Adaptive Behavior with Fixed Weights in RNN: An Overview*

Danil V. Prokhorov®, Lee A. Feldkamp® and Ivan Yu. Tyukin™*
$Ford Research Laboratory, Dearborn, MI 48121, U.S.A.
*Saint-Petersburg State Electrotechical University, Russia, and
RIKEN Brain Science Institute, Japan

J

Abstract

In this paper we review recent results on adaptive be-
havior attained with fixed-weight recurrent neural networks
(meta-learning). We argue that such behavior is a natural
consequence of prior training.

1 Introduction

Emergence of adaptive behavior from a recurrent neural
network (RNN) with fixed weights has been noticed by var-
ious authors (see, e.g., [1], [2], [3] and [4]). While the
ability to adapt to a changed environment is convention-
ally attributed to systems whose parameters change in re-
sponse to an environmental change, a fixed-weight RNN
can acquire such an ability through prior training or, some-
times, by construction. This happens because an RNN pos-
sesses internal recurrence, so there is no need to change its
weights to react to a changing environment.

Different researchers denote the adaptive behavior of
RNN differently. It is termed meta-learning (learning how
to learn) in [5], whereas the name accommodative is sug-
gested in [4].

This paper consists of three sections. In the next section
we briefly review recent results on meta-learning. Section 3
describe two illustrative problems and their solutions with
recurrent multilayer perceptrons (RMLP), followed by dis-
cussion in Section 4. We also show evolution of outputs of
recurrent nodes in RMLP. We conclude in Section 5 with
comments on future research.

2 Overview

Recent experiments on meta-learning with fixed-weight
RNN deal with two broad classes of problems. Class I en-
compasses neural approximation of multiple input-output
mappings of the following form

y(t) = fo(zo(t — 1), x0(2)) (1

* The first author is pleased to acknowledge a helpful correspondence
with Dr. Steven Younger.

0-7803-7278-6/02/$10.00 ©2002 IEEE 2018

where f, is a discrete or continuous set of mappings with
the output vector y®(t) at time ¢, x4 is a vector of inputs,
and zy is the mapping’s state vector (evolution of zy may
be represented by a separate equation which is avoided in
our notation as it is assumed to be a part of fy). The RNN
approximating y¢ for all ¢ in the mean square sense has the
form

y(t) = £(z(t — 1),x4(2)))

where z is its state vector. Sometimes none of the mappings
have states zg, as in [3], [5] and [6]. Furthermore, the input
xg(t) may include the previous value of the target output
y%(t — 1) to provide the network with appropriate context.
Class II includes problems in which accurate control of
multiple distinct systems gy (or plants) is required:

S’(t) = gg(ZG(t - 1)1f(9(t - 1),Z(t - 1),Xg(t))) (3)

Here the system’s output ¥ (¢) should closely track the tar-
get output y4(t) produced by a reference model (e.g., y?(t)
can be zero at all times, as in [2]). The input y(¢ — 1) of the
controller RNN f may or may not include z4(t — 1) (or part
thereof). Another input x4(t) includes y¢(¢) and, possibly,
other external signals.

In [3], structured RNN are proposed to model the given
set of mappings of (1). Such RNN include not only parts of
networks that approximate the desired mappings but also
learning algorithms. One such structure for a problem of
approximating all quadratic functions of two variables is
shown in Figure 1. It can be seen that recurrent connec-
tions (nodes for a, b, ¢, d, e and f) have a feedback weight
of unity, and their adaptation is governed by the past deriva-
tives Oy(t — 1)/8a(t — 1), dy(t ~ 1)/0b(t — 1), etc. The
parameter o acts as a learning rate which can be fixed to a
small value or learned in a training session (recall that the
network weights must be fixed during its operation; their
role is taken by the states a, b, etc.) The network of Fig-
ure | can be represented by an RNN of general architecture
consisting of summation and product nodes with delayed
connections.

In [5], a special form of RNN called long short-term
memory (LSTM) is explored. In one of its modules the
LSTM has the unity feedback weights which are claimed

Authorized licensed use limited to: Akira Imada. Downloaded on May 16, 2009 at 19:53 from |IEEE Xplore. Restrictions apply.

t (1)

FIN x(t)
x,(t)
a@f | 1.
a
b o FLN and yt-])
c) its dual (>
y‘?(t-l) e o LIS (O
t-1
aa
%
£ 4

Figure 1: Structured RNN that is capable of learn-
ing all quadratic functions of two variables. It is en-
closed within the dashed contour. FLN stands for func-
tional link network implementing the function y =
az1? + bzy? + cxyzy + dxy + exy + f. Each recur-
rent node, e.g., node a, evolves according to the rule
a(t) = a(t — 1) + age(t — 1)0y(t — 1)/da(t — 1), where
e(t=1) =gyt —-1)—y(t-1).

to be needed for efficient training of its remaining weights
for several different meta-learning tasks including the one
just discussed.

