[Budtt 2]

Hebbian Synaptic Modifications in\Spiking |

Neurons that Learn

Peter L. Bartlett and Jonathan Baxter
Research School of Information Sciences and Engineering
Australian National University
Peter.Bartlett @anu.edu.au, Jonathan. Baxter @anu.edu.au

November 27, 1999

Abstract

In this paper, we derive a new model of synaptic plasticity, based on re-
cent algorithms for reinforcement learning (in which an agent attempts to
learn appropriate actions to maximize its long-term average reward). We
show that these direct reinforcement learning algorithms also give locally
optimal performance for the problem of reinforcement learning with mui-
tiple agents, without any explicit communication between agents. By con-
stdering a network of spiking neurons as a collection of agents attempting
to maximize the long-term average of a reward signal, we derive a synap-
tic update Tule that is qualitatively similar to Hebb’s postulate. This rule
requires only simple computations, such as addition and leaky integration,
and involves only quantities that are available in the vicinity of the synapse.
Furthermore, it leads to synaptic connection strengths that give locally op-
timal values of the long term average reward. The reinforcement learning
paradigm is sufficiently broad to encompass many learning problems that
are solved by the brain. We illustrate, with simulations, that the approach is
effective for simple pattern classification and motor learning tasks.

1 What is a good synaptic update rule?

It is widely accepted that the functions performed by neural circuits are modi-
fled by adjustments to the strength of the synaptic connections between neurons.

1



In the 1940s, Donald Hebb speculated that such adjustments are associated with
simultaneous (or nearly simultaneous) firing of the presynaptic and postsynaptic
neurons [14]:

When an axon of cell A ... persistently takes part in firing [cell B],
some growth process or metabolic change takes place [to increase]
A’s efficacy as one of the cells firing B.

Although this postulate is rather vague, it provides the important suggestion that
the computations performed by neural circuits could be modified by a simple cel-
lular mechanism. Many candidates for Hebbian synaptic update rules have been
suggested, and there is considerable experimental evidence of such mechanisms
(see, for instance, [7, 23, 16, 17, 19, 21}).

Hebbian modifications to synaptic strengths seem intuitively reasonable as a
mechanism for modifying the function of a neural circuit. However, it is not clear
that these synaptic updates actually improve the performance of a neural circuit
in any useful sense. Indeed, simulation studies of specific Hebbian update rules
have illustrated some serious shortcomings (see, for example, [20]).

In contrast with the “plausibility of cellular mechanisms” approach, most ar-
tificial neural network research has emphasized performance in practical applica-
tions. Synaptic update rules for artificial neural networks have been devised that
minimize a suitable cost function. Update rules such as the backpropagation al-
gorithm [22] (see [12] for a more detailed treatment} perform gradient descent in
parameter space: they modify the connection strengths in a direction that max-
imally decreases the cost function, and hence leads to a local minimum of that
function. Through appropriate choice of the cost function, these parameter op-
timization algorithms have allowed artificial neural networks to be applied (with
considerable success) to a variety of pattern recognition and predictive modelling
problems.

Unfortunately, there is little evidence that the (rather complicated) computa-
tions required for the synaptic update rule in parameter optimization procedures
like the backpropagation algorithm can be performed in biological neural circuits.
In particular, these algorithms require gradient signals to be propagated backwards
through the network.

This paper presents a synaptic update rule that provably optimizes the per-
formance of a neural network, but requires only simple computations involving
signals that are readily available in biological neurons. This synaptic update rule
is consistent with Hebb’s postulate.



Related update rules have been proposed in the past. For instance, the updates
used in the adaptive search elements (ASEs) described in [4, 2, 1, 3] are of a sim-
ilar form (see also [25]). However, it is not known in what sense these update
rules optimize performance. The update rule we present here is based on similar
foundations to the REINFORCE class of algorithms introduced by Williams [27].
However, when applied to spiking neurons such as those described here, REIN-
FORCE leads to parameter updates in the steepest ascent direction in two limited
situations: when the reward depends only on the current input to the neuron and
the neuron outputs do not affect the statistical properties of the inputs, and when
the reward depends only on the sequence of inputs since the arrival of the last
reward value. Furthermore, in both cases the parameter updates must be carefully
synchronized with the timing of the reward values, which is especially problem-
atic for networks with more than one layer of neurons.

