
A FIXED-WEIGHT RNN DYNAMIC CONTROLLER FOR MULTIPLE MOBILE
ROBOTS

Mohamed Oubbati, Paul Levi, and Michael Schanz
Institute of Parallel and Distributed Systems, University of Stuttgart

Universitaetsstrasse 38, D-70569 Stuttgart, Germany
{Mohamed.Oubbati, Paul.Levi, Michael.Schanz}@informatik.uni-stuttgart.de

ABSTRACT
In this paper, we demonstrate the ability of a single fixed-
weight RNN to act as a dynamic controller for several
(here 3) distinct wheeled mobile robots, without exact
knowledge about their dynamics parameters. The
controller is properly trained to exhibit adaptive behaviour
after its weights have been fixed. This capability is a
natural consequence of prior ‘meta-learning’ used recently
in the area of RNN.

KEY WORDS
Mobile robot, Recurrent Neural Networks, Meta-learning,
and Adaptive control

1. Introduction

Recently, there has been interest in the observed ability of
RNNs with fixed weights to model multiple nonlinear
systems. It has been shown by Feldkamp et. al.[1][2] that
a single fixed weight RNN can perform one-time-step
prediction for many distinct time series. In the control
domain, it is shown in [3] that a RNN can be trained to act
as a stabilizing controller for three unrelated systems and
to handle switch between them. This capability is
acquired through prior training; instead of learning data
from one system, the network was able to learn from
several different systems. A theory explanation about this
property can be found in [4][5]. The adaptive behaviour of
RNNs with fixed weights is named differently. It is
termed “meta-learning” in [6], and “accommodative” in
[7]. Such “multiple modelling” capabilities of RNNs are
potentially useful in mobile robotics control where fast
adaptive behaviour of the controller is required.
In our previous work [8], a novel RNN called Echo State
Network (ESN) is used to develop a dynamic controller
for mobile robots, and implemented successfully on a real
omnidirectional robot. In this paper, the meta-learning
approach is used to develop an adaptive ESN controller
for multiple mobile robots. Adaptation here is the ability
of the resulting fixed-weight ESN to recognize the robot
parameters variations only through its inputs, and to
adjust its behaviour to these changes, without changing

any synaptic weight. An advantage in ESN is that no
multi-stream training is needed, since its training
algorithm uses all data for a single time, and does not
suffer from the recency effect. This property gives the
ESN much faster learning times in meta-learning
comparing with the networks used in [2][3][9].
Computer simulations will show high performances of the
fixed-weight controller to balance between the variety of
the reference velocity and the variety of the robots.

This paper is organized as follows. Section 2 introduces
the problem to solve. Meta-learning procedure, including
training approach of the ESN controller, is described in
Section 3. In section 4, simulation results are presented.
Finally, discussion and conclusion are drawn in section 5.

2. Problem Statement

The problem to solve is that of developing a single robust
dynamic controller for three distinct nonholonomic
mobile robots. We adopt here the model presented by
Takanori et al. [10]. Each robot has the same model
structure, but their specific parameters result in quite
different behavior. The mobile robot considered here is
shown in Figure 1. P0 is the origin of the coordinate
system and the middle between the wheels. The distance
from P0 to the center of mass Pc is d.

Figure 1. Mobile robot with two actuated wheels

y

right wheel x
2r

left wheel

x
d

P0
Pc φ

2b

X

Y

x

Proceedings of the 24th IASTED International Conference
MODELLING, IDENTIFICATION, AND CONTROL
February 16-18, 2005, Innsbruck, Austria

The geometric configuration of the robot is described by

[]T
lryxq θθφ ,,,,= where (x,y) are the coordinates of

P0, φ is the heading angle of the mobile robot, and

lr θθ , are the angles of the right and left driving wheels,

respectively.
Assuming that the wheels roll and do not slip, the
kinematic and the dynamic model are given by equations
(1) and (2), respectively.

vqSq)(=& (1)

τ)(),()(qBvqqVvqM =+ && (2)

[]T
lrv θθ &&=

[]T
lr τττ ,= : Torques applied on right and left wheels.





























−
=

10

01
22

sin
2

sin
2

cos
2

cos
2

)(

b

r

b

r

rr

rr

qS
φφ

φφ



















−
=

0
2

2
0

2

2

φ

φ

&

&

dm
b

r

dm
b

r

V

c

c



















++−

−++
=

w

w

IImb
b

r
Imb

b

r

Imb
b

r
IImb

b

r

M
)(

4
)(

4

)(
4

)(
4

2
2

2
2

2

2

2
2

2
2

2

2









=

10

01
B

The mass of the body and that of a wheel with a motor are
mc and mw respectively. Ic, Iw, and Im are the moment of
inertia of the body about the vertical axis through Pc, the
wheel with a motor about the wheel axis, and the wheel
with a motor about the wheel diameter. I and m are given
by:
I=mcd

2+I c+2mwb2+2Im,
m=mc+2mw .

