both the current state and the next states, and for
this reason, very precise value estimation may be difficult. However, it may be easier
to estimate something like “relative Q-values” in each state, which is what Advantage
learning effectively does. This does not require that values are estimated exactly, but
only that better actions have higher values. As long as the best action in each state
has the highest relative value, this will still lead to an optimal policy.

5.2.3 Bellman equation and learning algorithm

In Advantage learning, the value of an environmental state is defined as

V ∗(s) = max
a

A∗(s, a). (5.2)

The optimal Advantage A∗(s, a) for each action a in state s is defined as

A∗(s, a) = V ∗(s) +
E{r(t + 1) + γV ∗(s(t + 1)) | s(t) = s, a(t) = a} − V ∗(s)

κ

= V ∗(s) +

∑

s′ Pa
ss′ [Ra

ss′ + γV ∗(s′)] − V ∗(s)

κ

(5.3)

where, as usual, γ is a discount factor in the range [0, 1]. For an optimal action, the
second term is zero, meaning that the value of this action is the value of the state. For
suboptimal actions, the second term is negative. The size of the second term depends
on κ, a constant scaling the difference between values of optimal and suboptimal
actions (κ replaces K∆t of the original formulation as found in Harmon & Baird,
1996; Baird, 1999). Equation 5.3 is Advantage learning’s equivalent of the Bellman
equation, compare equation 3.12. Note that when κ = 1, this Bellman equation reduces
to Q-learning’s Bellman equation. Thus, we can view Q-learning as a special case of
Advantage learning.

110 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

To implement Advantage learning, the righthand side of equation 5.3 can be viewed
as the target output for the Advantage of the executed action at the current timestep.
As in Q-learning, actual, sampled experiences in the environment replace the true
expected values, and the system’s own current approximations to V ∗(s) and V ∗(s′)
are used. Thus, the update is based on the immediate reward received after executing
action a, and the maximally attainable Advantage value in the next state, estimated
by the system itself. This yields the temporal difference error ETD(t) at time t, which
basically computes the difference between the estimated righthand side and lefthand
side of equation 5.3:

ETD(t) = V (s(t)) +
r(t + 1) + γV (s(t + 1)) − V (s(t))

κ
− A(s(t), a(t)). (5.4)

Consider the case where Advantage learning is implemented using a function ap-
proximator, as in this thesis and in most other work with Advantage learning. The
tabular representation can be viewed as a special case of function approximation. Let
us say the function approximator has parameters or weights wim. At each timestep t,
the weight update prescribed by direct Advantage learning1 is

∆wim(t) = αETD(t)
∂A(s(t), a(t))

∂wim
(5.5)

for all parameters wim. When we use a tabular representation, each parameter wim

simply corresponds to one table entry A(s, a) for each state-action pair, and ∂A(s(t),a(t))
∂wim

is 1 for the state and action of time t, and 0 otherwise.

5.3 Advantage(λ) learning

5.3.1 The λ-return

In its simplest form, Advantage learning, like other temporal difference learning algo-
rithms, performs back-ups based on the immediate reward plus the discounted value
of the next state. This is called the 1-step return, or R(1)(t). Advantage learning’s
temporal difference error can be written as

ETD(t) = V (s(t)) +
r(t + 1) + γV (s(t + 1)) − V (s(t))

κ
− A(s(t), a(t))

= V (s(t)) +
R(1)(t) − V (s(t))

κ
− A(s(t), a(t)).

(5.6)

It is natural, as in other TD-based learning algorithms, to attempt to speed up Advan-
tage learning by updating state-action values not just on value information from one

1Certain RL algorithms based on temporal difference learning, such as Q-learning and Advantage
learning, can in principle lead to divergence when used in conjunction with function approximators
such as neural networks (e.g. see Harmon & Baird, 1996; Baird, 1999; Sutton & Barto, 1998). It
is unclear at this point how serious this problem is, and it did not appear to be a problem in the
work reported in this thesis. If it turns out to be a problem in practical cases, one could use the
safer “residual” or “residual gradient” versions of Advantage learning (Harmon & Baird, 1996; Baird,
1999), rather than the direct version this chapter is concerned with.

5.3. ADVANTAGE(λ) LEARNING 111

timestep later, but also from multiple timesteps later. An obvious candidate is doing
updates based on the λ-return rather than the 1-step return (see section 3.5.2.4). As
explained in section 3.6.3.10, this could be especially beneficial for the class of problems
that this chapter (and the remainder of this thesis) is concerned with, partially observ-
able problems. In that case the system cannot be sure about current and next states,
and therefore value estimations, which are associated with states, are less reliable than
in completely observable problems. Using the λ-return rather than the 1-step return
makes the system less vulnerable to errors in individual value estimations, because
a weighted sum of value estimations associated with multiple states and of actually
received rewards is used.

Thus, we want to include Advantage learning into the TD(λ) family of algorithms
(Sutton, 1988). In the case of off-policy methods (Sutton & Barto, 1998), such as
Advantage learning, updates are done based on the λ-return Rλ(t) defined in the
following way (Watkins, 1989):

Rλ(t) =(1 − Λ(t + 1))R(1)(t) + Λ(t + 1)(1 − Λ(t + 2))R(2)(t)

+ Λ(t + 1)Λ(t + 2)(1 − Λ(t + 3))R(3)(t) + . . .
(5.7)

where

Λ(t) =

{

λ a(t) = arg maxa A(s(t), a)
0 otherwise

(5.8)

where 0 ≤ λ ≤ 1 is a constant that weighs the importance of long-term rewards as
opposed to short-term rewards. If λ = 0 (Advantage(0)-learning or plain Advan-
tage learning), this reduces to standard Advantage learning’s 1-step return. If λ = 1
(Advantage(1)-learning), on the other hand, the λ-return is based only on actual re-
wards obtained during the episode. Thus, in that case the λ-return is not based on
estimated values; in other words, it does not bootstrap. In the intermediate cases,
0 < λ < 1, an average of multiple-step returns is taken, weighted in the particular way
of TD(λ) algorithms.

As with Q(λ)-learning, the λ-return is truncated at the point where an exploring
action is chosen, i.e. when a(t) 6= arg maxa A(s(t), a). This corresponds to the notion
that rewards obtained after that point no longer reflect the value of the currently
estimated best policy. After all, in off-policy methods like Q-learning and Advantage
learning we wish to learn about the best policy, and not about a policy with exploring,
possibly suboptimal actions.

5.3.2 Eligibility traces

As with Q-learning and other TD-learning algorithms, the update of a value based
on the λ-return can be accomplished by maintaining a simple scalar measure, called
the eligibility trace, for each parameter of the reinforcement learning agent (Sutton,
1988, 1989; Watkins, 1989). Thus, there is one eligibility trace eim per parameter wim.
The eligibility trace eim(t) at time t for Advantage learning is the same as that for
Q-learning, and it is defined as

eim(t) = γΛ(t)eim(t − 1) +
∂A(s(t), a(t))

∂wim
. (5.9)

112 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

As in other algorithms that use eligibility traces, the eligibility trace can be interpreted
as information that says to what extent the corresponding parameter wim can be held
“responsible” for rewards obtained later on. If an exploring action is taken then
Λ(t) = 0, in other words, the eligibility traces are reset to 0. eim(0) is 0 for all
parameters.

The update rule for Advantage(λ) learning, implemented using eligibility traces,
then becomes

∆wim(t) = αETD(t)eim(t) (5.10)

for all parameters wim. In the case of Elman neural networks as the function ap-
proximator and using standard 1-step backpropagation, the partial derivatives of the
Advantage value with respect to the weights in equation 5.9, which are used to update
the eligibility traces, are computed as follows. As in the previous chapter, the current
state is approximated by the current observation plus the Mealy internal state. That
is, A(s(t), a(t)) is approximated by A(o(t), z(t), a(t)). A(o(t), z(t), a(t)) is equal to the
activation of the output unit, so

∂A(o(t), z(t), a(t))

∂wim
=

∂yk(t)

∂wim
. (5.11)

For the weights wkh from the hidden layer to the output layer in the Elman network,
the partial derivatives are

∂yk(t)

∂wkh
= g′(netk(t))yh(t) = yh(t) (5.12)

and the partial derivatives with respect to the weights whm to the hidden layer are

∂yk(t)

∂whm
= wkhg′(netk(t))f ′(neth(t))ym(t) = wkhyh(t)(1 − yh(t))ym(t). (5.13)

where, as before, m can be an observation unit, an action unit, or a context unit.
Note that internal state is treated in the same way as observation and action, as far
as eligibility is concerned. That is, the weights from the context layer to the hidden
layer have the same type of eligibility trace updates as, for instance, the weights from
the observation layer to the hidden layer. This makes sense because the internal states
from the past are “responsible” for current rewards in the same way as observations and
actions. This weight update scheme effectively does standard 1-step backpropagation
in the Elman network, attempting to minimize errors based on the λ-return.

5.3.3 The forward and backward view of Advantage(λ) learning

Advantage(λ) learning implemented using eligibility traces is the backward view (Sut-
ton & Barto, 1998, and see section 3.5.2.4) of Advantage(λ) learning. At each point
in time it looks back to the agent’s past, using the eligibility traces, to estimate which
parameters used in the past were responsible for the current situation. Advantage(λ)
learning can also be implemented by straightforwardly using the λ-return in the target
output. This is the forward view, because at each point in time it looks forward in
time for rewards and values in the future.

5.4. PARTIALLY OBSERVABLE POLE BALANCING 113

Appendix B contains the proof of equivalence of the forward and backward views
of Advantage(λ) learning with function approximators. More precisely, it shows that
offline Advantage learning with the same eligibility traces as Q-learning, and on the
basis of the one-step return (the backward view), leads to the same weight updates as
offline Advantage learning without eligibility traces on the basis of the λ-return (the
forward view). This is important because it is not obvious that Advantage learning
can be combined with eligibility traces in the same way as Q-learning and lead to the
same desired result, namely back-ups based on the λ-return. It is not obvious because
the corresponding Bellman equations differ for the two algorithms, and the known
results for Q(λ) and TD(λ) depend on the corresponding Bellman equations.

5.3.4 Related work

In chapters 2 and 3, a number of studies combining recurrent neural networks and
reinforcement learning algorithms have been discussed. As explained in chapter 3, the
work that is most closely related to the work of that and this chapter is that of Lin
& Mitchell (1993, 1992). They combine Q(λ)-learning with Elman networks. Several
differences with this thesis’ work were already discussed in the previous chapter. An
additional difference is of course that in this chapter Advantage(λ) learning is used
rather than Q(λ)-learning. Another difference worth mentioning in the context of this
chapter is that they use a forward view implementation of Q(λ)-learning, rather than
a backward view implementation using eligibility traces, as is done in this chapter.
For this reason, they have to postpone updates until the end of episodes, yielding a
learning algorithm that is not local in time.

5.4 Partially observable pole balancing

5.4.0.1 The task

The pole balancing or inverted pendulum task (see figure 5.1) is a classical continuous
control problem. A large number of researchers have studied variations of this task
using machine learning techniques (Michie & Chambers, 1968; Barto et al., 1983;
Anderson, 1987; Lin & Mitchell, 1993; Schmidhuber, 1991c; Moriarty & Miikkulainen,
1996; Meuleau et al., 1999; Doya, 2000), giving it the status of a benchmark problem.
For this reason alone, it is interesting to see how our reinforcement learning recurrent
neural network approach performs on it. Furthermore, it is the first continuous state
and continuous time problem investigated in this thesis, and it is interesting to see if
and how our approach copes with the corresponding problems, such as the problem of
effective generalization over the state space.

In the pole balancing task, an agent must balance an inherently unstable pole,
which is hinged to the top of a wheeled cart that travels along a track, by applying
left and right forces to the cart (see figure 5.1). The state of the environment is
defined by the cart position x, the pole angle θ, the cart velocity ẋ, and the pole’s
angular velocity θ̇. See e.g. Anderson (1987), Lin and Mitchell (1992) for the equations
describing the physics of the pole balancing task. The task requires fairly precise
control to solve it, i.e., to balance the pole indefinitely. Another difficulty in the

114 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

push left push right

Figure 5.1: The pole balancing task.

reinforcement learning version investigated in this chapter is the sparseness and strong
delay of the reward signal. The only reward signal is −1 if the pole falls past ±12◦

or if the cart hits either end of the track. These are also the only points where
the episode ends and a new one starts. At the start of each episode, the cart is
randomly positioned on the track: −1 < x < +1 (the track runs from -2.4 to 2.4),
and the pole is also positioned randomly: −3◦ < θ < +3◦. Time is “discretized” by
equating one neural network/learning algorithm iteration with .02 seconds of simulated
physical time, and by using difference equations updated using the Euler method for
the simulated physics.

Most studies have considered only the standard, completely observable version of
pole balancing. In the completely observable version, the agent’s observation consists of
all state variables, i.e. x, θ, ẋ, and θ̇. Here a partially observable version is considered,
as in Lin and Mitchell (1993), Schmidhuber (1991c), Gomez and Miikkulainen (1999),
Wieland (1991), Meuleau et al. (1999), in which the agent cannot observe the state
information corresponding to the cart velocity ẋ and pole angular velocity θ̇. The agent
has to learn to approximate this information using its internal state, in this case its
recurrent activations, in order to solve the task. This is continuous information, making
a recurrent neural network approach seem a more appropriate solution technique than,
for instance, a memory bits approach, a U-tree approach, or an FSA approach (but
see Meuleau et al., 1999).

5.4.1 The experiment

An Elman network with 10 hidden units and 10 context units was used. In this
particular experiment, half of the hidden units were linear units instead of sigmoid
units. This was done to give the output units linear access to the observation variables.
It improved performance considerably in terms of learning times, compared to using
only sigmoid units, but it is not essential for getting the same qualitative results.
The number of observation units was 2: one for the cart position x and one for the
pole angle θ. Both inputs were normalized to the range [−1, 1]. Furthermore, as
in the previous chapter, there are additional input units coding for the action, one

5.4. PARTIALLY OBSERVABLE POLE BALANCING 115

for action “push left” and one for action “push right”. For each of the two actions,
the Advantage value is computed by setting the corresponding action input unit to
1 and the other to 0, and computing the activation of the single output unit, which
codes directly for the Advantage value. The discount rate γ of reinforcement learning
was .98, and λ was .9. In this experiment the focus was mainly on the difference in
performance between Q-learning and Advantage learning in the case of non-Markovian
tasks. Therefore, two experimental conditions were compared: κ = 1 (Q(λ)-learning)
versus κ = .2 (Advantage(λ) learning). In the test problem discussed later, the discrete
maze navigation problem, we will have a closer look at the possible benefit of eligibility
traces, i.e. λ is varied as well.

As in the previous chapter, the agent explores using a stochastic action selection
mechanism, namely Boltzmann exploration, which computes the probability p(s, a) of
each action a in state s according to:

p(s, a) =
eA(s,a)/τ

∑M
m=1 eA(s,am)/τ

(5.14)

where M is the number of possible actions and τ is the temperature of the action
selection mechanism.

Because Advantage values and temporal difference errors are different for different
values of κ, it is quite possible that the optimal temperature of action selection τ as
well as the optimal learning rate α is different for the two conditions. For this reason, a
range of parameter values for both α and τ was tried. The range for both κ = 1 and κ =
.2 was determined using preliminary experiments that suggested reasonable parameter
ranges. For both conditions, going much outside these ranges decreases performance; it
is therefore not very meaningful to compare the two experimental conditions on exactly
the same parameter ranges. In general, Q(λ)-learning (κ = 1) requires larger learning
rates α and smaller temperature parameters τ than Advantage(λ) learning. This
is probably because differences between estimated values, both between consecutive
states and between action actions within one state, are often very small in Q(λ)-
learning, so that they disappear in the noise for smaller learning rates and larger
temperatures.

10 test runs were performed for each combination of parameter values. The ter-
mination criterion for each run had two requirements. First, the running average of
the balancing time during learning, using stochastic action selection, had to exceed 80
iterations. Second, using greedy action selection, the agent had to be able to balance
the pole indefinitely. The latter criterion was tested “offline”, every 50,000 iterations.
The first criterion ensures that solutions are at least somewhat robust, i.e., minor
weight changes probably do not affect performance that much. The maximum number
of iterations allowed for each run was 25,000,000, which is more than enough to learn
the task with reasonable parameter settings. If a run did not reach the termination
criteria before this maximum number of iterations, it was considered a failure.

Figure 5.2a shows the number of runs (out of 10) that reach the termination criteria
for Q(λ)-learning (κ = 1), for different parameter values of α and τ . Figure 5.3a shows
the same information for Advantage(λ) learning (κ = .2). Figures 5.2b and 5.3b show
the average number of iterations needed to reach the termination criteria, for successful

116 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

.005 .01 .02 .04
0

1

2

3

4

5

6

7

8

9

10

α

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

τ =.0125
τ =.025
τ =.05

.005 .01 .02 .04
0

2

4

6

8

10

12
x 10

6

α

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

τ =.0125
τ =.025
τ =.05

Figure 5.2: Fig. a (left). Number of successful runs (out of 10) in the pole balancing
task as a function of learning rate α and temperature of action selection τ for Q(λ)-
learning (κ = 1). Fig. b (right). Average number of iterations until success, given that
the success criteria are reached, for the same conditions.

.00125 .0025 .005 .01
0

1

2

3

4

5

6

7

8

9

10

α

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

τ =.1
τ =.2
τ =.3

.00125 .0025 .005 .01
0

2

4

6

8

10

12
x 10

6

α

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

τ =.1
τ =.2
τ =.3

Figure 5.3: Fig. a (left). Number of successful runs (out of 10) in the pole balanc-
ing task as a function of learning rate α and temperature of action selection τ for
Advantage(λ)-learning (κ = .1). Fig. b (right). Average number of iterations until
success, given that the success criteria are reached, for the same conditions.

5.5. MAZE NAVIGATION TASK 117

runs only. The clearest result that can be seen from these graphs is that Advantage(λ)
learning reaches the success criteria in many more cases than Q(λ)-learning. It is
therefore more robust, at least in this particular context.

These results are consistent with the original ideas behind Advantage learning and
with previous results, which essentially say that in continuous time problems Advan-
tage learning should do better than Q-learning, because optimal Advantage values
within one state differ much more than optimal Q-values, making it easier to learn
them. What is new about this result is that Advantage learning works well in par-
tially observable tasks as well, and in that context evidently has a similar advantage
over Q-learning. Another new result is that apparently eligibility traces can be success-
fully combined with Advantage learning. That is, Advantage(λ) learning is a feasible
reinforcement learning algorithm, also in difficult reinforcement learning problems such
as partially observable problems with strongly delayed reward. The learning algorithm
allowed the recurrent neural network to successfully organize its internal state space
and internal state transitions such that it approximated sufficiently well the contin-
uous information, cart velocity and pole angular velocity, that was missing from the
observations but that was needed for solving the task.

5.5 Maze navigation task

We now turn to a discrete partially observable task, a maze navigation task. The
maze is depicted in figure 5.4, together with the agent and its sensors. The agent
has an orientation, and its sensors give very limited information about its immediate
surroundings. Each sensor detects walls (0) versus open space (1) at a specific location
relative to the agent. There are only 28 observations for 173 states, and many states
with the same observation require different actions (e.g. T-junctions). The actions are
the same as in the previous chapter, i.e. they consist of actions “move forward”, “turn
left and move in the new direction”, and “turn right and move in the new direction”.
As in the previous chapter, the agent takes steps of 2 grid cells at a time, such that
its sensors do not provide information about states one action beyond the current
position. If the agent attempts to move through a wall, it stays in the same location,
but turning is possible. Even though the observations are highly ambiguous, still some
generalization over the observations is possible: e.g. the agent should learn that an
action toward a certain direction only makes sense if the sensors indicate that there is
open space in that direction.

The objective is to get to the goal position in the upper right corner. At this
point, the only reward, r = 1, is obtained and the episode ends. If the agent fails
to reach the goal in 300 actions, the episode ends as well. A new episode starts with
the agent starting at a random location anywhere in the maze. Since the agent starts
each episode at a random location, it cannot simply learn a fixed route “by heart”,
for example a feedforward control policy which simply executes a series of actions in a
fixed order. Nor can the agent tell immediately where in the environment it is based on
the first observation, which would be the case in MDPs. Instead, the agent must figure
out in the beginning of each episode where it is, based on a sequence of observations

118 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

W

W
WWW

W
G

GG

G

Figure 5.4: The partially observable maze. The agent is depicted, oriented to the north,
together with its sensors for walls (W) and the goal (G). The goal location G is in the
upper right corner. Many states are ambiguous with respect to observations, i.e. many
position/orientation combinations give rise to the same observation. Three typical
paths are depicted when the agent starts from different random starting positions.

it sees when it executes actions. Most of these observations are highly ambiguous—
corresponding to “corridor”, “corner”, or “T-junction”, for instance, which could be
anywhere—but the particular sequence of observations given particular actions should
be sufficient to eventually determine where it is. From then on the agent should proceed
to the goal more or less directly, while still being able to disambiguate ambiguous
observations along the way. Note that all this has to be learned based on a very sparse
training signal, the reward obtained after finally reaching the goal.

5.5.1 The experiment

A similar neural network architecture was used as in the pole balancing task, but now
with 3 action input units, 9 observation units, and 10 sigmoid hidden and context
units. The same Boltzmann exploration mechanism was used as before. Again an
experimental comparison was made between Q(λ)-learning (κ = 1) and Advantage(λ)
learning (κ = .1), for different values of α and τ . For this comparison, λ was set to
.9. For each set of parameters, 10 runs were done. The success criteria for each run
were as follows. The running average of the proportion of episodes in which the agent
reaches the goal before the time-out value of 300 actions, during learning and using its
exploration mechanism, must be higher than .95. Second, for those episodes where the
agent reaches the goal, the average number of actions in the episode must be below 40
actions. The latter criterion means that the agent cannot take many excess actions.

5.5. MAZE NAVIGATION TASK 119

.01 .02 .1 .2
0

1

2

3

4

5

6

7

8

9

10

α

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

τ =.0125
τ =.025
τ =.05

.01 .02 .1 .2
0

0.5

1

1.5

2

2.5
x 10

7

α

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

τ =.0125
τ =.025
τ =.05

Figure 5.5: Fig. a (left). Number of successful runs (out of 10) in the maze navigation
task as a function of learning rate α and temperature of action selection τ for Q(λ)-
learning (κ = 1). Fig. b (right). Average number of iterations until success, given that
the success criteria are reached, for the same conditions.

To give an idea about what these numbers mean, at the beginning of a run, before any
learning is done, the proportion of episodes where the agent reaches the goal thanks to
random action selection is around .4, and the average number of actions if it reaches
the goal is 130.

Figures 5.5 and 5.6 show the results, both in terms of the number of successful runs
out of 10 test runs, and in terms of the time needed to reach success given that it was
reached. These results are displayed for different combinations of parameters. It is ap-
parent that, as in the pole balancing task, Advantage(λ) learning clearly outperforms
Q(λ)-learning in both respects: it learns faster and more reliably. Advantage(λ) learn-
ing reaches the success criteria in many more cases than Q(λ)-learning. Advantage(λ)
learning is, in this sense, more robust than Q(λ)-learning. In the one combination of
parameter values in which Q(λ)-learning always reached the success criteria, α = .1
and τ = .025, it needed 2.34 times more learning iterations, on average, to reach
the success criteria than the best parameter combination of Advantage(λ) learning,
α = .01 and τ = .05.

Having obtained some evidence that Advantage(λ) learning is better than Q(λ)-
learning for the tasks considered in this chapter, we now turn to the question how
beneficial eligibility traces are in combination with Advantage learning. The goal is
to investigate the hypothesis, expressed in the beginning of this chapter, which stated
that Advantage learning should benefit from eligibility traces in the same way as other
temporal difference based learning algorithms, and especially in partially observable
tasks. In other words, we want to see if the new algorithm called Advantage(λ) learning
can be justified by empirical results. This question is investigated by systematically
varying the value of λ from 0 to 1, taking steps of .1. Recall that λ = 0 corresponds
to plain Advantage learning. κ was held constant at .1. τ was fixed at .1. There is

120 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

.001 .005 .01 .02
0

1

2

3

4

5

6

7

8

9

10

α

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

τ =.05
τ =.1
τ =.2

.001 .005 .01 .02
0

0.5

1

1.5

2

2.5
x 10

7

α

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

τ =.05
τ =.1
τ =.2

Figure 5.6: Fig. a (left). Number of successful runs (out of 10) in the maze naviga-
tion task as a function of learning rate α and temperature of action selection τ for
Advantage(λ)-learning (κ = .1). Fig. b (right). Average number of iterations until
success, given that the success criteria are reached, for the same conditions.

no need to vary τ in this case, because the optimal Advantage values are not different
for different values of λ: varying λ just provides different ways to learn the same
Advantage values. However, we do need to vary α again, because weight changes are
different for different values of λ (specifically, weight changes will in general be larger
for larger λ in tasks with sparse and strongly delayed reward such as this one), so
different values of α might be optimal (see Sutton & Barto, 1998 who also vary α

when investigating the effect of λ).

10 runs in the same maze navigation task were performed for each combination of
α and λ. Figure 5.7 shows the number of successful runs, out of 10, for the different
combinations of parameter values. It is apparent that it is very beneficial to use λ > 0.
The optimal value of λ for this task seems to be 1 or close to 1. If we look at the
runs in terms of the number of iterations needed to learn the task, for those runs in
which the task was learned, we see that in that respect λ > 0 also does much better
than λ = 0. Thus, for this task at least, Advantage(λ) learning seems to be a useful
extension of Advantage learning.

Figure 5.4 shows characteristic behavior of a successful agent after learning (this is
an agent from the κ = .1, λ = .9, α = .01 condition). Sample trajectories are shown of
episodes when the agent starts in different locations. In most cases, at the beginning of
an episode the agent first seems to be wandering around without making clear progress
to the goal. After a number of actions, however, the agent seems to “realize” where it
is, judging from the fact that from then on it proceeds more less or directly to the goal,
without going back and forth anymore. We could say the agent becomes “entrained”
with the environment (Tani & Nolfi, 1998; Clark, 1997; Beer, 1995; Kelso, 1995) after
the first number of actions that are needed to obtain a sequence of observations that
disambiguate the initial states.

5.5. MAZE NAVIGATION TASK 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

λ

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

α =.001
α =.005
α =.01
α =.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

7

λ

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

α =.001
α =.005
α =.01

Figure 5.7: Fig. a (left). Number of successful runs (out of 10) as a function of λ for
Advantage(λ)-learning (κ = .1). Fig. b (right). Average number of iterations until
success, given that the success criteria are reached, for the same conditions.

It is important to note that even after the first initial entrainment phase where the
agent figures out where it is, the agent does not always take the shortest route to the
goal. In a small number of cases, it takes a suboptimal path, but never a really bad
path. Such an agent has converged to a suboptimal but satisficing policy. This is to be
expected when we use reinforcement learning methods with function approximators.

