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ABSTRACT 
In this paper, we demonstrate the ability of a single fixed-
weight RNN to act as a dynamic controller for several 
(here 3) distinct wheeled mobile robots, without exact 
knowledge about their dynamics parameters. The 
controller is properly trained to exhibit adaptive behaviour 
after its weights have been fixed. This capability is a 
natural consequence of prior ‘meta-learning’ used recently 
in the area of RNN. 
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1. Introduction 
 
Recently, there has been interest in the observed ability of 
RNNs with fixed weights to model multiple nonlinear 
systems. It has been shown by Feldkamp et. al.[1][2] that 
a single fixed weight RNN can perform one-time-step 
prediction for many distinct time series. In the control 
domain, it is shown in [3] that a RNN can be trained to act 
as a stabilizing controller for three unrelated systems and 
to handle switch between them. This capability is 
acquired through prior training; instead of learning data 
from one system, the network was able to learn from 
several different systems. A theory explanation about this 
property can be found in [4][5]. The adaptive behaviour of 
RNNs with fixed weights is named differently. It is 
termed “meta-learning” in [6], and “accommodative” in 
[7]. Such “multiple modelling” capabilities of RNNs are 
potentially useful in mobile robotics control where fast 
adaptive behaviour of the controller is required.  
In our previous work [8], a novel RNN called Echo State 
Network (ESN) is used to develop a dynamic controller 
for mobile robots, and implemented successfully on a real 
omnidirectional robot. In this paper, the meta-learning 
approach is used to develop an adaptive ESN controller 
for multiple mobile robots. Adaptation here is the ability 
of the resulting fixed-weight ESN to recognize the robot 
parameters variations only through its inputs, and to 
adjust its behaviour to these changes, without changing  

 
 
 
any synaptic weight. An advantage in ESN is that no 
multi-stream training is needed, since its training 
algorithm uses all data for a single time, and does not 
suffer from the recency effect. This property gives the 
ESN much faster learning times in meta-learning 
comparing with the networks used in [2][3][9].  
Computer simulations will show high performances of the 
fixed-weight controller to balance between the variety of 
the reference velocity and the variety of the robots. 

This paper is organized as follows. Section 2 introduces 
the problem to solve. Meta-learning procedure, including 
training approach of the ESN controller, is described in 
Section 3. In section 4, simulation results are presented. 
Finally, discussion and conclusion are drawn in section 5. 
 
 
2. Problem Statement 
 
The problem to solve is that of developing a single robust 
dynamic controller for three distinct nonholonomic 
mobile robots. We adopt here the model presented by 
Takanori et al. [10]. Each robot has the same model 
structure, but their specific parameters result in quite 
different behavior. The mobile robot considered here is 
shown in Figure 1. P0 is the origin of the coordinate 
system and the middle between the wheels. The distance 
from P0 to the center of mass Pc is d.  
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Mobile robot with two actuated wheels 
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The geometric configuration of the robot is described by 

[ ]T
lryxq θθφ ,,,,=  where (x,y) are the coordinates of 

P0, φ  is the heading angle of the mobile robot, and 

lr θθ ,  are the angles of the right and left driving wheels, 

respectively. 
Assuming that the wheels roll and do not slip, the 
kinematic and the dynamic model are given by equations 
(1) and (2), respectively. 

vqSq )(=&          (1) 

τ)(),()( qBvqqVvqM =+ &&      (2) 

[ ]T
lrv θθ &&=  

[ ]T
lr τττ ,=  : Torques applied on right and left wheels. 
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The mass of the body and that of a wheel with a motor are 
mc and mw respectively. Ic, Iw, and Im are the moment of 
inertia of the body about the vertical axis through Pc, the 
wheel with a motor about the wheel axis, and the wheel 
with a motor about the wheel diameter. I and m are given 
by:  
I=mcd

2+I c+2mwb2+2Im, 
m=mc+2mw . 