In Section 2, we describe reinforcement learning problems, in which an agent
aims to maximize the long-term average of a reward signal. Reinforcement learn-
ing is a useful abstraction that encompasses many diverse learning problems, such
as supervised learning for pattern classification or predictive modelling, time se-
ries prediction, adaptive control, and game playing. We review the direct rein-
forcement learning algorithm we proposed in [5] and show in Section 3 that, in
the case of multiple independent agents cooperating to optimize performance, the
algorithm conveniently decomposes in such a way that the agents are able to learn
independently with no need for explicit communication.

In Section 4, we consider a network of model neurons as a collection of agents
cooperating to solve a reinforcement learning problem, and show that the direct
reinforcement learning algorithm leads to a simple synaptic update rule, and that
the decomposition property implies that only local information is needed for the
updates. Section 5 discusses possible mechanisms for the synaptic update rule in
biological neural networks.

The parsimony of requiring only one simple mechanism to optimize param-
eters for many diverse learning problems is appealing (cf [26]). In Section 6,
we present results of simulation experiments, illustrating the performance of this
update rule for pattern recognition and adaptive control problems.

2 Reinforcement learning

‘Reinforcement learning’ refers to a general class of learning problems in which
an agent attempts to improve its performance at some task. For instance, we



might want a robot to sweep the floor of an office; to guide the robot, we provide
feedback in the form of occasional rewards, perhaps depending on how much dust
remains on the floor. This section explains how we can formally define this class
of problems and shows that it includes as special cases many conventional learning
problems. It also reviews a general-purpose learning method for reinforcement
learning problems.

We can model the interactions between an agent and its environment mathe-
matically as a partiaily observable Markov decision process (POMDP). Figure 1
illustrates the features of a POMDP. At each (discrete) time step £, the agent and
the environment are in a particular stafe x; in a state space &. For our clean-
ing robot, z; might include the agent’s location and orientation, together with the
location of dust and obstacles in the office. The state at time ¢ determines an
observation vector y; (from some set ) that is seen by the agent. For instance
in the cleaning example, vy; might consist of visual information available at the
agent’s current location. Since observations are typically noisy, the relationship
between the state and the corresponding observation is modelled as a probability
distribution »(z;) over observation vectors. Notice that the probability distribution
depends on the state.

When the agent sees an observation vector , it decides on an action u; from
some set I/ of available actions, In the office cleaning example, the available
actions might consist of directions in which to move or operations of the robot’s
broom.

A mapping from observations to actions is referred to as a policy. We allow
the agent to choose actions using a randomized policy. That is, the observation
vector y; determines a probability distribution p(y;} over actions, and the action is
chosen randomly according to this distribution. We are concerned with random-
ized policies that depend on a vector 8 € RF of k parameters (and we write the
probability distribution over actions as (1, 9)).

The agent’s actions determine the evolution of states, possibly in a probabilis-
tic way. To model this, each action determines the probabilities of transitions
from the current state to possible subsequent states. For a finite state space S,
we can write these probabilities as a transition probability matrix, P(u.). Here,
the %, j-the entry of P(u) (pi;(u:)) is the probability of making a transition from
state ¢ to state 7 given that the agent took action v, in state 4. In the office, the
actions chosen by the agent determine its location and orientation and the location
of dust and obstacles at the next time instant, perhaps with some random element
to model the probability that the agent slips or bumps into an obstacle.

Finally, in every state, the agent receives a reward signal ry, which is a real

4



Agent

Policy, Action, ¢
{8, yt).
Parameters,
Reward Observation
e Yt

Environment

State,

Observation process, Tt State transition,
v{zy). Pug). ’—1
Reward process.

Figure 1: Partially observable Markov decision process (POMDP).

number. For the cleaning agent, the reward might be zero most of the time, but
take a positive value when the agent removes some dust.
The aim of the agent is to choose a policy (that is, the parameters that deter-
mine the policy) so as to maximize the long-term average of the reward,
1 &
= lim E | = : 1
n=limE |~ ; n] (1)

(Here, E is the expectation operator.) This problem is made more difficult by the
limited information that is available to the agent. We assume that at each time step
the agent sees only the observations y; and the reward 7; (and is aware of its policy
and the actions u, that it chooses to take). It has no knowledge of the underlying
state space, how the actions affect the evolution of states, how the reward signals
depend on the states, or how the observations depend on the states.