5.5.2 Cognitive maps in rats and robots

The maze experiment was repeated with the same architecture, but now starting from
a fixed starting position, indicated in figure 5.8. The termination criteria were now
95% correct, and at most a running average of 25 actions to the goal, using the agent’s
online stochastic action selection. Advantage(λ) learning was used, with κ = .1, λ = .9,
τ = .1 and α = .01. In 10 runs, the agent always reached these criteria within, on
average, 4,458,522 iterations.

The agents always learned the shortest path from the starting position to the goal
(see figure 5.8). Note that here there is no need for an initial entrainment phase at
the beginning of an episode, because the agent can rely on starting always at the same
position. However, it is interesting to now see how the trained agent will do when
it is put in different starting positions, as in the previous experiment. No additional
training was done; the aim here is to investigate the ability of the agent to cope with
this unexpected change. Figure 5.8 shows a typical route taken by the agent. From
other starting positions the agent also takes routes to the goal that are not always
optimal, but that are always satisficing in that they lead via a reasonable trajectory
to the goal. Similarly, if the agent is picked up in the middle of an episode and placed
somewhere else, after an initial “entrainment” phase it once again takes a fairly direct
path to the goal.

122 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

Thus, even though in this particular experiment the agent was never explicitly
trained to display these capabilities, it still has them. This shows that the agent has
not learned only a fixed route from the original starting position to the goal, but much
more than that, and it generalizes fairly well over the entire environment. The reason
it can do this is that during learning the agent has explored many different states and
actions, and has apparently found reasonable approximations to the optimal Advantage
values not just for the limited number of states and actions along its optimal path,
but for most of the environment.

This type of problem, where an agent is put in a different place from where it
“thinks” it is, and is then supposed to figure out where it is, is also known as the “lost”
or “kidnapped” robot problem (e.g. Thrun, 2000; Vlassis et al., 2002). It is argued by
Thrun (2000) that this problem calls for explicit representation of uncertainty by the
agent, as is done in belief state estimation approaches (see section 3.6.2). However, we
see in the current experiment that it is possible to have similar capabilities without
explicit representation of uncertainty.

Next, with the same agent once again starting only from the original, fixed starting
position, an obstacle was introduced in the optimal path. In terms of the agent’s
sensors, this obstacle looked like a wall. The obstacle and the path taken by the
agent are depicted in figure 5.8. The agent first moves toward the obstacle. When it
perceives the obstacle, however, it turns around and takes another path to the goal,
thus showing a surprising ability to deal with unexpected changes in the environment
and still reach the goal. The reason for this ability lies partly in the fact that early on
in its training, the agent has learned that, in general, it is better not walk into walls
but rather to turn around and go back. In this sense, the agent generalizes successfully
over different states. It has learned this not because it was punished for bumping into
walls (there is only a reward at the goal), but because you get to the goal faster and
more often when you do not bump into walls. This preference causes the agent to
simply turn around when it encounters the “unexpected” wall and quickly settle into
a new route which takes the agent to the goal.

It should be noted that, depending on the particular agent and the location of
the obstacle, the agent does not always pick the best alternative route to the goal;
sometimes it makes a detour. In some cases the second route would also come across
the obstacle, but it is rare for the agent not to reach the goal eventually, within the
time limit. Thus, even though the agent does not have a perfect conception of what
its world looks like, and it does not know or remember perfectly where the obstacle is,
it nevertheless has an impressive ability to adaptively handle such unexpected changes
in the environment. In this sense, the technique of reinforcement learning combined
with recurrent neural networks leads to robust solutions to fairly difficult partially
observable problems.

At this point it is interesting to consider again Tolman’s (1948) work on navigating
rats, discussed in chapter 2. He and his colleagues similarly investigated mazes with
few perceptual cues, combined with “reinforcement learning”; i.e. behaviorist operant
conditioning experiments where rats could find food at certain positions in the maze.
Reviewing a large number of experiments, Tolman came to the conclusion that simple
stimulus-response descriptions of the type favored by contemporary behaviorist theory
did not suffice to explain the rats’ abilities. Instead, the rats must have learned

5.5. MAZE NAVIGATION TASK 123

S

G

B

Figure 5.8: The partially observable maze in which the agent was trained to go from
the starting position S to the goal G. The agent always learned the shortest path,
indicated by the solid line. The dotted line indicates a typical route when the agent is
put in a different starting position than S. The dashed line indicates the route taken
when an obstacle is introduced in the position indicated by B.

Figure 5.9: Typical model of the cognitive map as it is assumed to be implemented
in neural structures. Note the isomorphic mapping from the real world to the neural
structure. Adapted from Trullier & Meyer (1998).

124 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

Figure 5.10: The weights of the Elman network after learning. A brightness coding is
used, in which lighter means a higher value.

“cognitive maps”, allowing them to cope with unexpected changes in the environment
almost immediately without any additional training and to generalize over mazes in
a smarter way than can be explained by pure fixed route learning. Tolman (1948)
informally defines a cognitive map as follows (p. 193):

In a comprehensive map a wider arc of the environment is represented, so
that, if the starting position of the animal be changed or variations in the
specific routes be introduced, this wider map will allow the animal still to
behave relatively correctly and to choose the appropriate new route.

According to this definition of a cognitive map, and considering the simulation
experiments presented, the artificial agent must contain a cognitive map. Tolman’s
arguments and similar arguments by other authors were instrumental in bringing about
the new cognitive science, which unlike behaviorism allowed for internal constructs such
as cognitive maps. As described in chapter 2, the cognitive map has virtually always
been interpreted as a distinctly separate part or “module”, independent of the sensory
part on the one hand and the planning/control part on the other. Furthermore, the
map is assumed to consist of a more or less isomorphic mapping from the real world to
the internal structure, or to “mimic” the world in its internal layout. That is, different
places in the world correspond to distinctly different places or elements in the map,
and spatial relationships between different places in the world are more or less directly
replicated in the map. See figure 5.9 for a typical example of this type of cognitive
map model, from Trullier and Meyer (1998).

We can see that none of these properties are obviously apparent for the system
investigated here. The sensory part, the controller, and the “cognitive map” are all
encoded in the same set of weights. Figure 5.10 shows the set of weights of the network

5.5. MAZE NAVIGATION TASK 125

2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

ac
tiv

at
io

n

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

activation context unit 1

ac
tiv

at
io

n
ot

he
r c

on
te

xt
 u

ni
ts

Figure 5.11: Fig. a (left). Context unit activations over time within an episode in
the maze task. Fig. b (right). The same context unit activations over time, but now
plotted against the activation of context unit 1, yielding a phase space trajectory plot.

whose outward behavior was discussed above and depicted in figure 5.4. No obvious
cognitive map can be discerned.

Figure 5.11a shows the context unit activations, which correspond to the network’s
internal state, over time during an episode. Figure 5.11b shows the same information,
but now as a phase space trajectory plot, i.e. as a projection of the state (or phase)
space onto 2 dimensions. This can in some cases give additional insight into a re-
current network’s functioning (Casey, 1996; Rodriguez, Wiles, & Elman, 1999; Wiles
& Elman, 1995; Blair & Pollack, 1997), especially with regard to the internal state
space’s attractor structure.

In neither of these graphs, an obvious cognitive map can be discerned. For example,
states in the environment that are close to each other do not necessarily lead to internal
states that are close to each other in state space. In general, the network makes large
jumps through internal state space with each new observation and action. Thus,
it does not move closer to one particular attractor in state space with each time
step, which would correspond to the network doing hysteretic computation, in the
terminology of Casey (1996). This is apparent when we artifially clamp the input layer
to a single input vector. In that case, the context unit activations do converge to single
point attractors. During normal operation, with each new observation-action pair the
network can arrive in the basin of attraction of another attractor, and the internal
state takes a jump in the new direction: transient computation, in the terminology
of Casey (1996). In any case, neither the attractors in the state space nor the points
in the state space visited at different times have an immediate correspondence to
states in the world, which would be the expectation given a traditional cognitive map
interpretation of the network’s functioning.

However, when we look at many different episodes started from different positions,
there are statistically significant differences (p < .01) between the average vectors of

126 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

context unit activations in different environmental states, as measured by a Multi-
variate Analysis Of Variance (MANOVA) (van Dartel, 2001). This basically means
there is a “correlation”, which is significant but certainly not 1, between specific world
states and context unit activations. This is to be expected, because one world state
is typically preceded by similar observations and actions and therefore the internal
states arrived at in such a world state are likely to have similarities. It is conceivable
that a similar effect explains the existence of so-called “place cells”, neurons in the
rat’s hippocampus which fire correlated with positions in the world (O’Keefe & Nadel,
1978). This finding has usually been interpreted as an argument for the existence of
a straightforward cognitive map in the hippocampus, but we see here that it could
indicate something weaker.

Finally, a (Mealy) Finite State Automaton (FSA) was extracted from the network,
in the same way as in the previous chapter. The idea behind this is that even if
network weights or activation vectors cannot immediately be interpreted in terms of a
cognitive map, perhaps the abstraction afforded by an FSA description of the network’s
functioning might allow us to identify the cognitive map. As in the previous chapter,
the resolution of the discretization process was increased until the size of the minimized
FSA did not increase anymore and the network’s behavior was replicated accurately.

Figure 5.12 shows the extracted FSA after Hopcroft minimization, which models
the network’s behavior accurately. It has 26 states. The network can apparently be
modeled well using 26 states; in other words, we can say that the network effectively
uses 26 states for its overall behavior. First of all, the network’s internal state space is
evidently more complex than in the previous chapter, where the maze navigation task
was simpler and the networks induced in the order of 1 to 6 functional states. Further-
more, the extracted FSA obviously has a very complex pattern of edges connecting the
states. That is, given that the system is in a certain internal state, the transition to a
next internal state depends heavily and in an intricate manner on the particular next
observation and action. Most importantly for the purposes of our current analysis,
there is no straightforward correspondence between FSA states and world states. The
most we can say is that at the end of each episode, when the agent is approaching the
goal, the FSA tends to go through the same small number of FSA states in the same
order. This makes sense because once the agent is close to the goal, the agent “knows”
where it is and always takes the same actions for particular observations.

In summary, the recurrent neural network trained using reinforcement learning
apparently behaves as if it has something like a cognitive map, without having an ob-
viously apparent “explicit” or straightforward cognitive map implementation as would
be expected from the traditional neuroscience and cognitive science perspective. It can
still be the case that further analyses, e.g. principal component analysis on the hidden
unit acivations or other, more sophisticated analyses, would reveal where the cogni-
tive map resides and that there are straightforward correspondences between locations
in the world and internal states. However, this would still be a very different type
of cognitive map from the one hypothesized by traditional neuroscience and cogni-
tive science, which clearly assumes a distinct module, separate from other processing,
with straightforward isomorphic correspondences between locations in the world and
locations or “units” in the cognitive map module.

5.5. MAZE NAVIGATION TASK 127

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

25

Figure 5.12: The Mealy FSA extracted from the trained Elman network, after Hopcroft
minimization. The FSA has 26 states.

128 5. ADVANTAGE(λ) LEARNING WITH ELMAN NETWORKS

Admittedly, the “cognitive map” of the recurrent neural network investigated here
is limited in its capabilities. For example, it cannot be adapted in a simple way to
navigate to another goal position (Kröse, personal communication). However, the
main point is that it is possible to have certain behavioral capabilities that at first
sight suggest that the system must contain a certain subsystem, without necessarily
implementing that subsystem straightforwardly. This provides another example of
the principle discussed in chapter 2 which says that bottom-up engineering can lead
to a different type of system than top-down engineering, and post hoc analysis can
reveal that a bottom-up engineered system works in another way than an a priori
analysis of the behavior would suggest. This is an important realization, because
cognitive scientists are often eager to draw conclusions from behavioral data about
what the brain’s internal architecture must look like. This study shows, once again,
that we have to be careful in doing that. In this particular case, cognitive scientists
and neuroscientists have tended to look for straightforward cognitive maps in rats’
and humans’ brains (O’Keefe & Nadel, 1978; Wagatsuma & Yamaguchi, 1999; Trullier
& Meyer, 1998). The simulation study reported here shows that learning, brain-like
systems may accomplish navigation tasks in a very different way. It certainly does not
prove that rats’ and humans’ brains do not contain straightforward cognitive maps. It
only says that it is possible to achieve cognitive map-like behavior without having an
explicit cognitive map in the sense expected by traditional neuroscience and cognitive
science, it says that it may be impossible to find a straightforward cognitive map in
the brain, and it says that we have to keep our eyes open for other types of solutions
in the brain to the navigation problem than a straightforward cognitive map.

5.6 Discussion

This chapter investigated reinforcement learning in POMDPs using Elman recurrent
neural networks. The main technical contribution was the application of Advantage
learning to partially observable tasks, and the extension of Advantage learning to
Advantage(λ) learning. Experimental data showed that, at least in the settings inves-
tigated in this chapter, Advantage(λ) learning clearly outperforms Q(λ)-learning, and
Advantage(λ) learning clearly outperforms plain Advantage learning. This was shown
both in a continuous task, partially observable pole balancing, and in a discrete task,
partially observable maze navigation.

For the maze navigation task, a more extensive analysis of the agents’ behavior and
mechanisms was presented. It turns out that the behavior is such that according to
classical criteria, the agent can be said to behave as if it has a cognitive map. However,
the interesting thing is that this behavior is accomplished without a straightforward
explicit cognitive map (in the traditional neuroscience and cognitive science sense)
being obviously discernible in the internal mechanism. This suggests that we may
have to rethink the classical conception of what a cognitive map must look like, and
whether we can and should expect to find straightforward cognitive maps in animals’
and humans’ brains.

Chapter 6

Reinforcement learning with
Long Short-Term Memory

Summary

This chapter presents reinforcement learning with a Long Short-Term Memory recur-
rent neural network: RL-LSTM. Model-free RL-LSTM using Advantage(λ) learning
and directed exploration can solve non-Markovian tasks with complex and long-term
dependencies between relevant events. This is demonstrated in a T-maze task, as well
as in a difficult variation of the pole balancing task. Furthermore, two well-known
POMDPs from the literature are investigated, in order to make a comparison to other
algorithms and to show that LSTM has good performance on them as well.

6.1 Introduction

Most of the approaches to solving partially observable reinforcement learning tasks,
surveyed in chapter 3 and including the approaches of chapters 4 and 5, have difficulties
if there are complex and long-term dependencies between relevant past events and the
currently best action. This is an important problem because there are no strong reasons
to suppose that realistic partially observable reinforcement learning tasks will have
only short-term dependencies, that is, can always be solved by simply remembering
the last few observations and/or actions. An example of a long-term dependency task
is a maze navigation task where the only way to distinguish between two T-junctions
that look identical is to remember a distinguishing observation a long time before
either T-junction.

In such a case there is, for example, no straightforward way to decompose the non-
Markovian task into Markovian subtasks using Wiering and Schmidhuber’s (1997)
Hierarchical Q-learning approach (section 3.6.3.6): the agent simply must remember
the relevant piece of information up until the T-junction. There are also obvious
problems with fixed size history window approaches (section 3.6.3.3): if the relevant

129

130 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

piece of information to be remembered falls outside the history window, the agent
cannot use it.

Ring’s (1993a, 1993b) and McCallum’s (1996) variable history window approaches
(sections 3.6.3.9, 3.6.3.4, and 3.6.3.5) have, in principle, the capacity to represent
long-term dependencies. However, these algorithms start out with zero history and
increase the depth of the history window step by step, based on gathering statistics.
This process makes learning long time lag dependencies virtually impossible when
there are no short-term dependencies to build on, and even if it worked, it would be a
very time consuming process. In addition, a history window approach must represent
the entire history from the relevant piece of information onwards, even if intermediate
events are irrelevant, leading to a very large number of trainable parameters (the curse
of dimensionality) and yielding an unnecessarily large policy representation.

Model-free approaches based on memory bits (section 3.6.3.7, Peshkin et al., 1999;
Lanzi, 2000; Cliff & Ross, 1994), FSAs (section 3.6.3.12, Chrisman, 1992; Meuleau
et al., 1999), or recurrent neural networks (section 3.6.3.8), which were investigated in
the previous two chapters, do not have to represent (possibly long) entire histories, but
can in principle extract and represent just the relevant information for an arbitrary
amount of time. The same is true for a number of approaches that learn a predictive
model of the environment (section 3.6.2.4).

However, learning to extract and represent information from a long time ago has
proven difficult, both for model-based and for model-free approaches. The difficulty lies
in discovering the correlation between a piece of information and the moment at which
this information becomes relevant at a later time, given the distracting observations
and actions between them. This is also true for the recurrent neural networks studied
in the previous chapters, and one of the reasons for their relatively long training times
and occasional failure.

This difficulty can be viewed as an instance of the general difficulty of learning long-
term dependencies in timeseries data (Hochreiter, 1991; Bengio, Simard, & Frasconi,
1994; Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001). This chapter uses one
particular solution to this problem that has worked well in a variety of supervised
timeseries learning tasks: the Long Short-Term Memory (LSTM) recurrent neural
network (Hochreiter & Schmidhuber, 1997; Gers, Schmidhuber, & Cummins, 2000;
Eck & Schmidhuber, 2002).

In this chapter an LSTM recurrent neural network is used in conjunction with
model-free RL, in the same spirit as the model-free recurrent neural network ap-
proaches studied in the previous chapters. Again the network learns to approximate
the value function of the reinforcement learning algorithm called Advantage(λ) learn-
ing. Another technical contribution of this chapter is a novel directed exploration
method.

The next section describes LSTM. Section 6.3 presents LSTM’s combination with
reinforcement learning in a system called RL-LSTM. Section 6.4 contains simulation
results on partially observable RL tasks with long-term dependencies. Section 6.5,
finally, presents the general conclusions.

6.2. LSTM 131

6.2 LSTM

6.2.1 Memory cells

LSTM is a recently proposed recurrent neural network architecture, originally designed
for supervised timeseries learning (Hochreiter & Schmidhuber, 1997; Gers et al., 2000;
Eck & Schmidhuber, 2002). It is based on an analysis of the problems that conventional
recurrent neural networks and their corresponding learning algorithms, e.g. Elman
networks with standard one step backpropagation as used in the previous chapters, or
Elman networks with backpropagation through time (BPTT) or real-time recurrent
learning (RTRL), have when learning timeseries with long-term dependencies. These
problems boil down to the problem that errors propagated back in time tend to either
vanish or blow up (see Hochreiter & Schmidhuber, 1997).

LSTM’s solution to this problem is to enforce constant error flow in a number
of specialized units, called Constant Error Carrousels (CECs). This turns out to
correspond to the CECs having linear activation functions which do not decay over
time. In order to prevent the CECs from filling up with useless information from the
timeseries, access to them is regulated using other specialized, multiplicative units,
called input gates. Like the CECs, the input gates receive input from the timeseries
and the other units in the network, and they learn to open and close access to the
CECs at appropriate moments.

Access from the activations of the CECs to the output units (and possibly other
units) of the network is regulated using multiplicative output gates. Similar to the
input gates, the output gates learn when the time is right to send the information
stored in the CECs to the output side of the network. A recent addition is forget
gates (Gers et al., 2000), which learn to reset the activation of the CECs (in a possibly
gradual way) when the information stored in the CECs is no longer useful. The
combination of a CEC with its associated input, output, and forget gate is called a
memory cell. See figure 6.1b for a schematic of a memory cell. It is also possible
for multiple CECs to be combined with only one input, output, and forget gate, in a
so-called memory block.

6.2.2 Activation updates

Figure 6.1a shows the general LSTM network architecture used in this (and the next)
chapter. The network’s activations are computed as follows. The net input net i(t) of
any unit i at time t is calculated by

net i(t) =
∑

m

wimym(t − 1) (6.1)

where wim is the weight of the connection from unit m to unit i.1 A standard hidden
unit’s activation yh, output unit activation yk, input gate activation yin , output gate
activation yout , and forget gate activation yϕ is computed as

yi(t) = fi(net i(t)) (6.2)

1For reasons of ease of notation, the activations feeding into a unit are always viewed as activations
from one timestep ago.

132 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

memory cells

hidden hidden

observation

A a1 A a2

CEC

input gate

output gate

forget gate

memory cell

cell output

cell inputa. b.

Figure 6.1: Fig. a (left). The general LSTM architecture used in this chapter. Arrows
indicate unidirectional, fully connected weights. The network’s output units (2, in this
illustration) directly code for the Advantage values of individual actions. Each output
unit has its own associated hidden layer feeding into it. Fig. b (right). One memory
cell.

where fi is the standard logistic sigmoid function, squashing the net input to the range
[0, 1]. The standard hidden units receive input from the input layer and the memory
cell outputs. The gates receive the same input, plus input from the hidden layer and
all the gates. The CEC activation zcv

j
, or the state of memory cell v in memory block2

j, is computed as follows:

zcv
j
(t) = yϕj

(t)zcv
j
(t − 1) + yinj

(t)g(netcv
j m(t)) (6.3)

where g is a logistic sigmoid function scaled to the range [−2, 2], and zcv
j
(0) = 0. Note

how the memory cell’s input gate activation yinj
determines, in a multiplicative way,

to what extent the net input “enters” the memory cell. This net input comes from
the input layer, standard hidden layer, the gates, and the memory cell outputs. The
memory cell’s output ycv

j
is calculated by

ycv
j
(t) = youtj (t)h(zcv

j
(t)) (6.4)

where h is a logistic sigmoid function scaled to the range [−1, 1]. Similar to the input
gate, the output gate activation youtj determines, in a multiplicative way, to what
extent the memory cell’s contents are made available to other units, among which are
the output units. An output unit’s activation yk, finally, is computed using

yk(t) = fk(netk(t)) = netk(t). (6.5)

In this chapter, as in the previous chapter, fk is the identity function. An output unit
receives input from a dedicated layer of standard hidden units (for reasons explained
in section 6.3.1), and from all the memory cell outputs.

2In this thesis, there is always only one memory cell per memory block. Therefore, one of the
indices v or j could be omitted. They are both left in in order to maintain generality, and to maintain
compatibility with the standard LSTM formulation (see Hochreiter & Schmidhuber, 1997; Gers et al.,
2000).

6.3. RL-LSTM 133

6.2.3 Learning

At some or all timesteps of the timeseries, the output units of an LSTM network may
make prediction errors. Errors are propagated just one step back in time through
all units other than the CECs, including the gates. However, errors are backpropa-
gated through the CECs for an indefinite amount of time, using a variation of RTRL.
In contrast to traditional recurrent neural network architectures, such as the Elman
networks of the previous two chapters, the linear nature of CECs prevents computed
gradients with respect to past events from decaying, while the gates prevent disturbing
influences to and from the CECs. Thus, each weight is updated based on the estimated
gradient of the error of the network’s output units with respect to this weight. For
example, the weight of a connection to an input gate may be increased because the
estimated gradient of the error with respect to this weight says “if this weight is in-
creased, the error will go down”, and because of this, the input gate may learn to open
for a particular input.

Unlike standard BPTT and RTRL, the resulting learning algorithm for LSTM
(Hochreiter & Schmidhuber, 1997; Gers et al., 2000) is local in both space and time,
and its update complexity per weight and timestep is O(1). Weight updates can be
done at every timestep, which fits in nicely with the philosophy of online reinforcement
learning. The learning algorithm is adapted slightly for reinforcement learning, as
explained in the next section.

6.3 RL-LSTM

6.3.1 Model-free RL-LSTM

As in the previous two chapters, the recurrent neural network is used as the function
approximator for a model-free, value function-based reinforcement learning algorithm
(see figure 6.1a). Again, the state of the environment is approximated by the current
observation, which is the input to the network, together with the recurrent activations
in the network, which represent the agent’s history. In this case, the recurrent activa-
tions in the specialized memory cells (figure 6.1b) are supposed to learn to represent
relevant information from long ago.

In contrast with the previous chapters, the network has multiple output units.
Each output unit codes directly for the Advantage value of one of the possible actions
(see figure 6.1a). At each timestep, the current temporal difference error (see equation
5.4) is the error for the output unit coding for the Advantage of the executed action
at the current timestep. The other output units do not receive error signals.

Each output unit has its own dedicated standard hidden units layer. This is done
because preliminary experiments as well as previous experience with combining Q-
learning and neural networks (Lin, 1992; Abul et al., 2000) suggest that if there is
only a single hidden layer, temporal difference error signals, which concern only one
action and therefore only one output unit, lead, over time, to conflicting error signals
to the single hidden layer, which makes learning difficult. This problem is overcome by
giving each output unit its own associated hidden layer feeding into it and receiving
its temporal difference error signal. There is only one layer of memory cells, however,

134 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

because the same short-term memory information should be available to all output
units. Another approach to this problem of conflicting error signals to the hidden
layer is, of course, to give an action representation as input to the network, as in
the previous two chapters. Still another approach is to use separate networks for
each action (Lin, 1992; Abul et al., 2000). The advantage of the current approach is
that the Advantage values for different actions are computed using one sweep through
one network, and only one internal state is used for all state-action pairs, hopefully
facilitating generalization.

In sum, this architecture allows the output units to exploit information available
in the current observation directly, using the connections via the hidden layer. At
the same time, the output units have access to the short-term memory information
encoded in the memory cells, using both a direct connection from the memory cells
and a connection via the hidden units. The latter connection allows for information
in the memory cells to be used by the output units in a more complex, nonlinear way.

6.3.2 Advantage(λ) learning using LSTM

As in the previous chapter, the model-free RL algorithm that is used to train the
recurrent neural network is Advantage(λ) learning. It is again implemented using
eligibility traces. Each weight update corresponds to

∆wim(t) = αETD(t)eim(t) (6.6)

for all parameters wim, where eligibility trace eim(t) is computed as

eim(t) = γΛ(t)eim(t − 1) +
∂A(s(t), a(t))

∂wim

= γΛ(t)eim(t − 1) +
∂yK(t)

∂wim

(6.7)

where K is the index of the output unit representing the Advantage value of the current
action, and

Λ(t) =

{

λ a(t) = arg maxa A(s(t), a)
0 otherwise

(6.8)

LSTM’s variation of real-time recurrent learning truncates ∂yk(t)
∂wim

at all points in the
network other than the CECs (see section 6.2.3). Since the same approximations to
∂yk(t)
∂wim

are used in equation 6.7, this means that eligibility traces are truncated at the
same points.

In addition to the inclusion of eligibility traces, a minor rearrangement of the
variables and the gradient computations is required, compared to the original LSTM
formulation. This is so because in contrast with the original LSTM formulation, the

partial derivatives ∂yK(t)
∂wim

must now be calculated separately and explicitly. None of
these changes affect LSTM’s update complexity.