In this work, the width b, the distance d and the wheel
radius r are chosen to be different and specific for each of
the three robots. Table 1 lists their values, where we label
the robots by I, II, and III. The other parameters values are
the same for all robots and chosen as in [10].

 b d r
Robot I 0.4 0.1 0.05
Robot II 0.75 0.3 0.15
Robot III 0.3 0.2 0.25

Table 1. Robots specification

Our goal here is to train a single ESN to act as a dynamic
controller for the robots (I, II, and III), in order to track
predefined reference linear and angular velocities. Upon
completion of the training, we expect that the ESN
controller will be capable of detecting the identity of the
robot, only from the robot output in combination with its
own state, without changing any synaptic weight.
Furthermore, we also desire that the trained network be
capable to minimise reasonably errors between the
reference and the robots velocities, without knowledge
about their dynamic-model parameters.

3. Procedure

RNNs have a great potential for "black box" modelling of
non-linear dynamical systems, and they can give
complementary/new solutions for identification and
control. However, only few results have been published
regarding the non-linear system control by RNNs. The
major reason is because simple and powerful training
algorithms were missing. Echo State Network is a novel
RNN in a form of “Dynamic Reservoir”(DR), which
contains a large number of sparsely interconnected
neurons with non-trainable weights (Figure 2). ESN has
an easy training algorithm, where only the reservoir-to-
output weight connections are to be adjusted using a
linear MSE minimization.

Figure 2. Basic architecture of ESN: Only the weights
connections (Wout) from the internal neurons to the output
are to be adjusted. Dotted arrows indicate connections that
are possible but not required.

As presented in Figure 2, activations of input neurons at
time n are u(n)=(u1(n),…,uk(n)), of internal units are
x(n)=(x1(n),…xN(n)), and of output neurons are
y(n)=(y1(n),…yL(n)). The activation of internal and output
units is updated according to:

x(n+1)=f(Win(u(n+1)+Wx(n)) (3)
y(n+1)=fout(Wout(x(n+1),y(n))) (4)

where f and fout are vectors of sigmoid functions.
Here is a brief presentation of an offline algorithm for the
entire learning procedure.

k Input neurones
u1

uk

y1

yL

DR (N internal neurones)

L Output neurones

 Win
W

Wout

1. Generate randomly the matrices (Win,W), scaling the
weight matrix W such that its maximum eingenvalue

1max <λ obtains.

2. Drive the network using the training input/output data
and equation 3.

3. Collect at each time the state x(n) as a new row into a
state collecting matrix M, and collect similarly at
each time the sigmoid-inverted teacher output
tanh-1d(n) into a teacher collection matrix T.

4. Compute the pseudoinverse of M. and put
Wout=(M-1T)t, t: indicates transpose operation.

The ESN is now trained. For more detailed information, a
complete tutorial on ESNs can be found in [11].

Here, the ESN architecture was chosen as follows. 4
inputs (actual and reference linear and angular velocities
of the robot), 17 internal neurons, 2 outputs (two torques),
no back-connection from the output to the DR, and no
synaptic weight connections from the input directly to the
output. The input and the internal synaptic connections
weights were randomly initialized from a uniform
distribution over [-1, +1]. The internal weight matrix W
has a sparse connectivity of 20% and scaled such that its
maximum eingenvalue 3.0max ≈λ .

To train the ESN as a dynamic controller for mobile
robots, we used the same training approach described in
[8]. Figure 3 depicts a block diagram of this approach. At
time n, actual and delayed angular and linear velocities
{(w,v)n, (w,v)n+1} were given as inputs to the ESN, and the
correspondent torques as teacher signals. The ESN
learned the teacher signals, which bring the robot from the
actual (n) to the delayed (n+1) angular and linear
velocities.

