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ABSTRACT

In this paper, we demonstrate the ability of a Isirffixed-
weight RNN to act as a dynamic controller for sever
(here 3) distinct wheeled mobile robots, without@x
knowledge about their dynamics parameters. The
controller is properly trained to exhibit adaptlehaviour
after its weights have been fixed. This capabilgya
natural consequence of prior ‘meta-learning’ usaxntly

in the area of RNN.
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1. Introduction

Recently, there has been interest in the observiity af
RNNs with fixed weights to model multiple nonlinear
systems. It has been shown by Feldkamp et. al][1jg

a single fixed weight RNN can perform one-time-step
prediction for many distinct time series. In thenirol
domain, it is shown in [3] that a RNN can be traine act
as a stabilizing controller for three unrelatedisys and
to handle switch between them. This capabiliy
acquired through prior training; instead of leaghigiata
from one system, the network was able to learn from
several different systems. A theory explanationualois
property can be found in [4][5]. The adaptive bebaw of
RNNs with fixed weights is named differently. It is
termed “meta-learning” in [6], and “accommodativie”
[7]. Such “multiple modelling” capabilities of RNNare
potentially useful in mobile robotics control whefast
adaptive behaviour of the controller is required.

In our previous work [8], a novel RNN called Echats
Network (ESN) is used to develop a dynamic corgroll
for mobile robots, and implemented successfullyaaeal
omnidirectional robot. In this paper, the meta-éay
approach is used to develop an adaptive ESN céartrol
for multiple mobile robots. Adaptation here is taility

of the resulting fixed-weight ESN to recognize tobot
parameters variations only through its inputs, dad
adjust its behaviour to these changes, without gingn

any synaptic weightAn advantage in ESN is that no
multi-stream training is needed, since its training
algorithm uses all data for a single time, and does
suffer from therecency effectThis property gives the
ESN much faster learning times in meta-learning
comparing with the networks used in [2][3][9].

Computer simulations will show high performanceshaf
fixed-weight controller to balance between the efgriof
the reference velocity and the variety of the rebot

This paper is organized as follows. Section 2 thices
the problem to solve. Meta-learning procedure,udicig
training approach of the ESN controller, is dessuibin
Section 3. In section 4, simulation results ares@néed.
Finally, discussion and conclusion are drawn irtise®.

2. Problem Statement

The problem to solve is that of developing a singleust
dynamic controller for three distinct nonholonomic
mobile robots. We adopt here the model presented by
Takanori et al. [10]. Each robot has the same model
structure, but their specific parameters resultqgirte
different behavior. The mobile robot consideredeher
shown in Figure 1P, is the origin of the coordinate
system and the middle between the wheels. Thendista
from Py to the center of ma$s isd.
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Figure 1. Mobile robot with two actuated wheels



The geometric configuration of the robot is dessditby
gq= [x, Y, @, Hr,B,]T where §,)) are the coordinates of

Po, ¢ is the heading angle of the mobile robot, and
6, ,6, are the angles of the right and left driving wisgel

respectively.

Assuming that the wheels roll and do not slip, the
kinematic and the dynamic model are given by equati
(1) and (2), respectively.

d=S(q)v @
M (a)v+V(q,q)v=B(a)r )
v=1[6, 6

T = [rr , rI]T : Torques applied on right and left wheels.
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The mass of the body and that of a wheel with aorare
m. andm, respectivelyl, l,, andl,, are the moment of
inertia of the body about the vertical axis throlghthe
wheel with a motor about the wheel axis, and theelh
with a motor about the wheel diameteandm are given
by:

I=m o+ +2m,b*+2l

m=ms+2m,,.

In this work, the widthb, the distanced and the wheel
radiusr are chosen to be different and specific for edch o
the three robots. Table 1 lists their values, whesdabel
the robots by I, 1I, and Ill. The other parameteakies are
the same for all robots and chosen as in [10].

b d r
Robot | 0.4 0.1 0.05
Robot Il 0.75 0.3 0.15
Robot IlI 0.3 0.2 0.25

Table 1. Robots specification

Our goal here is to trainsingle ESN to act as a dynamic
controller for the robots (I, I, and Ill), in ordéo track
predefined reference linear and angular velocitigyson
completion of the training, we expect that the ESN
controller will be capable of detecting the identif the
robot, only from the robot output in combinationtiwits
own state, without changing any synaptic weight.
Furthermore, we also desire that the trained ndtvier
capable to minimise reasonably errors between the
reference and the robots velocities, without knolgée
about their dynamic-model parameters.

