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| Abstract

J There has been much interest in learning long-term temporal dependencies
* with neural networks. Adequately learning such long-term information can be
useful in many problems in signal processing, control and prediction.

| A class of recurrent neural networks (RNNs), NARX neural networks, were
shown to perform much better than other recurrent neural networks when learn-
] ing simple long-term dependency problems. The intuitive explanation is that
! the output memories of a NARX network can be manifested as jump-ahead
J connections in the time-unfolded network.

Here we show that similar improvements in learning long-term dependen-
cies can be achieved with other classes of recurrent neural network architectures
simply by increasing the order of the embedded memory. Experiments with lo-
cally recurrent networks, and NARX (output feedback) networks show that all
of these classes of network architectures can have a significant improvement
on learning long-term dependencies as the orders of embedded memory are in-
creased, other things be held constant. These results can be important to a user
comfortable with a specific recurrent neural network architecture because sim-
ply increasing the embedding memory order of that architecture will make it
more robust to the problem of long-term dependency learning.

1 Introduction

Recurrent Neural Networks (RNNs), though capable of representing arbitrary non-
linear dynamical systems [25] and computationally quite powerful {26], can some-
times have difficulty learning even simple temporal behavior. Part of this difficulty
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has been attributed to the problem of long-term dependeﬁcies [2, 19], i.e. those prob-
lems for which the desired output of a system at time T' depends on inputs presented
attimest < T

In particular Bengio er al. [2] showed that if a system is to latch information ro-
bustly, then the fraction of the gradient in a gradient-based training algorithm due to
information n time steps in the past approaches zero as n becomes large. This effect
is called the problem of vanishing gradient. Bengio et al. claimed that the problem
of a vanishing gradient is the essential reason why gradient-descent methods are not
sufficiently powerful to learn long-term dependencies.

Several approaches have been suggested to circumvent the problem of vanishing
gradients in training RNNs: presetting initial weights by using prior knowledge [6,
9], alternative optimization methods instead of gradient-based [2], reduced descrip-
tion of data [19, 23, 24], architectures that operate on multiple time scales [10, 11]
and architectures with high-order gating units[12].

A class of recurrent neural networks called NARX networks can perform much
better at learning long-term dependencies when using a gradient descent training
algorithm [17]. The intuitive explanation for this behavior is that the output mem-
ories of a NARX neural network are manifested as jump-ahead connections in the
time-unfolded network that is often associated with algorithms as Backpropagation
Through Time (BPTT). These jump-ahead connections provide shorter paths for
propagating gradient information, thus reducing the sensitivity of the network to
long-term dependencies.

We hypothesize that the similar improvement on learning long-term dependen-
cies can be achieved in other classes of recurrent neural network architectures by
increasing the orders of embedded memory. (One of the first uses of embedded
memory in recurrent network architectures was that of Jordan [14].) In this paper,
we empirically justify this hypothesis by showing the relationship between mem-
ory order of a RNN and its sensitivity to long-term dependencies. In Section 2,
we discuss three classes of conventional recurrent neural networks architectures:
globally recurrent networks (the architecture, not the training procedure, used by
Elman) [5]; locally recurrent networks (in particular the Frasconi, Gori and Soda’s
model) [7]; NARX networks [3, 21], and their corresponding models with a high
order embedded memory. In Section 3, we provide a empirical comparison of these
architectures by investigating their performance on learning two simple long-term
dependencies problems: the latching problem and a grammatical inference problem.
These simulations show that these classes of recurrent neural network architectures
all demonstrate significant improvement on learning long-term dependencies when
the embedded memory order is increased and weights remain relatively the same.
Thus, a user of one of these recurrent architectures can readily improve their robust-
ness to long-term memory problems simply by increasing the amount of embedded
memory, all other variables remaining constant.
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2 Embedding memory order in recurrent neural network archi-
tectures

Several recurrent neural network architectures have been proposed; for a collection
of papers on the variety see {8]. One taxometric classification for these architectures
can be based on the observability of their states: specifically they can be broadly
divided into two groups depending on whether or not the states of the network are
observable or not [13]. For another taxometric approach based on memory types, see
Mozer [20]. For this study we picked three classes of networks: globally recurrent
(GR) networks [5], locally recurrent networks (LR) {7], and NARX networks [3,
21]; and their corresponding architectures with high-order embedded memory. It
should be pointed out that our embedded memory simply consists of simple tapped
delayed values to various neurons and not more sophisticated embedded memory
structures [20, 4]. NARX networks are a typical model of networks with observable
states. GR networks are a popular class of network with globally connected hidden
states, and LR networks belong to locally recurrent network architecture class also
with hidden states:

2.1 Globally connected RNNs

These networks (which we will call GR networks) are a class of recurrent networks
in which the feedback connections come from the state vector to the hidden layer,
as illustrated in Figure 1 (a). These hidden states are sometimes called context units
in the literature. Suppose such a network with n,, input nodes, np, hidden nodes of,
and n,, output nodes, the dynamic equation can be described by:

j=1 k=1

TR Ty
oi(t) = f (wajf’j(t—1)+Zw§‘kuk(t)+wf) . )

vit) = f (Z w;0;(t) +w§’> , 2
Jj=1

where-o(t) and y(t) denotes the real valued outputs of the hidden and output neurons
at time ¢, and f is the nonlinear function.