Recent experiments with RMLP for meta-learning sug-
gest that resorting to either structured RNN or LSTM is
not necessary. In [1], a single RMLP with three fully re-
current hidden layers (21 states) is trained to make good
one-time-step predictions of 13 different time series (pe-
riodic and chaotic). The fixed-weight RMLP is demon-
strated to be capable of good generalization to time series
with somewhat different sets of generating parameters as
well as to those corrupted by noise. In [7], achieving good
one-time-step predictions of five different time series from
a two-hidden layer RMLP (14 states) via training is com-
bined with two conditioning tasks. The trained network
must remember which of the two tasks it dealt with in the
past (Henon maps, type 1 or 2) in order to activate one of
the two appropriate output responses for the random input.
All the problems above belong to class I.

In [2], a two-hidden-layer RMLP (20 states) is trained to
act as stabilizing controller for three distinct and unrelated
systems, without explicit knowledge of system identity. In

0-7803-7278-6/02/$10.00 ©2002 IEEE 2019

[8], training an RMLP with 10 states is accomplished to
achieve robust control of more than 10,000 systems derived
from a single nominal system by parametric perturbations.
These problems are examples of (3) and belong to class II.

3 Experiments

The training method used in all the tasks above is based
on backpropagation through time (BPTT) and the multi-
stream extended Kalman filter algorithm; see [9] for de-
tails. Here we discuss two class I meta-learning tasks de-
scribed in [5] and propose their solutions with RMLP.

The problem of learning all quadratic functions of two
variables introduced above is successfully solved by train-
ing a RMLP with three inputs, 1 (t), z2(t) and y¢(¢t — 1),
30 bipolar sigmoid nodes in the first fully recurrent layer,
10 bipolar sigmoid nodes in the second fully recurrent layer
and a linear output node §(¢). Such an RMLP architec-
ture is denoted as 3-30R-10R-1L and has 1441 trainable
weights. The inputs and the output are scaled to be approx-
imately within the range £1.0. One epoch of training con-
sists of the following steps. First, we randomly choose 20
segments of 1040 consecutive points each within the time
series of 128,000 points (128 different quadratic functions
of 1000 examples each). The initial 40 points of each seg-
ment are used to let the network develop its states (prim-
ing operation) from their initial states of zeros, rather than
for training weights. Next, we apply the 20-stream global
EKF to update weights, with derivatives being computed by
BPTT with truncation depth of 40 (denoted as BPTT(40)).
We use 20 x 1000 points for training in each epoch. Our
training session lasts for 1620 epochs. The first 600 epochs
are carried out with the parameter By = 100 and the pa-
rameter Q = 0.01. The process noise @ is decreased to
0.003 and 0.001 at epoch numbers 601 and 1401, respec-
tively. The root mean square (RMS) error attained after
600 epochs of training is equal to 0.0273, and it is equal
to 0.020 by the end of training. The final network is tested
on two new time series 128,000 points long (examples of
totally new quadratic functions) resulting in RMS errors of
0.023 and 0.024.

The problem of learning all 16 Boolean functions of two
variables was introduced in [3]. As in the previous task,
we use a 3-16R-16R-1 RMLP with three inputs and 865
trainable weights. The inputs and the target output are
equal to +1.0. The training process is carried out using 16-
stream global EKF with BPTT(32), each segment’s length
of 102 points with only two points at the segment’s begin-
ning assigned to priming from random initial states, and
the training time series composed of 256 randomly chosen
(out of 16) Boolean functions of 256 examples each. We
use 16 x 100 points for training in each epoch. Our train-
ing session lasts for 2400 epochs with the same parameters

Authorized licensed use limited to: Akira Imada. Downloaded on May 16, 2009 at 19:53 from |IEEE Xplore. Restrictions apply.

as in the quadratic function problem. At the end of training
we attain an RMS error of 0.162 with 444 sign errors. The
final network is then tested for two new time series repre-
senting the same 16 Boolean functions but whose order (of
functions themselves and their examples) is different from
the one used for training. The test results are an RMS error
of 0.178 with 555 sign errors and an RMS error of 0.175
with 533 sign errors, as compared to 643 classification er-
rors for the network in [6]'. It is important to note that for
this and other classification tasks superior values of RMS
errors are not as critical as lower counts of errors.