2.1 Other learning tasks viewed as reinforcement learning

Clearly, the reinforcement learning problem described above provides a good
model of adaptive control problems, such as the acquisition of motor skills. How-

5



ever, the class of reinforcement learning problems is broad, and includes a number
of other learning problems that are solved by the brain. For instance, the super-
vised learning problems of pattern recognition and predictive modelling require
labels (such as an appropriate classification) to be associated with patterns. These
problems can be viewed as reinforcement learning problems with reward signals
that depend on the accuracy of each predicted label. Time series prediction, the
problem of predicting the next item in a sequence, can be viewed in the same way,
with a reward signal that corresponds to the accuracy of the prediction. More
general filtering problems can also be viewed in this way. It follows that a single
mechanism for reinforcement learning would suffice for the solution of a consid-
erable variety of learning problems.

2.2 Direct reinforcement learning

A general approach to reinforcement learning problems was presented recently
in [5, 6]. Those papers considered agents that use parameterized policies, and
introduced general-purpose reinforcement learning algorithms that adjust the pa-
rameters in the direction that maximally increases the average reward. Such algo-
rithms converge to policies that arejlocally optimal,jin the sense that any further
adjustment to the parameters in any direction cannot improve the policy’s perfor-
mance. This section reviews the algorithms introduced in [5, 6]. The next two
sections show how these algorithms can be applied to networks of spiking neu-
rons.

The direct reinforcement learning approach presented in [5], building on ideas
due to a number of authors [27, 9, 10, 15, 18], adjusts the parameters # of a
randomized policy that, on being presented with the observation vector 3;, chooses
actions according to a probability distribution 1y, €). The approach involves the
computation of a vector z, of k real numbers (one component for each component
of the parameter vector #) that is updated according to

VYt (1, 0) ©

41 = JBZ e 3
t+ ' “ut(yt’g)

where £ is a real number between 0 and 1, p,,(y;,8) is the probability of the
action u; under the current policy, and V denotes the gradient with respect to the
parameters & (so V p, (e, 0} is a vector of k partial derivatives). The vector z; is
used to update the parameters, and can be thought of as an average of the ‘good’
directions in parameter space in which to adjust the parameters if a large value




of reward occurs at time ¢. The first term in the right-hand-side of (2) ensures
that z; remembers past values of the second term. The numerator in the second
term is in the direction in parameter space which leads to the maximal increase
of the probability of the action u, taken at time ¢. This direction is divided by the
probability of u, to ensure more “popular” actions don’t end up dominating the
overall update direction for the parameters. Updates to the parameters correspond
to weighted sums of these normalized directions, where the weighting depends on
future values of the reward signal.

Theorems 3 and 6 in [5] show that if ¢ remains constant, the long-term average
of the product 2, is a good approximation to the gradient of the average reward
with respect to the parameters, provided 3 is sufficiently close to 1. It is clear from
Equation (2) that as 3 gets closer to 1, z, depends on measurements further back
in time. Theorem 4 in [5] shows that, for a good approximation to the gradient of
the average reward, it suffices if 1 /(1 — B), the time constant in the update of z,,
is large compared with a certain time constant—the mixing time—of the POMDP,
(It is useful, although not quite correct, to think of the mixing time as the time
from the occurrence of an action until the effects of that action have died away.)

This gives a simple way to compute an appropriate direction to update the pa-
rameters §. An on-line algorithm (OLPOMDP) was presented in [6] that updates
the parameters ¢ according to

0 = 01 -+ yrez, (3)

where the small positive real number  is the size of the steps taken in parameter
space. If these steps are sufficiently small, so that the parameters change slowly,
this update rule modifies the parameters in the direction that maximally increases
the long-term average of the reward.

3 Direct reinforcement learning with independent
agents F e dad B ,

, e’ .
Suppose that, instead of a single agent, there are agents, all co-
operating to maximize the average reward (see Figuit Suppose that each of
these agents sees a distinct observation vector, and has a distinct parameterized
randomized policy that depends on its own set of parameters. This multi-agent

reinforcement learning problem can also be modelled as a POMDP by consid-
ering this collection of agents as a single agent, with an observation vector that




Agent T

Observation, ¢ — Action, u}
t »| Policy £

Reward
T

Agent 1z

Observation, g7 | 155 Action, u?

Environment

State,
Observation s State transition,

processes. Plut). ‘—‘

Reward process.