In this work, the width b, the distance d and the wheel 
radius r are chosen to be different and specific for each of 
the three robots. Table 1 lists their values, where we label 
the robots by I, II, and III. The other parameters values are 
the same for all robots and chosen as in [10].  
 

 b d r 
Robot I 0.4 0.1 0.05 
Robot II 0.75 0.3 0.15 
Robot III 0.3 0.2 0.25 

Table 1. Robots specification 

Our goal here is to train a single ESN to act as a dynamic 
controller for the robots (I, II, and III), in order to track 
predefined reference linear and angular velocities. Upon 
completion of the training, we expect that the ESN 
controller will be capable of detecting the identity of the 
robot, only from the robot output in combination with its 
own state, without changing any synaptic weight. 
Furthermore, we also desire that the trained network be 
capable to minimise reasonably errors between the 
reference and the robots velocities, without knowledge 
about their dynamic-model parameters. 
 
 
3. Procedure 
 
RNNs have a great potential for "black box" modelling of 
non-linear dynamical systems, and they can give 
complementary/new solutions for identification and 
control. However, only few results have been published 
regarding the non-linear system control by RNNs. The 
major reason is because simple and powerful training 
algorithms were missing. Echo State Network is a novel 
RNN in a form of “Dynamic Reservoir”(DR), which 
contains a large number of sparsely interconnected 
neurons with non-trainable weights (Figure 2). ESN has 
an easy training algorithm, where only the reservoir-to-
output weight connections are to be adjusted using a 
linear MSE minimization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Basic architecture of ESN: Only the weights 
connections (Wout) from the internal neurons to the output 
are to be adjusted. Dotted arrows indicate connections that 
are possible but not required. 
 
As presented in Figure 2, activations of input neurons at 
time n are u(n)=(u1(n),…,uk(n)), of internal units are 
x(n)=(x1(n),…xN(n)), and of output neurons are 
y(n)=(y1(n),…yL(n)). The activation of internal and output 
units is updated according to: 

x(n+1)=f(Win(u(n+1)+Wx(n) )  (3) 
y(n+1)=fout(Wout(x(n+1),y(n)))  (4) 

where f and fout  are vectors of sigmoid functions. 
Here is a brief presentation of an offline algorithm for the 
entire learning procedure. 
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1. Generate randomly the matrices (Win,W), scaling the 
weight matrix W such that its maximum eingenvalue 

1max <λ  obtains. 

2. Drive the network using the training input/output data 
and equation 3.  

3. Collect at each time the state x(n) as a new row into a 
state collecting matrix M, and collect similarly at 
each time the sigmoid-inverted teacher output  
tanh-1d(n) into a teacher collection matrix T.  

4. Compute the pseudoinverse of M. and put  
Wout=(M-1T)t,      t: indicates transpose operation.  

The ESN is now trained. For more detailed information, a 
complete tutorial on ESNs can be found in [11].    

Here, the ESN architecture was chosen as follows. 4 
inputs (actual and reference linear and angular velocities 
of the robot), 17 internal neurons, 2 outputs (two torques), 
no back-connection from the output to the DR, and no 
synaptic weight connections from the input directly to the 
output. The input and the internal synaptic connections 
weights were randomly initialized from a uniform 
distribution over [-1, +1]. The internal weight matrix W 
has a sparse connectivity of 20% and scaled such that its 
maximum eingenvalue 3.0max ≈λ . 

To train the ESN as a dynamic controller for mobile 
robots, we used the same training approach described in 
[8]. Figure 3 depicts a block diagram of this approach. At 
time n, actual and delayed angular and linear velocities 
{(w,v)n, (w,v)n+1} were given as inputs to the ESN, and the 
correspondent torques as teacher signals. The ESN 
learned the teacher signals, which bring the robot from the 
actual (n) to the delayed (n+1) angular and linear 
velocities. 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Training of ESN as a dynamic controller for 
mobile robots  

 

 
 
 
 
 
 
 

 
Figure 4. Exploitation of ESN as a dynamic controller for 

mobile robots 

Training was carried out using 3000 random 
heterogeneous input-output sequences. Each 1000 
sequences are collected from one robot. No multi-stream 
training was needed, since the ESN batch learning 
procedure uses all data at once, and does not suffer from 
the recency effect. After network training has been 
completed, the delayed velocities were replaced by the 
reference (desired) ones (wr,vr) (Figure 4). 
In the simulation, we performed several tests on the 
behaviour of the trained network, two of which are 
reported here. In the first, the fixed-weight ESN controller 
was used to control each robot separately. In the second, 
we tested its capability to handle switch between the three 
robots. In the two cases, the reference linear and angular 
velocities are chosen as in [10]. 
 