For the network architecture used in this chapter, which is depicted in figure 6.1a

and described in section 6.2.2, the partial derivatives ∂yK(t)
∂wim

can be derived from the
activation update equations by repeated application of the chain rule. This yields the

6.3. RL-LSTM 135

following equations. For the weights from memory cell outputs and from the dedicated
layer of standard hidden units to the output unit corresponding to the current action
(i = K),

∂yK(t)

∂wKm
= f ′

k(netK(t))ym(t − 1). (6.9)

For the weights from input units and memory cell outputs to standard hidden units h,

∂yK(t)

∂whm
= wKhf ′

k(netK(t))f ′
h(neth(t))ym(t − 1). (6.10)

For the weights from input units, memory cell outputs, gates, and standard hidden
units to output gate units out j ,

∂yK(t)

∂woutjm
=

Zj
∑

v=1

h(zcv
j
(t))

(

wKcv
j
f ′

k(netK(t)) +
∑

h

wKhf ′
k(netK(t))whcv

j
f ′

h(neth)(t)
)

· f ′
outj

(netoutj
(t))ym(t − 1)

(6.11)

where Zj is the number of CECs (1, in this chapter) in memory block j. For the
weights from input units, memory cell outputs, gates, and standard hidden units to
CEC units cv

j ,

∂yK(t)

∂wcv
j m

=
(

wKcv
j
f ′

k(netK(t)) +
∑

h

wKhf ′
k(netK(t))whcv

j
f ′

h(neth)(t)
)

· youtj
(t)h′(zcv

j
(t))

∂zcv
j
(t)

∂wcv
j m

(6.12)

where
∂zcv

j
(t)

∂wcv
j

m
is the information that needs to be stored in LSTM’s version of real time

recurrent learning used within the memory cells. It is updated as follows:

∂zcv
j
(t)

∂wcv
j
m

=
∂zcv

j
(t − 1)

∂wcv
j
m

yϕj
(t) + g′(netcv

j
(t))yinj

(t)ym(t − 1). (6.13)

For the weights from input units, memory cell outputs, gates, and standard hidden
units to input gates inj ,

∂yK(t)

∂winjm
=

Zj
∑

v=1

(

wKcv
j
f ′

k(netK(t)) +
∑

h

wKhf ′
k(netK(t))whcv

j
f ′

h(neth)(t)
)

· youtj
(t)h′(zcv

j
(t))

∂zcv
j
(t)

∂winjm

(6.14)

where
∂zcv

j
(t)

∂winjm
is calculated by

∂zcv
j
(t)

∂winjm
=

∂zcv
j
(t − 1)

∂winjm
yϕj

(t) + g(netcv
j
(t))f ′

inj
(net inj

(t))ym(t − 1). (6.15)

136 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

Finally, for the weights from input units, memory cell outputs, gates, and standard
hidden units to forget gates ϕj ,

∂yK(t)

∂wϕjm
=

Zj
∑

v=1

(

wKcv
j
f ′

k(netK(t)) +
∑

h

wKhf ′
k(netK(t))whcv

j
f ′

h(neth)(t)
)

· youtj
(t)h′(zcv

j
(t))

∂zcv
j
(t)

∂wϕjm

(6.16)

where
∂zcv

j
(t)

∂wϕjm
is calculated by

∂zcv
j
(t)

∂wϕjm
=

∂zcv
j
(t − 1)

∂wϕjm
yϕj

(t) + zcv
j
(t − 1)f ′

ϕj
(netϕj

(t))ym(t − 1). (6.17)

Because the initial state of the network does not depend on the weights,
∂zcv

j
(0)

∂wim
= 0

for all units i that need to store this information, i.e. the CECs, the input gates, and
the forget gates.

6.3.3 Exploration

Non-Markovian RL requires extra attention to the issue of exploration (Chrisman,
1992; McCallum, 1996; Wiering & Schmidhuber, 1997). This issue was ignored in
the previous chapter, but we have to address it now, because the investigated tasks
become more complex. Undirected exploration attempts to try out actions in the same
way in each environmental state. However, in non-Markovian tasks, the agent initially
does not know which environmental state it is in. Part of the exploration should
be aimed at discovering the environmental state structure. Furthermore, in many
cases, the non-Markovian environment will provide unambiguous sensory information
indicating the state in some parts, while providing ambiguous sensory information
(hidden state) in other parts. In general, we want more exploration in the ambiguous
parts. Finally, reconstructing the environmental state signal based on the experienced
history of observations and actions, which is the general approach to dealing with
partial observability in this thesis, depends on there being certain temporal regularities
in that history. Finding those temporal regularities is facilitated a great deal by
reducing the amount of exploration where it is possible, i.e. taking more or less the same
set of actions when possible. This will lead to less diverse sequences of observation-
action pairs, in which that information in the sequence which can disambiguate the
state is more easily visible to the system.

This chapter employs a new directed exploration technique based on these ideas.
A separate multilayer feedforward neural network, with the same input as the LSTM
network (representing the current observation) and one output unit yv, is trained
concurrently with the LSTM network. It is trained, using standard backpropagation,
to predict the absolute value of the current temporal difference error ETD(t), plus its
own discounted prediction at the next timestep:

yD
v (t) = |ETD(t)| + βyv(t + 1) (6.18)

6.3. RL-LSTM 137

RL-LSTM
 RNN

 adaptive
exploration
 FFNN

"uncertainty" about
 current state value

Advantage values
of different actions

action

observation

Boltzmann
 action
 selection

Figure 6.2: Schematic representation of the overall action selection mechanism. The
current observation goes into both the RL-LSTM network and the adaptive exploration
feedforward neural network. The latter network outputs a measure of the system’s
“uncertainty” about the value of the current state. This measure is linearly scaled and
used as the temperature of a Boltzmann action selection rule, which operates on the
Advantage values estimated by the RL-LSTM network.

where yD
v (t) is the desired value for output yv(t), and β is a discount parameter in

the range [0, 1]. This amounts to attempting to identify which observations are “prob-
lematic”, in the sense that they are associated with large errors in the current value
estimation (the first term), or precede situations with large such errors (the second
term). Thus, at each timestep the feedforward neural network produces an output
yv(t) for the current observation, which represents something like the “uncertainty”
about the current state, in terms of the expected return.

Next, yv(t) is linearly scaled and used as the temperature of the Boltzmann action
selection rule:

p(s, a) =
eA(s,a)/Cyv(t)

∑M
m=1 eA(s,am)/Cyv(t)

(6.19)

where C is a constant that scales yv. Recall that the Boltzmann action selection
rule was used in the previous two chapters as well, but there it was used with fixed
temperature. Finally, the resulting probabilities are rescaled such that there is a
maximum action selection probability of .95, in order to always have at least 5%
exploratory actions. Figure 6.2 shows, schematically, how the overall action selection
mechanism works.

The end result of this exploration scheme is much exploration when, in the current
state, differences between estimated Advantage values are small (the standard, desired
effect of Boltzmann exploration), or when there is much uncertainty about current
Advantage values or Advantage values in the near future (the effect of a large value of

138 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

yv(t) computed by the feedforward neural network, leading to a high temperature in
the Boltzmann rule).

This exploration scheme has obvious similarities with the statistically more rigorous
technique of Interval Estimation (Kaelbling, 1990), as well as with certain model-based
approaches where exploration is greater when there is more uncertainty in the predic-
tions of a model (Schmidhuber, 1991a; Thrun & Möller, 1992). See section 3.5.2.8
for a more extensive description of those techniques. An important difference with
Kaelbling’s Interval Estimation technique is that that technique requires the storage
of experienced returns obtained from each state, so as to be able to compute confidence
intervals of expected returns. The method described here uses only absolute temporal
difference errors available at the current moment, and uses a function approximator to
learn to estimate the uncertainty about values on that basis. An important difference
with the methods of (Schmidhuber, 1991a; Thrun & Möller, 1992) is that those are
based on increasing exploration when the agent is uncertain about future observations,
independent of whether or not that is important for the policy. The method described
here, in contrast, is utility-based: it explores adaptively based on its uncertainty about
returns obtainable from the current state.

In summary, the good thing about this directed exploration technique is that it
will reduce the amount of exploration when the uncertainty about the current state
is small, leading to relatively deterministic action selection and therefore fairly sta-
ble observation-action sequences in which temporal regularities can more easily be
recognized, while still maintaining sufficient exploration where necessary. In the ex-
periments described next, this exploration scheme (using 6 hidden units in the network)
led to satisfactory results, whereas preliminary experiments showed that straightfor-
ward Boltzmann exploration, of the type used in the previous two chapters and in
many studies on reinforcement learning, led to very poor performance.

6.4 Experiments

6.4.1 Long-term dependency T-maze.

6.4.1.1 The task

The first test problem is a non-Markovian grid-based T-maze (see figure 6.3). It was
designed to test RL-LSTM’s capability to bridge long time lags, without confounding
the results by making the control task difficult in other ways. Variations of this
task were studied before in a supervised learning context (Ulbricht, 1996; Rylatt &
Czarnecki, 2000; Lin̊aker & Jacobsson, 2001).

The agent has four possible actions: move North, East, South, or West. It does
not have an orientation. The agent must learn to move from the starting position at
the beginning of the corridor to the T-junction. There it must move either North or
South to a changing goal position, which it cannot see. However, the location of the
goal depends on a “road sign” (X), which the agent has seen at the starting position.
If the agent reaches the goal, it receives a reward of 4. If it goes the wrong way at
the T-junction, it receives a reward of −.1. In both cases, the episode ends and a new
episode starts, with the new goal position and corresponding road sign set randomly

6.4. EXPERIMENTS 139

GX
S

Figure 6.3: Long-term dependency T-maze with length of corridor N = 10. At the
starting position S the agent’s observation (X) indicates where the goal position G is
in this episode.

either North or South. During the episode, the agent receives a reward of −.1 when it
stands still.

At the starting position, the observation is either 011 or 110, in the corridor the
observation is 101, at the T-junction the observation is 010. The difficulty of this task
depends strongly on the length of the corridor, N . In the simulation experiment, N

was systematically varied from 5 to 70. In each condition, 10 runs were performed.

If the agent takes only optimal actions to the T-junction, it must remember the
observation from the starting position for N timesteps to determine the optimal action
at the T-junction. Note that the agent is not aided by experiences in which there are
shorter time lag dependencies. In fact, the opposite is true. Initially, it takes many
more actions until even the T-junction is reached, and the experienced history is very
variable from episode to episode. The agent must first learn to reliably move to the
T-junction. Because of the long delay and uncertainty of reward, this is already non-
trivial, and it is one of the important bottlenecks in achieving good performance.
Once this is accomplished, the agent will begin to experience more or less consistent
and shortest possible histories of observations and actions, from which it can learn
to extract the relevant piece of information. The directed exploration mechanism is
crucial in this regard. It learns to set exploration low in the corridor and high at
the T-junction. This results in the desired constancy in behavior where it is possible
(the corridor), while still maintaining sufficient exploration where it is necessary (the
T-junction).

6.4.1.2 Experimental comparisons

The LSTM network had 3 input units, 12 standard hidden units, 3 memory cells, and
4 output units. Learning rate α = .0002. The following parameter values were used
in all conditions: γ = .98, λ = .8, κ = .1. An empirical comparison was made with
several other model-free POMDP solution methods. As noted before, the long-term
dependency nature of a task like this virtually rules out history window approaches.
Instead, three alternative systems were used that, like LSTM, are capable in principle
of representing information for arbitrary long time lags.

In order to determine the specific contribution of LSTM to performance, in the
alternative systems all elements of the overall system except LSTM remained the same,
such as the Advantage(λ) learning algorithm and the directed exploration mechanism.

140 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

Preliminary experiments determined reasonable parameter settings for each of the
alternatives, such as the magnitude of learning rate α and the number of hidden units.

As a first alternative to LSTM, the LSTM network was replaced by a reinforcement
learning Elman network, trained using standard backpropagation, as in chapters 4 and
5. In contrast with those chapters, but like the LSTM network of this chapter, the
Elman network did not have an action vector as input, but rather 4 output units
coding for each of the Advantage values, and 4 corresponding dedicated hidden layers.
The total number of hidden units was 16, there were 16 context units, and α = .01.

The second alternative uses the same Elman network, but now trained using back-
propagation through time (BPTT, Lin & Mitchell, 1993). Note that the unfolding of
the RNN necessary for BPTT means that this is no longer truly online RL. In this
system, α = .001.

The third alternative was a table-based system extended with memory bits, which
are part of the observation and that the controller can switch on and off (Littman, 1994;
Peshkin et al., 1999, see section 3.6.3.7 for a more elaborate description). Because the
task requires the agent to remember just one bit of information, this system had one
memory bit, and α = .01.

A run was considered a success if the agent learned to take the correct action at
the T-junction in over 80% of cases, using its stochastic action selection mechanism.
In practice, this corresponds to 100% correct action choices at the T-junction using
greedy action selection, as well as optimal or near-optimal action selection leading to
the T-junction.

6.4.1.3 Results

Figure 6.4 shows the number of successful runs (out of 10) as a function of the length
of the corridor N , for each of the four methods. It also shows the average number
of timesteps needed to reach success. It is apparent that RL-LSTM is able to deal
with significantly longer timelags than the three alternatives. RL-LSTM has perfect
performance up to N = 50, after which performance gradually declines. In those cases
where the alternatives also reach success, RL-LSTM also learns faster.

The Elman network trained using standard backpropagation has the worst perfor-
mance. The reason is probably that in Elman networks, the context unit activations,
which are simply a copy of the hidden unit activations of the previous timestep, are
easily overwritten by new information coming in through observations. In other words,
even though the context units can in principle represent information from long ago,
information from long ago quickly decays, such that standard backpropagation can-
not assign credit to differential context unit activations that may help to solve the
task. The Elman network trained using BPTT does much better, because credit is
also assigned to context unit activations from previous timesteps, when the relevant
information has not decayed as much as at the current timestep.

In contrast with the Elman networks, information stored in the internal state of
the memory bits system does not decay automatically as new observations come in.
Explicit internal actions are needed to change the memory bits. Still, the memory bits
system does not perform very well. The reason why the memory bits system performs
so much worse than both Elman-BPTT and LSTM may be that, in contrast with

6.4. EXPERIMENTS 141

5 10 15 20 25 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

N: length of corridor

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

LSTM
Elman−BP
Elman−BPTT
Memory bits

5 10 15 20 25 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 10

7

N: length of corridor

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

LSTM
Elman−BP
Elman−BPTT
Memory bits

Figure 6.4: Fig. a (left). Number of successful runs (out of 10) as a function of N ,
length of the corridor, for each of the tested reinforcement learning systems in the
noise-free T-maze task. Fig. b (right). Average number of iterations until success as
a function of N .

these two, it does not explicitly compute the gradient of performance with respect to
past events. Gradient computation is a powerful credit assignment mechanism. The
Elman-BPTT system does compute such a gradient, but in contrast to LSTM, the
gradient information tends to vanish quickly with longer timelags (as explained in
section 6.2).

In this task, RL-LSTM has excellent performance up to a timelag of around 50
timesteps. Supervised LSTM is known to be capable of bridging minimal time lags of
over 1000 timesteps in some cases. There are several possible reasons why RL-LSTM
does not reach that level of performance, all related to the inherent differences between
supervised learning and reinforcement learning.

One reason is the fact that, unlike supervised learning, the agent largely determines
its history of inputs and outputs itself, as described above. This results in a less
constant timeseries than in supervised learning (certainly in the beginning of learning),
in which it is harder to find the regularities. A second reason is the fact that in RL
based on temporal difference learning, target outputs change over time, because the
system itself estimates values which are used in the target output, and these estimates
change during learning. This may lead to radically changing backpropagated errors,
for example when a value estimate that first was high later becomes low, because long-
term negative effects become apparent. A third reason is that value functions are in
general fairly complex, compared with many tasks tried in supervised LSTM studies
(but see Gers, Eck, & Schmidhuber, 2001; Eck & Schmidhuber, 2002). A fourth reason
is that in most supervised learning tasks where LSTM learned to bridge very long time
lags, only the outputs at very few timesteps mattered, and error was only injected at
those timesteps. In RL-LSTM, the system must estimate the value of each action at
each timestep, and it receives a temporal difference error at each timestep.

142 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

To illustrate some of these differences, when the task is modified to a version where
the policy leading up to the T-junction is fixed and only the last action needs to be
learned using RL, RL-LSTM can easily learn time lag dependencies over 100 timesteps.

6.4.2 T-maze with noise.

6.4.2.1 Changes to the T-maze task and the architectures

It is one thing to learn long-term dependencies in a noise-free task, it is quite another
thing to do so in the presence of severe noise. To investigate this, a very noisy variation
of the T-maze task described above was designed. Now the observation in the corridor
is a0b, where a and b are independent, uniformly distributed random values in the
range [0, 1], generated online. All other aspects of the task remain the same as above.

The LSTM, Elman-BP, and Elman-BPTT system were left unchanged. To allow
for a fair comparison, the table-based memory bit system’s observation was computed
using Michie and Chambers’s (1968) BOXES state aggregation mechanism (see Sutton
& Barto, 1998 and section 3.5.2.9), partitioning each input dimension into three equal
regions.

6.4.2.2 Results

Figure 6.5 shows the results. The memory bit system suffers most from the noise,
relatively speaking. This is not very surprising because a table-based system, even if
it is augmented with BOXES state aggregation, does not allow for very sophisticated
generalization. The RNN approaches are less affected by the severe noise in the ob-
servations. Most importantly, RL-LSTM again significantly outperforms the others,
both in terms of the maximum timelag it can deal with, and in terms of the number
of timesteps needed to learn the task.

6.4.2.3 An extensive analysis

Let us take a closer look at how RL-LSTM solves this T-maze task. One type of
analysis could be based on FSA extraction, as was done in the previous two chapters.
However, this is both less straightforward and less necessary with LSTM networks
than with the Elman networks of the previous chapters. It was more straightforward
with the Elman networks because there the internal state was realized using a number
of equivalent units with activations in the range [0, 1]. The LSTM network’s internal
state, in contrast, is realized using different types of units and activations that can
be strongly interdependent, and the CECs are not constrained, a priori, to a fixed
range. Moreover, as we shall see in a following section, FSA extraction may not even
be possible at all (or at least be very unnatural), because the LSTM network may
induce a system which is best understood as an automaton of a higher computational
class than FSAs.

However, FSA extraction is also less necessary to make sense of the workings of
the network in the case of LSTM networks than in the case of Elman networks, ex-
actly because of the distinct functional roles played by different types of units, which
facilitate a different type of analysis. For example, in Elman networks, without FSA

6.4. EXPERIMENTS 143

5 10 15 20 25 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

N: length of corridor

N
um

be
r o

f s
uc

ce
ss

fu
l r

un
s

LSTM
Elman−BP
Elman−BPTT
Memory bits

5 10 15 20 25 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

N: length of corridor

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

LSTM
Elman−BP
Elman−BPTT
Memory bits

Figure 6.5: Fig. a (left). Number of successful runs (out of 10) as a function of N ,
length of the corridor, for each of the tested reinforcement learning systems in the
noisy T-maze task. Fig. b (right). Average number of iterations until success as a
function of N .

extraction it is difficult to determine whether changing context unit activations reflect
functionally different internal states or just changing observations which do not change
the Mealy internal state. In LSTM networks, this is less of a problem because input
gates typically learn to close access to observations that are irrelevant with respect to
internal states.

Figures 6.6 through 6.10 show the behavior over time, within an episode, of an RL-
LSTM network that was trained on the noisy T-maze task with corridor length N = 50.
Figure 6.6a shows the Advantage values of the different actions (N, E, S, W) estimated
by the agent over time, together with the direct reward signal the agent obtains at each
iteration. This concerns an episode where X is to the north of the starting position,
such that action Go North (N) is the correct action at the T-junction. The estimated
Advantage values are not exactly equal to the optimal Advantage values. However,
they have the correct relative values, such that optimal behavior can be derived from
them—and that is what is important. Within the corridor, action Go East (E) has
the highest Advantage value. At the T-junction, action Go North (N) has the highest
Advantage value. This is the correct action, so the agent obtains a reward of 4. Figure
6.6b shows the same information, but now for an episode where X is to the south of
the starting position. Again, within the corridor action E has the highest Advantage
value. However, at the T-junction actions S now has the highest Advantage value,
which is the correct action in this case.

How does the LSTM network store the information necessary at the T-junction?
Figure 6.7 shows the activations of the CECs over time for the two different conditions.
CEC 2 and CEC 3 follow different trajectories over time and end up with different
activation values at the T-junction. This provides the memory of the location of the
X observed at the T-junction. CEC 1 does not behave very interestingly or differently
for the two conditions.

144 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

0 10 20 30 40 50

−1

0

1

2

3

4

iteration

va
lu

e

reward
A(N)
A(S)
A(E)
A(W)

0 10 20 30 40 50

−1

0

1

2

3

4

iteration

va
lu

e

reward
A(N)
A(S)
A(E)
A(W)

Figure 6.6: Advantage values over time within one episode of the noisy long-term
dependency T-maze task. Fig. a (left). An episode where X is to the north of the
starting position. Fig. b (right). An episode where X is to the south of the starting
position.

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

35

40

iteration

ac
tiv

at
io

n

c1
c2
c3

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

35

40

iteration

ac
tiv

at
io

n

c1
c2
c3

Figure 6.7: CEC activations over time within one episode of the noisy long-term
dependency T-maze task. Fig. a (left). An episode where X is to the north of the
starting position. Fig. b (right). An episode where X is to the south of the starting
position.

6.4. EXPERIMENTS 145

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

input gate 1
input gate 2
input gate 3

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

input gate 1
input gate 2
input gate 3

Figure 6.8: Input gate activations over time within one episode of the noisy long-term
dependency T-maze task. Fig. a (left). An episode where X is to the north of the
starting position. Fig. b (right). An episode where X is to the south of the starting
position.

Figure 6.8 shows the input gate activations for the two conditions. It is apparent
that in both conditions, after the starting position where the information from the
observation is stored in CEC 2 and 3, the associated input gates 2 and 3 get lower
activations, such that CEC 2 and 3 are not disturbed too much by subsequent obser-
vations. CEC 1’s corresponding input gate does not close at all, such that CEC 3’s
activation keeps growing with every new, irrelevant observation. Note that the input
gate activations do not behave differently in the two conditions.

Figure 6.9 shows the output gate activations for the two conditions. Again, the
activations do not behave differently in the two conditions. In both cases, output gate
1 associated with CEC 1 is closed throughout the episode. Apparently LSTM has
learned that CEC 1 does not contain useful information. Output gates 2 and 3 are
open throughout the episode.

Figure 6.10, finally3, shows the outputs of the memory cells for the two conditions.
Because output gate 1 is closed the whole time, the output of memory cell 1 is 0
throughout the episode. The outputs of memory cells 2 and 3 basically reflect CEC
2 and 3’s activations. The output of memory cell 3 is apparently used to encode the
position of the X seen at the starting location. Furthermore, the outputs of both
memory cells 2 and 3 seem to be used as a kind of timers. In this way, they represent
how close the agent thinks it is to the goal. After all, state-action pairs close to the
goal must have higher values.

3Forget gate activations are not plotted because they were always 1 (“open”) throughout the
episode, in both conditions.

146 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

output gate 1
output gate 2
output gate 3

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

output gate 1
output gate 2
output gate 3

Figure 6.9: Output gate activations over time within one episode of the noisy long-
term dependency T-maze task. Fig. a (left). An episode where X is to the north of the
starting position. Fig. b (right). An episode where X is to the south of the starting
position.

0 10 20 30 40 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

cell output 1
cell output 2
cell output 3

0 10 20 30 40 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

cell output 1
cell output 2
cell output 3

Figure 6.10: Memory cell outputs over time within one episode of the noisy long-term
dependency T-maze task. Fig. a (left). An episode where X is to the north of the
starting position. Fig. b (right). An episode where X is to the south of the starting
position.

6.4. EXPERIMENTS 147

G
S
X X X X X

X X X X X

Figure 6.11: Non-regular T-maze. In this particular example n = 5, the length of the
corridor is 10, and the sequence is grammatical.

6.4.3 Non-regular reinforcement learning

6.4.3.1 Task and architecture

In the previous test problems, the agent was faced with long-term dependency prob-
lems, but they were problems with a dependency on only one observation in the past,
and they required only one bit of short-term memory. Let us consider now a task in
which actions depend on complex combinations of past observations, a task also which
requires a larger short-term memory.

The task, schematically shown in figure 6.11, is again a variation of the T-maze
tasks described above. However, now the correct action at the T-junction depends
not on a single observation made at the starting position, but on the entire sequence
of observations made in the corridor. Specifically, in the first part of the corridor the
agent sees Xs to the North (observation 100), in the second part it sees Xs to the
South (observation 001). The correct action is to go North when the number of Xs in
the first part is equal to the number of Xs in the second part, and go south if this is
not the case. The length of the corridor varies between episodes, from 4 to 40. Thus,
the agent must learn a general solution, basically counting Xs observed to the North
and to the South.

In effect, for correct performance the agent must induce the non-regular language
anbn. “Grammatical” sequences of observations in the corridor must be followed by
going North at the T-junction, “ungrammatical” sequences of observations must be
followed by going South. In this task, ungrammatical sequences still have first Xs to
the North and then Xs to the South, but the number of Xs to the North and the South
is different.

An interesting property of non-regular languages is that they cannot be generated
or recognized by finite state automata. That is, they require an automaton of a higher
computational class in the Chomsky hierarchy, specifically an automaton with a push-
down stack or a counter (Hopcroft & Ullman, 1979). This makes it a challenging
learning task. Note also that now it is particularly important to take only optimal
actions in the corridor leading up to the T-junction: wrong actions completely ruin
the counting of Xs.

Starting with this test problem, the LSTM network was extended with so-called
peephole connections (Gers & Schmidhuber, 2000). Peephole connections are connec-
tions from the activations of the CECs to the input of the memory cells and to the
gates. Before, the memory cell and its gates only had access to the actual outputs of

148 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

the memory cells ycv
j
(t), i.e. after the CEC activations had passed through the output

gates. However, the output gates are often closed so as not to influence the LSTM
network’s output at inappropriate times. It is possible that the information stored in
the CECs could at those moments be useful for internal processing purposes. The con-
tents of the CECs might reach certain values which should in fact trigger the output
gates to open. This would, for instance, correspond to the CECs saying: “we have
observed a particular history of observations; this means that now the outward behav-
ior of the LSTM network should change; therefore, open the output gates!”. Peephole
connections allow processing of this kind, because the memory cell and its gates now
receive direct information about the CEC activations. They increase the computation
only by a small amount, due to the relatively few additional connections.

In contrast with Gers and Schmidhuber (2000), the peephole inputs are not zcv
j
(t),

but h(zcv
j
(t)) (see equation 6.4). The reason is that preliminary experiments showed

that since zcv
j
(t) can grow very large, they can start to “dominate” the inputs to

memory cells and gates and lead to explosions of weights. h(zcv
j
(t)), on the other

hand, is squashed to the range [−1, 1]; this loses some information, but is much safer.

Except for the addition of peephole connections, the same system was used as
before, with the same number of hidden units, memory cells, learning parameters,
and directed exploration mechanism. A comparison was made with the two best
alternatives from the long-term dependency task, i.e. Elman-BPTT and the memory
bits system. The Elman-BPTT system was left unchanged. The task requires many
more bits of short-term memory than before (an infinite number if the n in anbn could
be arbitrarily large); the memory bits system had 5 bits, more than enough to solve
the task for the sequence lengths trained on.