Figure 2: POMDP controlled by n independent agents.

consists of the n observation vectors of each independent agent, and similarly for
the parameter vector and action vector. For example, if the n agents are coop-
erating to clean the floor in an office, the state vector would include the location
and orientation of the n agents, the observation vector for agent : might consist
of the visual information available at that agent’s current location, and the actions
chosen by all n agents determine the state vector at the next time instant. The
following decomposition theorem follows from a simple calculation.

Theorem 1. For a POMDP controlled by multiple indepgndent agents, the direct
reinforcement learning update equations (2) and (3) for the combined agent are
equivalent to those that would be used by each agent/if it ignored the existence of
the other agents.

That is, if we let y denote the observation vdctor for agent i, u} denote the
action it takes, and & denote its parameter vectof; then the update equation (3) is

-



equivalent to the system of n update equations,
0; =0,y +rei, 4)
where the vectors z; , ... , 2} € R* are updated according to

Vit (43, 6°)

diby 5
thoi (3, 67) ©)

i g
2oy = Bzp +

Here, V denotes the gradient with respect to the agent’s parameters 6.

Effectively, each agent treats the other agents as a part of the environment,
and can update its own behaviour while remaining oblivious to the existence of
the other agents. The only communication that occurs between these cooperating
agents is via the globally distributed reward, and via whatever influence agents’
actions have on other agents’ observations. Nonetheless, in the space of param-
eters of all n agents, the updates (4) adjust the complete parameter vector (the
concatenation of the vectors #?) in the direction that maximally increases the aver-
age reward. We shall see in the next section that this convenient property leads to
a synaptic update rule for spiking neurons that involves only local quantities, plus
a global reward signal.

4 Direct reinforcement learning in neural networks

This section shows how we can model a neural network as a collection of agents
solving a reinforcement learning problem, and apply the direct reinforcement
learning algorithm to optimize the parameters of the network. The networks we
consider contain simple models of spiking neurons (see Figure 3). We consider
discrete time, and suppose that each neuron in the network can choose one of two
actions at time step £: to fire, or not to fire. ' We represent these actions with the
notation vy == 1 and u; = 0, respectively’. We use a simple probabilistic model
for the behaviour of the neuron. Define the potential v, in the neuron at time # as

v = Z wjufml, (6)
J

IThe actions can be represented by any two distinct real values, such as w; € {£1}. An
essentially identical derivation gives a similar update rule.



Synapse j (
Presynaptic Connection } —— Activity,
activity, strength, w € {0,1},
j )

u! € {0,1} wy Priv=1) = ¢{v)
Potential,
v=3; wiul

Figure 3: Model of a neuron.

where w; is the connection strength of the jth synapse and uf,l is the activity at
the previous time step of the presynaptic neuron at the jth synapse. The potential
v represents the voltage at the cell body (the postsynaptic potentials having been
combined in the dendritic tree). The probability of activity in the neuron is a
function of the potential v. A squashing function ¢ maps from the real-valued
potential to a number between 0 and 1, and the activity u; obeys the following
probabilistic rule.

Pr (neuron fires at time ¢) = Pr (u; = 1) = o (v) . @)

We assume that the squashing function satisfies o{c) = 1/(1 +e79).

We are interested in computation in networks of these spiking neurons, so we
need to specify the network inputs, on which the computation is performed, and
the network outputs, where the results of the computation appear. To this end,
some neurons in the network are distinguished as input neurons, which means
their activity u; is provided as an external input to the network. Other neurons are
distinguished as output neurons, which means their activity represents the result
of a computation performed by the network.

A real-valued global reward signal r; is broadcast to every neuron in the net-
work at time £. We view each (non-input) neuron as an independent agent in a
reinforcement learning problem. The agent’s (neuron’s) policy is simply how it
chooses to fire given the activities on its presynaptic inputs. The synaptic strengths
(w;) are the adjustable parameters of this policy. Theorem 1 shows how to update
the synaptic strengths in the direction that maximally increases the long-term av-
erage of the reward. In this case, we have

o' (v )ul_

R

Hu, —o' (weyud_,

o (er) otherwise

10



= (4 —0(w))ul_,,
where the second equality follows from the property of the squashing function,
o'(0) = o(a) (1 - o(0))
This results in an update rule for the j-th synaptic strength of
Wi+l = Wig + YTi41%5,641, (8)
where the real numbers z;, are updated according to
Zigr1 = Bjp + (u — o (v))ul_). )

These equations describe the updates for the parameters in a single neuron. The
pseudocode in Algorithm 1 gives a complete description of the steps involved
in computing neuron activities and synaptic modifications for a network of such
neurons.