This network with a high order of embedded memory differs from standard glob-
ally connected recurrent network in that they have more than one state vector per
feedback loop. Specially, for a GR network with embedded memory of order m, the
dynamic equations of hidden nodes become:

m T'h ny
0i(t) = f (Z wa‘jmo,-(t~k)+sz‘kuk(t)+wf> . 3)
k=1j=1 k=1

Figure 1 (b) illustrates an GR network with embedded memory of order two.

2.2 Locally recurrent networks

In this class of networks, the feedback connections are only allowed from neurons to
themselves, and the nodes are connected together in a feed forward architecture [1,
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Figure 1. (a) A standard GR network. (b) A GR network with embedded memory
of order two.

15, 7, 22, 29]. Specifically, we consider networks proposed by Frasconi et al. [7]
(we will call LR), as shown in Figure 2 (a). The dynamic neurons of LR networks
can be described by

oi(t) = f (wlhioi(t —D 4> whu;(t) +w§’) , 4)
J

where 0;(t) denotes the output of the i** node at time ¢, and f is the nonlinearity. For
a network with embedded memory of order m, the output of the dynamic neurons
becomes

o,—(t):f(Z w:‘io;(t—n)+2w:‘juj(t)+wf). (5)
n=1 3

Figure 2 (b) shows a LR network with embedded memory of order two. Locally
recurrent models usually differ in where and how much output feedback is permitted;
see [29] for a discussion of architectural differences.

2.3 NARX recurrent neural networks
An important class of discrete—time nonlinear systems 1s the Nonlinear AutoRegres-
sive with eXogeneous inputs (NARX) model [3, 18, 27, 28]:

y(®) = f (u(t = Do), ult) it = Dy, ult = 1)), ©

where u(t) and y(t) represent input and output of the network at time ¢, D,, and D,
are the input-memory and output-memory order, and the function f is a nonlinear
function. When the function f can be approximated by a Mulitilayer Perceptron, the
resulting system is called a NARX recurrent neural network (3, 21].
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Figure 2: (a) A standard LR network. (b) A LR network with embedded memory of
order two.

In this paper, we shall consider NARX networks with zero input order. Thus, the
operation of the network id defined by

y(t) = £ (u(®) y(t = Dy),... ,y(t - D). @

Figure 3 shows a NARX architecture with output memory of order 3.

3 Experimental Results

Simulations were performed to explore the effect of embedded memory on learn-
ing long-term dependencies in these three different recurrent network architectures.
The long-term dependency problems investigated were the latching problem and a
grammatical inference problem. These problems were chosen because they are sim-
ple and should be easy to learn but exemplify the long-term dependency issue. For
more complex problems involving long-term dependencies see [12].

In order to establish some metric for comparison of the experimental results, we
gave the recurrent networks sufficient resources (number of weights and training ex-
amples, adequate training time) to readily solve the problem but heid the the number
of weights approximately invariant across all architectures. Also note that in some
cases the order of the embedded memory is the same.

3.1 The latching problem

This experiment evaluates the performance of different recurrent network architec-
tures with various order of embedded memory on a problem already used for study-
ing the difficulty in learning long-term dependencies [2, 11, 17].

This problem is a minimal task designed as a test that must necessarily be passed
in order for a network to robustly latch information {2]. In this two-class problem,
the class of a sequence depends only on the first 3 time steps, the remaining values
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Figure 3: A NARX network with output memory of order 3.

Architecture Network Description # weights
Memory order | #states | # hidden neurons | In-hid-out

GR(1) 1 6 6 nodes 3-6-1 85
GR(2) 2 10 5 nodes 3-5-1 91
GR(3) 3 12 4 nodes 3-4-1 81

NARX(2) 2 2 11 nodes 3-11-1 111

NARX(4) 4 4 8 nodes 3-8-1 97

NARX(6) 6 6 6 nodes 3-6-1 85
LR(1) 1 14 14 nodes 3-14-1 109
LR(2) 2 22 11 nodes 3-11-1 110
LR(3) 3 27 9 nodes 3-9-1 111

Table 1: Architecture description of different recurrent networks used for the latch-
ing problem. We used the hyperbolic tangent function as the nonlinear function for
each neuron.
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in the sequence is uniform noise. There are three inputs u; (t), uz(t), and a noise
input e(¢). Both uy () and uz(t) are zero for all times t > 1. At time t = 1,
u1(1) = 1 and uz(1) = 0 for samples from class 1, and u1(1) = 0 and uz(1) =1
for samples from class 2. The class information of each strings is contained in u1 (t)
and uz(t). We used two delay elements for both uy () and uz(t) in order to hold the
class information until ¢t = 3. The noise input e(t) is given by

0 t<3
et) = {U(—b, b)) 3<t<T ®

where U(—b,b) are samples drawn uniformly from [—0.155,0.155]. Target infor-
mation was only provided at the end of each sequence. For comparison, our training
particulars are identical to those of [2]. For strings from class one, a target value of
0.8 was chosen, for class two, —0.8 was chosen. The length of the noisy sequence
could be varied in order to control the span of long-term dependencies. For our ex-
periment, the input sequences were 1 and 0 and were one-hot encoded into two input
neurons with trainable weights.

