
Remembering the Past: The Role of Embedded 
Memory in Recurrent Neural Network 

Architectures 
C. Lee Giles 134,Tsungnan Lin 1,2, Bill G. Horne 

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 
Department of Electrical Engineering, Princeton University, Princeton, NJ 08540 

3AADM Consulting, 9 Pace Farm Rd., Califon, NJ 07830 
UMIACS, University of Maryland, College Park, MD 20742 

Abstract 

There has been much interest in learning long-term temporal dependencies 
with neural networks. Adequately leaming such long-term information can be 
useful in many problems in signal processing, control and prediction. 

A class of recurrent neural networks (RNNs), NARX neural networks, were 
shown to perform much better than other recurrent neural networks when learn- 
ing simple long-term dependency problems. The intuitive explanation is that 
the output memories of a NARX network can be manifested as jump-ahead 
connections in the time-unfolded network. 

Here we show that similar improvements in leaming long-term dependen- 
cies can be achieved with other classes of recurrent neural network architectures 
simply by increasing the order of the embedded memory. Experiments with lo- 
cally recurrent networks, and NARX (output feedback) networks show that all 
of these classes of network architectures can have a significant improvement 
on leaming long-term dependencies as the orders of embedded memory are in- 
creased, other things be held constant. These results can be important to a user 
comfortable with a specific recurrent neural network architecture because sim- 
ply increasing the embedding memory order of that architecture will make it 
more robust to the problem of long-term dependency leaming. 

1 Introduction 
Recurrent Neural Networks (RNNs), though capable of representing arbitrary non- 
linear dynamical systems [25] and computationally quite powerful [26], can some- 
times have difficulty learning even simple temporal behavior. Part of this difficulty 

0-7803-4256-9/97/$10.00 0 1  997 IEEE 34 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



has been attributed to the problem of long-term dependencies [2, 191, i.e. those prob- 
lems for which the desired output of a system at time T depends on inputs presented 
at times t << T .  

In particular Bengio et al. [ 2 ]  showed that if a system is to latch information ro- 
bustly, then the fraction of the gradient in a gradient-based training algorithm due to 
information n time steps in the past approaches zero as n becomes large. This effect 
is called the problem of vanishing gradient. Bengio et al. claimed that the problem 
of a vanishing gradient is the essential reason why gradient-descent methods are not 
sufficiently powerful to learn long-term dependencies. 

Several approaches have been suggested to circumvent the problem of vanishing 
gradients in training R " s :  presetting initial weights by using prior knowledge [6, 
91, alternative optimization methods instead of gradient-based [2], reduced descrip- 
tion of data [ 19, 23, 241, architectures that operate on multiple time scales [ 10, 1 I] 
and architectures with high-order gating units[ 121. 

A class of recurrent neural networks called NARX networks can perform much 
better at learning long-term dependencies when using a gradient descent training 
algorithm [ 171. The intuitive explanation for this behavior is that the output mem- 
ories of a NARX neural network are manifested as jump-ahead connections in the 
time-unfolded network that is often associated with algorithms as Backpropagation 
Through Time (BPTT). These jump-ahead connections provide shorter paths for 
propagating gradient information, thus reducing the sensitivity of the network to 
long-term dependencies. 

We hypothesize that the similar improvement on learning long-term dependen- 
cies can be achieved in other classes of recurrent neural network architectures by 
increasing the orders of embedded memory. (One of the first uses of embedded 
memory in recurrent network architectures was that of Jordan [14].) In this paper, 
we empirically justify this hypothesis by showing the relationship between mem- 
ory order of a R" and its sensitivity to long-term dependencies. In Section 2, 
we discuss three classes of conventional recurrent neural networks architectures: 
globally recurrent networks (the architecture, not the training procedure, used by 
Elman) [5]; locally recurrent networks (in particular the Frasconi, Gori and Soda's 
model) [7]; NARX networks [3, 211, and their corresponding models with a high 
order embedded memory. In Section 3, we provide a empirical comparison of these 
architectures by investigating their performance on learning two simple long-term 
dependencies problems: the latching problem and a grammatical inference problem. 
These simulations show that these classes of recurrent neural network architectures 
all demonstrate significant improvement on learning long-term dependencies when 
the embedded memory order is increased and weights remain relatively the same. 
Thus, a user of one of these recurrent architectures can readily improve their robust- 
ness to long-term memory problems simply by increasing the amount of embedded 
memory, all other variables remaining constant. 