 
4. Results 
 
During preparation of the network, it was not easy to find 
its optimum parameters in order to obtain a “rich” variety 
of internal dynamics. Using a “relatively” large dimension 
(more than 30 internal neurons) the network lost stability 
at many times and exhibited sometimes high-frequency 
oscillations on smooth test signals. With small dimension 
(say 4-9 internal neurons), the network could not react 
quickly to the velocity variations. For meta-learning, an 
optimum size was found between 16 and 19 internal 
neurons, partially interconnected (20% of connectivity). 
Control results for the first case are present in Figure 5 
and those for the second case in Figure 6. In each figure, 
the panels on the left-hand side show the evolution of a 
robot state (linear and angular velocities), while the right-
hand side panels provide the corresponding control 
signals (torques) given by the ESN controller.  
In figure 5, the right-hand column provides the three 
control signals delivered by the same fixed-weight ESN 
controller for the three robots separately. The three signals 
are superposed in order to facilitate the comparison, and 
to have an idea about the three robots behaviors. As can 
be seen on the left-hand panels, the excellent velocity 
tracking of all robots is evident. On the predefined 
reference linear and angular velocities, the robots I, II, and 
III showed mean square errors of MSE={(1.7534e-004, 
1.2619e-004), (7.9237e-005, 8.6139e-005), (0.0013, 
7.3374e-004)}, respectively. Here, the fixed-weight 
controller did a reasonable job, and could effectively 
deliver the appropriate control signals for each robot. We 
recognize here that the controller trained for many robots 
may not be as effective on a given robot as a controller 
trained only for that robot. In [8], we trained an ESN 
network to control the same robot model, and we had an 
MSE=(5.7670e-007, 1.2057e-005). This result was 
obtained on other reference velocities, but we tried the 
same network also on the reference velocities used here, 
and we obtained almost the same range of MSE value. 
The second case is more complicated. In this case, the 
controller had to handle balance between tracking the 
reference velocity and switch between the three robots. In 
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Figure 5. Linear and Angular velocity tracking (left) and controls (right). Each robot is controlled separately 
with the same fixed-weight ESN controller. 

Reference velocity 

Robot I 
Robot II 
Robot III 



0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

1

time[s]

m
/s

Reference and actual linear velocity

 

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time[s]

ra
d/

s

Reference and actual angular velocity

 
 
 

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

time[s]

T
or

qu
e 

1

Control signal produced by ESN-output 1

 

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

time[s]

T
or

qu
e 

2

Control signal produced by ESN-output 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robot II Robot I Robot III Control for 
Robot II 

Control 
for 

Robot I 

Control 
for Robot 

III  

Figure 6. Linear and Angular velocity tracking (left) and controls (right). The fixed-weight ESN controls the three robots, 
following switches between them. The first switch occurs at time 25s from Robot II to I. The second switch occurs at time 

35s from Robot I to III. 
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figure 6, the first switch occurs at time 25s from Robot II 
to Robot I, and the second one occurs at time 35s from 
Robot I to Robot III. A switch from one Robot to another 
requires the controller outputs to change, since each robot 
has its proper dynamic characteristics. Surprisingly, the 
control is barely affected by these switches. The resulting 
network controller showed smooth and rapid adaptation to 
these changes (see right-hand panels), and the three robots 
tracked reasonably the reference linear and angular 
velocities in their respective time intervals.  
 