Algorithm 1 Model of neural network activity and synaptic modification.
1: Given: :
Coefficient 8 € [0, 1),
Step size -,
Initial synaptic connection strengths of the i-th neuron w;'-,o.
2: for time ¢ = 0, I,...do

3:  Set activities u] of input neurons.
4. for non-input neurons 7 do ‘
5 Calculate potential Vg1 = >, whu. _ _
6: Generate activity uj,, € {0,1} using Pr (u},, = 1) = o (v},,).
7:  end for
8:  Observe reward .41 (which depends on network outputs).
9:  for non-input neurons ¢ do _
10: Set 21 = B2 ppy + (wf ~ o (v])) ul_,.
11; Setw} .y = why +yra2l .
12:  end for
13: end for

Suitable values for the quantitics 3 and y required by Algorithm 1 depend on
the mixing time of the controlled POMDP. The coefficient 3 sets the decay rate of

11



the variable z;. For the algorithm to accurately approximate the gradient direction,
the corresponding time constant, 1/(1 — ), should be large compared with the
mixing time of the environment. The step size -y affects the rate of change of
the parameters. When the parameters are constant, the long term average of 72
approximates the gradient. Thus, the step size v should be sufficiently small so
that the parameters are approximately constant over a time scale that allows an
accurate estimate. Again, this depends on the mixing time. Loosely speaking,
both 1/(1 — /) and 1/ should be significantly larger than the mixing time.

5 Biological Considerations

In modifying the strength of a synaptic connection, the update rule described by
Equations (8) and (9) involves two components (see Figure 4). There is a Hebbian
component (uzu;_,) that helps to increase the synaptic connection strength when
firing of the postsynaptic neuron follows firing of the presynaptic neuron. When
the firing of the presynaptic neuron is not followed by postsynaptic firing, this
component is 0, while the second component (—o (v¢) u;_,) helps to decrease the
synaptic connection strength.
The update rule has several attractive properties.

Locality The modification of a particular synapse w; involves the postsynaptic
potential v, the postsynaptic activity u, and the presynaptic activity v/ at the
previous time step.

Certainly the postsynaptic potential is available at the synapse. Action po-
tentials in neurons are transmitted back up the dendritic tree [24], so that
(after some delay) the postsynaptic activity is also available at the synapse.
Since the influence of presynaptic activity on the postsynaptic potential is
mediated by receptors at the synapse, evidence of presynaptic activity is also
available at the synapse. While Equation (9) requires information about the
history of presynaptic activity, there is some evidence for mechanisms that
allow recent receptor activation to be remembered [19, 21]. Hence, all of
the quantities required for the computation of the variable z; are [ikely to be
available in the postsynaptic region.

Simplicity The computation of z; in (9) involves only additions and subtractions
modulated by the presynaptic and postsynaptic activities, and combined in
a simple first order filter. This filter is a leaky integrator which models, for

12



ﬁ
(I a

.
£

‘

E

_
&

/

Figure 4: An illustration of synaptic updates. The presynaptic neuron is on the
left, the postsynaptic on the right. The level inside the square in the postsynaptic
neuron represents the quantity z;. (The dashed line indicates the zero value.) The
symboi r represents the presence of a positive value of the reward signal, which
is assumed to take only two values here. (The postsynaptic location of z; and r is
for convenience in the depiction, and has no other significance.) The size of the
synapse represents the connection strength. Time proceeds from top to bottom.
(a)~(d): A sequence through time illustrating changes in the synapse when no ac-
tion potentials occur. Tn this case, z; steadily decays ((a)—(b)) towards zero, and
when a reward signal arrives (c), the strength of the synaptic connection is not sig-
nificantly adjusted. (e)~(h): Presynaptic action potential (e), but no postsynaptic
action potential (f) leads to a larger decrease in z; (g), and subsequent decrease in
connection strength on arrival of the reward signal (h). (i)~(1): Presynaptic action
potential (i}, followed by postsynaptic action potential (j) leads to an increase in
z; (k) and subsequent increase in connection strength (1).

13



instance, such common features as the concentration of ions in some re-
gion of a cell or the potential across a membrane. Similarly, the connection
strength updates described by Equation (8) involve simply the addition of a
term that is modulated by the reward signal.