6.4.3.2 Results

10 runs were done for each of the methods. A run was considered a success if the
agent learned to take the correct action at the T-junction in over 90% of cases, using
its stochastic action selection mechanism. Memory bits and Elman-BPTT never got
significantly better than chance, i.e. around 50%. LSTM always reached the success
criterion, in 3,498,230 iterations on average. Figure 6.12 shows the running average of
the probability of correct action selection at the T-junction during a run, for typical
runs of each of the methods. The graph shows typical runs, because averaging over
runs is not very insightful: different successful runs discover and quickly converge to
the correct policy at different moments.

After reaching the success criterion, training was stopped and the RL-LSTM agents
were tested on their generalization ability. The agents had been trained on sequences
with maximum n = 20 (corridor length 40), but now they were tested on sequences
with maximum n = 50 (corridor length 100). Figure 6.13 shows the results for one
typical agent. The proportion correct action selection at the T-junction, using greedy
action selection, is plotted as a function of n. Results for grammatical and ungram-
matical sequences are plotted separately. The results show that the agent has perfect
performance on grammatical sequences of much greater length than it was trained on.
The agent makes many more mistakes for ungrammatical sequences, treating some of

6.4. EXPERIMENTS 149

0 2 4 6 8 10 12 14 16 18

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

pr
op

or
tio

n
co

rr
ec

t a
t T

−j
un

ct
io

n

LSTM
Elman−BPTT
Memory Bits

Figure 6.12: The probability of correct action selection at the T-junction as a function
of the number of learning iterations, for typical runs of each of the three methods.
Only LSTM gets significantly higher than chance and reaches the success criterion.

the ungrammatical sequences as grammatical. Closer inspection of these mistakes re-
veals that mistakes occur mostly in sequences that are “almost grammatical”, i.e. have
nearly the same number of Xs to the North as to the South. Nevertheless, for ungram-
matical sequences the proportion correct action selection is still far better than chance,
even with sequences much longer than the ones the agent was trained on.

Figure 6.14 depicts the CEC activations over time during an episode, for both
a grammatical episode (left) and an ungrammatical episode (right), illustrating how
LSTM solves the task. The CECs apparently implement counters which count up
during the first part of the corridor when the agent sees Xs to the North, and count
down when the agent sees Xs to the South. At the T-junction, some of the CEC
activations must have particular values, typically close to 0, for the agent to choose
action North (grammatical) at that point. This region of values associated with action
North is typically a bit too large, such that the agent sometimes takes action North for
ungrammatical sequences that end up in that region (almost grammatical sequences).
The counters work the same for sequences of greater lengths than trained on, which
is why the system generalizes as well as it does. In fact, the sequences can be much
larger still than what is depicted in figure 6.13.

Figures 6.15, 6.16, and 6.17 show activations over time during an episode of the
input gates, the output gates, and the resulting memory cell outputs. A striking
difference between the grammatical and the ungrammatical sequence can be observed
in the output gate activations. Output gate 1 seems to open at the moment when
the sequence of observations in the corridor so far is grammatical. It is presumably
triggered by watching the CEC activations using the peephole connections. If the
sequence goes on and becomes ungrammatical, output gate 1 opens even further. In

150 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

n

pr
op

or
tio

n
co

rr
ec

t a
t T

−j
un

ct
io

n

Grammatical
Ungrammatical
Chance level

generalization

Figure 6.13: The proportion of correct action selection at the T-junction as a function
of n, plotted separately for grammatical and ungrammatical sequences. RL-LSTM
generalizes well to sequences of much greater lengths than the maximum length it was
trained on (indicated by the vertical line).

either case, the opening of output gate 1 makes CEC activation 1, with very different
values for the grammatical and ungrammatical sequence, available as information to
be used by the output side of the network. This information is used at the T-junction.
In the grammatical sequence, at the T-junction the resulting memory cell output
1 activation (figure 6.17) is around .35. In the ungrammatical sequence, the final
memory cell output 1 activation has a value of around -1. These differing values allow
the network to make the correct crucial decision at the T-junction in each of the two
cases.

There are good reasons for saying that the LSTM network has really induced an
(admittedly imperfect) automaton of a higher computational class than FSAs, rather
than just an FSA that works well for the training exemplars. First, the network gen-
eralizes well to sequences of greater length, and it generalizes in the way expected of a
counter- or stack-based automaton. There is no reason why an arbitrary implementa-
tion of an FSA would generalize in this way. Second, the network has a very apparent
implementation of counters in the memory cells.

In grammar induction studies using recurrent neural networks, other authors have
also induced such automata of a higher computational classes than FSAs (Blair &
Pollack, 1997; Rodriguez et al., 1999; Gers et al., 2001). That work was done using
supervised learning, and usually the network was trained to predict the next input,
the next symbol in the grammar. Gers et al. (2001) use an LSTM network for that
task, and their system induces similar counters as in this work. They also find that
LSTM networks clearly outperform other recurrent neural network architectures.

The interesting result here is that RL-LSTM is apparently able to induce this
relatively complex automaton based on the very sparse training information provided

6.4. EXPERIMENTS 151

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

ac
tiv

at
io

n

iteration

reward
c1
c2
c3

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

25

iteration

ac
tiv

at
io

n

reward
c1
c2
c3

Figure 6.14: CEC activations over time within one episode of the non-regular T-maze
task. Fig. a (left). A grammatical episode. Fig. b (right). An ungrammatical episode.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

ac
tiv

at
io

n

input gate 1
input gate 2
input gate 3

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

ac
tiv

at
io

n

input gate 1
input gate 2
input gate 3

Figure 6.15: Input gate activations over time within one episode of the non-regular
T-maze task. Fig. a (left). A grammatical episode. Fig. b (right). An ungrammatical
episode.

152 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

ac
tiv

at
io

n

output gate 1
output gate 2
output gate 3

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

ac
tiv

at
io

n

output gate 1
output gate 2
output gate 3

Figure 6.16: Output gate activations over time within one episode of the non-regular
T-maze task. Fig. a (left). A grammatical episode. Fig. b (right). An ungrammatical
episode.

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

cell output 1
cell output 2
cell output 3

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration

ac
tiv

at
io

n

cell output 1
cell output 2
cell output 3

Figure 6.17: Memory cell outputs over time within one episode of the non-regular
T-maze task. Fig. a (left). A grammatical episode. Fig. b (right). An ungrammatical
episode.

6.4. EXPERIMENTS 153

by the reinforcement learning task, namely rewards and penalties obtained when the
agent takes the final action at the T-junction. To the best of my knowledge, this is
the first time an automaton of a higher computational class than FSAs is induced in
a reinforcement learning context. More importantly, the results show that RL-LSTM
can learn complex temporal dependencies between combinations of many past events
and current actions in partially observable reinforcement learning tasks, and it can
learn to induce a large short-term memory.

6.4.4 Multi-mode pole balancing

6.4.4.1 Task and architecture

The next test problem is more realistic than the T-mazes and has more complicated
dynamics. It is another variation of the pole balancing task, studied also in the previous
chapter. The version used in this experiment is made more difficult by two sources
of hidden state. First, as in the previous chapter and in Lin and Mitchell (1993),
Schmidhuber (1991c), Moriarty and Miikkulainen (1996), Meuleau et al. (1999), the
agent cannot observe the state information corresponding to the cart velocity ẋ and
pole angular velocity θ̇. It has to learn to approximate this information using its
recurrent connections in order to solve the task. Second, the agent must learn to
operate in two different modes. In mode A, action 1 is left push and action 2 is right
push. In mode B, this is reversed: action 1 is right push and action 2 is left push.
Modes are randomly set at the beginning of each episode. The information which
mode the agent is operating in is provided to the agent only for the first second of the
episode. After that, the corresponding input unit is set to zero and the agent must
remember which mode it is in. Obviously, failing to remember the mode leads to very
poor performance.

As in the previous chapter, the only reward signal is −1 if the pole falls past ±12◦

or if the cart hits either end of the track. These are also the only points where the
episode ends and a new one starts. Note that the agent must learn to remember the
mode information for an infinite amount of time if it is to learn to balance the pole
indefinitely. Thus, this is a task with strongly hidden state (chapter 3, Williams, 1990).
This rules out history window approaches altogether. However, in contrast with the
T-maze tasks, the system now has the benefit of starting with relatively short time
lags.

Furthermore, the task requires the network to organize its internal state space
such that it represents both continuous information (cart and pole velocities) and dis-
crete information (mode of operation). Both this requirement and the requirement to
remember information indefinitely have been described by Williams (1990) as exam-
ples that illustrate the promise of recurrent neural networks for control. As Williams
(1990) notes, it is hard to see how either a system based on traditional control theory
(which is mainly concerned with continuous systems, and which sometimes uses fixed
size history windows), or a system based on traditional artificial intelligence (mainly
concerned with discrete systems) could solve such a task.

The LSTM network has 2 output units, 14 standard hidden units, and 6 memory
cells. It has 3 input units: one each for x and θ; and one for the mode of operation, set

154 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

iteration

ac
tiv

at
io

n

cell output 1
cell output 2
cell output 3
cell output 4
cell output 5
cell output 6

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

iteration

ac
tiv

at
io

n

cell output 1
cell output 2
cell output 3
cell output 4
cell output 5
cell output 6

Figure 6.18: Memory cell outputs over time within one episode of the multi-mode pole
balancing task. After 50 iterations, the input unit coding for the mode of operation
information is switched off. Fig. a (left). Mode A episode. Fig. b (right). Mode B
episode. In this particular episode, it takes somewhat longer to dampen the oscillations
of the pole, as shown by the oscillations of the memory cell outputs.

to zero after one second of simulated time (50 timesteps). γ = .95, λ = .6, κ = .2, α =
.002. In this problem, directed exploration was not necessary, because in contrast to
the T-mazes, imperfect policies lead to many different experiences with reward signals,
and there is hidden state everywhere in the environment. For a continuous problem
like this, a table-based memory bit system is obviously unsuitable, so a comparison
was only made with the Elman-BPTT system, which had 16 hidden and context units
and α = .002.

6.4.4.2 Results

The Elman-BPTT system never reached satisfactory solutions in 10 runs. It only
learned to balance the pole for the first 50 timesteps, when the mode information is
available, thus failing to learn the long-term dependency. However, RL-LSTM learned
optimal performance in 2 out of 10 runs (after an average of 6,250,000 timesteps of
learning). After learning, these two agents were able to balance the pole indefinitely
in both modes of operation. In the other 8 runs, the agents still learned to balance
the pole in both modes for hundreds or even thousands of timesteps (after an average
of 8,095,000 timesteps of learning), thus showing that the mode information was re-
membered for long time lags, and the velocity information approximated reasonably
well. In most cases, such an agent learns optimal performance for one mode, while
achieving good but suboptimal performance in the other.

Figure 6.18 shows the memory cell outputs over time during an episode, for one
successful RL-LSTM solution. The left graph corresponds to a mode A episode, the
right graph corresponds to a mode B episode. The graph only shows the first 200
iterations of each episode; the agent can balance the pole indefinitely in both modes.
After 50 iterations, the input unit coding for the mode of operation information is

6.4. EXPERIMENTS 155

G

Figure 6.19: The cheese maze. G indicates the goal location, where the only reward
of the task is given.

switched off. By that time, the activations of memory cells 2, 4, and 6 are very
different in the different modes of operation, and they stay different. This provides
the memory for which mode the system is currently operating in. Simultaneously,
these same memory cells code, apparently in a distributed way, for (something like)
the cart and pole position and velocity information, which is necessary for the actual
balancing of the pole.

6.4.5 McCallum’s cheese maze

6.4.5.1 Task and architecture

The final two test problems for RL-LSTM are well-known test problems from the
POMDP literature. Thus, they allow us to make additional comparisons with other
solution techniques.

McCallum (1993) was the first to describe the maze depicted in figure 6.19. The
objective is to move to a single goal location, where the only reward of the task is
obtained, the “cheese”. The agent’s actions consist, as above, of single steps to the four
cardinal directions North, East, South, and West. The agent only perceives the wall
or open space on the four cardinal positions next to it. There are several perceptually
aliased states (see figure 6.19). For example, the corridor to the left and the right of
the middle T-junction look the same to the agent. It can disambiguate these states by
remembering the observation from one timestep ago. If the agent reaches the cheese,
the episode ends and the agent goes to a random location in the maze.

McCallum (1993) successfully demonstrated his Utile Distinction Memory on this
task. Later, Littman (1994) used this maze to demonstrate tabular Q-learning with
memory bits. Wilson (1994) and Cliff and Ross (1994) used it to demonstrate classifier
systems with memory bits.

Lanzi (2000) shows that tabular Q-learning with memory bits can suffer from
“aliased pay-offs” in this task (see section 3.6.3.7); especially, and perhaps counterin-
tuitively, when the agent explores extensively. The reason is that the expected return
in the two aliased states to the left and to the right of the central T-junction is the
same, for actions “if a corridor is observed and memory bit 1 is 0, go left” and “if a

156 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

corridor is observed and memory bit 1 is 1, go right”. This causes the system to have
difficulty setting the memory bit correctly before it enters this corridor.

6.4.5.2 Results

The same RL-LSTM system as in the T-maze tasks was used for this task, but now
with 4 input units, one for each cardinal direction. γ = .98, α = .01, κ = .2, λ = .8.
The success criteria were to have the optimal policy using greedy action selection, and
to reach the goal in less than 6 steps on average using stochastic action selection, to
enforce more or less robust solutions.

The system has little difficulty in finding the solution. In all 10 out of 10 test
runs, the agent converged to optimal solutions, in an average of 643,175 iterations.
Apparently, RL-LSTM works well on this benchmark POMDP test problem. First of
all, this shows that RL-LSTM’s success in the tasks described before is not due to
particularities in those tasks. Furthermore, the system never has any difficulty with
aliased pay-offs. The reason for this is that, unlike in a memory bits system, LSTM’s
internal state will virtually always be somewhat different for different histories. In the
two aliased states to the left and the right of the central T-junction, the internal state
will never be the same. Therefore, the expected return for actions “if a corridor is
observed and the internal state has value A, go left” and “if a corridor is observed and
the internal state has value B, go right”, will not be the same.

6.4.6 89-state stochastic office navigation problem

6.4.6.1 Task and architecture

The final test problem in this chapter is a difficult partially observable “office nav-
igation” task, depicted in figure 6.20, and first described in Littman et al. (1995a,
1995b). They used it to test state of the art model-based POMDP algorithms that
approximate value functions defined over the belief state space.

It is one of the larger POMDP test problems in the literature, with 89 states. In
contrast with the other test problems in this chapter, but like the test problems in
the previous two chapters and in the next chapter, the agent has a position and an
orientation, to the North, East, South, or West. The agent starts the episode in a
random location and with a random orientation. The goal is to move to the goal
location in the lower right corner, which contains the only reward of the task. After
reaching the goal or taking more than 251 actions, the episode ends and a new episode
starts.

The observations come from 4 independent sensors that detect walls vs. open space
to the agent’s front, back, and sides. However, sensors are very unreliable: a wall is
detected only with probability .9, open space is detected with probability .95. Thus,
the sensor mistakenly detects open space when there is a wall with probability .10,
and a wall when there is open space with probability .05. All sensors make mistakes
independently from each other. This means that the probability of getting the correct
observation lies between .65 and .81, depending on the agent’s location. Even if the
correct observation is obtained, the high degree of symmetry in the environment implies
that the observation can still correspond to many different states. The only exception is

6.4. EXPERIMENTS 157

GW

W

W

W

Figure 6.20: The 89-state maze. G indicates the goal location, where the only reward
of the task is given. The agent is also depicted, oriented to the north, together with
its sensors which detect walls versus open space.

the observation obtained in the goal state, which is unique and deterministic. Together
there are only 17 observations for the 89 states.

State transitions are also very stochastic. The actions go forward, turn left, turn
right, and turn around are only successful with an average probability of .70, the
remaining probability being distributed over the other actions (see Littman et al.,
1995b for a complete description of the state transition probabilities). There is an
additional action “stay in place” which is always successful, and which can help in
reducing uncertainty about the current state, because it leads to another observation
in the same state.

The difficulty of this task comes from the relatively large size of the state space, the
large amount of stochasticity both in observations and in actions, and the many states
that look the same even with correct observations. The large amount of stochasticity
requires a system that can handle stochasticity well. This is the first time RL-LSTM
is tested on a problem with this nature.

6.4.6.2 Results

All the algorithms investigated by Littman et al. (1995a, 1995b) include a Bayesian
belief state estimation component. Based on the belief state, a number of heuristic
value function computation approaches were attempted, because the problem is much
too large for exact PWLC value computation. They are listed, together with their
results, in table 6.1. See chapter 3, specifically section 3.6.2.2, for more details on
these algorithms. One algorithm is truncated value iteration. Another, called QMDP

here, is value iteration on the underlying MDP. In the POMDP, the MDP’s Q-values
are used, weighted by the belief state components. Replicated Q-learning and linear
Q-learning are both versions of linear Q-learning on the belief state.

158 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

Table 6.1: Results on the 89-state maze task for different methods. As comparisons,
both a random walk policy and the results of a human trained on this task are included.
The “seeded” algorithms are seeded with the values computed by QMDP. Results, other
than those of RL-LSTM, are taken from Littman et al. (1995a) and Loch and Singh
(1998).

goal% median

Random walk 25.9 >251

Truncated Value Iteration 44.6 >251

QMDP 25.9 >251

Replicated Q on the belief state 2.8 >251

Linear Q on the belief state 5.2 >251

QMDP (no stay) 57.8 40

Replicated Q on the belief state (seeded) 10.8 >251

Linear Q on the belief state (seeded) 58.6 51

Sarsa(λ) 77.0 73

RL-LSTM (best 7/10 runs) 93.9 61

Human (Michael Littman) 100.0 29

The results of these algorithms, displayed in table 6.1, show the proportion of
episodes in which the goal is reached by the trained agent and the median number
of steps to the goal. The results are not very good. For this reason, the authors
experimented with a variation of the linear Q-learning algorithms. Now their Q-values
were seeded with the Q-values computed by the QMDP method before learning started.
Furthermore, a variation of QMDP was investigated where the “stay in place” action
was removed, because this action can never be learned by QMDP. Generally speaking,
these variations improved the results, but the goal was still only reached in at best
58.6% of the episodes. Because it is difficult to determine the optimal policy for this
task, Littman et al. (1995a, 1995b) also include the results of a human (one of the
authors) trained on this same task using a virtual reality environment. The human
reached the goal in 100% of the episodes, showing that there is still a lot of room for
improvement for the machine learning methods.

Loch and Singh (1998) used a model-free, table-based, memoryless policy learning
technique, Sarsa(λ), to demonstrate that memoryless policies may still have good
performance in partially observable domains, when eligibility traces are used during
learning. In terms of the percentage of episodes where the goal is reached, their method
outperforms all algorithms described by Littman et al. (1995a, 1995b). The median of
the number of steps to the goal is high, however. This makes sense if we consider that
a memoryless policy cannot distinguish between many positions in this environment,
and must therefore take many suboptimal actions even if eventually the goal is reached.

The RL-LSTM system used here had the same basic architecture as before. There
were 4 input units, one for each cardinal direction (as in the cheese maze), 3 memory
cells (as in the cheese maze and all T-mazes), 15 standard hidden units, and 5 output

6.5. DISCUSSION 159

units. α = .01, κ = .5, λ = .9. Exactly the same directed exploration mechanism was
used as before. The success criterion required the agent to reach the goal in at least
90% of the episodes using the agent’s stochastic action selection. 7 out of 10 test runs
reached this success criterion, in an average of 14,253,085 iterations. The other 3 test
runs did not reach the success criterion, but they all learned to reach the goal in at
least 60% of the episodes. In the 7 successful runs, using greedy action selection, the
average percentage of reaching the goal and median number of steps are 93.9 and 61,
respectively. This is subtantially better than any of the other reported algorithms.

In many of the episodes, the agent first checks the upper left “room” which the
agent initially cannot distinguish from the goal location, due to the environment’s
symmetry. Once it finds out that this is not the goal location, the agent moves more
or less directly to the lower right room via the lower left corner. In those cases, it
usually does not enter the lower left room—which is something a memoryless policy
could not do.

Many authors (e.g. Kaelbling et al., 1998; Littman et al., 1995a; Thrun, 2000) have
argued that the proper way to deal with the uncertainty caused by a POMDP is to
explicitly represent the uncertainty, using belief states which define a probability dis-
tribution over all possible states. This experiment shows that RL-LSTM can deal with
the uncertainty without explicitly representing the uncertainty and that it is appar-
ently fairly robust against a large amount of stochasticity in the POMDP. The reason
for this robustness probably lies in the inherent generalization capabilities of neural
networks, combined with the inherently statistical nature of the learning algorithm.
LSTM generalizes both over observations and over internal states. If either of them
does not have the “expected” activation vector at a certain moment, either because of
noise in the observation or because an intended action was not executed, LSTM does
not completely collapse but rather tries to produce outputs (Advantage values) that
best match this unexpected situation. Furthermore, the inherently statistical nature of
the reinforcement learning algorithm implemented using gradient descent gives some
robustness against noise during learning. Learning can still be successful as long as
the learning algorithm can discover sufficient correlations between observations and
internal states on the one hand, and outcomes on the other.

A particularly interesting result in this experiment is the finding that model-free
RL-LSTM can outperform, in terms of quality of the learned policy, state of the art
methods that already start out with a given, exact model of the environment! Thus,
even with the given model, those methods perform worse than RL-LSTM, which has
considerably less prior knowledge, and which was not even significantly adapted for this
task compared to the networks used in the previous test problems. This result provides
some further support for the claim, described extensively in chapter 3, that in some
cases it may be easier to learn values or policies directly—model-free methods—than
to use a model of the environment and apply a model-based method.

6.5 Discussion

The results presented in this chapter show that model-free reinforcement learning
with a Long Short-Term Memory recurrent neural network (RL-LSTM) is a promising

160 6. REINFORCEMENT LEARNING WITH LONG SHORT-TERM MEMORY

approach to solving difficult POMDPs. The POMDPs may have many states, discrete
as well as continuous states, a large amount of stochasticity, and, most importantly,
complex and long-term dependencies between past events and current best actions.

RL-LSTM’s main power is derived from LSTM’s property of constant error flow,
which other recurrent neural network architectures, such as the Elman networks of the
previous chapters, do not have. Unlike other model-free POMDP solution methods
which use short-term memory, such as a system based on memory bits or FSAs, RL-
LSTM explicitly computes gradients of returns with respect to past experiences, which
allows for effective, directed credit assignment.

For good performance in reinforcement learning tasks, the combination of LSTM
networks with Advantage(λ) learning and directed exploration was crucial. The benefit
of using Advantage(λ) learning instead of other value function-based reinforcement
learning algorithms in POMDPs was discussed extensively in the previous chapter.
Directed exploration is beneficial because it allows exploration to be low when it can,
leading to more stable sequences of experiences in which LSTM can better find the
temporal regularities which are used to reconstruct the environmental state signal.

Chapter 7

Reinforcement learning with
unsupervised event extraction

Summary

This chapter describes how the techniques presented in the previous chapters can be
applied to more realistic robot learning tasks, by combining those techniques with an
unsupervised learning mechanism that does event extraction. The event extraction
mechanism, ARAVQ, transforms the robot’s continuous, noisy, high-dimensional sen-
sory input stream into a compact sequence of high-level “events”. The resulting overall
system is a hierarchical control system in which the reinforcement learning component,
an LSTM recurrent neural network, learns high-level actions in response to the history
of high-level events. The high-level actions select low-level behaviors which take care
of real-time motor control. Experiments are presented based on a Khepera mobile
robot simulator which illustrate the ideas.

7.1 Introduction

The techniques described in the previous chapters constitute an intuitively appealing
approach to developing control programs for real robots. Real robots are notoriously
difficult to program. The techniques of the previous chapters do not require a person
to program the desired behavior by hand, or even show the robot desired actions in
different situations. Instead, they potentially allow the robot to learn correct behavior
virtually autonomously, based only on scalar reward signals if the robot reaches par-
ticular goals. Furthermore, the fact that in most realistic robot domains the state is
only partially observable (see section 3.3.4) is not a problem for the techniques of the
previous chapters, which were explicitly designed to deal with partial observability.

However, the environments considered in the previous chapters were fairly small,
and usually discrete. In contrast, a robot’s environment is inherently large and con-
tinuous. Combined with partial observability this can lead to extremely long time
lags, either between actions and finally achieving a goal, or between events that need

161

162 7. REINFORCEMENT LEARNING WITH EVENT EXTRACTION

to be remembered and actions that depend on them. As we saw before, long time
lags make temporal credit assignment very difficult: which of the many past actions
are to be credited for good behavior, and which of the many past events need to be
remembered? In the previous chapter, we saw that LSTM networks can be used to
learn long-term dependencies in POMDPs. However, as was also apparent, there is
still a limit to the time lag that can be bridged, even with LSTM. For larger and more
realistic robot problems, more is needed.

This chapter attempts to make some progress on the problem of learning in real-
istic robot domains by combining different techniques. The main idea is to combine
reinforcement learning, as it was used in the previous chapters, with unsupervised
learning. This idea was also suggested, in a different context, by Hinton (1999) when
he said about the brain:

There’s probably some basic way of unsupervised learning and once it
constructed representations that way, there’s probably some basic way of
reinforcement learning based on these representations.

In this chapter, the unsupervised learning method accomplishes both spatial and
temporal abstraction (or compression) of the robot’s sensory inputs. A high-level
representation of the environment is thus obtained in which reinforcement learning
becomes much more feasible than in the raw, low-level representation. The unsuper-
vised learning method does not in itself solve the problem of partial observability,
but it does make it easier. In the spatially and temporally compressed representation
it is easier for the reinforcement learning system to find the temporal dependencies
which can disambiguate the state. As in the previous chapter, the reinforcement learn-
ing component is based on an LSTM recurrent neural network, which was shown in
the previous chapter to be good at learning such temporal dependencies in partially
observable reinforcement learning tasks.

The next section describes the overall system in more detail, and discusses re-
lated work. Section 7.3 presents results on experiments done using a Khepera robot
simulator. Section 7.4, finally, contains a general discussion.

7.2 The learning system

7.2.1 Unsupervised event extraction

One component of the overall learning system is an unsupervised learning system
doing event extraction. Robots typically have many, noisy sensors, sampled at a high
rate, e.g. 20 Hz. From this timeseries of many noisy, high-dimensional data points,
the event extraction mechanism extracts a compact sequence of high-level “events” or
“concepts”. Figure 7.1 shows the general idea. The mechanism accomplishing this
is called an Adaptive Resource Allocation Vector Quantization (ARAVQ) network
(Lin̊aker & Niklasson, 2000; Lin̊aker & Jacobsson, 2001). It basically matches incoming
sensor vectors, i.e. the values coming from the different sensors, to stored model vectors
in a manner similar to Kohonen maps (Kohonen, 1995), and it dynamically allocates
new model vectors when it encounters novel and stable situations.