35 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



2 Embedding memory order in recurrent neural network archi- 
tectures 

Several recurrent neural network architectures have been proposed; for a collection 
of papers on the variety see [8]. One taxometric classification for these architectures 
can be based on the observability of their states: specifically they can be broadly 
divided into two groups depending on whether or not the states of the network are 
observable or not [ 131. For another taxometric approach based on memory types, see 
Mozer [20]. For this study we picked three classes of networks: globally recurrent 
(GR) networks [5], locally recurrent networks (LR) [7], and NARX networks [3, 
2 I ] ;  and their corresponding architectures with high-order embedded memory. It 
should be pointed out that our embedded memory simply consists of simple tapped 
delayed values to various neurons and not more sophisticated embedded memory 
structures [20,4]. NARX networks are a typical model of networks with observable 
states. GR networks are a popular class of network with globally connected hidden 
states, and LR networks belong to locally recurrent network architecture class also 
with hidden states. 

2.1 Globally connected RNNs 
These networks (which we will call GR networks) are a class of recurrent networks 
in which the feedback connections come from the state vector to the hidden layer, 
as illustrated in Figure 1 (a). These hidden states are sometimes called context units 
in the literature. Suppose such a network with nu input nodes, nh hidden nodes of, 
and ny output nodes, the dynamic equation can be described by: 

where o( t )  and y ( t )  denotes the real valued outputs of the hidden and output neurons 
at time t ,  and f is the nonlinear function. 

This network with a high order of embedded memory differs from standard glob- 
ally connected recurrent network in that they have more than one state vector per 
feedback loop. Specially, for a GR network with embedded memory of order m, the 
dynamic equations of hidden nodes become: 

Figure 1 (b) illustrates an GR network with embedded memory of order two. 

2.2 Locally recurrent networks 
In this class of networks, the feedback connections are only allowed from neurons to 
themselves, and the nodes are connected together in a feed forward architecture [ 1, 

36 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



h ( N I )  

O(l)  

15, 7, 22, 291. Specifically, we consider networks proposed by Frasconi et al. [7] 
(we will call LR), as shown in Figure 2 (a). The dynamic neurons of LR networks 
can be described by 

oz(t )  = f  w,h,o*(t-ll)+Cw~uJ(t)+w,b , (4) ( 3 1 
where oz( t )  denotes the output of the i th  node at time t ,  and f is the nonlinearity. For 
a network with embedded memory of order m, the output of the dynamic neurons 
becomes 

(3 

Delays 

DC~JYS 

Figure 2 (b) shows a LR network with embedded memory of order two. Locally 
recurrent models usually differ in where and how much output feedback is permitted; 
see [29] for a discussion of architectural differences. 

2.3 NARX recurrent neural networks 
An important class of discrete-time nonlinear systems is the Nonlinear AutoRegres- 
sive with eXogeneous inputs ( N A R X )  model [ 3 ,  18,27, 281: 

~ ( t )  = f (,(t - D u ) ,  . . . , , ( t ) , y ( t  - o v ) ,  . . . , y ( t  - I ) ) ,  (6) 

where u(t)  and y(t) represent input and output of the network at time t ,  D,  and D, 
are the input-memory and output-memory order, and the function f is a nonlinear 
function. When the function f can be approximated by a Multilayer Perceptron, the 
resulting system is called a NARX recurrent neural network [ 3 ,  211. 

Single Lnycr 

37 

Single Lnycr 

O ( l - I )  u(11 Delays 

,l[l-2) ( 4  

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



u(0  

(a> (b) 

Figure 2: (a) A standard LR network. (b) A LR network with embedded memory of 
order two. 

In this paper, we shall consider NARX networks with zero input order. Thus, the 
operation of the network id defined by 

Y(t)  =.f(u(t) ,Y(t--Dy), . . .  , y ( t - l ) )  (7) 

Figure 3 shows a NARX architecture with output memory of order 3. 

3 Experimental Results 
Simulations were performed to explore the effect of embedded memory on learn- 
ing long-term dependencies in these three different recurrent network architectures. 
The long-term dependency problems investigated were the latching problem and a 
grammatical inference problem. These problems were chosen because they are sim- 
ple and should be easy to learn but exemplify the long-term dependency issue. For 
more complex problems involving long-term dependencies see [ 121. 