Figure 3. Training of ESN as a dynamic controller for
mobile robots

Figure 4. Exploitation of ESN as a dynamic controller for

mobile robots

Training was carried out using 3000 random
heterogeneous input-output sequences. Each 1000
sequences are collected from one robot. No multi-stream
training was needed, since the ESN batch learning
procedure uses all data at once, and does not suffer from
the recency effect. After network training has been
completed, the delayed velocities were replaced by the
reference (desired) ones (wr,vr) (Figure 4).
In the simulation, we performed several tests on the
behaviour of the trained network, two of which are
reported here. In the first, the fixed-weight ESN controller
was used to control each robot separately. In the second,
we tested its capability to handle switch between the three
robots. In the two cases, the reference linear and angular
velocities are chosen as in [10].

4. Results

During preparation of the network, it was not easy to find
its optimum parameters in order to obtain a “rich” variety
of internal dynamics. Using a “relatively” large dimension
(more than 30 internal neurons) the network lost stability
at many times and exhibited sometimes high-frequency
oscillations on smooth test signals. With small dimension
(say 4-9 internal neurons), the network could not react
quickly to the velocity variations. For meta-learning, an
optimum size was found between 16 and 19 internal
neurons, partially interconnected (20% of connectivity).
Control results for the first case are present in Figure 5
and those for the second case in Figure 6. In each figure,
the panels on the left-hand side show the evolution of a
robot state (linear and angular velocities), while the right-
hand side panels provide the corresponding control
signals (torques) given by the ESN controller.
In figure 5, the right-hand column provides the three
control signals delivered by the same fixed-weight ESN
controller for the three robots separately. The three signals
are superposed in order to facilitate the comparison, and
to have an idea about the three robots behaviors. As can
be seen on the left-hand panels, the excellent velocity
tracking of all robots is evident. On the predefined
reference linear and angular velocities, the robots I, II, and
III showed mean square errors of MSE={(1.7534e-004,
1.2619e-004), (7.9237e-005, 8.6139e-005), (0.0013,
7.3374e-004)}, respectively. Here, the fixed-weight
controller did a reasonable job, and could effectively
deliver the appropriate control signals for each robot. We
recognize here that the controller trained for many robots
may not be as effective on a given robot as a controller
trained only for that robot. In [8], we trained an ESN
network to control the same robot model, and we had an
MSE=(5.7670e-007, 1.2057e-005). This result was
obtained on other reference velocities, but we tried the
same network also on the reference velocities used here,
and we obtained almost the same range of MSE value.
The second case is more complicated. In this case, the
controller had to handle balance between tracking the
reference velocity and switch between the three robots. In

mobile robot

Z+1

Torques

yi

+ -
ESN

(w,v)

(wr,vr)

control
signal(torques)

ESN mobile
robot

(w,v)

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

1

time[s]

m
/s

Reference and actual linear velocity

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time[s]

ra
d/

s

Reference and actual angular velocity

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

2

4

6

time[s]

T
or

qu
e

1

Control signal produced by ESN-output 1

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

time[s]

T
or

qu
e

2

Control signal produced by ESN-output 2

Control signal for Robot I
Control signal for Robot II
Control signal for Robot III

Figure 5. Linear and Angular velocity tracking (left) and controls (right). Each robot is controlled separately
with the same fixed-weight ESN controller.

Reference velocity

Robot I
Robot II
Robot III

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

1

time[s]

m
/s

Reference and actual linear velocity

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time[s]

ra
d/

s

Reference and actual angular velocity

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

time[s]

T
or

qu
e

1

Control signal produced by ESN-output 1

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

time[s]

T
or

qu
e

2

Control signal produced by ESN-output 2

Robot II Robot I Robot III Control for
Robot II

Control
for

Robot I

Control
for Robot

III

Figure 6. Linear and Angular velocity tracking (left) and controls (right). The fixed-weight ESN controls the three robots,
following switches between them. The first switch occurs at time 25s from Robot II to I. The second switch occurs at time

35s from Robot I to III.

Reference velocity

Robots actual velocity

figure 6, the first switch occurs at time 25s from Robot II
to Robot I, and the second one occurs at time 35s from
Robot I to Robot III. A switch from one Robot to another
requires the controller outputs to change, since each robot
has its proper dynamic characteristics. Surprisingly, the
control is barely affected by these switches. The resulting
network controller showed smooth and rapid adaptation to
these changes (see right-hand panels), and the three robots
tracked reasonably the reference linear and angular
velocities in their respective time intervals.