7.2. THE LEARNING SYSTEM 163

a a a ab a c d e

Classification

aaabbbbbaaaaaaaacccccaaaaddddaaaaaaaaaaaaaaaaaaaaaeeeeeaaaaaa

Event extraction

Figure 7.1: A schematic representation of event extraction. The horizontal dimension
represents time. First, the continuous sensor vector is classified. Next, only changes
in classification are passed on as significant events.

ARAVQ stores the last n input vectors in an input buffer. The values in the input
buffer are averaged to create a more reliable, filtered input x(t) to the rest of the
ARAVQ network. See figure 7.2 for the architecture. There is a set M(t) of model
vectors (each representing an event class), which is initially empty. The ARAVQ
network operates in three stages:

Event class incorporation. Additional model vectors are only allocated when
stable and novel inputs are encountered, i.e., when the following criteria are fulfilled.
The input is considered stable if dx(t), the average Euclidian distance between x(t) and
the last n inputs, is below a threshold parameter ε. The input is considered novel if
dM(t), the average Euclidean distance between the best matching stored model vector
and the last n inputs, is larger than dx(t) plus a distance parameter δ. If both of these
criteria are met, the filtered input is incorporated as an additional model vector:

M(t + 1) =

{

M(t) ∪ x(t) dx(t) ≤ min(ε, dM(t) − δ)
M(t) otherwise.

(7.1)

Classification. Each time-step, a winning model vector v(t) is selected, indicating
which class the filtered input currently matches:

v(t) = arg min
1≤j≤|M(t)|

{||x(t) − mj ||};mj ∈ M(t). (7.2)

Only when the winning model vector changes, an event is “thrown” (as depicted in
figure 7.1, top layer).

164 7. REINFORCEMENT LEARNING WITH EVENT EXTRACTION

averaging

input buffer

filtered input

...model vectors

Figure 7.2: Schematic architecture of the ARAVQ network. The raw sensory inputs
stored in the input buffer are first averaged to yield a filtered input. The filtered input
is compared to the stored model vectors. If no good match is found, a new model
vector is allocated corresponding to the filtered input.

Adaptation. If the winning model vector matches the filtered input very closely,
the filtered input is considered to represent a “typical” instance of the class, and the
model vector is modified to become even more like this input, in a manner similar to
Kohonen maps:

∆mv(t) =

{

α[x(t) − mv(t)] ||x(t) − mv(t)|| < ε
2

0 otherwise,
(7.3)

where α is a learning rate parameter.
Figure 7.3 illustrates the functioning of ARAVQ on a simple, one-dimensional sen-

sor signal. In summary, the ARAVQ network accomplishes two things that are good
for reinforcement learning. First, it compresses and simplifies the high-dimensional
sensor space and filters out much of the noise, producing clear-cut higher level con-
cepts representing distinct, stable situations. Second, it compresses the long, high
sampling rate timeseries into a short sequence of discrete events. In the present study,
the ARAVQ learning phase precedes the reinforcement learning phase.

7.2.2 Reinforcement learning on the extracted concepts

The events or concepts coming out of the unsupervised learning system are the inputs
to the reinforcement learning component. We are dealing with partially observable
domains. The robot’s sensory input is preprocessed using the event extraction mecha-
nism, but different hallways may still look the same and lead to one extracted concept
“hallway”. This is why the reinforcement learning component is, as in the previous
chapters, based on a recurrent neural network. The same basic architecture as in
the previous chapter is used, an RL-LSTM network (depicted in figure 6.1). The
RL-LSTM network again approximates the value function of Advantage(λ) learning.
Furthermore, the same directed exploration technique is used as in the previous chap-
ter.

The input of the RL-LSTM network basically consists of the output units of the
ARAVQ network. Thus, each input is a vector with one unit set to 1 (the winning

7.2. THE LEARNING SYSTEM 165

Figure 7.3: An illustration of the functioning of ARAVQ on a simple, one-dimensional
sensor signal. For roughly the first half of this timeseries, the input is stable (falls
within the boundaries set by ε). Then the input changes suddenly, and for a while
ARAVQ considers the input too unstable. Next, the input more or less settles down
and the stability criterion is again fulfilled. The new stable input is closer to stored
model vector 2, therefore the categorization changes and a new event is thrown at that
point.

concept) and the remaining ones set to 0. The robot’s world state is approximated
by the current event, provided by the ARAVQ network, together with the recurrent
activations within the LSTM network, which can represent a complex function of the
entire history of past events.

7.2.3 Hierarchical control

The outputs of the reinforcement learning LSTM network represent Advantage values
of high-level actions in response to event changes detected by the ARAVQ network. To
provide a connection to the low level, real-time motor control of the robot, the whole
system is organized as a hierarchical control system. The entire hierarchical control
system, which has obvious similarities to Brooks’ subsumption architecture (Brooks,
1991a), is depicted in figure 7.4.

Low level, real-time motor control is handled by a simple, handcrafted reactive
controller. On this level, there are three behaviors: going forward, following the
corridor; following the left wall and turning left when possible; and following the
right wall and turning right when possible. Each can correct for some noise in the
execution of motor commands and avoid collisions, by directly using the raw sensory
inputs as feedback. A low level behavior is executed until a new event is detected by
the ARAVQ network. At such a point, the high-level RL-LSTM controller selects (or
gates) one of the three low level behaviors for execution until the next event.

166 7. REINFORCEMENT LEARNING WITH EVENT EXTRACTION

RL-LSTM
network

L: left wall follower

R: right wall follower

F: corridor follower

ARAVQ event extraction

sensory
data

concepts actions
L, F, R

motor
commands

HIGH
LEVEL

LOW
LEVEL

ENVIRONMENT

reward

Figure 7.4: The complete hierarchical control system. In response to events detected
by ARAVQ, RL-LSTM produces high-level actions which select low-level behaviors.

7.2.4 Related work

The ARAVQ unsupervised event extraction mechanism (Lin̊aker & Niklasson, 2000;
Lin̊aker & Jacobsson, 2001) was inspired by Tani & Nolfi’s (1998) event extraction
mechanism , which in turn was inspired by Schmidhuber’s (1992a) history compres-
sion mechanism. Tani & Nolfi’s system attempts to predict the next input given the
complete history of past inputs, whereas ARAVQ simply attempts to detect changes
from the last (stable) input to the next. Tani & Nolfi’s system is sensitive to the
density of patterns: sometimes a very distinct but rare situation does not get its own
concept. Furthermore, they required many iterations of learning. ARAVQ can often
learn good concepts in just a single pass through the environment.

The idea of preprocessing raw sensory data for reinforcement learning using an
unsupervised learning mechanism has been explored by a number of authors. For
instance, Fernández & Borrajo (1999) use a standard vector quantization technique
to categorize high-dimensional input vectors into a fixed number of concepts, before
doing Q-learning on the concepts. Arleo, Smeraldi, Hug, and Gerstner (2001) extract
high-level visual features from video images using unsupervised learning and do Q(λ)-
learning using those features. None of these authors perform the type of temporal
abstraction employed here; they only perform spatial abstraction over the state space,
classifying the current raw sensory input. In fact, such spatial abstraction without
temporal abstraction is the focus of a large number of studies in reinforcement learning
on generalization (Sutton & Barto, 1998, and see chapter 3). However, in most of that
work, unlike our work and that of Fernández & Borrajo (1999) and Arleo et al. (2001),
there is no separate unsupervised learning component.

Temporal abstraction in reinforcement learning is the focus of another related body
of literature, which is concerned with hierarchy. In hierarchical Q-learning (Wiering

7.3. EXPERIMENTS 167

G

S

G

road
signa

d

a

c
a

Figure 7.5: The T-maze, depicted together with the simulated Khepera robot and the
events it detects along the way from the starting position S to the current goal position
G (the “wrong” goal position is shown in gray).

& Schmidhuber, 1997, see section 3.6.3.6), the framework of options (Sutton, Pre-
cup, & Singh, 1999), MAXQ (Dietterich, 2000), Hierarchical Abstract Machines (Parr
& Russell, 1998), and Feudal reinforcement learning (Dayan & Hinton, 1993), high-
level actions correspond to entire policies at a lower level, which are executed until a
termination criterion is fulfilled. Hierarchical Q-learning is also aimed specifically at
POMDPs. Hernandez-Gardiol & Mahadevan (2001) make a similar argument to the
one made in this chapter, stating that temporal abstraction is particularly important
in partially observable reinforcement learning domains in order to deal with long time
lags between significant past events and current decisions. Where we use an LSTM
recurrent neural network to learn the temporal dependencies between high-level con-
cepts, they use the Nearest Sequence Memory and Utile Suffix Memory algorithms (see
sections 3.6.3.4 and 3.6.3.5). Another important difference is that they use hand-coded
high-level concepts, whereas we use unsupervised learning to let the robot develop the
high-level concepts autonomously.

7.3 Experiments

7.3.1 T-maze

As a first illustration of the ideas presented above, let us consider a partially observable
T-maze navigation task, similar to the one investigated in the previous chapter. The
version investigated here is implemented in a simulation of a Khepera mobile robot
equipped with 8 noisy infrared proximity sensors and 2 light sensors, driving around
in a continuous environment (Lin̊aker & Jacobsson, 2001).

The robot’s task is to move from the fixed starting position to a goal position (see
figure 7.5). The goal position can either be to the left of the T-junction or to the right.

168 7. REINFORCEMENT LEARNING WITH EVENT EXTRACTION

The goal position can itself not be perceived—this makes the task partially observable.
However, the goal position depends on a road sign that the robot can perceive when
it traverses the corridor. If the robot reaches the goal position, it receives a reward:
r = 4. If, instead, it reaches the opposite position, it receives a negative reward:
r = −.5. In both cases, the episode ends and a new one starts, with the goal position
assigned randomly to the left or the right. No other rewards are available.

As before, the main difficulty in this task lies in discovering the temporal depen-
dency between the road sign and the action at the T-junction, storing the road sign
information reliably in short-term memory, and using that information at the correct
time, while ignoring the irrelevant intermediate sensory inputs. In this continuous
version, there are even more intermediate sensory inputs than in the version studied
in the previous chapter, because sensors are sampled at a high rate. Furthermore, the
sensory inputs of the Khepera robot are very noisy, which makes it more difficult still.
Thus, despite its conceptual simplicity this is a difficult long time lag problem. Even
though RL-LSTM was shown, in the previous chapter, to be capable of solving this
problem with time lags of up to 50 to 70 timesteps, when the time lag becomes larger,
which is easily the case with sensors sampled at 20 Hz, learning becomes very difficult.

This is a case where the value of event extraction is particularly clear. Figure 7.5
shows the extracted events during a sample path. Reinforcement learning is done on
the basis of the extracted events rather than the raw sensory inputs, using the system
described in the previous section. The time lags in the problem are significantly
reduced and most of the sensory noise is filtered out. The RL-LSTM network can find
the temporal dependency between the road sign and the T-junction relatively easily,
because at this higher abstraction level the time lag between them is only two events.

10 runs were performed, using RL-LSTM networks with 4 input units (one for each
concept), 3 output units (one for each action), 12 hidden units, and 3 memory cells.
The following parameter values were used: δ = .7, ε = .2, n = 5, α = .05, γ = .98,
λ = .8, κ = .2, and β = .01.

All runs converged to optimal policies, using 19,082 iterations on average. Figure
7.6 shows the probability of reaching the goal as a function of the number of iterations,
for one typical run (averaging over all 10 runs is not very insightful because different
runs discover and rapidly converge to the correct policy at different moments). It is
based on the robot choosing high-level actions according to its exploration mechanism,
which is why it does not reach 100% correct; the derived greedy policy is optimal.
Figure 7.6 also shows the average number of high-level actions to the goal under the
online exploration strategy, provided the goal is reached, as a function of the number
of iterations for the same run.

7.3.2 Complex maze

The second test problem is a more complex maze navigation task (see figure 7.7). The
principle, however, is the same. The agent must move to one of two possible goal
positions, depending on a road sign it can only observe near the starting position.
Again, r = 4 when the robot reaches the goal, and r = −.5 when it reaches the
opposite position. However, now there are many more states and longer paths to the
goal, and ARAVQ finds more concepts. Furthermore, even if the robot reliably learns

7.3. EXPERIMENTS 169

0 0.5 1 1.5 2 2.5 3

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

P
ro

b.
 o

f r
ea

ch
in

g
go

al

0 0.5 1 1.5 2 2.5 3

x 104

0

5

10

15

20

25

30

iteration

N
um

be
r o

f s
te

ps
 to

 g
oa

l
Figure 7.6: Results for the T-maze task. Fig. a (left). Probability of reaching the goal
in the T-maze task as a function of the number of iterations for one run. Fig. b (right).
Average number of high-level actions to the goal, provided the goal is reached, as a
function of the number of iterations for one run.

to move from the starting position to the final T-junction before the goal position, the
minimum time lag between the road sign and the final T-junction is 6. Thus, although
the time lags are considerably reduced thanks to ARAVQ, this is still a relatively
long-term dependency POMDP—but now even on the level of extracted events rather
than the level of low-level sensory inputs. A similar task was investigated in Lin̊aker
and Jacobsson (2001), using a supervised learning Elman recurrent neural network to
learn the high-level actions. The Elman network could not solve the task when the
time lag exceeded a few events. LSTM, on the other hand, can solve such tasks, as we
saw in the previous chapter, and it does so in this particular task.

10 runs were performed, using the same RL-LSTM architecture as in the simpler T-
maze, except the number of input units is now 10, because there are now 10 concepts.
All runs converged to optimal greedy policies, always reaching the correct goal position
in the lowest possible number of high-level actions. The system needed considerably
more time than in the simple T-maze, taking 7,283,302 iterations on average. Figure
7.8 shows the probability of reaching the correct goal position as a function of the
number of iterations for one typical run. Figure 7.8 also shows the average number of
high-level actions to the goal under the online exploration strategy, provided the goal
is reached, as a function of the number of iterations for the same run. Note that this
number remains much higher than the number under the greedy policy, because there
is a lot of exploration, and even just one exploring suboptimal action often leads to
many extra actions to arrive at the goal.

For the run depicted in figure 7.8, figure 7.9 shows the values of the memory cells’
internal states zj during the episode, after the optimal policy has been learned. The
robot first encounters an episode where the goal is in the left position, and then an
episode where the goal is in the right position. It is apparent that when the robot
sees the “left” road sign the internal state of memory cell 2 takes on a different value

170 7. REINFORCEMENT LEARNING WITH EVENT EXTRACTION

G

S

G

a
d
a

c
a

f

a

g
a

Figure 7.7: The more complex maze, depicted together with the robot taking the
optimal path to the right goal position. The number of events between the road sign
and the final T-junction is 6.

0 0.5 1 1.5 2 2.5

x 10
6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

P
ro

b.
 o

f r
ea

ch
in

g
go

al

0 0.5 1 1.5 2 2.5

x 10
6

15

20

25

30

35

40

45

iteration

N
um

be
r o

f s
te

ps
 to

 g
oa

l

Figure 7.8: Results for the complex maze task. Fig. a (left). Probability of reaching
the goal in the complex maze task as a function of the number of iterations for one
run. Fig. b (right). Average number of high-level actions to the goal, provided the
goal is reached, as a function of the number of iterations for one run.

7.4. DISCUSSION 171

0 5 10 15 20
−6

−4

−2

0

2

4

6

8

10

12

Events

V
al

ue

c 1
c 2
c 3
reward

Figure 7.9: The memory cells’ internal states zj during two episodes, the first with the
goal to the left and the second with the goal to the right. The reward signal is also
shown. After the first reward, the new episode starts (event 10).

than when it sees the “right” road sign. This internal state uniquely characterizes
the two conditions throughout the episode, and it is used by the network at the final
T-junction to decide whether to turn left or right.

7.4 Discussion

The results presented in this chapter show that certain continuous, partially observable
robot learning tasks which are very difficult in their “raw” version can be solved
using the combination of reinforcement learning with unsupervised learning. The
key elements are the ARAVQ event extraction network that accomplishes a spatial
and temporal abstraction of the environment, the RL-LSTM recurrent neural network
that can learn the POMDP’s temporal dependencies, and their combination into a
hierarchical control system.

However, there are still several limitations. First of all, learning is still fairly
slow, if we were to apply the algorithms to real robots. This is a problem for most
reinforcement learning algorithms and most neural networks. This probably reflects
more the generality and lack of “bias” or built-in knowledge of the used algorithms
than it reflects inherent problems in the algorithms per se; but this issue still needs to
be addressed if we are to apply these techniques to real robots in real-world tasks. One
approach would be to use experience replay (Lin & Mitchell, 1993), which stores past
experiences and uses them to keep training the neural network concurrently with new
experiences. Another approach would be to introduce bias or a priori knowledge in
some way, for example by providing the system with approximate or partial policies.
Both of these approaches are related to what seems like a generally sensible approach

172 7. REINFORCEMENT LEARNING WITH EVENT EXTRACTION

to apply learning to real robots, which is to do a lot of training of the robot controller
off-line in simulation, and only then to continue training or to finetune the controller
on the actual robot (see section 3.2.7).

A second limitation of the system proposed in this chapter has to do with the fact
that here unsupervised learning was done independently from reinforcement learning.
The reinforcement learning system operated on the assumption that the concepts ex-
tracted by the unsupervised system were sufficient for the task. However, we can easily
imagine cases where the unsupervised system fails to distinguish perceptually similar
but conceptually different situations, or conversely, distinguishes perceptually different
but conceptually similar situations. Ideally, we would want the event extraction mech-
anism to make only the necessary and sufficient distinctions, in the same way as the
RL-LSTM network attempts to do only useful state estimation. This could conceivably
be achieved by having some kind of feedback from the reinforcement learning system
to the event extraction system, telling it how “useful” the currently extracted concepts
are. In the extreme, this would go back to a monolithic reinforcement learning system
in which rewards determine how the system generalizes over its observations, e.g. a
system based on a neural network as described in the previous chapters (see also sec-
tions 3.5.2.9 and 3.6.3.8). This is an approach that is hard to scale up to more realistic
robot tasks, which was the very reason for proposing the dual system described in this
chapter. However, we could envision an intermediate type of system in which, similar
to this chapter, a separate component does fairly aggressive clustering of raw inputs,
receiving only limited feedback concerning obtained rewards from the reinforcement
learning component which finetunes the extracted concepts.

In general, this chapter was concerned with what I perceive as very important
and strongly related issues: POMDPs, hierarchy, and concept formation. Hierarchical
control is necessary for dealing with complex problems, because it facilitates the tasks
for all levels in the hierarchy. Higher levels benefit from using more abstract inputs
than lower levels; this is where concept formation comes in. However, abstraction over
inputs implies that sensory information is thrown away and that therefore the task
may effectively become a POMDP at the higher level. Conversely, in POMDPs it is
important to consider past events at an appropriate grain size—suggesting the benefit
of a hierarchy of control in which each level can have memory appropriate for its own
level. Furthermore, a hierarchy of control may facilitate the solution of POMDPs
because it may cut up the overall task into (more) Markovian subtasks (Wiering &
Schmidhuber, 1997). In conclusion, the issues of POMDPs, hierarchy, and concept
formation, and especially their combination, deserve much further study.

Chapter 8

Conclusions

8.1 Contributions of this thesis

The contributions of this thesis (and any thesis) can be classified into two categories:
technical and conceptual contributions. As with so many distinctions, this distinction
is somewhat arbitrary and fuzzy, but useful nevertheless. By technical contributions I
mean new or improved algorithms and experiments showing that particular algorithms
can be used to solve certain challenging problems or are better than other algorithms
for those problems. Conceptual contributions are contributions that are not technical
ones in the sense defined above, but that are still contributions because they consist
of arguments and demonstrations of interesting points and principles.

8.1.1 Technical contributions

8.1.1.1 Advantage(λ) learning

An extension of the Advantage learning reinforcement learning algorithm (Harmon &
Baird, 1996), Advantage(λ) learning, was described in chapter 5. A proof was pre-
sented of the equivalence of the forward and backward view of Advantage(λ) learning
(appendix B). It was shown how Advantage(λ) learning and the corresponding eligi-
bility traces (the backward view) can be implemented in various types of recurrent
neural networks (chapters 5 and 6). The power of Advantage(λ) learning combined
with recurrent neural networks in both continuous-time and discrete-time partially
observable reinforcement learning tasks was demonstrated empirically. Among other
experiments, Advantage(λ) learning was compared with Q(λ) learning, and the effect
of λ was systematically investigated.

8.1.1.2 Input-output FSA extraction

An algorithm was described in chapter 4, and more extensively in appendix A, to
extract input-output Finite State Automata (Moore and Mealy machines) from recur-
rent neural networks. It extends existing input FSA extraction algorithms, and it uses
a modification of the Hopcroft FSA minimization procedure. The usefulness of this

173

174 8. CONCLUSIONS

algorithm lies in its application to the analysis and understanding of recurrent neural
networks. This was demonstrated in chapters 4 and 5, where the algorithm was used
to gain a better understanding of the functioning of Elman recurrent neural networks
trained using reinforcement learning.

8.1.1.3 Reinforcement learning with Long Short-Term Memory

Reinforcement learning was combined with Long Short-Term Memory (LSTM) recur-
rent neural networks in chapters 6 and 7. Specifically, LSTM networks were used to
approximate the value function of Advantage(λ) learning. This combination allows for
successful learning in partially observable tasks with complex and long-term dependen-
cies between relevant events, and with significant stochasticity. Empirical comparisons
were made with Elman networks, systems based on memory bits, and also with model-
based approaches. The results show that the reinforcement learning LSTM networks
compare favorably with those alternatives in the investigated settings.

8.1.1.4 Non-regular reinforcement learning

One of the tasks the reinforcement learning LSTM network learned was a task in which
it effectively had to recognize, in its history of observations, a non-regular language to
learn the optimal policy (section 6.4.3). Non-regular languages cannot be recognized
by finite state automata but require at least an automaton with a stack or counter.
To the best of my knowledge, this is the first time a reinforcement learning system has
learned, based only on rewards obtained at a final goal state, to induce an (admittedly
imperfect) automaton of a higher computational class than a finite state automaton.

8.1.1.5 Adaptive exploration based on estimating uncertainty of values

A new adaptive, directed exploration method was described in chapter 6. It uses
a feedforward neural network which learns to identify those states about which the
system is uncertain in terms of expected returns from those states. This leads to
more stable action selection in states with predictable values, and consequently, to
more stable sequences of observation-action pairs, in which the reinforcement learning
LSTM networks of chapters 6 and 7 could more easily detect the temporal regularities
in the POMDP and reconstruct useful state signals.

8.1.1.6 Reinforcement learning with unsupervised event extraction

A system was described in chapter 7 which combines an unsupervised learning event
extraction component with a reinforcement learning component. The event extraction
component feeds a spatially and temporally compressed representation of the agent’s
environment into the reinforcement learning component. The reinforcement learning
learns high-level actions on the basis of this abstract representation, selecting low-level
behaviors for execution until the next high-level action. In this way, it is possible for
the overall system to learn policies in more complex and realistic domains.

8.1. CONTRIBUTIONS OF THIS THESIS 175

8.1.2 Conceptual contributions

Besides the technical contributions, described above, there are conceptual contribu-
tions. Conceptual contributions are always harder to pinpoint exactly, but it presents
the opportunity to highlight a few general points that were made in this thesis and
that I think are interesting. Several relate to specific issues discussed before in the gen-
eral chapters about adaptive behavior research (chapter 2) and reinforcement learning
(chapter 3), especially the issues mentioned in chapter 3’s final discussion section.

8.1.2.1 A defense of the adaptive behavior approach

Chapter 2 presented an extensive description of the ideas underlying adaptive be-
havior research and arguments for its relevance as an approach to cognitive science
and artificial intelligence. The rest of the thesis can be read as an illustration of
many of these ideas and arguments. In line with adaptive behavior principles, agents
were constructed with complete perception to action loops and close interaction with
their environments. The agents were developed using learning, their decision mak-
ing processes were decentralized and distributed, and post hoc analyses were done to
understand the learned mechanisms.

8.1.2.2 Extending agents with internal state

The main focus of this thesis, reinforcement learning in POMDPs, relates directly to a
central debate in adaptive behavior research concerning representation-hungry tasks,
the nature of representations, and the usefulness of world models. With respect to
this debate, this thesis makes the following contribution. Even though the classical
adaptive behavior argument is true that agents can often obtain good performance by
exploiting regularities of the world and “using the world as its own best model”, there
are also many cases where “using the world” directly, reactively, is not enough and
the agent must use some form of internal state. In reinforcement learning terms, these
“representation-hungry” cases correspond to POMDPs. However, in contrast with
traditional artificial intelligence and cognitive science ideas, this internal state does
not have to correspond to full-blown, symbolic world models. Instead, agents may
learn to successfully deal with representation-hungry tasks by inducing subsymbolic,
possibly continuous-valued, possibly distributed internal states which are geared to-
wards particular tasks, without resorting to traditional AI’s full-blown, symbolic world
models.

8.1.2.3 Cognitive maps

One of the domains in which the need for a world model seems most pronounced is
navigation. The world model in this domain would correspond to a “cognitive map”.
Experiments and analysis suggested that the reinforcement learning agents based on
Elman recurrent neural networks of chapter 5 learned cognitive map-like capabilities,
without a straightforward or explicit cognitive map being identifiable in the internal
mechanisms. This does not show that animals’ and humans’ brains do not contain
straightforward cognitive maps, but it does show that it is possible that a neural system

176 8. CONCLUSIONS

has similar capabilities using different mechanisms than a straightforward cognitive
map. In general, it suggests that one should be careful in deducing from behavioral
data conclusions regarding the type of cognitive/neural mechanisms to be found in
brains.

8.1.2.4 A model-free approach to solving POMDPs

On a more general level than cognitive maps, the results of this thesis demonstrate that
a model-free reinforcement learning approach can work well for challenging POMDPs
with complex, long-term temporal dependencies and significant stochasticity. Rather
than using or learning a predictive model of the environment and applying model-
based POMDP solution techniques to that model, the model-free approach taken in
this thesis takes a more direct route to finding good internal state-based policies. The
agents learned to exploit the history of observations and actions experienced during
an episode and induce short-term memory (internal state) which helped to solve the
specific tasks at hand, without inducing full-blown world models. In a way, the agents
only learned algorithms for solving tasks, rather than first learning to predict the
world and then deriving algorithms for solving the tasks from those predictions. An
important advantage of this approach is that it may be very difficult to induce full-
blown world models, whereas learning what bits of information to put selectively into
short-term memory to solve certain tasks may be feasible and require far less memory.

8.1.2.5 Utility-based state estimation

All agents proposed in this thesis employ a unified approach, based on recurrent neural
networks, to the problem of having too little and/or too much perceptual informa-
tion coming from the environment. The network attempts to generalize over current
observations and throw away irrelevant details when it can, using its feedforward con-
nections; and at the same time it attempts to compensate for incomplete information
in single observations by exploiting memory of past events, using its recurrent connec-
tions. The “decisions” on how to generalize and what information to store in and use
from short-term memory are based on experienced rewards. Thus, the interesting end
result is a system which attempts to construct, both from its current observation and
from past observations and actions, a state signal which is “useful” with respect to its
goals: utility-based state estimation.