In order to establish some metric for comparison of the experimental results, we 
gave the recurrent networks sufficient resources (number of weights and training ex- 
amples, adequate training time) to readily solve the problem but held the the number 
of weights approximately invariant across all architectures. Also note that in some 
cases the order of the embedded memory is the same. 

3.1 The latching problem 
This experiment evaluates the performance of different recurrent network architec- 
tures with various order of embedded memory on a problem already used for study- 
ing the difficulty in learning long-term dependencies [2, 11, 171. 

This problem is a minimal task designed as a test that must necessarily be passed 
in order for a network to robustly latch information [2]. In this two-class problem, 
the class of a sequence depends only on the first 3 time steps, the remaining values 

38 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



Figure 3: A NARX network with output memory of order 3. 

Architecture Network Description #weights 

G N I )  1 6 6 nodes 3-6- 1 85 

GW3) 3 12 4 nodes 3-4-1 81 
NARX(2) 2 2 11 nodes 3-11-1 1 1 1  
NARX(4) 4 4 8 nodes 3-8-1 97 
NARX(6) 6 6 6 nodes 3-6- 1 85 

LR( 1 ) 1 14 14 nodes 3-14-1 109 
LR(2) 2 22 1 1  nodes 3-1 1-1  110 
W 3 )  3 27 9 nodes 3-9-1 111 

Memory order # states # hidden neurons In-hid-out 

. GR(2) 2 10 5 nodes 3-5-1 91 

Table 1: Architecture description of different recurrent networks used for the latch- 
ing problem. We used the hyperbolic tangent function as the nonlinear function for 
each neuron. 

39 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



in the sequence is uniform noise. There are three inputs ul( t ) ,  u2(t), and a noise 
input e ( t ) .  Both ul ( t )  and uz( t )  are zero for all times t > 1. At time t = 1,  
ul(1) = 1 and u2( 1) = 0 for samples from class 1, and ul(1) = 0 and u2 (1) = 1 
for samples from class 2. The class information of each strings is contained in u1 ( t )  
and u2 ( t ) .  We used two delay elements for both u1 ( t )  and u2(t) in order to hold the 
class information until t = 3. The noise input e ( t )  is given by 

t 5 3  c" U ( - b ,  b )  3 < t 5 T 
e ( t )  = 

where U(-b ,  b) are samples drawn uniformly from [-0.155,0.155]. Target infor- 
mation was only provided at the end of each sequence. For comparison, our training 
particulars are identical to those of [ 2 ] .  For strings from class one, a target value of 
0.8 was chosen, for class two, -0.8 was chosen. The length of the noisy sequence 
could be varied in order to control the span of long-term dependencies. For our ex- 
periment, the input sequences were 1 and 0 and were one-hot encoded into two input 
neurons with trainable weights. 

For each of these three architectures previously discussed, several networks with 
different orders of embedded memory were trained. To compare the effects of dif- 
ferent orders of embedded memory in every class of networks on learning long-term 
dependencies while holding as many other factors as possible constant, particular 
attention was paid to equalize the number of weights. Table 1 gives a detailed de- 
scription of all networks used in the latching problem. The weight connected the 
noisy input was fixed as 1.0. In order to learn the task, the networks have to develop 
two attractors to latch the information and still remain inside the basin of the attrac- 
tors of being resistant to noise when t > 3. The ability of learning this minimal 
problem is a measure of the effectiveness of propagating the gradient for different 
neural network architectures with various memory orders. 

The length of noisy inputs, T ,  was varied from 10 to 60 in increments of 2. 
For each value of T ,  we ran 50 simulations. For each simulation, 30 strings were 
generated from each class and the initial weights were randomly distributed in the 
range [-0.5,0.5]. ' 

The network was trained with a MSE cost function using simple BPTT algorithm 
with a learning rate of 0.1 for a maximum of 200 epochs. Updates occurred at the 
end of each string and the error was back-propagated the full length of the string. If 
the absolute error between the output of the network and the target value was less 
than 0.6 on all strings, the simulation was terminated and determined successful. If 
the simulation exceeded 200 epochs and did not correctly classify all strings, then 
the simulation was ruled a failure. 