3. Procedure

RNNs have a great potential for "black box" moaellof
non-linear dynamical systems, and they can give
complementary/new solutions for identification and
control. However, only few results have been piielis
regarding the non-linear system control by RNNse Th
major reason is because simple and powerful trginin
algorithms were missing. Echo State Network is @eho
RNN in a form of ‘Dynamic Reservdi(DR), which
contains alarge number of sparsely interconnected
neurons with non-trainable weightBigure 2).ESN has
an easy training algorithm, wheomly the reservoir-to-
output weight connectionare to be adjusted using a
linear MSE minimization.

DR (N internal neurones)

Figure 2. Basic architecture of ESNDnly the weights
connections\(*") from the internal neurons to the output
are to be adjusted. Dotted arrows indicate conoestihat
are possible but not required.

As presented in Figure 2, activations of input nesrat
time n are uf)=(uy(n),...,w(n)), of internal units are
X(n)=(xz(n),...%x(n)), and of output neurons are
y(n)=(yy(n),...y(n)). The activation of internal and output
units is updated according to:

x(N+1)=F(W"(u(n+1)+Wx(n) ) (3)
y(n+1)=f (WM (x(n+1),y(n))) (4)
where f and®" are vectors of sigmoid functions.

Here is a brief presentation of an offline algaritfor the
entire learning procedure.



1. Generate randomly the matric&¥"(W), scaling the
weight matrixW such that its maximum eingenvalue
A e | < 1 ODtains.

2. Drive the network using the training input/outgata
and equation 3.

3. Collect at each time the stxi@) as a new row into a
state collecting matrixM, and collect similarly at
each time the sigmoid-inverted teacher output
tanh™d(n) into a teacher collection matrix

4. Compute the pseudoinverseMf and put
W=(M?T),  t: indicates transpose operation.

The ESN is now trained=or more detailed informatiorg

complete tutorial on ESNs can be found in [11]

Here, the ESN architecture was chosen as follows. 4
inputs (actual and reference linear and angulavcitéts

of the robot), 17 internal neurons, 2 outputs (targues),

no back-connection from the output to the DR, and n
synaptic weight connections from the input diret¢tlythe
output. The input and the internal synaptic conpast
weights were randomly initialized from a uniform
distribution over [-1, +1]. The internal weight matW
hasa sparse connectivity of 20% and scaled such that i

maximum eingenvalupt | = 0.3.

To train the ESN as a dynamic controller for mobile
robots, we used the same training approach desciibe
[8]. Figure 3 depicts a block diagram of this agmto At
time n, actual and delayed angular and linear vtsc
{(w,V)n, (W,V)n+1} Were given as inputs to the ESN, and the
correspondent torques as teacher signdlee ESN
learned the teacher signals, which bring the rédoot the
actual (n) to the delayed (n+1) angular and linear
velocities.
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Figure 3. Training of ESN as a dynamic controller for
mobile robots
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Figure 4. Exploitation of ESN as a dynamic controller for
mobile robots

Training was carried out using 3000 random
heterogeneous input-output sequences. Each 1000
sequences are collected from one robot.niNdti-stream
training was needed, since the ESN batch learning
procedure uses all data at once, and does not $idfa

the recency effect After network training has been
completed, the delayed velocities were replacedhay
reference (desired) ones, (v) (Figure 4).

In the simulation, we performed several tests oa th
behaviour of the trained network, two of which are
reported here. In the first, the fixed-weight ESiizoller
was used to control each robot separately. In ¢oers,

we tested its capability to handle switch betwémnthree
robots. In the two cases, the reference linearaagilar
velocities are chosen as in [10].