8.1.2.6 The trade-off between perception and internal state

The work of chapter 4 is related to this idea of utility-based state estimation. This
chapter showed that even in tasks where internal state is not strictly necessary (MDPs),
internal state can still make learning easier. In particular, this is the case when using
the current observation requires the agent to solve a complex pattern recognition prob-
lem, as is often the case in MDPs with many states and factored state representations,
which must be generalized over. This point was experimentally demonstrated. First
of all, this provides an argument against the tendency in the reinforcement learning
community to practically equate MDPs with perception-based, memoryless policies.
Of course, the complexity of inducing useful internal states is also variable, depending

8.1. CONTRIBUTIONS OF THIS THESIS 177

on temporal regularities in the environment. We can conclude that there is a trade-
off between perception and internal state in many reinforcement learning and other
machine learning tasks.

8.1.2.7 Relative value function approximation

In this thesis, the estimated states were used for value function approximation. Argu-
ments were presented in chapter 3, specifically in sections 3.6.3.8 and 3.7.3, why value
function approximation is a good approach in reinforcement learning tasks in general
and even in the particular case of POMDPs, and the subsequent chapters illustrated
these arguments in tasks with various properties and difficulties. In fact, recent neuro-
science studies suggest that the brain uses some kind of value functions (Schultz et al.,
1997; Houk et al., 1995).

However, the value function of the reinforcement learning algorithm that in many
examples in this thesis worked best, Advantage(λ) learning, is different from the typical
or “real” value functions of, for instance, dynamic programming, TD(λ)-learning, and
Q(λ)-learning. Advantage values are something like “relative Q-values”. In a way, they
express the “preference” for certain actions in a state, relatively independent of the
value of the state, and in this sense go some way toward direct policy search methods.
Several recent studies using what are considered direct policy methods similarly use
a kind of values or relative values to guide the policy search toward a good policy,
which itself represents independent preferences for actions (Sutton et al., 2000; Baird
& Moore, 1998; Meuleau et al., 1999). It may be that such an intermediate approach
between a pure value function approach and a pure direct policy search approach is a
fruitful one, especially in POMDPs, because in this way one can have the benefit of a
value function but avoid some of its problems, e.g. convergence problems or sensitivity
to small errors in the value function.

8.1.2.8 Bootstrapping state and value estimation

Value estimation requires reasonable state estimation, while the state estimation mech-
anism used in this thesis depends, in turn, on estimated values. Furthermore, temporal
difference-based value estimation, in general, depends on subsequent values, which the
system also estimates itself. Thus, we have an overall system that uses heavy boot-
strapping. One might expect or fear that this would lead to the system never getting
“off the ground”, or to instabilities. In practice, however, it turns out to work sat-
isfactorily, at least for the tasks investigated in this thesis. This probably relates to
the fact that in these tasks, as in many learning tasks, even though the state is only
partially observable, many observations still contain considerable information about
the state. For this reason, initial estimates of the state and of values can be made,
at least for certain states in the environment. These initial, very rough estimates can
serve as the starting points and anchors for the bootstrapping process. Subsequently,
state estimation can benefit from increasingly accurate value estimation, and value
estimation can benefit from increasingly accurate state estimation.

178 8. CONCLUSIONS

8.1.2.9 Gradient descent

Both the value functions and the utility-based state estimation (i.e. how to generalize
over current observations and what to put into and use from short-term memory)
were learned using gradient descent (variations of backpropagation). The successful
results of this thesis illustrate the power of gradient descent as a search technique
in reinforcement learning (see also Baird, 1999). A problem of gradient descent that
has been pointed out by many researchers is that it can lead to local optima. This
is true, but it is hard to envision search techniques that are practical, that work for
complex tasks and sophisticated function approximators, and that do not suffer from
the problem of local optima. In practice, it may be that locally optimal solutions are
all we can hope for, and it may also be that this is good enough for many real-world
problems. In the context of this thesis, an important advantage of gradient descent,
compared to many alternatives, is that it does relatively focused credit assignment,
because it explicitly computes gradients of performance with respect to all parameters,
including the parameters responsible for storing information regarding events far back
in the past.

8.1.2.10 Hierarchical control

Chapter 7 described a hierarchical control architecture. The reinforcement learning
component learned to choose high-level actions which selected low-level behaviors. The
high-level action decisions were made based on (the history of) high-level concepts or
events, which were extracted by an unsupervised component preprocessing the raw
sensory input. Hierarchical control seems to be an important principle for dealing with
more complex tasks, and chapter 7 presented an illustration of this. In the context of
POMDPs, in particular, hierarchical control seems to be vital. When actions should
sometimes depend on past events, the considered past events should be at the proper
level of abstraction. For example, a decision maker selecting which high-level route
to take in navigation should not have to consider large numbers of noisy, raw sensory
inputs from the past which contain little information, but only higher-level past events
(encountered landmarks, such as corners and junctions) that are essentially at the same
abstraction level as the higher-level actions.

8.1.2.11 Analysis of the behavior and mechanisms of agents

The conceptual contributions described above are all related to the construction of
intelligent agents. This thesis also makes a contribution related to the question of
how to analyze intelligent agents. The types of analyses done in this thesis include
behavioral experiments, FSA extraction, and analysis of neural network activation
patterns over time. They all helped in understanding how the agents solved their
tasks and in understanding why the learning algorithms worked, if they worked. In
much reinforcement learning and neural networks research, researchers take a black box
attitude toward the learned (or evolved) systems. It is important to also analyze the
learned systems on a deeper level than noting that algorithm A worked and algorithm
B did not work. A deeper analysis can yield insights into the strengths and weaknesses

8.2. INTERESTING DIRECTIONS FOR FUTURE RESEARCH 179

of different algorithms and architectures and provide clues how to improve them, and
it can also suggest ways of thinking about the functioning of biological intelligence.

8.2 Interesting directions for future research

This section describes a few directions for future research that may be interesting, given
the findings of this thesis. Most of them tie in fairly directly with the contributions
described above.

8.2.1 Model-based versus model-free reinforcement learning

This thesis used model-free reinforcement learning techniques, but much can also be
said for model-based approaches (see section 3.7.1). It would be interesting to inves-
tigate more systematically when and why model-based approaches work better than
model-free approaches and vice versa, in particular when the task is a POMDP and/or
the model must be learned. Presumably, factors such as the difficulty of predicting
next observations play a role, but also the extent to which predicting next observations
improves the utility of the estimated state signal with respect to the objectives of the
agent.

Furthermore important is the extent to which the bootstrapping process for simul-
taneously estimating the state and the values, as described above and used throughout
this thesis, will work in larger and more complex problems. It may be that in more
complex problems it is better to separate the state estimation and value estimation
processes, as would be the case in a model-based approach. However, it may be pos-
sible to retain some of the advantages of the model-free approach to state estimation.
For instance, the learned model may be purposively incomplete and mainly focus on
predictions of the world that are useful with respect to the agent’s objectives and, sim-
ilarly, focus mainly on trajectories in the world that the policy is likely to follow. On
the other hand, perhaps the model should not be too focused on a specific objective,
in order to allow reuse of the model: learning and planning for different objectives.

Another intermediate approach would be to apply model-free reinforcement learn-
ing methods (e.g. Q-learning or Advantage learning) to the model, rather than a pure
model-based method such as value iteration. Advantages may include the ability
to focus computational resources on likely trajectories rather than having to sweep
through the whole state space, and less strict requirements as to what information the
model should contain (e.g. concerning exact state transition probabilities and reward
probabilities).

This thesis used LSTM recurrent neural networks in a model-free approach. It
would be interesting to use LSTM networks as the substrate for predictive models
of the environment, so as to exploit LSTM’s desirable properties of non-vanishing
gradients in that context.

8.2.2 Value functions versus direct policy search

The debate concerning value functions versus direct policy search (section 3.7.3) de-
serves more systematic study as well. This is especially true for the case of POMDPs,

180 8. CONCLUSIONS

in which the situation is least clear. We should obtain more precise insights into when
either approach is better, not only because this will allow us to select approaches more
appropriately, but also because it may lead to better approaches. In the conceptual
contributions section above it was suggested that an intermediate approach between
pure value functions and pure direct policy search might be good, and this suggestion
could be investigated further.

An interesting direct policy search approach that received some attention some
time ago, but that since then has apparently not been investigated extensively, is
the backpropagation through a model approach (Werbos, 1990; Jordan & Rumelhart,
1992; Kawato, 1990; Nguyen & Widrow, 1990; Schmidhuber, 1991c, see sections 3.5.1.3
and 3.6.2.3). This approach does have certain attractive properties, however, justifying
further research. It allows for relatively directed credit assignment to actions, because
explicit gradients of the error with respect to action vectors are computed. For the
same reason, this approach can be used for problems with many or high-dimensional
actions, such as robots with many degrees of freedom; this is a problem area that has
been relatively neglected in the reinforcement learning community.

The backpropagation through a model approach can also be combined with value
functions (see section 3.5.1.3). This approach can be called backpropagation through
a critic, and it has rarely been tried. It might work well, because much of the burden
of temporal credit assignment is taken over by the value function, and it still has the
attractive property of directed credit assignment to actions.

Backpropagation through a model or critic requires a differentiable model and
controller, and it is usually done with recurrent neural networks. It may be particularly
interesting to try backpropagation through a model or critic approaches with LSTM
networks, both for the model or critic part and for the controller part, to see if LSTM’s
non-vanishing gradient computation is fruitful here as well.

8.2.3 Hierarchical reinforcement learning

The hierarchical control architecture of chapter 7 was still fairly unsophisticated.
The high-level sensory concepts and high-level actions were learned, but the low-
level behaviors were handcoded. The low-level behaviors were, partly because they
were handcoded, very simple (wall following etc.). Furthermore, the event extraction
mechanism yielding the high-level concepts did not receive any feedback about the
usefulness of its concepts; the parameters of the event extraction mechanism were
handcoded such that the extracted concepts were useful. Finally, there were only two
levels in the hierarchy.

It would be interesting to get rid of these limitations. Ideally, the hierarchical rein-
forcement learning system should learn at all levels of the control hierarchy. Thus, it
should learn low-level policies, and it should learn high-level policies coordinating the
low-level policies. It should also determine the control hierarchy itself: the number
of levels and the conditions which prompt decisions in the higher levels of the control
hierarchy. Related to the latter problem is the problem of determining the abstraction
level of the “conditions” considered by higher levels. In other words, this leads to the
problem of concept formation: how should we abstract over raw sensory information to
yield higher-level concepts that are useful inputs to higher-level policies? How should

8.2. INTERESTING DIRECTIONS FOR FUTURE RESEARCH 181

we abstract over those concepts to yield still higher-level concepts? In general, we
want to filter out a lot of information about the complete environmental state for the
high-level decision maker, in order to reduce its search space. For this reason, at the
higher level of decision making the decision problem usually becomes a POMDP even
if the overall problem is an MDP. Hierarchical methods should take this into account.
Furthermore, how can we select, preferably automatically, what information is useful
for the higher-level decision maker? In some cases, apparently low-level sensory “de-
tails” may be very useful for solving a high-level task, e.g. when a robot using vision
can disambiguate between two office hallways by looking at a small sign indicating the
floor of this hallway. These are all questions that warrant further research.

In general, it seems that hierarchical control is one of the keys to more advanced
artificial intelligence, which can be used in more complex and realistic domains. The
brains of animals and humans actually provide good inspiration for this: there are
numerous, classical studies that suggest that brains are built and operate in a hier-
archical way (e.g. Jackson, 1870). And, as in other cases, it may be that making
progress on hierarchical artificial intelligence techniques gives additional insights into
the functioning of biological intelligence.

8.2.4 Practical applications

The future research directions suggested above all concern theoretical issues in rein-
forcement learning: the use of models, value functions versus direct policy search, and
hierarchy. It is also important to attempt more practical applications of the meth-
ods discussed in this thesis, and of reinforcement learning methods in general. It is
important because not enough convincing applications exist, and because much can
be learned from such real-world “tests”. Application areas include robots, scheduling
problems, games, industrial controllers, and internet agents.

When thinking about practical applications, we immediately run into the problem
of the typically long training times associated with reinforcement learning algorithms. I
do not believe there are magical reinforcement learning algorithms “out there”, waiting
to be discovered, which will, by themselves, lead to very fast and effective learning in
a wide variety of domains. This relates directly to bias arguments (Mitchell, 1980;
Geman et al., 1992) and no free lunch arguments (Wolpert & Macready, 1997). In
short, fast and effective learning requires significant bias, or a priori knowledge, for
the specific task at hand, and bias towards some tasks implies that the method will
work relatively badly for other tasks.

This is not necessarily a problem. First of all, we may be able and willing to
introduce bias for the specific classes of tasks we would like to apply reinforcement
learning to. Important research questions include the question how to add bias or a
priori knowledge to reinforcement learning methods, how to possibly use, learn, and
evolve useful bias (Minsky, 1961; Peshkin & de Jong, 2002; Schmidhuber, 2002) for
classes of tasks, and even the fundamental question which types of biases are good for
which types of tasks.

Secondly, it is useful at this point to recall the distinction between online rein-
forcement learning and offline reinforcement learning (section 3.2.7). Let us consider
a robot application. In summary, in online reinforcement learning the goal is to build

182 8. CONCLUSIONS

a reinforcement learning robot, while in offline reinforcement learning the goal is to
build a robot that can perform some task, and to develop the robot controller using
reinforcement learning. Both online and offline reinforcement learning for real-world
applications are interesting future research directions in their own right, but one should
keep in mind that they have different constraints. Online reinforcement learning will
only work when we build in a large amount of bias, such that the number of learning
experiences can be very low. Offline reinforcement learning may use more learning
experiences and for this reason does not require as much bias; but it will not, by itself,
lead to a robot that can adapt itself online.

As noted in section 3.2.7, an interesting approach may be to combine offline and on-
line reinforcement learning. Offline learning is used to arrive at a reasonable controller
which works well in simulation but not perfectly in the real robot. This controller
is then used as the starting point for online reinforcement learning, which can use
basically the same learning algorithm as was used during offline learning. In this way,
offline reinforcement learning can provide the necessary bias to make online reinforce-
ment learning feasible.

In any case, in practical applications many of the problems discussed in this thesis
are relevant: the problems of large state spaces, high-dimensional sensory inputs,
stochasticity, partial observability, long time lags, etc. Therefore, practical applications
provide good test beds for the proposed solutions, in particular the use of (recurrent)
neural networks for state estimation, the use of LSTM and relative value functions
for dealing with long time lags, and the use of hierarchical control for learning and
planning in complex tasks.

8.3 Final remarks

This thesis started with an argument for using adaptive behavior research as an ap-
proach to studying both artificial and biological intelligence. Looking back at this
thesis, to what extent is this argument supported by this thesis’ results?

The contributions of this thesis are summarized above, and I think they may be
interesting both from an artificial intelligence point of view and from a biological
intelligence point of view. For example, the ideas of value function approximation,
hierarchical control, the trade-off between perception and internal state, and utility-
based state estimation provide powerful methods for artificial intelligence and at the
same time provide suggestions as to how biological systems solve the problems of
intelligence.

It is hard to see how these types of ideas could be developed in other contexts, for
example by studies that identify specific brain region activation patterns, studies that
collect and model simple responses of humans in very contrained experimental tasks,
studies that focus on abstract logic, or studies that are concerned with static pattern
recognition problems. Each of these alternative approaches has its merits (some a
bit more than others, perhaps), but adaptive behavior research has its own unique
perspective.

One of adaptive behavior’s most important points is its focus on the fact that
different elements of intelligence, i.e. perception, memory, and action, are intimately

8.3. FINAL REMARKS 183

connected, and that they are intimately connected to the environment of the agent.
This focus can be seen to return in this thesis’ contributions. Adaptive behavior re-
search provides formal suggestions how the different elements of intelligence work, and
in particular, how they work together. Because adaptive behavior research proposes
formal—i.e. mathematical and computational—models and robots, we can check if
they can indeed, and to what extent, perform the tasks they are claimed to perform.
Thus, in a way, adaptive behavior does exploratory research into “holistic” but formal
theories of intelligence (without necessarily converging to just one theory, see section
2.3.10). I believe that such a holistic view is essential in understanding individual
subsystems (such as particular brain regions) and individual processes (such as static
pattern recognition), exactly because their context is taken into account; and it is
essential in understanding how the various subsystems and processes interact. For
these reasons, I believe that adaptive behavior research has a crucial role to play in
the continuing study of artificial and biological intelligence.

184 8. CONCLUSIONS

Appendix A

Input-output FSA extraction
and minimization

This appendix describes algorithms for extraction of input-output FSAs from recurrent
neural networks and the subsequent minimization of the extracted input-output FSAs.
We assume that the internal state at time t of the recurrent neural network is an
n-dimensional continuous vector v(t) where each element lies in a fixed range, say
[0, 1]. This means that the internal state space is the n-dimensional hypercube X =
[0, 1]n. We also assume that the inputs and outputs are discrete and countable. In this
thesis, the recurrent neural network actually outputs continuous values, but for FSA
extraction the output is considered to be the action chosen by greedy action selection.
The input (observation) at time t is o(t), the output (action) is a(t). The last timestep
is T .

Firstly, the continuous internal state space X is “discretized” at resolution r by
dividing it into rn hypercubes of equal size. See figure A.1 for an illustration in 2
dimensions, with r = 5. The pseudocode in Algorithm A.1 describes the algorithm
used to extract the FSA.

Figure A.1 shows the idea of the algorithm schematically. Each hypercube that
contains at least one point of the internal state trajectory becomes an FSA state. In
general, this will be true for only a fraction of the total number of hypercubes. The
FSA’s edges are determined by recording which hypercubes are visited in succession
during normal operation of the recurrent neural network. Going from the current
internal state to the next, the associated input and output (action) are recorded and
stored with the edge. This is straightforward here because both input and output are
discrete and countable.

Note that this algorithm extracts a Mealy machine, i.e. an input-output FSA where
the outputs are stored with the edges (see section 3.3.2). In the Elman recurrent neural
networks considered in chapters 4 and 5, this corresponds to considering the context
unit activations as the internal state, and considering the output function a function
of this internal state and the current input of the network. Alternatively, one could
extract a Moore machine, i.e. an input-output FSA where the outputs are stored with

185

186 APPENDIX A. INPUT-OUTPUT FSA EXTRACTION AND MINIMIZATION

j=0
for all t do

determine the hypercube h(t) in which v(t) falls
if h(t) is not labeled then

++j

label h(t) as FSA state j

end if
end for

for all t < T do
determine h(t)’s FSA state j

in table entry for FSA state j: store o(t), a(t), next FSA state i

end for

for all j do
estimate probability of each FSA edge by computing, for each input, the propor-
tion of each output-next state pair

end for

Algorithm A.1: Input-output FSA extraction

the states, by considering the hidden layer activation vector of the Elman network as
the internal state of the system. In that case, the output function of the system is a
function only of this internal state; after all, the output of an Elman network can be
considered to be a function only of the current hidden unit activations.

Even though we consider recurrent neural networks with deterministic action selec-
tion, the extracted FSA can be stochastic. This is caused by the discretization method,
which groups internal states fairly arbitrarily. For the same reason, the procedure will
often yield an FSA that has many states that do not differ “functionally”, i.e. different
states which produce the same output for the same input and lead to the same subse-
quent states. For standard input FSAs (or output FSAs), Hopcroft and Ullman (1979)
describe a minimization procedure, so-called Hopcroft minimization, which identifies
and merges functionally equivalent states. Here a minimization procedure is described
for the input-output FSAs extracted from the recurrent neural networks.

The minimization procedure described here is somewhat different from the one
described by Hopcroft and Ullman (1979) for three reasons. First of all, the extracted
FSAs are input-output FSAs rather than input (or output) FSAs. Secondly, in contrast
to Hopcroft and Ullman (1979), here the FSAs have many different inputs. Thirdly,
many inputs occur only when the FSA is in certain states and not in others.

There are basically two options for minimization of the extracted FSAs, given
these differences. One option would be to restrict the consideration to merge states
to pairs of states that have only common inputs eminating from the states. However,
an important goal in this thesis is to distinguish systems that use internal state-based
policies from systems that use perception-based policies, i.e. systems that could be
replaced by, for example, a feedforward neural network; and this is not possible if

187

Node k
acti-
vation

Node m activation

8

11 3 4

6 9 5

2 10 1 7

0

12,2

Figure A.1: Discretization of a two-dimensional internal state space. Each dimension
is partitioned into 5 equal regions. The FSA states that are extracted have numbers
in their corresponding grid cells. One state transition is indicated: the FSA is in state
6, it receives input 12, emits output 2, and goes to FSA state 2.

states can only be merged if they share all inputs. Thus, we want to also be able to
merges states when they occur with different, non-overlapping inputs.

The criterion to consider states as different is: two states are different if for at
least one input, the output is different or the next state is different. In contrast to
standard Hopcroft minimization (Hopcroft & Ullman, 1979), the order in which states
are merged matters. This is so because it may be the case that FSA state 1 can be
merged with 2, and 1 can also be merged with 3, but 2 cannot be merged with 3. This
can occur when 1 and 2 do not share inputs, and neither do 1 and 3, but 2 and 3
do. It is unclear at this point how to determine the order of merging that is optimal,
i.e. how the smallest possible FSA can be guaranteed to be found.

In the algorithm used here, there is a first pass in which only pairs of states are
considered for merging that share all inputs. The resulting FSA, which is already
minimized to some extent, then enters the second phase. In the second phase, the
FSA is incrementally minimized by considering also pairs of states where at least one
input is not shared. To avoid the problem described above, two states that can be
merged are “flagged”, and in the current iteration of the algorithm they are no longer
considered for merging with other states. In the next iteration, these two states are
actually merged and become a single state, and now this new state can once again be
considered for merging with other states. This process continues until no new merges
can be found.

Like the standard Hopcroft minimization procedure, sometimes the only difference
between two FSA states is that for the same input (and output) they lead to different

188 APPENDIX A. INPUT-OUTPUT FSA EXTRACTION AND MINIMIZATION

subsequent states. This presents a problem, because during the minimization process
we do not yet know which states are functionally different. The same method is
employed here as in standard Hopcroft minimization. A table is created with entries
for all pairs of states. When two states are found to be different, the entry is “marked”.
When the distinction between two states depends, as explained above, on whether two
other, subsequent states are different, the indices of the first two states are placed on a
list associated with the entry of the second pair of states. Once a pair of states is found
to be different and its corresponding entry is marked, also the entries corresponding
to pairs of states on the list of this entry are marked. The complete minimization
algorithm is described as pseudocode in Algorithm A.2.

By increasing the resolution of discretization of FSA extraction from the recurrent
neural network, an FSA can be extracted that more and more precisely and eventually
perfectly models the behavior of the network (Blair & Pollack, 1997; Casey, 1996).
Increasing the resolution of the discretization process does not necessarily lead to
more FSA states, thanks to the minimization procedure which gets rid of superfluous
states. In this thesis, the discretization resolution was increased until the size of the
minimized FSA did not vary significantly anymore and the FSA perfectly modeled the
network’s behavior.

189

for all pairs of states (i,j) in the FSA do
if an input is different or for an input an output is different then

mark (i,j) and recursively mark all entries on the list of (i,j)
else if for the same input and output the next states (k,m) are different then

if (k,m) are marked then
mark (i,j) and recursively mark all entries on the list of (i,j)

else
put (i,j) on the list of (k,m)

end if
end if

end for
merge all unmarked state pairs and create the corresponding FSA

repeat
for all pairs of states (i,j) in the FSA do

p(i)=−1 and p(j)=−1
end for
for all pairs of randomly selected states (i,j) in the FSA where p(i)==−1 and
p(j)==−1 do

if for an input an output is different then
mark (i,j) and recursively mark all entries on the list of (i,j)

else if for the same input and output the next states (k,m) are different then
if (k,m) are marked then

mark (i,j) and recursively mark all entries on the list of (i,j)
else

put (i,j) on the list of (k,m)
p(i)=j and p(j)=i

end if
else

p(i)=j and p(j)=i

end if
end for
merge unmarked state pairs where p(i)==j and p(j)==i and create the corre-
sponding FSA

until the FSA is not changing any more

Algorithm A.2: Input-output FSA minimization

190 APPENDIX A. INPUT-OUTPUT FSA EXTRACTION AND MINIMIZATION

Appendix B

Equivalence of the forward
and backward view of
Advantage(λ) learning

This appendix shows the equivalence of the two views of Advantage(λ) learning, the
forward and the backward view, with function approximators. More precisely, it shows
that offline Advantage learning with the same eligibility traces as Q-learning, and on
the basis of the one-step return (the backward view), leads to the same weight updates
as offline Advantage learning without eligibility traces on the basis of the λ-return (the
forward view). This is important because it is not obvious that Advantage learning
can be combined with eligibility traces in the same way as Q-learning and lead to the
same desired result, namely back-ups based on the λ-return. It is not obvious because
the corresponding Bellman equations differ for the two algorithms, and the known
results for Q(λ) and TD(λ) depend on the corresponding Bellman equations.

The following proof makes use of ideas from Watkins (1989), Sutton (1988), Sutton
(1989), and Sutton and Barto (1998). It is based on the proof presented in Sutton
(1988) and Sutton and Barto (1998) regarding the equivalence of the forward and
backward view of TD(λ) prediction using a tabular representation. Compared to their
proof, the proof presented here is not only adapted for Advantage learning’s different
Bellman equation, it is also slightly more general, because it allows for λ to be set
to 0 occasionally during the episode (as is necessary during exploration in off-policy
control methods like Q-learning and Advantage learning), and it allows for function
approximators, of which the tabular representation is a special case.