Optimality The results from [5], together with Theorem 1, show that this simple
update rule modifies the network parameters in the direction that maximally
increases the average reward, so it leads to parameter values that locally
optimize the performance of the network.

There are some experimental results that are consistent with the involvement
of the correlation component (the term (u; — o(v;))u_;) in the parameter up-
dates. For instance, a large body of literature on long-term potentiation (beginning
with [7]) describes the enhancement of synaptic efficacy following association of
presynaptic and postsynaptic activities. More recently, the importance of the rel-
ative timing of the EPSPs and APs has been demonstrated [19, 21]. In particular,
the postsynaptic firing must occur after the EPSP for enhancement to occur. The
backpropagation of the action potential up the dendritic tree appears to be crucial
for this [17].

There is also experimental evidence that presynaptic activity without the gen-
eration of an action potential in the postsynaptic cell can lead to a decrease in
the connection strength [23]. The recent finding [19, 21] that an EPSP occurring
shortly after an AP can lead to depression is also consistent with this aspect of
Hebbian leaming. However, in the experiments reported in [19, 217, the presence
of the AP appeared to be important. It is not clear if the significance of the relative
timings of the EPSPs and APs is related to learning or to maintaining stability in
bidirectionally coupled cells.

Finally, some experiments have demonstrated a decrease in synaptic efficacy
when the synapses were not involved in the production of an action potential [16].

The update rule also requires a reward signal that is broadcast to all neurons
in the network. In all of the experiments mentioned above, the synaptic modi-
fications were observed without any evidence of the presence of a plausible re-
ward signal. However, there is limited evidence for such a signal in brains. It
could be delivered in the form of particular neurotransmitters, such as serotonin
or nor-adrenaline, to all neurons in a circuit. Both of these neurotransmitters are
delivered to the cortex by small cell assemblies (the raphe nucleus and the locus
coeruleus, respectively) that innervate large regions of the cortex. The fact that
these assemblies contain few cell bodies suggests that they carry only limited in-
formation. It may be that the reward signal is transmitted first electrically from

14



one of these cell assemblies, and then by diffusion of the neurotransmitter to all of
the plastic synaptic connections in a neural circuit. This would save the expense
of a synapse delivering the reward signal to every plastic connection, but could be
significantly slower. This need not be a disadvantage; for the purposes of param-
eter optimization, the required rate of delivery of the reward signal depends on
the time constants of the task, and can be substantially slower than cell signalling
times. There is evidence that the local application of serotonin immediately after
limited synaptic activity can lead to long term facilitation [11].

6 Simulation Results

. In this section, we describe the results of simulations of Algorithm 1 for a pattern
classification problem and an adaptive control problem. In all simulation experi-
ments, we used a symmetric representation, v € {—1, 1}. The difference between
this representation and the assymmetric v € {0,1} is a simple transformation of
the parameters, but this can be significant for gradient descent procedures,

6.1 Sonar signal classification

Algorithm 1 was applied to the problem of sonar return classification studied by
Gorman and Sejnowski [13]. (The data set is available from the U. C. Trvine
repository [8].) Each pattern consists of 60 real numbers in the range [0,1], rep-
resenting the energy in various frequency bands of a sonar signal reflected from
one of two types of underwater objects, rocks and metal cylinders. The data set
contatns 208 patterns, 97 labeled as rocks and 111 as cylinders. We investigated
the performance of a two-layer network of spiking neurons on this task. The first
layer of 8 neurons received the vector of 60 real numbers as inputs, and a single
output neuron received the outputs of these neurons. This neuron’s output at each
time step was viewed as the prediction of the label corresponding to the pattern
presented at that time step. The reward signal was 0 or 1, for an incorrect or cor-
rect prediction, respectively. The parameters of the algorithm were 8 = 0.5 and
v = 107, Weights were initially set to random values uniformly chosen in the
interval (—0.1,0.1). Since it takes two time steps for the influence of the hidden
unit parameters to affect the reward signal, it is essential for the value of 3 for
the synapses in a hidden layer neuron to be positive. It can be shown that for a
constant pattern vector, the optimal choice of 3 for these synapses is 0.5.

15



T T
Training error ———

Tast arroy @ Ho
Gorman and Sejnowski: training error *
50 ¢ Gorman and Ssinowski: test error +-a - 7

&0 T T T

errar (%)

o b S e s s e T

Q 50 100 150 200 250 300
training epochs

Figure 5: Learning curves for the sonar classification problem.