4 Discussion

Our results for these two problems compare favorably to
the results for the same problems presented in [6]. Yet,
we use the standard RMLP architecture proven to work for
other problems. These RMLP are trained to minimize a
quadratic function of error between the target output and
the output of the network. It should be emphasized that,
while the error function is an explicit function of the output,
it is also an implicit function of RNN states and, of course,
weights. The states are initialized to some values (usually
zeros). After initialization they act as dependent variables
of the weights.

By virtue of training RNN weights (or, in limited in-
stances, its construction), the evolution of states z is re-
stricted to specific families of trajectories (orbits). When
an RNN senses a particular type of input for which it was
trained, its states react so as to produce the output response
appropriate for the given input. When a new (but also
known to the RNN) type of input is provided, the states
switch from one family of orbits to another family which
corresponds to the new type. Switching results in an ini-
tial transient behavior manifesting itself in a relatively large
level of output error that persists for a few data points.
When states stabilize at their new orbits, output errors reach
a steady state level. This is acceptably small for a well
trained RNN, but it is probably impossible to guarantee
that errors larger than the steady state may not occasion-
ally occur. In fact, we were able to find such errors in the
Boolean problem and they are included in the total count of
errors reported here. Further testing on much longer time
series did not result in a substantial increase of the error
count. For example, testing our Boolean network on 16
time series representing 100,000 randomly chosen exam-
ples of each function resulted in less than 1 error per 1000
examples on average.

Evolution of states z driven by inputs and constrained
by the network’s architecture and trained weights imitates

1 The errors for the network in {6] were counted with respect to the
threshold of 0.5 in a time series provided to us by S. Younger.

0-7803-7278-6/02/$10.00 ©2002 IEEE 2020

adaptation of parameters in a conventional adaptive sys-
tem. It is this evolution that is responsible for emergence
of adaptive behavior in RNN with fixed weights. It should
be emphasized that there are no requirements for special
structures for such RNN, e.g., like those in [3], [5], [6].
(There is no linear feedback with a weight of unity in the
standard RMLP architecture, because all recurrent nodes
are nonlinear.) Furthermore, it appears possible to extend
the results of theoretical analysis in [10], which treats the
ability of a single network with output-to-input recurrence
to approximate multiple systems to the case of RMLP.

To illustrate the evolution of states, we choose the RMLP
of [7] because it has only 14 hidden nodes in its two fully
recurrent layers. Figures 2 and 3 show outputs of nodes
of both hidden layers and the corresponding output of the
network for each segment of the composite time series (the
network was previously trained to approximate well five
different behaviors shown as individual segments of the
time series). Careful examination reveals that each node
evolves along a different orbit depending on the segment
of the time series. Orbits appear to be not very sensitive
to variations in the input signal. Indeed, Figures 4 and 5
show the difference between orbits of each node for the
same network in two experiments. In the first experiment
the network is fed by the same inputs as in [7]. In the sec-
ond experiment the network is fed by the inputs corrupted
by uniform noise in the range [—0.05, +0.05)]. Such exper-
iments were repeated many times for different realizations
of noise to test the sensitivity of the nodal orbits. The re-
sults are similar to those shown in Figures 4 and 5.

5 Open issues

Careful application of powerful training methods such as
the one mentioned here enables training RNN for tasks
which require adaptive capabilities. Though applied to
training RMLP, the training method referred to can be ex-
tended straightforwardly to all differentiable RNN, includ-
ing LSTM. However, several open issues still remain for
future research.

1. How to achieve efficient training? While we succeeded
in all meta-learning problems attempted thus far using the
training method based on BPTT and EKEF, the training ses-
sion for some problems (e.g., quadratic functions) took
more than three weeks on 800 MHz PC. Does a more effi-
cient method even exist?

2. How to guarantee long-term stability of solutions? For
example, in the two tasks discussed in Section 3 we were
able to confirm an acceptable retention of solutions in lim-
ited testing the two RMLP on sequences of examples of
functions many times longer than those used in training
(similar confirmation was made in {7]). But it is plausi-
ble that, for some input sequences, any trained RNN can

Authorized licensed use limited to: Akira Imada. Downloaded on May 16, 2009 at 19:53 from |IEEE Xplore. Restrictions apply.

R1H LRI 1R R

.

i

L)
i i M

0 80 0 @0 20 2w

Figure 2: Outputs of nodes of the first hidden layer of the
RMLP of [7]. The panel represents 12 different segments
of the time series for five different types of behavior. These
are denoted as follows: H1 and H2 stand for Henon map,
types 1 and 2, respectively; L is a scaled logistic map; R1
and R2 are random outputs of two types. The uppermost
plot illustrates the network’s output. The horizontal grid
lines are separated by 2.5. The outputs of all seven nodes
are denoted as # with the node index. Though their values
are in the range [—1.0, +1.0], their plots are shifted appro-
priately for better visibility.