Let ∆wλ
i,t denote the weight update at time t according to the λ-return algorithm,

and let ∆wTD
i,t denote the weight update according to the algorithm with eligibility

traces. Let the episode start at time t = 0 and end at t = T . What we need to
establish, then, is that the sum of all weight updates over an episode is always the

191

192 APPENDIX B. ADVANTAGE(λ) LEARNING

ENDrs,a s,a s,a s,a s,a s,a s,a s,a s,a s,ar r r r r r r r r

t=0 t=1 t=T-1 t=T

n=0 n=N-1 n=0 n=N-1 n=N-1n=0

exploring
 action

exploring
 action

subepisode subepisode subepisode

Figure B.1: Schematic representation of how an episode is made up of subepisodes. The
moments at which exploring actions are taken mark the beginning of a new subepisode.

same for both algorithms:
T−1
∑

t=0

∆wλ
i,t =

T−1
∑

t=0

∆wTD
i,t . (B.1)

The first step is to define a subepisode as a substring of the entire string of state-
action pairs making up the episode, such that the first element in the substring is
either the first state-action pair of the episode (t = 0) or a state-action pair in which
the action is exploratory, and the last element is either the last state-action pair before
the end (t = T − 1) or the last state-action pair before the next exploratory action.
Let n = 0 denote the first element of the subepisode and n = N − 1 the last element.
Figure B.1 shows how an episode is composed of subepisodes. The entire episode is
simply the concatenation of all subepisodes. Therefore, if we want to show equivalence
of the weight updates over an entire episode, it is sufficient to show equivalence over
each subepisode. Thus, we must establish that

N−1
∑

n=0

∆wλ
i,n =

N−1
∑

n=0

∆wTD
i,n . (B.2)

Let us start with the lefthand side of equation B.2:

N−1
∑

n=0

∆wλ
i,n =

N−1
∑

n=0

αEλ
n

∂A(sn, an)

∂wi
(B.3)

where

Eλ
n = V (sn) +

Rλ
n − V (sn)

κ
− A(sn, an). (B.4)

Rλ
n is the λ-return, and in off-policy control methods, such as Q-learning and Advantage-

learning, it is defined as (Watkins, 1989):

Rλ
n = (1 − Λn+1)R

(1)
n + Λn+1(1 − Λn+2)R

(2)
n + Λn+1Λn+2(1 − Λn+3)R

(3)
n + . . . (B.5)

where R
(p)
n is the p-step return, and

Λn =

{

λ an = arg maxa A(sn, a)
0 otherwise.

(B.6)

193

Thus, the λ-return is truncated at the point where an exploring action is chosen. This
corresponds to the notion that rewards after that point no longer reflect the value of
the currently estimated best policy. From the definition of a subepisode it follows that
Λn = λ for all 0 < n < N and ΛN = 0, so equation B.5 can be rewritten as

Rλ
n = (1 − λ)R(1)

n + (1 − λ)λR(2)
n + (1 − λ)λ2R(3)

n + ... + λN−1−nR(N)
n . (B.7)

This means that Rλ
n − V (sn) from equation B.4 can be written as

Rλ
n − V (sn) = − V (sn)

+ (1 − λ)λ0(rn+1 + γV (sn+1))

+ (1 − λ)λ1(rn+1 + γrn+2 + γ2V (sn+2))

+ (1 − λ)λ2(rn+1 + γrn+2 + γ2rn+3 + γ3V (sn+3))

+ ...

+ λN−1−n(rn+1 + γrn+2 + γ2rn+3 + ... + γN−1−nrN + γN−nV (sN)).

(B.8)

Now, Rλ
n was designed as a weighted sum of p-step returns. Thus, (1 − λ)λ0 + (1 −

λ)λ1 + ...+λN−1−n sums to 1. This means that we can pull out the first column inside
the brackets and get an unweighted term for that sum. We can do a similar thing for
the second column, etc. In all, we can rewrite equation B.8 as

Rλ
n − V (sn) = − V (sn)

+ (γλ)0(rn+1 + γV (sn+1) − γλV (sn+1))

+ (γλ)1(rn+2 + γV (sn+2) − γλV (sn+2))

+ (γλ)2(rn+3 + γV (sn+3) − γλV (sn+3))

+ ...

+ (γλ)N−1−n(rN + γV (sN))

= (γλ)0(rn+1 + γV (sn+1) − V (sn))

+ (γλ)1(rn+2 + γV (sn+2) − V (sn+1))

+ (γλ)2(rn+3 + γV (sn+3) − V (sn+2))

+ ...

+ (γλ)N−1−n(rN + γV (sN) − V (sN−1))

=

N−1
∑

k=n

(γλ)k−n(rk+1 + γV (sk+1) − V (sk)).

(B.9)

For convenience, let us define

δk = rk+1 + γV (sk+1) − V (sk). (B.10)

Now we can rewrite equation B.4 as

Eλ
n = V (sn) +

∑N−1
k=n (γλ)k−nδk

κ
− A(sn, an) (B.11)

194 APPENDIX B. ADVANTAGE(λ) LEARNING

and equation B.3 as

N−1
∑

n=0

∆wλ
i,n =

N−1
∑

n=0

α
∂A(sn, an)

∂wi
(V (sn) +

∑N−1
k=n (γλ)k−nδk

κ
− A(sn, an)). (B.12)

This is what the backward, mechanistic view of Advantage(λ) learning must realize
using eligibility traces. So let us turn now to the righthand side of equation B.2, which
corresponds to weight updates according to the backward view:

N−1
∑

n=0

∆wTD
i,n =

N−1
∑

n=0

αETD
n ei,n (B.13)

where

ETD
n = V (sn) +

rn+1 + γV (sn+1) − V (sn)

κ
− A(sn, an)

= V (sn) +
δn

κ
− A(sn, an)

(B.14)

and the eligibility traces for function approximators ei,n (Sutton, 1989) are defined as

ei,n = γΛnei,n−1 +
∂A(sn, an)

∂wi
. (B.15)

For reasons that will become apparent shortly, we decompose the sum in equation B.13
into two parts:

N−1
∑

n=0

∆wTD
i,n =

N−1
∑

n=0

α
δn

κ
ei,n +

N−1
∑

n=0

α(V (sn) − A(sn, an))ei,n. (B.16)

Let’s consider the second part of this sum. Note that ei,0 = ∂A(s0,a0)
∂wi

. Furthermore,
note that for 0 < n < N , A(sn, an) = V (sn), because these are all exploiting actions.
Thus, equation B.16 can be rewritten as

N−1
∑

n=0

∆wTD
i,n =

N−1
∑

n=0

α
δn

κ
ei,n +

N−1
∑

n=0

α(V (sn) − A(sn, an))
∂A(sn, an)

∂wi
. (B.17)

We know that within a subepisode, Λn = λ for all 0 < n < N . The recursive definition
of equation B.15 can then be rewritten in the following non-recursive form (Watkins,
1989; Sutton & Barto, 1998):

ei,n =

n
∑

k=0

(γλ)n−k ∂A(sk, ak)

∂wi
. (B.18)

195

Thus, equation B.17 becomes

N−1
∑

n=0

∆wTD
i,n =

N−1
∑

n=0

α
δn

κ

n
∑

k=0

(γλ)n−k ∂A(sk, ak)

∂wi
+

N−1
∑

n=0

α(V (sn) − A(sn, an))
∂A(sn, an)

∂wi

=

N−1
∑

k=0

α

k
∑

n=0

(γλ)k−n ∂A(sn, an)

∂wi

δk

κ
+

N−1
∑

n=0

α(V (sn) − A(sn, an))
∂A(sn, an)

∂wi

=

N−1
∑

n=0

α

N−1
∑

k=n

(γλ)k−n ∂A(sn, an)

∂wi

δk

κ
+

N−1
∑

n=0

α(V (sn) − A(sn, an))
∂A(sn, an)

∂wi

=
N−1
∑

n=0

α
∂A(sn, an)

∂wi

N−1
∑

k=n

(γλ)k−n δk

κ
+

N−1
∑

n=0

α(V (sn) − A(sn, an))
∂A(sn, an)

∂wi

=
N−1
∑

n=0

α
∂A(sn, an)

∂wi
(V (sn) +

∑N−1
k=n (γλ)k−nδk

κ
− A(sn, an))

(B.19)

which is equal to equation B.12. This proves the equivalence of the forward and
backward view.

This result only holds for offline updating, i.e. updating after each episode (or,

in our case, after each subepisode), otherwise A(sn, an), V (sn), and ∂A(sn,an)
∂wi

are
not necessarily exactly equal in both cases. However, since weight changes during an
episode using online updating will in general be small, we can expect a close approx-
imation in the online case. In summary, the result says that if we simply use the
same type of eligibility traces with Advantage learning as we do with Q-learning, we
obtain a similar end result as with Q-learning, namely gradient descent in weight space
based on the λ-return. In fact, just as Q-learning without eligibility traces is a special
case of Advantage learning without eligibility traces, Q(λ)-learning is a special case of
Advantage(λ) learning, when κ = 1.

196 APPENDIX B. ADVANTAGE(λ) LEARNING

References

Abul, A., Polat, F., & Alhaji, R. (2000). Multiagent reinforcement learning using
function approximation. IEEE Transactions on Systems, Man, and Cybernetics.
Part C: Applications and reviews, 30, 485–497.

Acharyya, S. (2000). Learning radial basis function based soccer strategies using ideal
opponent model. MSc thesis, Center for Robotics and Mechatronics, Indian In-
stitute of Technology, Kanpur.

Anderson, C. (2000). Approximating a policy can be easier than approximating a value
function (Technical report No. CS-00-101). Fort Collins, CO, 80523: Department
of Computer Science, Colorado State University.

Anderson, C. W. (1987). Strategy learning with multilayer connectionist representa-
tions. In Proceedings of the fourth international workshop on machine learning
(pp. 103–114). San Mateo, CA: Morgan Kaufmann.

Anderson, C. W. (1993). Q-learning with hidden-unit restarting. In S. J. Hanson,
J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing
systems (Vol. 5, pp. 81–88). Morgan Kaufmann, San Mateo, CA.

Arbib, M. A. (1989). The metaphorical brain 2: Neural networks and beyond. New
York: John Wiley and Sons.

Arbib, M. A. (1995). Road maps: Learning in artificial neural networks. In M. A.
Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge,
MA: MIT Press.

Arleo, A., Smeraldi, F., Hug, S., & Gerstner, W. (2001). Place cells and spatial navi-
gation based on 2d visual feature extraction, path integration, and reinforcement
learning. In Nips 13.

Ashby, W. R. (1960). Design for a brain. (Second, revised edition). London: Chapman
and Hall.

Ashcraft, M. H. (1998). Fundamentals of cognition. New York: Addison-Wesley.

Baddeley, A. (1990). Human memory. London: Lawrence Erlbaum Associates.

197

198 REFERENCES

Baird, L. C. (1994). Reinforcement learning in continuous time: Advantage updating.
In Proceedings of the international conference on neural networks. Orlando, FL.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function ap-
proximation. In Proceedings of the twelfth international conference on machine
learning (pp. 30–37). San Francisco: Morgan Kaufmann.

Baird, L. C. (1999). Reinforcement learning through gradient descent. PhD thesis,
Carnegie Mellon University, Pittsburgh.

Baird, L. C., & Klopf, A. H. (1993). Reinforcement learning with high-dimensional,
continuous actions (Technical report No. WL-TR-93-1147). Wright-Patterson
Air Force Base Ohio: Wright Laboratory.

Baird, L. C., & Moore, A. (1998). Gradient descent for general reinforcement learning.
In Advances in neural information processing systems (Vol. 11).

Barto, A. G. (1990). Connectionist learning for control. In W. T. Miller, R. S. Sutton,
& P. J. Werbos (Eds.), Neural networks for control (pp. 5–58). Cambridge, Mass:
M.I.T. Press.

Barto, A. G. (1995). Reinforcement learning in motor control. In M. A. Arbib (Ed.),
The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuron-like adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems,
Man and Cybernetics, 13, 835–846.

Baum, E. B. (1999). Toward a model of intelligence as an economy of agents. Machine
Learning, 35, 155.

Beer, R. D. (1990). Intelligence as adaptive behavior: An experiment in computational
neuroethology. San Diego, CA: Academic Press.

Beer, R. D. (1995). Computational and dynamical languages for autonomous agents.
In R. Port & T. van Gelder (Eds.), Mind as motion. MIT Press.

Beer, R. D., Chiel, H., Quinn, K., Espenschied, S., & Larsson, P. (1992). A distributed
neural network architecture for hexapod robot locomotion. Neural Computation,
4 (3), 56–365.

Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamical neural networks for
adaptive behavior. Adaptive Behavior, 1, 91–122.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. In Advances in neural information processing
systems 6 (pp. 75–82). San Mateo, CA: Morgan Kaufmann.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont,
MA: Athena Scientific.

REFERENCES 199

Blair, A. D., & Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural
Computation, 9, 1127–1142.

Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning:
Safely approximating the value function. In G. Tesauro, D. S. Touretzky, &
T. K. Leen (Eds.), Advances in neural information processing systems 7 (pp.
369–376). Cambridge, MA: The MIT Press.

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge,
MA: MIT Press.

Brinkers, M., & den Dulk, P. (1999). The evolution of non-reciprocal altruism. In
D. Floreano, J.-D. Nicoud, & F. Mondada (Eds.), Advances in artificial life,
ecal’99 (pp. 499–503). Berlin: Springer.

Brooks, R. A. (1989). A robot that walks: Emergent behaviors from a carefully evolved
network. Neural Computation, 1, 253–262.

Brooks, R. A. (1991a). Intelligence without reason. In Proceedings of the 12th internal
joint conference on artificial intelligence. San Mateo, CA: Morgan Kauffman.

Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence, 47,
139–159.

Casey, M. (1996). The dynamics of discrete-time computation, with application to
recurrent neural networks and finite state automata. Neural Computation, 8,
1135–1178.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental Pruning: A
simple, fast, exact method for partially observable Markov decision processes. In
D. Geiger & P. P. Shenoy (Eds.), Proceedings of the thirteenth annual conference
on uncertainty in artificial intelligence (uai–97) (pp. 54–61). San Francisco, CA:
Morgan Kaufmann Publishers.

Chalmers, D. J. (1990). Syntactic transformations on distributed representations.
Connection Science, 2, 53–62.

Chapman, D., & Kaelbling, L. P. (1991). Input generalization in delayed reinforcement
learning: An algorithm and performance comparisons. In J. Mylopoulos & R. Re-
iter. (Eds.), Proceedings of the twelfth international joint conference on artificial
intelligence (ijcai-91) (pp. 726–731). San Mateo, Ca.: Morgan Kaufmann.

Cheng, H.-T. (1988). Algorithms for partially observable Markov decision pro-
cesses. Unpublished doctoral dissertation, University of British Columbia,
British Columbia, Canada.

Chomsky, N. (1959). A review of B.F. Skinner’s Verbal Behavior. Language, 35 (1),
26–58.

200 REFERENCES

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In Proceedings of the tenth national conference on artificial
intelligence. San Jose, CA: AAAI Press.

Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of mind-brain.
Cambridge, MA: MIT Press.

Clark, A. (1997). Being there: Putting mind, body, and world together again. Cam-
bridge, MA: MIT Press.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite state au-
tomata and simple recurrent networks. Neural Computation, 1, 372–381.

Cliff, D. (1991). Computational neuroethology: A provisional manifesto. In J.-A.
Meyer & S. Wilson (Eds.), Proceedings of the first international conference on
simulation of adaptive behavior. Cambridge, MA: MIT Press.

Cliff, D., & Ross, S. (1994). Adding temporary memory to ZCS. Adaptive Behavior,
3:2, 101–150.

Crick, F. (1988). What mad pursuit: A personal view of scientific discovery. New
York: Basic Books.

Crites, R. H., & Barto, A. G. (1996). Improving elevator performance using reinforce-
ment learning. In D. S. T. amd M. C. Mozer & M. E. Hasselmo (Eds.), Advances
in neural information processing systems: Proceedings of the 1995 conference
(pp. 1017–1023). Cambridge, MA: MIT Press.

Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics, and
intuition. Physica D, Special issue on the Proc. of the Oji International Seminar
Complex Systems — from Complex Dynamics to Artificial Reality.

Dayan, P., & Hinton, G. E. (1993). Feudal reinforcement learning. In S. J. Hanson,
J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing
systems 5: Proceedings of the 1992 conference. San Mateo, Ca.: Morgan Kauf-
mann Publishers.

de Jong, E. D. (1997). An accumulative exploration method for reinforcement learning.
In S. Sen (Ed.), Proceedings of the aaai’97 workshop on multiagent learning,
available as aaai technical report ws-97-03 (p. 19-24). Menlo Park, California:
AAAI Press.

de Jong, E. D. (1999). Autonomous concept formation. In T. Dean (Ed.), Proceedings
of the sixteenth international joint conference on artificial intelligence ijcai’99
(pp. 344–349). San Francisco, CA: Morgan Kaufmann.

Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte carlo localization
for mobile robots. In IEEE international conference on robotics and automation
(ICRA99).

Dennett, D. C. (1991). Consciousness explained. Boston: Little, Brown.

REFERENCES 201

Dennett, D. C. (1994). Cognitive science as reverse engineering: Several meanings
of “top-down” and “bottom-up”. In D. Prawitz, B. Skyrms, & D. Westerstahl
(Eds.), Proceedings of the 9th international congress of logic, methodology, and
philosophy of science.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13, 227–303.

Donders, F. C. (1862). Die schnelligkeit psychischer processe. [the speed of psycho-
logical processes]. Arch. Anat. Physiol., 657–681.

Dorigo, M., & Bersini, H. (1994). A comparison of Q-learning and classifier systems.
In Proceedings of From Animals to Animats, third international conference on
simulation of adaptive behavior.

Doya, K. (1992). Bifurcations in the learning of recurrent neural networks. In Proc.
of 1992 IEEE int. symposium on circuits and systems (p. 2777-2780).

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural
Computation, 12 (1), 219–245.

Eck, D., & Schmidhuber, J. (2002). Learning the long-term structure of the blues. In
J. Dorronsoro (Ed.), Artificial Neural Networks – ICANN 2002 (pp. 284–289).
Berlin: Springer.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Fernández, F., & Borrajo, D. (1999). VQQL. Applying vector quantization to rein-
forcement learning. In Ijcai’99 workshop on robocup.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computation, 4 (1), 1–58.

Gers, F., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural Computation, 12 (10), 2451–2471.

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to time series
predictable through time-window approaches. In Proc. ICANN 2001, Int. Conf.
on Artificial Neural Networks. Vienna, Austria: IEE, London.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proc.
ijcnn’2000, int. joint conf. on neural networks.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., & Lee, Y. C. (1992).
Learning and extracting finite state automata with second-order recurrent neural
networks. Neural Computation, 4, 393–405.

Glaser, M. O., & Düngelhoff, F.-J. (1984). The time-course of picture-word interfer-
ence. Journal of Experimental Psychology: Human Perception and Performance,
10, 640–654.

202 REFERENCES

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learn-
ing. Reading: Addison-Wesley.

Gomez, F. J., & Miikkulainen, R. (1999). Solving non-markovian control tasks with
neuro-evolution. In D. Thomas (Ed.), Proceedings of the 16th international joint
conference on artificial intelligence (IJCAI-99-vol2) (pp. 1356–1361). S.F.: Mor-
gan Kaufmann Publishers.

Gullapalli, V. (1991). A stochastic reinforcement learning algorithm for learning real-
valued functions. Neural networks, 3, 671–692.

Hallam, B. (1999). Simulating animal conditioning: Investigating Halperin’s neuro-
connector model. PhD thesis, University of Edinburgh.

Hansen, E. A., Barto, A. G., & Zilberstein, S. (1996). Reinforcement learning for
mixed open-loop and closed-loop control. In Advances in neural information
processing systems (nips). Cambridge, MA: MIT Press.

Happel, B. L. M., & Murre, J. M. J. (1994). Design and evolution of modular neural-
network architectures. Neural Networks, 7 (6-7), 985–1004.

Harmon, M. E., & Baird, L. C. (1996). Multi-player residual advantage learning with
general function approximation (Technical report No. WL-TR-1065). Wright-
Patterson Air Force Base Ohio: Wright Laboratory.

Hauskrecht, M. (2000). Value-function approximations for partially observable markov
decision processes. Journal of Artificial Intelligence Research, 13, 33-94.

Hernandez-Gardiol, N., & Mahadevan, S. (2001). Hierarchical memory-based re-
inforcement learning. In Advances in neural information processing systems,
NIPS’2000 (Vol. 13).

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural
computation (1st ed.). Reading, MA: Addison-Wesley.

Hinton, G. (1999). Invited talk. In Workshop “the future and prospects of neural
networks” at icann’99.

Hinton, G. E. (1987). Connectionist learning procedures (Tech. Rep. No. Computer
Science Technical Report). Pittsburgh, PA.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Fakultät für Informatik, Technische Universität München.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer
& J. F. Kolen (Eds.), A field guide to dynamical recurrent neural networks. IEEE
Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9 (8), 1735–1780.

REFERENCES 203

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: The
University of Michigan Press.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages,
and computation. Reading, MA: Addison-Wesley.

Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia
generates and uses neural signals that predict reinforcement. In J. C. Houk,
J. Davis, & D. Beiser (Eds.), Models of information processing in the basal ganglia
(pp. 249–270). Cambridge, Mass: M.I.T. Press.

Humphrys, M. (1997). Action selection methods using reinforcement learning. Unpub-
lished doctoral dissertation, University of Cambridge, Computer Laboratory.

Hutter, M. (2003). A gentle introduction to the universal algorithmic agent aixi
(Technical report No. IDSIA-01-03). Manno-Lugano, Switzerland: IDSIA.

Jackson, J. H. (1870). A study of convulsions. In J. Taylor (Ed.), Selected writings of
john hughlings jackson (Vol. 1, pp. 8–36). New York: Basic Books.

Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with
a distal teacher. Cognitive Science, 16, 370–354.

Kaelbling, L. P. (1990). Learning in embedded systems. PhD thesis, Dept. of Computer
Science, Stanford University.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4, 237–285.

Kakade, S., & Dayan, P. (2000). Dopamine bonuses. In Advances in neural information
processing systems (nips) 13. Cambridge, MA: MIT Press.

Kawato, M. (1990). Computational schemes and neural network models for formation
and control of multi-joint arm trajectory. In W. T. Miller, R. S. Sutton, & P. J.
Werbos (Eds.), Neural networks for control. Cambridge, Mass: M.I.T. Press.

Keijzer, F. A. (2001). Representation and behavior. Cambridge, MA: MIT Press.

Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior.
Cambridge, MA: MIT Press.

Kohonen, T. (1995). Self-organizing maps. Berlin: Springer-Verlag.

Kretchmar, R. M., & Anderson, C. (1997). Comparison of cmacs and radial basis func-
tions for local function approximators in reinforcement learning. In Proceedings
of the international conference on neural networks, ICNN’97.

204 REFERENCES

Kröse, B. J. A., & van Dam, J. W. M. (1992). Learning to avoid collisions: A
reinforcement learning paradigm for mobile robot navigation. In Proceedings of
the 1992 IFAC/IFIP/IMACS symposium on artificial intelligence in real-time
control. Delft.

Krotkov, E. P., & Simmons, R. G. (1996). Perception, planning and control for
autonomous walking with the ambler planetary rover. International Journal of
Robotics Research, 15, 155–180.

Kwee, I., Hutter, M., & Schmidhuber, J. (2001). Market-based reinforcement learning
in partially observable worlds. Proceedings of the International Conference on
Artificial Neural Networks (ICANN-2001), 865–873.

Lanzi, P. L. (2000). Adaptive agents with reinforcement learning and internal memory.
In J.-A. Meyer, D. Floreano, H. L. Roitblat, & S. W. Wilson (Eds.), From animals
to animats 6: Proceedings of the sixth international conference on simulation of
adaptive behavior (pp. 333–342). Cambridge, MA: MIT Press.

Lenat, D. B., & Guha, R. V. (1990). Building large knowledge-based systems. Reading,
MA: Addison-Wesley.

Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in
speech production. Behavioral and Brain Sciences, 22, 1–75.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning, and teaching. Machine Learning, 8, 293–321.

Lin, L.-J., & Mitchell, T. (1992). Memory approaches to reinforcement learning in non-
markovian domains (Technical report No. CMU-CS-92-138). Carnegie Mellon
University, School of Computer Science.

Lin, L.-J., & Mitchell, T. (1993). Reinforcement learning with hidden states. In
J.-A. Meyer, H. L. Roitblat, & S. W. Wilson (Eds.), From animals to animats
2: Proceedings of the second international conference on simulation of adaptive
behavior. Cambridge, MA: MIT Press.

Lin̊aker, F., & Jacobsson, H. (2001). Mobile robot learning of delayed response tasks
through event extraction: A solution to the road sign problem and beyond.
In Proceedings of the International joint Conference on Artificial Intelligence,
IJCAI’2001.

Lin̊aker, F., & Niklasson, L. (2000). Time series segmentation using an adaptive
resource allocating vector quantization network based on change detection. In
Proceedings of the international joint conference on neural networks, ijcnn’2000
(pp. 323–328).

Littman, M. L. (1993). An optimization-based categorization of reinforcement learning
environments. In J.-A. Meyer, H. L. Roitblat, & S. W. Wilson (Eds.), From
animals to animats 2: Proceedings of the second international conference on
simulation of adaptive behavior. Cambridge, MA: MIT Press.

REFERENCES 205

Littman, M. L. (1994). Memoryless policies: theoretical limitations and practical
results. In D. Cliff, P. Husbands, J.-A. Meyer, & S. W. Wilson (Eds.), From
animals to animats 3: Proceedings of the third international conference on sim-
ulation of adaptive behavior. Cambridge, MA: MIT Press.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995a). Learning policies
for partially observable environments: Scaling up. In Proceedings of the twelfth
international conference on machine learning.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995b). Learning policies for
partially observable environments: Scaling up (Tech. Rep.). Dept. of Computer
Science, Brown University.

Loch, J., & Singh, S. (1998). Using eligibility traces to find the best memoryless policy
in Partially Observable Markov Decision Processes. In Proc. of icml’98.

Malott, R. W., Whaley, D. L., & Malott, M. E. (1993). Elementary principles of
behavior. Englewood CLiffs, NJ: Prentice Hall.

Mataric, M. (1997). Behavior-based control: Examples from navigation, learning, and
group behavior. Journal of Experimental and Theoretical Artificial Intelligence,
9: 2–3, 323–336.

Mataric, M. J. (1991). Navigating with a rat brain: A neurobiologically-inspired
model for robot spatial representation. In J.-A. Meyer & S. Wilson (Eds.), Pro-
ceedings of the first international conference on simulation of adaptive behavior.
Cambridge, MA: MIT Press.

McCallum, R. A. (1993). Overcoming incomplete perception with utile distinction
memory. In Proceedings of the tenth international machine learning conference.

McCallum, R. A. (1995). Instance-based utile distinctions for reinforcement learning
with hidden state. In Proceedings of the twelfth international conference on
machine learning (pp. 387–395). San Francisco, CA: Morgan Kauffman.

McCallum, R. A. (1996). Learning to use selective attention and short-term memory
in sequential tasks. In From animals to animats 4: Proceedings of the fourth
international conference on simulation of adaptive behavior. Cambridge, MA:
MIT Press.

McCallum, R. A. (1997). Reinforcement learning with selective perception and hidden
state. Unpublished doctoral dissertation, University of Rochester, Computer
Science Department.

Meeden, L., McGraw, G., & Blank, D. (1993). Emergent control and planning in an
autonomous vehicle. In D. S. Touretsky (Ed.), Proceedings of the fifteenth annual
meeting of the cognitive science society (pp. 735–740). Hillsdale, NJ: Lawrence
Erlbaum Associates.

206 REFERENCES

Meuleau, N., Peshkin, L., Kim, K. E., & Kaelbling, L. P. (1999). Learning finite-state
controllers for partially observable environments. In Proceedings of the fifteenth
conference on uncertainty in artificial intelligence.