5. Discussion and conclusion

Here, a single ESN is being asked to control three distinct
nonholonomic mobile robots. In other words, the ESN
controller is asked to exhibit a characteristic, normally
ascribed to adaptive controllers, whose parameters change
in response to an environmental change. “Adaptation” in
this work is defined as the ability of the controller to
recognize change only through the robot output and its
own state, without changing any synaptic weight. This
capability is a natural consequence of prior ‘meta-
learning’ used during training. When a “new” input (from
one robot, which is already learned) is provided, the state
of the network switch from one family of orbits to
another, which corresponds to the new input. Also,
because of the “rich” variety of its internal dynamics, the
network could make an excellent generalization on new
incoming data and deliver the appropriate control signals
for the three robots, in order to track the reference
velocity. Here the controller is effective only for those
robots, for which it has been trained, not for arbitrarily
chosen robot.
After training, the fixed-weight ESN controller showed a
reasonable balance between the variety of the reference
velocity and the variety of the robots. Furthermore, no
knowledge about the robots dynamics was required, since
the controller is designed only by learning their
Input/Output data. This property is very important in
practical cases, where it is almost impossible to have the
real parameters values of a robot.
All in all, the training experiments carried out here
demonstrate that a single, small and partially
interconnected ESN can be trained to act as a dynamic
controller for multiple distinct mobile robots. However,
we are aware of a certain degree of arbitrariness in our
choice of the controller network parameter and
architecture. Therefore, substantial investigation on ESN
architecture and more experiments on much larger data
sets and real implementations are still needed to ensure
that the results we have achieved to date are indeed
statistically significant.
In this paper only simulation testing results are shown.
Our future work is to implement and test meta-learning
approach on the omnidirectional Soccer-robots team
available at our Robotics Lab.

Reference:

[1] L.A. Feldkamp, G.V. Puskorius, and P.C. Moore,

Adaptation from fixed weight dynamic networks,
IEEE Int. Conf. on Neural Networks, Washington,
1996,155-160.

[2] Feldkamp L.A., G.V. Puskorius, and P.C. Moore,
Adaptive behaviour from fixed weight dynamic
networks, Information Sciences 98, 1997, 217-235.

[3] Feldkamp, L. A., & Puskorius, G. V, Fixed weight
controller for multiple systems, IEEE Int. Conf. on
NN, Vol 2, Texas, USA 9-12 June 1997, 773-778.

[4] Andrew.D. Back, Multiple and time-varying dynamic
modelling capabilities of recurrent neural
networks, Neural Networks for Signal Processing 7,
IEEE Press, 1997.

[5] Andrew D. Back, Tianping Chen, Universal
Approximation of Multiple Nonlinear Operators by
Neural Networks, Neural Computation 14(11), 2002,
2561-2566.

[6] Prokhorov, D., Feldkamp, L., and I. Tyukin, Adaptive
Behavior with Fixed Weights in Recurrent Neural
Networks: An Overview, Int. Joint Conference on
Neural Networks, Honolulu, Hawaii, May 2002.

[7] J. Lo, Adaptive vs. Accommodative Neural networks
for Adaptive System Identification, Int. Joint Conf.
on Neural Networks, 2001, 2001-2006.

[8] M. Oubbati, P. Levi, M. Schanz, Recurrent Neural
Network for Wheeled Mobile Robot Control, WSEAS
Transaction on Systems, vol. 3, August 2004, 2460-
2467.

[9] D. Prokhorov, G. Puskorius, and L. Feldkamp,
Dynamical Neural Networks for Control, In J. Kolen
and S. Kremer (Eds.) A Field Guide to Dynamical
Recurrent Networks, IEEE Press, 2001.

[10] T. Fukao, H. Nakagawa, and N. Adachi, Adaptive
Tracking Control of a Nonholonomic Mobile Robot,
IEEE Transactions on robotics and automation, vol.
16, n°. 5, October 2000, 609-615.

[11] H. Jaeger, Tutorial on training recurrent neural
networks, covering BPPT, RTRL, EKF and the "echo
state network" approach, GMD, Report 159, 2002.

[12] A.D. Back and T.P. Chen, Approximation of hybrid
systems by neural networks, Proc of Int. Conf. on
Neural Information Processing, Springer-Verlag,
1997, 326-329.

[13] S. Younger, P. R. Conwell, and N. E. Cotter, Fixed-
Weight On-Line Learning, IEEE Transactions on
Neural Networks, vol. 10, no. 2, March 1999.

[14] M-S Kim, J-H Shin, S-G Hong, J-J Lee, Designing a
robust adaptive dynamic controller for nonholonomic
mobile robots under modelling uncertainty and
disturbances, Mechatronics 13, 2003, 507–519.

[15] M.L Corradini, G. Orlando, Control of mobile robots
with uncertainties in the dynamical model: a discrete
time sliding mode approach with experimental
results, Control Engineering Practice 10, 2002, 23-
34.

