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Recently, there has been interest in the observed capabilities of some classes of neural
networks with fixed weights to model multiple nonlinear dynamical systems. While this
property has been observed in simulations, open questions exist as to how this property can
arise. In this paper, we propose a theory which provides a possible mechanism by which this
multiple modeling phenomena can occur.

1 Introduction

Understanding the mechanisms by which neural networks can approximate functions, functionals
and operators has generated significant interest in recent years. The property of universal function
approximation has been proven for various feedforward neural network models (see for example
Homik, Stinchcombe & White 1989). In dynamic' networks with embedded time delays, these
results have been extended to the case of universal functional approximation (Chen & Chen 1993)
and universal operator approximation (Sandberg 1991, Chen & Chen 1995). Universal approxima-
tion properties for recurrent neural networks over a finite time interval have been proven by Sontag
(1992).

Related work in continuously or discretely time-varying dynamical systems exists in the litera-
ture under various names, eg. multiple controllers (Narendra, Balakrishnan & Ciliz 1995), modular
neural networks (Jacobs, Jordan, Nowlan & Hinton 1991, Schmidhuber 1992), hybrid systems
(Branicky, Borkar & Mitter 1994, Brockett 1993, Branicky 1996, Lemmon & Antsaklis 1995). Re-
cently, several researchers have shown independently that some types of neural network are capable
of learning to model several different dynamical systems within one structure (Feldkamp, Puskorius
& Moore 1997, Younger, Conwell & Cotter 1999, Hochreiter & Schmidhuber 1997, Hochreiter,
Younger & Conwell 2001).

In this paper we provide a theoretical explanation of a mechanism by which neural network
models can approximate dynamical systems that change continuously or switch between some form
of ‘characteristic’ behaviours. We refer to such systems as multiple nonlinear operator (MNO)
models. In the next section we present results on the universal approximation of multiple nonlinear
operators by neural networks followed by a brief example.

1We refer to neural networks with time-delay or recurrent connections as dyrnamic neural network models.



2 Universal Approximation of Multiple Nonlinear Operators

2.1 Functional and Operator Approximation

It is well known that nonlinear dynamical systems can be treated as functionals and operators (Chen
& Chen 1995, Sandberg 1991, Stiles, Sandberg & Ghosh 1997). The time delay neural network
(TDNN) functional (Chen & Chen 1995) is defined on a compact set in CJ, ), (the space of all
continuous functions), and is given by
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where u(t) is a continuous real-valued output at time .

A more general class of model which has significant implications for modeling dynamic
systems, are those capable of approximating arbitrary nonlinear operators. For dynamic models,
this means mapping from one time-varying sequence (a function of time) to another. Recently,
Chen & Chen (1995) proved universal approximation for the following operator model
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where G(u)(y) is an arbitrary nonlinear operator with inputs v and y.

The Chen network can be regarded as a feedforward network with two weight layers, in which
the output weights have each been replaced by a two layer functional approximating network. The
idea of these ‘parameter replacement’ networks, has also been proposed independently elsewhere
(Priestley 1980, Back & Chen 1998, Schmidhuber 1992). In this previous work universal operator
approximation properties were not proven however.

2.2 Multiple Nonlinear Operator Approximation

Consider a multiple nonlinear operator H, defined broadly as a set of mappings of the form
H: F;, — F,{1,where i = 1,2, ... is the index of the discrete functionals in the discrete multiple
model case, or H : F,, — F} corresponding to the continuous multiple model case. Such a model
encapsulates the basic framework of multiple model capabilities observed recently in various neural
networks (Feldkamp et al. 1997).

Following a similar approach to (Chen & Chen 1995), it is possible to construct a network
which performs the task of universally approximating a multiple nonlinear operator. We obtain the
following theorem:

Theorem 1 Suppose that g is a nonpolynomial, continuous, bounded function, X is a Banach
Space, K1 C X is a compact setin X and Ko CR", K3 CR", Ky CR" are compact sets in R™,
V is a compact set in C (K1), Z is a compact set in C (K3), G is a nonlinear continuous operator,
which maps V into C (Kz2) x C (K3), then for any € > 0, there are positive integers M, N, P,
m, p, constants cfh,<p§h,pfh,§k,§fj,9f € R,pointswy, € Rz € K1,z € Kgi=1,---, M,
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holds for allu € V,ye Ky and z € Z.

Proof. From Theorems 3 and 5 in (Chen & Chen 1995), and following the same approach as in
Theorem 5 (Chen & Chen 1995), we assume that G is a continuous operator which maps a compact
set Z in C (K3) into C' (K4) . Hence G (Z) = {G(z) : z € Z} is also a compact set in C (K4).
From Theorem 3 (Chen & Chen 1995) we have for any € > 0, a positive integer N, real numbers
(G (2)),0 z,gk '5” € R,vectorswy, € R",i=1,---,N,j=1,---m,k=1,---, N such that
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holds forall y € Ko, v € V,and z € Z.
As before, we note that since G is a continuous operator, for each k = 1,- - -, N, c¥ (G (2))
is a continuous functional defined on Z. Hence, by applying Theorem 4 (Chen & Chen 1995) for
eachi=1,---, N, k=1,---, N, it is possible to determine positive integers Ny, my, constants
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holds foralli =1,---,N,k=1,---,N and z € Z where

L= Z sup |g (Wi -y + k)| (6)
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Therefore, substituting (5) into (4), we have
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Let P = maxk{Nk} p= maxk{mk} ckh—O‘v’Nk<h<Pandgoll =0Vmr <Il<p.
Hence we have
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This model can be interpreted as the z input acting as a dynamic ‘gating” mechanism which by
virtue of its universal functional approximation capabilities on a compact set, allows the selection
of a particular operator, defined by the encompassed Chen network. The mapping of the z input
allows the effective output weights c*” to be varied such that the desired operators can be chosen.
Thus, the operator map which is given by the mapping on u(x;) can now be adjusted arbitrarily
for every z input. The implication is that G(u)(y)(z) C K, and we obtain a network capable of
universally approximating any multiple nonlinear operator on a compact set by allowing the input
z to select any unique operator mapping. Hence, a fixed weight network of this type is capable of
approximating multiple dynamic systems, as observed in some classes of neural networks.

Example
An example multiple nonlinear operator, demonstrating the model, can be synthesized as follows.
Let there exist an MNO defined by H,, (u)(z)(t) = Hy, (u)z(t), where
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We introduce coefficient functions ¢; (), ¢ = 1, 2 given by
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The characteristics of the model H,,, varies as a function of the ancillary input signal w. It is not
difficult to select model parameters to observe widely varying model characteristics.

The resulting MNO model encompasses multiple operators of the general form given in (9).
The model can also be viewed as an extension of the usual bilinear structure, described in terms of
the difference equation form of nonlinear pole-zero model given by

y(t) 2(t) + ¢ (W) y (E—1) + (o (8 y(t —2)
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where x(¢) is the input and y(¢) is the output.

3 Conclusions

In this paper, we have proposed a new theorem of multiple nonlinear operator approximation. This
theorem provides an explanation of how the phenomena of multiple models can occur in dynamic
neural networks. The proposed theorem is an extension of Chen and Chen’s earlier results on
universal operator approximation. It is hoped that the work presented here will serve to stimulate
additional research into this potentially powerful capability of neural networks.
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