Each time the input pattern changed, the delay through the network meant that
the prediction corresponding to the new pattern was delayed by one time step.
Because of this, in the experiments each pattern was presented for many time
steps before it was changed.

Figure 5 shows the mean and standard deviation of training and test errors over
100 runs of the algorithm plotted against the number of training epochs. Each run
involved an independent random split of the data into a test set (10%) and a train-
ing set (90%). For each training epoch, patterns in the training set were presented
to the network for 1000 time steps each. The errors were calculated as the pro-
portion of misclassifications during one pass through the data, with each pattern
presented for 1000 time steps. Clearly, the algorithm reliably leads to parameter
settings that give training error around 10%, without passing any gradient infor-
mation through the network.

Gorman and Sejnowski [13] investigated the performance of sigmoidal neural
networks on this data. Althongh the networks they used were quite different (since
they involved deterministic units with real-valued outputs), the training error and
test error they reported for a network with 6 hidden units is also illustrated in

Figure 5.

16



Figure 6: The inverted pendulum.

6.2 Controlling an inverted pendulum

We also considered a problem of learning to balance an inverted pendulum. Fig-
ure 6 shows the arrangement: a puck moves in a square region. On the top of
the puck is a weightless rod with a weight at its tip. The puck has no internal
dynamics.

We investigated the performance of Algorithm 1 on this problem. We used
a network with four hidden units, each receiving real numbers representing the
position and velocity of the puck and the angle and angular velocity of the pendu-
lum. These units were connected to two more units, whose outputs were used to
control the sign of two 10N thrusts applied to the puck in the two axis directions. _
The reward signal was 0 when the pendulum was upright, and —1 when it hit the
ground. Once the pendulum hit the ground, the puck was randomly located near
the centre of the square with velocity zero, and the pendulum was reset to vertical
with zero angular velocity.

In the simulation, the square was 5 x 5 metres, the dynamics were simulated in
discrete time, with time steps of 0.02s, the puck bounced elastically off the walls,
gravity was 9.8ms™?, the puck radius was 50mm, the puck height was 0, the puck
mass was 1kg, air resistance was neglected, the pendulum length was 500mm, the
pendulum mass was 100g, the coefficient of friction of the puck on the ground
was 5 x 107*, and friction at the pendulum joint was set to zero.

The algorithm parameters were v = 1075 and 8 = 0.995.

17



120 T T

n T o
average time between failure  +

80

seconds

40 -

20

L 1. 1
4] 5e+l6 1e+07 1.58+07 2e+07
iterations

Figure 7: A typical learning curve for the inverted pendulum problem.

Figure 7 shows a typical learning curve: the average time before the pendu-
lum falls (in a simulation of 100000 iterations = 2000 seconds), as a function
of total simulated time. Initial weights were chosen uniformly from the interval
(—0.05, 0.05).

7 Further work

The most interesting questions raised by these results are concerned with possible
biological mechanisms for update rules of this type. Some aspects of the update
rule are supported by experimental results. Others, such as the reward signal, have
not been investigated experimentally. One obvious direction for this work is the
development of update rules for more realistic models of neurons. First, the model
assumes discrete time. Second, it ignores some features that biological neurons
are known to possess. For instance, the location of synapses in the dendritic tree
allow timing relationships between action potentials in different presynaptic cells
to affect the resulting postsynaptic potential. Other features of dendritic process-
ing, such as nonlinearities, are also ignored by the model presented here. It is
not clear which of these features are important for the computational properties of
neural circuifs.

18



8

Conclusions

The synaptic update rule presented in this paper requires only simple computa-
tions involving only local quantities plus a global reward signal. Furthermore, it
adjusts the synaptic connection strengths to locally optimize the average reward
received by the network. The reinforcement learning paradigm encompasses a
considerable variety of learning problems. Simulations have shown the effective-
ness of the algorithm for a simple pattern classification problem and an adaptive
control problem.

References

[1]

[2]

(3]

[4]

(]

[6]

[7]

A. G. Barto, C. W. Anderson, and R. S. Sutton. Synthesis of nonlinear
control surfaces by a layered associative search network. Biological Cyber-
netics, 43:175-185, 1982. :

A. G.Barto and R. S. Sutton. Landmark learning: An illustration of associa-
tive search. Biological Cybernetics, 42:1-8, 1981.