 
5. Discussion and conclusion 
 
Here, a single ESN is being asked to control three distinct 
nonholonomic mobile robots. In other words, the ESN 
controller is asked to exhibit a characteristic, normally 
ascribed to adaptive controllers, whose parameters change 
in response to an environmental change. “Adaptation” in 
this work is defined as the ability of the controller to 
recognize change only through the robot output and its 
own state, without changing any synaptic weight. This 
capability is a natural consequence of prior ‘meta-
learning’ used during training. When a “new” input (from 
one robot, which is already learned) is provided, the state 
of the network switch from one family of orbits to 
another, which corresponds to the new input. Also, 
because of the “rich” variety of its internal dynamics, the 
network could make an excellent generalization on new 
incoming data and deliver the appropriate control signals 
for the three robots, in order to track the reference 
velocity.  Here the controller is effective only for those 
robots, for which it has been trained, not for arbitrarily 
chosen robot. 
After training, the fixed-weight ESN controller showed a 
reasonable balance between the variety of the reference 
velocity and the variety of the robots. Furthermore, no 
knowledge about the robots dynamics was required, since 
the controller is designed only by learning their 
Input/Output data. This property is very important in 
practical cases, where it is almost impossible to have the 
real parameters values of a robot.  
All in all, the training experiments carried out here 
demonstrate that a single, small and partially 
interconnected ESN can be trained to act as a dynamic 
controller for multiple distinct mobile robots. However, 
we are aware of a certain degree of arbitrariness in our 
choice of the controller network parameter and 
architecture. Therefore, substantial investigation on ESN 
architecture and more experiments on much larger data 
sets and real implementations are still needed to ensure 
that the results we have achieved to date are indeed 
statistically significant.  
In this paper only simulation testing results are shown. 
Our future work is to implement and test meta-learning 
approach on the omnidirectional Soccer-robots team 
available at our Robotics Lab. 
 
 

Reference: 
 
[1] L.A. Feldkamp, G.V. Puskorius, and P.C. Moore, 

Adaptation from fixed weight dynamic networks, 
IEEE Int. Conf. on Neural Networks, Washington, 
1996,155-160.  

[2] Feldkamp L.A., G.V. Puskorius, and P.C. Moore, 
Adaptive behaviour from fixed weight dynamic 
networks, Information Sciences 98, 1997, 217-235.  

[3] Feldkamp, L. A., & Puskorius, G. V, Fixed weight 
controller for multiple systems, IEEE Int. Conf. on 
NN, Vol 2, Texas, USA 9-12 June 1997, 773-778.  

[4] Andrew.D. Back, Multiple and time-varying dynamic 
modelling capabilities of recurrent neural 
networks, Neural Networks for Signal Processing 7, 
IEEE Press, 1997.   

[5] Andrew D. Back, Tianping Chen, Universal 
Approximation of Multiple Nonlinear Operators by 
Neural Networks, Neural Computation 14(11), 2002, 
2561-2566.  

[6] Prokhorov, D., Feldkamp, L., and I. Tyukin, Adaptive 
Behavior with Fixed Weights in Recurrent Neural 
Networks: An Overview, Int. Joint Conference on 
Neural Networks, Honolulu, Hawaii, May 2002.  

[7] J. Lo, Adaptive vs. Accommodative Neural networks 
for Adaptive System Identification, Int. Joint Conf. 
on Neural Networks, 2001, 2001-2006.  

[8] M. Oubbati, P. Levi, M. Schanz, Recurrent Neural 
Network for Wheeled Mobile Robot Control, WSEAS 
Transaction on Systems, vol. 3, August 2004, 2460-
2467. 

[9] D. Prokhorov, G. Puskorius, and L. Feldkamp, 
Dynamical Neural Networks for Control, In J. Kolen 
and S. Kremer (Eds.) A Field Guide to Dynamical 
Recurrent Networks, IEEE Press, 2001.  

[10] T. Fukao, H. Nakagawa, and N. Adachi, Adaptive 
Tracking Control of a Nonholonomic Mobile Robot, 
IEEE Transactions on robotics and automation, vol. 
16, n°. 5, October 2000, 609-615.  

[11] H. Jaeger, Tutorial on training recurrent neural 
networks, covering BPPT, RTRL, EKF and the "echo 
state network" approach, GMD, Report 159, 2002.  

[12] A.D. Back and T.P. Chen, Approximation of hybrid 
systems by neural networks, Proc of Int. Conf. on 
Neural Information Processing, Springer-Verlag, 
1997, 326-329. 

[13] S. Younger, P. R. Conwell, and N. E. Cotter, Fixed-
Weight On-Line Learning, IEEE Transactions on 
Neural Networks, vol. 10, no. 2, March 1999. 

[14] M-S Kim, J-H Shin, S-G Hong, J-J Lee, Designing a 
robust adaptive dynamic controller for nonholonomic 
mobile robots under modelling uncertainty and 
disturbances, Mechatronics 13, 2003, 507–519.  

[15] M.L Corradini, G. Orlando, Control of mobile robots 
with uncertainties in the dynamical model: a discrete 
time sliding mode approach with experimental 
results, Control Engineering Practice 10, 2002, 23-
34.  