For each of these three architectures previously discussed, several networks with
different orders of embedded memory were trained. To compare the effects of dif-
ferent orders of embedded memory in every class of networks on learning long-term
dependencies while holding as many other factors as possible constant, particular
attention was paid to equalize the number of weights. Table 1 gives a detailed de-
scription of all networks used in the latching problem. The weight connected the
noisy input was fixed as 1.0. In order to learn the task, the networks have to develop
two attractors to latch the information and still remain inside the basin of the attrac-
tors of being resistant to noise when ¢ > 3. The ability of learning this minimal
problem is a measure of the effectiveness of propagating the gradient for different
neural network architectures with various memory orders.

The length of noisy inputs, 7', was varied from 10 to 60 in increments of 2.
For each value of T, we ran 50 simulations. For each simulation, 30 strings were
generated from each class and the initial weights were randomly distributed in the
range [—0.5,0.5].

The network was trained with a MSE cost function using simple BPTT algorithm
with a learning rate of 0.1 for a maximum of 200 epochs. Updates occurred at the
end of each string and the error was back-propagated the full length of the string. If
the absolute error between the output of the network and the target value was less
than 0.6 on all strings, the simulation was terminated and determined successful. If
the simulation exceeded 200 epochs and did not correctly classify all strings, then
the simulation was ruled a failure.

Figures 4 (a) to (c) show plots of the percentage of those runs that were suc-
cessful for different classes of networks with different orders of embedded memory.
It is clear from these plots that the network architectures with high order embed-
ded memory become increasingly less sensitive to long—term dependencies as the
memory order was increased.

40

Authorized licensed use limited to: Akira Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore. Restrictions apply.




o

°

— LAY
LR@)
-~ LR{®

°

% successiul simulations
% successful simulations
°
o

°

Tt —— NARX(2}
NARX(4)
04| \ ~ - NARX(S) 08

°
S
\

°

©
£
o

o

% sucsesstul simulations
s o
5 &

% sucressful simutations

o o
N
°

o

(© (d)

Figure 4: Plots of percentage of successful simulations on the latching problem from
50 runs as a function of T, the length of input strings, for different recurrent network
architectures with different orders of embedded memory: (a) Globally connected
RNN (GR), (b) Locally connected RNN (LR), (c) NARX, (d) NARX v.s. GR(1).

An interesting comparison between the architectures GR(1) and NARX(6) is
shown in Figure 4 (d). Since the two architectures have the exact same number
of weights, hidden nodes, and states, the only difference is the amount of memory
order.NARX networks perform better than the GR networks at learning the latching
problem.

3.2 Grammatical Inference (Tree Automata) Problem

In previous problem, the inputs to the network were followed by a noise term. In
this experiment, we consider learning to classify strings of boolean values, which
are labelled according to some prespecified automata.

In this example, the class of a string is completely determined by its input symbol
at some prespecified time ¢. For instance, Figure 5 shows a five-state automaton used
in the experiments, in which the class of each string is determined by the third input
symbol. When that symbol is “17, the string is accepted; otherwise, it is rejected.
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Figure 5: A five-state tree automaton. The unlabeled arrow is the start state and the
double circled state is the the acceptance state.

By increasing the length of the strings to be learned, we will be able to control the
span of long-term dependencies, in which the output will depend on input values far
in the past.

Again, we noted the same improvement on learning long-term dependencies ob-
tained by increasing the order of embedded memory in each class of recurrent neural
network architectures. For more details regarding the experiment, please see [16].

4 Conclusion

Motivated by the analysis of the problem of learning long-term dependencies and
the success of NARX networks on problems including grammatical inference and
nonlinear system identification [13], we explore the ability of other recurrent neural
networks with a high order of embedded memory on problems that involve long-
term dependencies. We chose three classes of recurrent neural network architectures
based on state-observerability: hidden state globally recurrent and locally recurrent
networks, and observeable state NARX networks.

‘We tested this approach of extending memory in conventional recurrent neu-
ral networks on two simple long-term dependency problems. Our experimental re-
sults show that each of these classes of recurrent neural networks architectures can
demonstrate significant improvement on learning long-term dependencies when the
memory order of the network is increased.

The intuitive explanation for this behavior is that the embedded memories are
manifested as jump—ahead connections in the unfolded network that is often used to
describe algorithms like Backpropagation Through Time. These jump-ahead con-
nections provide a shorter path for propagating gradient information, thus reducing
the sensitivity of the network to long-term dependencies. Another explanation is
that the states do not necessarily need to propagate through nonlinearities at every
time step, which may avoid a degradation in gradient due to the partial derivative
of the nonlinearity. We speculate that using increased memory order will also help
other recurrent network architectures on learning long-term dependency problems.
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