A.G.Barto, R. S. Sutton, and C. W. Anderson. Ni euronlike adaptive elements
that can solve difficult learning control problems. IFEE Transactions on
Systems, Man, and Cybernetics, SMC-13:834-846, 1983,

A. G. Barto, R. S. Sutton, and P. S. Brouwer. Associative search net-
work: A reinforcement learning associative memory. Biological Cybernet-
ics, 40:201-211, 1981.

J. Baxter and P. L. Bartlett. Direct Gradient-Based Reinforcement Learning:
L. Gradient Estimation Algorithms. Technical report, Research School of
Information Sciences and Engineering, Australian National University, July
1999,

J. Baxter, L. Weaver, and P. L. Bartlett. Direct Gradient-Based Reinforce-
ment Learning: TI. Gradient Descent Algorithms and Experiments. Techni-
cal report, Research School of Information Sciences and Engineering, Aus-
tralian National University, September 1999,

T. V. Bliss and T. Lomo. Long-lasting potentiation of synaptic transmission
in the dentate area of the anaesthetized rabbit following stimulation of the
perforant path. Journal of Physiology (London), 232:331-356, 1973.

19



[8] E. K. C. Blake and C. Merz. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

[9] X.-R. Cao and H.-F. Chen. Perturbation Realization, Potentials, and Sen-
sitivity Analysis of Markov Processes. IEEFE Transactions on Automatic
Control, 42:1382-1393, 1997,

[10] X.-R. Cao and Y.-W. Wan, Algorithms for Sensitivity Analysis of Markov
Chains Through Potentials and Perturbation Realization. IEEE Transactions
on Control Systems Technology, 6:482-492, 1998.

[11] G. A. Clark and E. R. Kandel. Induction of long-term facilitation in Aplysia
sensory neurons by local application of serotonin to remote synapses.
Proc. Natl. Acad. Sci. USA, 90:11411-11415, 1993.

[12] T.L.Fine. Feedforward Neural Network Methodology. Springer, New York,
1999.

[13] R. P. Gorman and T. J. Sejnowski. Analysis of hidden units in a layered
network trained to classify sonar targets. Neural Networks, 1:75-89, 1988.

[14] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[15] H. Kimura, K. Miyazaki, and S. Kobayashi. Reinforcement leaming in
POMDPs with function approximation. In D. H. Fisher, editor, Pro-
ceedings of the Fourteenth International Conference on Machine Learning
(ICML’97), pages 152-160, 1997.

[16] Y. Lo and M. ming Poo. Activity-dependent synaptic competition in vitro:
Heterosynaptic suppression of developing synapses. Science, 254:1019~
1022, 1991.

[17] J. C. Magee and D. Johnston. A synaptically controlled, associative signal
for Hebbian plasticity in hippocampal neurons. Science, 275:209-213,1997.

' [18] P. Marbach and J. N. Tsitsiklis. Simulation-Based Optimization of Markov
Reward Processes. Technical report, MIT, 1998.

[19] H. Markram, J. Liibke, M. Frotscher, and B. Sakmann. Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,
275:213-215, 1997.

20



[20] J. F Medina and M. D. Mauk. Simulations of cerebellar motor learn-
ing: Computational analysis of plasticity at the mossy fiber to deep nucleus
synapse. The Journal of Neuroscience, 19(16):7140-7151, 1999,

[21] G. giang Bi and M. ming Poo. Synaptic modifications in cultured hippocam-
pal neurons: dependence on spike timing, synaptic strength, and postsynap-
tic cell type. The Journal of Neuroscience, 18(24):10464-10472, 1998,

' (22] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by
back-propagating errors. Nature, 323:533-536, 1986.

[23] P. K. Stanton and T. J. Sejnowski. Associative long-term depression in the
hippocampus induced by Hebbian covariance. Naure, 339:215-218, 1989.

[24] G.J. Stuart and B. Sakmann. Active propagation of somatic action potentials
into neocortical pyramidal cell dendrites. Nature, 367:69~72, 1994.

[25] G. Tesauro. Simple neural models of classical conditioning. Biological
Cybernetics, 55:187-200, 1986.

[26] L. G. Valiant. Circuits of the mind. Oxford University Press, 1994,

[27] R. J. Williams. Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning. Machine Learning, 8:229-256, 1992.

21