0-7803-7278-6/02/$10.00 ©2002 IEEE

HIRT L RIHE L RIHIRIH R KD

i m i il 1 }’ ‘ ‘\ |

™

#6

#1 [

B L

400 800 1200 1600 2000 2400

Figure 3: Outputs of nodes of the second hidden layer of
the RMLP of [7]. The uppermost plot illustrates the net-
work’s error y%(t) — §(t). The rest of the notation is the
same as in the previous figure.

Authorized licensed use limited to: Akira Imada. Downloaded on May 16, 2009 at 19:53 from |IEEE Xplore. Restrictions apply.

1RI L RIHI L R

#7 “

#6

5

41—

- e, e ok "
™ o ™ v

#2

#1

—

400 800 1200 1600 2000 2400

Figure 4: Variations of the outputs of nodes of the first hid-
den layer of the RMLP of [7] when the input is corrupted
by the uniform noise. The notation is the same as in Figure
2.

HI R1 L R1HI L Ri HI RT H2 R2 H2
B B ey e e
S L ridace e e
e e
#5
#4 -

#3 Aphac -t — .
#2 - .
#1

400 800 1200 1600 2000 2400

Figure 5: Variations of the outputs of nodes of the second
hidden layer of the RMLP of [7] when the input is cor-
rupted by the uniform noise. The notation is the same as in
Figure 3. Note the slightly larger values of the output error,
as compared to those in Figure 3.

0-7803-7278-6/02/$10.00 ©2002 IEEE

2022

eventually lose its grip on a small-error-level solution and
fail.

3. What is the behavioral capacity of RNN? That is, can
a greater number of meaningful mappings be “squeezed”
into RNN of the fixed size? Experiments suggest that
sometimes the capacity is very large, but othertimes it is not
(e.g., in [7]%). In any event, it is reasonable to ask whether
many behaviors can be always induced reliably via train-
ing. While we are aware of recent results in [11] on ca-
pacity of RNN approximating discrete finite automata, it
remains to be seen if these can be applied to meta-learning
tasks discussed here.

These issues need to be addressed by both practitioners and
theorists in future work.

References

[1]1 L. Feldkamp, G. Puskorius, and P. Moore, “Adaptation from Fixed
Weight Dynamic Networks,” in Proc. of the IEEE International Con-
ference on Neural Networks, 1996.

[2] L. Feldkamp and G. Puskorius, “Fixed-Weight Controller for Multi-
ple Systems,” in Proc. of the International Joint Conference on Neural
Networks, pp. 2268-2272, 1997.

[3] S. Younger, P. Conwell, and N. Cotter, “Fixed-Weight On-Line Learn-
ing,” Trans. on Neural Networks, Vol.10, No.2, pp. 272-283, 1999.

[4] J. Lo, “Adaptive vs. Accommodative Neural Networks for Adaptive
System Identification,” in Proc. of the International Joint Conference
on Neural Networks, pp. 1279-1284, 2001.

[51 S. Younger, S. Hochreiter, and P. Conwell, “Meta-Learning with
Backpropagation,” in Proc. of the International Joint Conference on
Neural Networks, pp. 2001-2006, 2001.

[6] S. Hochreiter, S. Younger, and P. Conwell, “Leaming to Learn Using
Gradient Descent,” in Proc. of ICANN, pp. 87-94, 2001.

[7] L.Feldkamp, D. Prokhorov, and T. Feldkamp, “Conditioned Adaptive
Behavior from a Fixed Neural Network,” in Proc. of the 11th Yale
Workshop on Adaptive and Learning Systems, New Haven, CT, pp.
78-83, 2001.

(8] D. Prokhorov, G. Puskorius, and L. Feldkamp, “Dynamical Neural
Networks for Control,” see in [11].

{9] L. Feldkamp and G. Puskorius, “A Signal Processing Framework
Based on Dynamic Neural Networks with Application to Problems
in Adaptation, Filtering, and Classification,” Proc. of IEEE, Vol.86,
No.11, pp. 2259-2277, 1998.

[10] A.Back and T. Chen, “Approximation of Hybrid Systems by Neural
Networks,” in Proc. of ICONIP, 1997.

[11] A Field Guide to Dynamical Recurrent Networks, J. Kolen and S.
Kremer (Eds.), IEEE Press, 2001.

21t was noted that a smaller RMLP with 10 states (1-5SR-5R-1L) did
not appear likely to be trainable to yield a satisfactory solution, but an
RMLP with 14 states did.

Authorized licensed use limited to: Akira Imada. Downloaded on May 16, 2009 at 19:53 from |IEEE Xplore. Restrictions apply.