4. Results

During preparation of the network, it was not easfirid

its optimum parameters in order to obtain a “riehtiety

of internal dynamics. Using a “relatively” largam#nsion
(more than 30 internal neurons) the network logbitity

at many times and exhibited sometimes high-freguenc
oscillations on smooth test signals. With small elision
(say 4-9 internal neurons), the network could resct
quickly to the velocity variations. For meta-leangp an
optimum size was found between 16 and 19 internal
neurons, partially interconnected (20% of conndigiiv
Control results for the first case are presentiguie 5
and those for the second case in Figure 6. In &gate,

the panels on the left-hand side show the evolutba
robot state (linear and angular velocities), witile right-
hand side panels provide the corresponding control
signals (torques) given by the ESN controller.

In figure 5, the right-hand column provides theethr
control signals delivered by the same fixed-weig&N
controller for the three robots separately. Thedhsignals
are superposed in order to facilitate the comparismd

to have an idea about the three robots behavigah

be seen on the left-hand panels, the excellentcitglo
tracking of all robots is evident. On the prededfine
reference linear and angular velocities, the robdtsand

[l showed mean square errors of MSEE7534e-004,
1.2619e-004), (7.9237e-005, 8.6139e-005), (0.0013,
7.3374e-004), respectively. Here, the fixed-weight
controller did a reasonable job, and could effetyiv
deliver the appropriate control signals for eadhotoWe
recognize here that the controller trained for mestyots
may not be as effective on a given robot as a obhaitr
trained only for that robot. In [8], we trained &SN
network to control the same robot model, and we drad
MSE=(5.7670e-007, 1.2057e-005). This result was
obtained on other reference velocities, but wedttige
same network also on the reference velocities hsee,
and we obtained almost the same range of MSE value.
The second case is more complicated. In this dhse,
controller had to handle balance between trackimg t
reference velocity and switch between the threetsohn
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Figure5. Linear and Angular velocity tracking (left) andntrols (right). Each robot is controlled sepanatel
with the same fixed-weight ESN controller.
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following switches between them. The first switatwars at time 25s from Robot Il to I. The seconit@dwoccurs at time

35s from Robot | to Ill.



figure 6, the first switch occurs at time 25s fr&obot I

to Robot I, and the second one occurs at time B5n f
Robot | to Robot IlI. A switch from one Robot toadher
requires the controller outputs to change, sinoh eabot

has its proper dynamic characteristics. Surprigintiie
control is barely affected by these switches. Téwuilting
network controller showed smooth and rapid adagpiat
these changes (see right-hand panels), and theribivets
tracked reasonably the reference linear and angular
velocities in their respective time intervals.

5. Discussion and conclusion

Here, a single ESN is being asked to control tkisenct
nonholonomic mobile robots. In other words, the ESN
controller is asked to exhibit a characteristicrnmally
ascribed to adaptive controllers, whose parametenge

in response to an environmental change. “Adaptaiion
this work is defined as the ability of the conteollto
recognize change only through the robot output iémd
own state, without changing any synaptic weightisTh
capability is a natural consequence of prior ‘meta-
learning’ used during training. When a “new” ingfrom
one robot, which is already learned) is providée, state

of the network switch from one family of orbits to
another, which corresponds to the new input. Also,
because of the “rich” variety of its internal dyrias) the
network could make an excellent generalization ew n
incoming data and deliver the appropriate contighals

for the three robots, in order to track the refegen
velocity. Here the controller is effective onlyr fthose
robots, for which it has been trained, not for taily
chosen robot.

After training, the fixed-weight ESN controller shed a
reasonable balance between the variety of the emder
velocity and the variety of the robots. Furthermane
knowledge about the robots dynamics was requiiades
the controller is designed only by learning their
Input/Output data. This property is very important
practical cases, where it is almost impossibleaeehthe
real parameters values of a robot.

All in all, the training experiments carried outrée
demonstrate that a single, small and partially
interconnected ESN can be trained to act as a dgnam
controller for multiple distinct mobile robots. Hewer,
we are aware of a certain degree of arbitrarinessur
choice of the controller network parameter and
architecture. Therefore, substantial investigabonESN
architecture and more experiments on much larg&a da
sets and real implementations are still needednsure
that the results we have achieved to date are dhdee
statistically significant.

In this paper only simulation testing results aheven.
Our future work is to implement and test meta-lesgn
approach on the omnidirectional Soccer-robots team
available at our Robotics Lab.
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