Michie, D., & Chambers, R. A. (1968). BOXES: An experiment in adaptive control. In
D. E & M. D. (Eds.), Machine intelligence 2 (pp. 137–152). Edinburgh: Oliver
and Boyd.

Minsky, M. (1961). Steps towards artificial intelligence. Proceedings of the IRE, 49,
8–30.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

Mitchell, T. M. (1980). The need for biases in learning generalizations (Technical Re-
port No. CBM-TR-117). New Brunswick, New Jersey: Department of Computer
Science, Rutgers University.

Moravec, H. P. (1982). The Stanford Cart and the CMU Rover. Proceedings of the
IEEE, 71 (7), 872–884.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through
symbiotic evolution. Machine Learning, 22, 11.

Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (1999). Evolutionary Algorithms
for Reinforcement Learning. Journal of Artificial Intelligence Research, 11, 199–
229.

Murphy, K. P. (2000). A survey of POMDP solution techniques (Tech. Rep.). Com-
puter Science Division, University of California at Berkeley.

Murre, J. M. J. (1992). Categorization and learning in neural networks. PhD thesis,
Leiden University.

Newell, A., & Simon, H. A. (1976). Computer science as empirical enquiry: Symbols
and search. Communications of the Association for Computing Machinery, 19,
113-126.

Nguyen, D., & Widrow, B. (1990). The truck backer-upper: An example of self-
learning in neural networks. In W. T. Miller, III, R. S. Sutton, & P. J. Werbos
(Eds.), Neural networks for control (pp. 287–299). MIT Press.

Nilsson, N. J. (1984). Shakey the robot (Tech. Rep.). SRI A.I. Technical Note 323,
April.

Nolfi, S., & Floreano, D. (1998). Co-evolving predator and prey robots: Do ‘arms
races’ arise in artificial evolution? Artificial Life, 4(4).

O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Clarendon
Press.

REFERENCES 207

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. In
M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information
processing systems (Vol. 10). The MIT Press.

Peng, J., & Williams, R. J. (1996). Technical note: Incremental multi-step Q-learning.
Machine Learning, 22, 283.

Peshkin, L., & de Jong, E. D. (2002). Context-based policy search: transfer of experi-
ence across problems. In Proceedings of the ICML-2002 workshop on development
of representations.

Peshkin, L., Meuleau, N., & Kaelbling, L. P. (1999). Learning policies with external
memory. In Proceedings of the sixteenth international conference on machine
learning.

Pollack, J. (1991). The induction of dynamical recognizers. Machine Learning, 7,
227–252.

Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavior model.
Computer Graphics, 21(4), 25–34.

Ring, M. B. (1993a). Learning sequential tasks by incrementally adding higher or-
ders. In C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), Advances in neural
information processing systems 5 (pp. 115–122). San Mateo, California: Morgan
Kaufmann Publishers.

Ring, M. B. (1993b). Two methods for hierarchy learning in reinforcement environ-
ments. In J. A. Meyer, H. Roitblat, & S. Wilson (Eds.), From animals to animats
2: Proceedings of the second international conference on simulation of adaptive
behavior (pp. 148–155). MIT Press.

Rodriguez, P., Wiles, J., & Elman, J. (1999). A recurrent neural network that learns
to count. Connection Science, 11 (1), 5-40.

Rosen, B. E., Goodwin, J. M., & Vidal, J. J. (1991). Adaptive range coding. In
Advances in neural information processing systems (Vol. 3). MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal repre-
sentations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.),
Parallel distributed processing: Explorations in the microstructure of cognition
(Vol. 1: Foundations). Cambridge, MA: MIT Press.

Rumelhart, D. E., & McClelland, J. L. (1986a). On learning the past tense of english
verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed pro-
cessing: Explorations in the microstructure of cognition. Volume 2: Psychological
and biological models (pp. 216–271). Cambridge, MA: MIT Press.

Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986b). Parallel distributed processing:
Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

208 REFERENCES

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist
systems (Technical report No. CUED/F-INFENG/TR 166). Engineering De-
partment, Cambridge University.

Rylatt, R. M., & Czarnecki, C. A. (2000). Embedding connectionist autonomous
agents in time: The ‘road sign problem’. Neural Processing Letters, 12, 145–158.

Schmidhuber, J. (1990). Networks adjusting networks. In Proc. of distributed adaptive
neural information processing. St. Augustin.

Schmidhuber, J. (1991a). Curious model-building control systems. In Proceedings
of the international joint conference on neural networks, IJCNN’91 (Vol. 2, pp.
1458–1463). Singapore.

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in
model-building neural controllers. In J. A. Meyer & S. W. Wilson (Eds.), Proc.
of the international conference on simulation of adaptive behavior: From animals
to animats (p. 222-227). MIT Press/Bradford Books.

Schmidhuber, J. (1991c). Reinforcement learning in Markovian and non-Markovian
environments. In D. S. Touretzky (Ed.), Advances in neural information pro-
cessing systems 3 (pp. 500–506). San Mateo, CA: Morgan Kauffman.

Schmidhuber, J. (1992a). Learning complex, extended sequences using the principle
of history compression [Letter]. Neural Computation, 4 (2), 234–242.

Schmidhuber, J. (1992b). Learning to control fast-weight memories: An alternative
to dynamic recurrent networks [Letter]. Neural Computation, 4 (1), 131–139.

Schmidhuber, J. (2002). Optimal ordered problem solver (Technical report No. IDSIA-
12-02). Manno-Lugano, Switzerland: IDSIA.

Schmidhuber, J., & Zhao, J. (1999). Direct policy search and uncertain policy eval-
uation. In Aaai spring symposium on search under uncertain and incomplete
information, stanford univ. (p. 119-124). American Association for Artificial
Intelligence, Menlo Park, Calif.

Schmidhuber, J., Zhao, J., & Schraudolph, N. (1997). Reinforcement learning with
self-modifying policies. In S. Thrun & L. Pratt (Eds.), Learning to learn (pp.
293–309). Kluwer.

Schmidhuber, J., Zhao, J., & Wiering, M. (1996). Simple principles of metalearning
(Tech. Rep. No. IDSIA-69-96). IDSIA.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275, 1593–1599.

Simmons, P., & Young, D. (1999). Nerve cells and animal behavior. Cambridge:
Cambridge University Press.

REFERENCES 209

Simon, H. S. (1962). The architecture of complexity. Proceedings of the American
Philosophical Society, 106 (6), 467–482.

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Learning without state-estimation
in partially observable Markovian decision processes. In Proc. 11th international
conference on machine learning (pp. 284–292). Morgan Kaufmann.

Skinner, B. F. (1938, 1991). The behavior of organisms: An experimental analysis.
Acton, MA: Copley.

Slocum, A. C., Downey, D. C., & Beer, R. D. (2000). Further experiments in the evo-
lution of minimally cognitive behavior: From perceiving affordances to selective
attention. In J.-A. Meyer, D. Floreano, H. L. Roitblat, & S. W. Wilson (Eds.),
From animals to animats 6: Proceedings of the sixth international conference on
simulation of adaptive behavior (pp. 430–439). Cambridge, MA: MIT Press.

Steels, L. (1995). Intelligence - dynamics and representations. In L. Steels (Ed.), The
biology and technology of intelligent autonomous agents. Berlin: Springer-Verlag.

Steels, L. (1997). Synthesising the origins of language and meaning using co-evolution,
self-organisation and level formation. In J. Hurford, C. Knight, & M. Studdert-
Kennedy (Eds.), Evolution of human language. Edinburgh: Edinburgh Univ.
Press.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of
Experimental Psychology, 18, 643–662.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Unpub-
lished doctoral dissertation, University of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3, 9–44.

Sutton, R. S. (1989). Implementation details of the TD(λ) procedure for the case of
vector predictions and backpropagation (Technical report No. TN87-509.1). GTE
Laboratories.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the seventh
international conference on machine learning (pp. 216–224). Austin, TX: Mor-
gan Kaufmann.

Sutton, R. S. (1991). Reinforcement learning architectures. In J.-A. Meyer & S. Wilson
(Eds.), Proceedings of the third international conference on simulation of adaptive
behavior. Cambridge, MA: MIT Press.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo
(Eds.), Advances in neural information processing systems: Proceedings of the
1995 conference (pp. 1038–1044). San Francisco: Morgan Kauffman.

210 REFERENCES

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks:
Expectation and prediction. Psychological Review, 88, 135–170.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.
Cambridge, MA: MIT Press.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Advances
in neural information processing systems (Vol. 12). MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112, 181–211.

Suykens, J. A. K., De Moor, B. L. R., & Vandewalle, J. (1997). NLq theory: A neural
control framework with global asymptotic stability criteria. Neural Networks,
10 (4), 615–637.

Tani, J., & Nolfi, S. (1998). Learning to perceive as articulated. In From animals
to animats 5: Proceedings of the fifth international conference on simulation of
adaptive behavior. Cambridge, MA: MIT Press.

ten Hagen, S. H. G., & Kröse, B. J. A. (1998). Pseudo-parametric Q-learning using
feedforward neural networks. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.),
Icann’98, proceedings of the international conference on artificial neural networks
(pp. 449–454). Springer-Verlag.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8, 257–277.

Tesauro, G. (1994). TD-gammon, a self-teaching backgammon program, achieves
master-level play [Note]. Neural Computation, 6 (2), 215-219.

Thorndike, E. L. (1911). Animal intelligence. Darien, CT: Hafner.

Thrun, S. (2000). Monte carlo POMDPs. In S. Solla, T. Leen, & K.-R. Müller (Eds.),
Advances in neural information processing systems 12 (pp. 1064–1070). MIT
Press.

Thrun, S. B. (2000). Probabilistic algorithms in robotics. AI Magazine, 21 (4), 93–109.

Thrun, S. B., & Möller, K. (1992). Active exploration in dynamic environments. In
J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural infor-
mation processing systems (Vol. 4, pp. 531–538). Morgan Kaufmann Publishers,
Inc.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55,
189–208.

Trullier, O., & Meyer, J. (1998). Animat navigation using a cognitive graph. In
From animals to animats 5: Proceedings of the fifth international conference on
simulation of adaptive behavior. Cambridge, MA: MIT Press.

REFERENCES 211

Tsitsiklis, J. N., & Roy, B. V. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Trans. Auto. Control, 42 (5), 674–690.

Turing, A. M. (1950). Computing machinery and intelligence. Proceedings of the
American Philosophical Society, 49, 433–460.

Ulbricht, C. (1996). Handling time-warped sequences with neural networks. In From
animals to animats 4: Proceedings of the fourth international conference on sim-
ulation of adaptive behavior. Cambridge, MA: MIT Press.

Urzelai, J., & Floreano, D. (2001). Evolution of adaptive synapses: Robots with fast
adaptive behavior in new environments. Evolutionary Computation, 9, 495–524.

van Dartel, M. (2001). Internal states: What are they? Master’s thesis, Cognitive
Psychology Department, University of Maastricht.

van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and
brain sciences, 21 (5), 1–75.

Vlassis, N., Terwijn, B., & Kröse, B. J. A. (2002). Auxiliary particle filter robot
localization from high-dimensional sensor observations. In Proceedings of the
IEEE international conference on robotics and automation, ICRA’02.

Wagatsuma, H., & Yamaguchi, Y. (1999). A neural network model self-organizing
a cognitive map using theta phase precession. In Ieee smc’99 conference pro-
ceedings. 1999 ieee international conference on systems, man, and cybernetics.
(Vol. 3, pp. 199–204). Piscataway, NJ: IEEE Service Center.

Walter, W. G. (1950). An imitation of life. Scientific American, 182(5), 42–45.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, Cambridge
University.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279-292.

Webb, B. (1994). Robotic experiments in cricket phonotaxis. In D. Cliff, P. Husbands,
J.-A. Meyer, & S. Wilson (Eds.), Proceedings of the third international conference
on simulation of adaptive behavior. Cambridge, MA: MIT Press.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences. PhD thesis, Harvard University, Cambridge, MA.

Werbos, P. J. (1990). A menu of designs for reinforcement learning over time. In
W. T. Miller, R. S. Sutton, & P. J. Werbos (Eds.), Neural networks for control
(pp. 67–95). Cambridge, Mass: M.I.T. Press.

Werbos, P. J. (1992). Approximate dynamic control for real-time control and neural
modeling. In D. A. White & D. A. Sofge (Eds.), Handbook of intelligent control—
neural, fuzzy, and adaptive approaches (pp. 493–526). Van Norstrand Reinhold.

212 REFERENCES

Werner, G. M. (1994). Using second order neural connections for motivation of be-
havioral choices. In D. Cliff, P. Husbands, J.-A. Meyer, & S. Wilson (Eds.),
Proceedings of the third international conference on simulation of adaptive be-
havior. Cambridge, MA: MIT Press.

Whitley, D., Dominic, S., Das, R., & Anderson, C. W. (1993). Genetic reinforcement
learning for neurocontrol problems. Machine Learning, 13, 259.

Whitley, D., Gruau, F., & Pyeatt, L. (1995). Cellular encoding applied to neurocontrol.
In L. Eshelman (Ed.), Genetic algorithms: Proceedings of the sixth international
conference (icga95) (pp. 460–467). Pittsburgh, PA, USA: Morgan Kaufmann.

Wieland, A. P. (1991). Evolving neural network controllers for unstable systems. In
Proceedings of ijcnn-91 (Vol. II, pp. 667–673).

Wiering, M., & Schmidhuber, J. (1997). HQ-learning. Adaptive Behavior, 6:2, 219–
246.

Wiering, M., & Schmidhuber, J. (1998). Fast online Q(lambda). Machine Learning,
33 (1), 105–115.

Wiles, J., & Elman, J. (1995). Learning to count without a counter: A case study of
dynamics and activation landscapes in recurrent networks. In In proceedings of
the seventeenth annual conference of the cognitive science society (pp. pages 482
– 487). Cambridge, MA: MIT Press.

Williams, R. J. (1990). Adaptive state representation and estimation using recurrent
connectionist networks. In W. T. Miller, R. S. Sutton, & P. J. Werbos (Eds.),
Neural networks for control. Cambridge, MA: MIT Press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8, 229–256.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running
recurrent neural networks. Neural Computation, 1 (2), 270–280.

Wilson, S. W. (1991). The animat path to AI. In From animals to animats 1: Pro-
ceedings of the first international conference on simulation of adaptive behavior.
Cambridge, MA: MIT Press.

Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation,
2 (1), 1–18.

Wilson, S. W. (1995). Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion, 3 (2), 149–175.

Wilson, S. W. (1998). Generalization in the XCS classifier system. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, & R. Riolo (Eds.), Genetic programming 1998: Proceedings of
the third annual conference (pp. 665–674). University of Wisconsin, Madison,
Wisconsin, USA: Morgan Kaufmann.

REFERENCES 213

Witten, I. H. (1977). An adaptive optimal controller for discrete-time Markov envi-
ronments. Inform. Control, 34, 286–295.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1 (1), 67-82.

Wyatt, J. (1995). Issues in putting reinforcement learning onto robots. In Mobile
robotics workshop, 10th biennial conference of the AISB. Sheffield.

Yamauchi, B. M., & Beer, R. D. (1994). Sequential behavior and learning in evolved
dynamical neural networks. Adaptive Behavior, 2 (3), 219–246.

Zhao, J., & Schmidhuber, J. (1998). Solving a complex prisoner’s dilemma with self-
modifying policies. In J. A. Meyer & S. W. Wilson (Eds.), Proceedings of the
sixth international conference on simulation of adaptive behavior: From animals
to animats 6 (p. 177-182). MIT Press/Bradford Books.

214 REFERENCES

Publications

Several chapters in this thesis are based on or formed the basis for refereed publications:

• Chapter 2: Bakker, B. (2000). The Adaptive Behavior Approach to Psychology.
Cognitive Processing, 1, 39-70.

• Chapter 4: Bakker, B., and van der Voort van der Kleij, G. (2000). Trading
off Perception with Internal State: Reinforcement Learning and Analysis of Q-
Elman Networks in a Markovian Task. In S.-I. Amari, C.L. Giles, M. Gori, and
V. Piuri (Eds.), Proceedings of the International Joint Conference on Neural
Networks 2000, Vol. III, 213-218.

• Chapter 5: Bakker, B., and de Jong, M. (2000). The Epsilon State Count. In
J.-A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, and S.W. Wilson (Eds.),
From Animals to Animats 6: Proceedings of The Sixth International Conference
on Simulation of Adaptive Behavior, 51-60, Cambridge, MA: MIT Press.

• Chapter 6: Bakker, B. (2002). Reinforcement Learning with Long Short-Term
Memory. In T.G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Advances in
Neural Information Processing Systems, 14. Cambridge, MA: MIT Press.

• Chapter 7: Bakker, B., Lin̊aker, F., and Schmidhuber, J. (2002). Reinforcement
Learning in Partially Observable Mobile Robot Domains Using Unsupervised
Event Extraction. In Proceedings of the 2002 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS2002.

215

216 PUBLICATIONS

Samenvatting

Het achterliggende idee bij het werk van dit proefschrift en soortgelijk werk is dat het
mogelijk is, en zelfs belangrijk, om kennis te verwerven over zowel kunstmatige intelli-
gentie als natuurlijke, biologische intelligentie door mathematische en computationele
studies te doen. Er zijn algemene principes van intelligentie, en als we die beter leren
begrijpen middels zulke studies, vergaren we kennis over zowel kunstmatige intelli-
gentie als biologische intelligentie. In dit proefschrift is hiertoe werk gedaan binnen
de context van adaptive behavior onderzoek. Meer specifiek gaat dit proefschrift over
reinforcement learning, leren op basis van beloning en straf.

De hoofdvraag die het proefschrift behandelt is de vraag hoe reinforcement learn-
ing technieken gebruikt kunnen worden in leertaken waar observaties van de omgeving
door het lerende systeem onvoldoende of moeilijk te interpreteren informatie verschaf-
fen over de toestand van het systeem in de omgeving. Dit zijn met name leertaken
die partieel observeerbare problemen (POMDPs) genoemd worden. In zulke situaties
moet het lerende systeem variabele interne toestanden hebben die als korte-termijn
geheugen fungeren, om op basis van herinneringen aan eerdere observaties en uitgevo-
erde acties te kunnen afleiden wat de huidige toestand in de omgeving is. Dit soort
taken komt in realistische toepassingen en omgevingen veel voor, en is daarom van
groot belang om te begrijpen en op te lossen. Dit geldt niet alleen voor het veld van
reinforcement learning, maar voor het veld van adaptive behavior in het algemeen.
Dit proefschrift onderzoekt met name hoe dit soort taken opgelost kan worden met
behulp van recurrente neurale netwerken. De recurrente activatie-waardes, aanwezig in
het netwerk via interne terugkoppelingslussen, leveren de benodigde variabele interne
toestanden.

De recurrente neurale netwerken worden in dit proefschrift getraind met relatief
standaard reinforcement learning-algoritmes die als doel hebben het schatten van value
functies over de toestand-actie ruimte, en die dit doen door de zogenaamde temporele
veranderingen in de geschatte value functie als voorspellings-fout te beschouwen en
te minimaliseren. De toestand van de omgeving wordt hier dus impliciet geschat
middels de huidige observatie (de huidige invoer van het netwerk) samen met de interne
toestand van het netwerk (de recurrente activatie-waardes).

Het elegante aan deze benadering is dat aangezien de interne toestanden gecreëerd
worden op basis van fouten in de value functie, de toestandsschatting gebaseerd is
op nut. Dit betekent dat de toestandsschatting alleen dan aangepast wordt wanneer
dat belangrijk is voor verbetering van het gedrag van het lerende systeem, dat wil
zeggen als het systeem hiermee meer beloning kan krijgen. De toestandsschatting

217

218 SAMENVATTING

wordt in principe niet veranderd als dit weliswaar nodig zou zijn om de absoluut
correcte toestand van het systeem in de omgeving te bepalen, maar dit niet belangrijk
is om meer beloning te krijgen. Dit principe kan belangrijk zijn in leeromgevingen die
zeer complex zijn, en waarin daardoor de exacte toestandsschatting zeer moeilijk is,
maar waarin door alleen te letten op nut van de toestandsschatting toch goed gedrag
geleerd kan worden.

Na een korte inleiding in hoofdstuk 1 wordt in hoofdstuk 2 de adaptive behav-
ior benadering beschreven, met speciale nadruk op verschillen met meer traditionele
kunstmatige intelligentie en op de relevantie voor de cognitieve psychologie.

In hoofdstuk 3 wordt een overzicht gegeven van reinforcement learning. Hierbij is
aandacht voor de algemene eigenschappen van reinforcement learning taken en voor
gebruikelijke algoritmes, en er is speciaal veel aandacht voor die types problemen en
algoritmes gerelateerd aan de hoofdvraag van dit proefschrift, partieel observeerbare
problemen.

Hoofdstuk 4 is het eerste “technische” hoofdstuk. Hierin wordt een argument
beschreven aangaande het gebruik van interne toestanden in taken waar dit strikt
gesproken niet noodzakelijk is (volledig observeerbare taken, MDPs). Het idee is dat
als observaties van de omgeving weliswaar in principe volledige informatie geven over
de toestand in de omgeving, maar die informatie moeilijk te extraheren is doordat
hiervoor complexe (statische) patroonherkenning nodig is, het soms beter is om toch
een lerend systeem met interne toestanden te gebruiken. Het leren van nuttige in-
terne toestanden kan dan makkelijker zijn dan het oplossen van het moeilijke statische
patroonherkenningsprobleem. Experimenten worden gepresenteerd die dit argument
illustreren en er volgt een uitgebreide analyse van de getrainde systemen, in dit hoofd-
stuk Elman recurrente neurale netwerken getraind met Q-learning.

Hoofdstuk 5 is het eerste hoofdstuk dat experimenten behandelt waarin interne
toestanden niet alleen nuttig zijn, maar ook werkelijk nodig: partieel observeerbare
problemen. Opnieuw worden Elman netwerken gebruikt, met ditmaal een nieuwe
variatie op Q-learning, Advantage(λ) learning. Twee soorten taken worden onderzocht:
een partieel observeerbare versie van balanceren van een gëınverteerde pendulum, en
een partieel observeerbaar doolhof navigatie probleem. In het laatste probleem wordt
een uitgebreide analyse gegeven van de capaciteiten en eigenschappen van het getrainde
netwerk, en in het bijzonder wordt onderzocht in hoeverre we hier kunnen spreken over
het geleerd hebben van een “cognitieve landkaart”.

Hoofdstuk 6 behandelt het probleem waar Elman netwerken en sowieso de meeste
recurrente neurale netwerkarchitecturen en andere architecturen met variabele toe-
standen aan leiden: het probleem van het leren van complexe en lange termijn-
afhankelijkheden. Als de huidige toestand van het systeem in de omgeving alleen
bepaald kan worden door iets te onthouden van lang geleden of door een complexe
temporele regelmatigheid uit de vroegere observaties en acties te detecteren, is dat
moeilijk voor zulke architecturen. In het geval van recurrente neurale netwerken is
dit in belangrijke mate terug te voeren op een snel verval van gradienten geschat ten
opzichte van gebeurtenissen verder in het verleden. Dit hoofdstuk onderzoekt het
gebruik in de context van reinforcement learning van een specifieke recurrente neu-
rale netwerk architectuur die ontworpen is om dit probleem het hoofd te bieden bij
supervised learning: het Long Short-Term Memory (LSTM) netwerk. In een aantal

219

verschillende experimenten wordt aangetoond dat LSTM geschikt is om met dergelijke
POMDPs om te gaan. Hierbij is wel van belang dat meer gericht wordt geëxploreerd
dan gebruikelijk is in reinforcement learning. Dit is met name zo omdat het voor
het detecteren van complexe en lange termijn-afhankelijkheden belangrijk is dat de
sequentie van invoersignalen redelijk stabiel is. Dit kan bereikt worden door selectief
minder te exploreren in bepaalde toestanden waarvan de value redelijk goed bekend
is, zodat de sequentie van acties en daarmee de sequentie van erop volgende obser-
vaties stabieler wordt. Een algoritme wordt gepresenteerd dat dit realiseert. Voor de
verschillende experimenten worden verder analyses gepresenteerd die laten zien hoe de
verschillende elementen van LSTM samenwerken in dit soort taken.

In hoofdstuk 7 wordt het lerende systeem van hoofdstuk 6 gecombineerd met een
extra, unsupervised lerende component. Deze component doet event extraction: het
extraheert uit een continue stroom van sensor-data, bijvoorbeeld afkomstig van een
robot, significante, stabiele veranderingen. Zulke veranderingen zijn de momenten die
in zekere zin “nieuw” en “verrassend” zijn, en daardoor van belang geacht worden om
mogelijk het gedrag te veranderen. Dit is dan ook het moment dat het reinforcement
lerende LSTM netwerk een nieuw gedrag selecteert. Het idee is dat op deze manier
omgegaan kan worden met bepaalde soorten complexe leerproblemen die zonder deze
event extraction zeer grote toestandsruimtes en zeer lange termijn-afhankelijkheden
hebben. Experimenten worden beschreven die deze principes illustreren. Wat we hier
feitelijk hebben is een hiërarchisch besturingssysteem waar lager-niveau gedragingen
worden aangestuurd (gëınhibeerd en geëxciteerd) door een hoger-niveau systeem. Ar-
gumenten worden gegeven waarom zulke hiërarchische besturingssystemen belangrijk
en krachtig zijn.

Het laatste hoofdstuk, hoofdstuk 8, behandelt puntsgewijs de technische en con-
ceptuele bijdragen van dit proefschrift. Tenslotte worden nieuwe of, als ze niet nieuw
zijn, belangrijke onderzoeksvragen voor de toekomst beschreven binnen de context van
dit soort onderzoek en wordt kort teruggekeken op de doelen van het proefschrift zoals
geformuleerd in het begin van het proefschrift.

220 SAMENVATTING

Curriculum Vitae

Bram Bakker was born in Leidschendam, the Netherlands, on 3 September 1972. He
attended V.W.O. (“Preparatory Scientific Education”) high school at “het Loo” in
Voorburg from 1984 to 1990. After graduating, he was first an extraneus of Aircraft
and Space Technology and then a student of Technical Physics, both at the Technical
University of Delft, before finally settling in as a student of Psychology at Leiden
University in 1992. As part of his undergraduate studies in Psychology, he did a
research project in the Brain Simulation Lab at the University of Southern California
in Los Angeles. In 1997 he graduated cum laude in 1997 with a thesis on “biologically
plausible reinforcement learning with feedforward neural networks”. After graduation
he became a PhD student (aio) in the Unit of Experimental and Theoretical Psychology
(now Unit of Cognitive Psychology) of Leiden University, which culminated in this
thesis. He is currently a part-time postdoctoral researcher at the Istituto Dalle Molle
di Studi sull’Intelligenza Artificiale (IDSIA) in Lugano, Switzerland, and part-time
postdoctoral researcher in the Intelligent Autonomous Systems group of the Computer
Science department at the University of Amsterdam.

221

222