Figures 4 (a) to (c) show plots of the percentage of those runs that were suc- 
cessful for different classes of networks with different orders of embedded memory. 
It is clear from these plots that the network architectures with high order embed- 
ded memory become increasingly less sensitive to long-term dependencies as the 
memory order was increased. 

40 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



-'I Q4 ' - ' --; < I -  ' _  ' ' 

__- .  

Figure 4: Plots of percentage of successful simulations on the latching problem from 
50 runs as a function of T ,  the length of input strings, for different recurrent network 
architectures with different orders of embedded memory: (a) Globally connected 
R" (GR) , (b) Locally connected R" (LR), (c) NARX, (d) NARX V.S. GR( 1).  

An interesting comparison between the architectures GR( 1 )  and NARX(6) is 
shown in Figure 4 (d). Since the two architectures have the exact same number 
of weights, hidden nodes, and states, the only difference is the amount of memory 
order.NARX networks perform better than the GR networks at learning the latching 
problem. 

3.2 
In previous problem, the inputs to the network were followed by a noise term. In 
this experiment, we consider learning to classify strings of boolean values, which 
are labelled according to some prespecified automata. 

In this example, the class of a string is completely determined by its input symbol 
at some prespecified time t .  For instance, Figure 5 shows a five-state automaton used 
in the experiments, in which the class of each string is determined by the third input 
symbol. When that symbol is "l", the string is accepted; otherwise, it is rejected. 

Grammatical Inference (Tree Automata) Problem 

41 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



-0 0.1 

Figure 5 :  A five-state tree automaton. The unlabeled arrow is the start state and the 
double circled state is the the acceptance state. 

By increasing the length of the strings to be learned, we will be able to control the 
span of long-term dependencies, in which the output will depend on input values far 
in the past. 

Again, we noted the same improvement on learning long-term dependencies ob- 
tained by increasing the order of embedded memory in each class of recurrent neural 
network architectures. For more details regarding the experiment, please see [ 161. 

4 Conclusion 
Motivated by the analysis of the problem of learning long-term dependencies and 
the success of NARX networks on problems including grammatical inference and 
nonlinear system identification [ 131, we explore the ability of other recurrent neural 
networks with a high order of embedded memory on problems that involve long- 
term dependencies. We chose three classes of recurrent neural network architectures 
based on state-observerability: hidden state globally recurrent and locally recurrent 
networks, and observeable state NARX networks. 

We tested this approach of extending memory in conventional recurrent neu- 
ral networks on two simple long-term dependency problems. Our experimental re- 
sults show that each of these classes of recurrent neural networks architectures can 
demonstrate significant improvement on learning long-term dependencies when the 
memory order of the network is increased. 

The intuitive explanation for this behavior is that the embedded memories are 
manifested as jump-ahead connections in the unfolded network that is often used to 
describe algorithms like Backpropagation Through Time. These jump-ahead con- 
nections provide a shorter path for propagating gradient information, thus reducing 
the sensitivity of the network to long-term dependencies. Another explanation is 
that the states do not necessarily need to propagate through nonlinearities at every 
time step, which may avoid a degradation in gradient due to the partial derivative 
of the nonlinearity. We speculate that using increased memory order will also help 
other recurrent network architectures on learning long-term dependency problems. 

42 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.



References 
A.D. Back and A.C. Tsoi. FIR and IIR synapses, a new neural network architecture for time series modeling. 
Neural Computation, 3(3):337-350, 1991. 
Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient is difficult. IEEE Trunsuc- 
riuns on Neural Networks, 32): 157-166, 1994. 
S. Chen, S A .  Billings, and P.M. Grant. Non-linear system identification using neural networks. Internationa[ 
Journal of Cuntrul, 51(6):1191-1214, 1990. 
B. de Vries and J. C. Principe. The gamma model - A new neural model for temporal processing. Neural 
Networks, 5565-576, 1992. 
J.L. Elman. Finding structure in time. Cognitive Science, 14:179-21 I ,  1990. 
P. Frasconi, M. Gori, M. Maggini, and G. Soda. Unified integration of explicit rules and learning by example in 
recurrent networks. IEEE Transactions on Knowledge and Data Engineering, 7(2):340-346, 1995. 
P. Frasconi, M. Gori, and G. Soda. Local feedback multilayered networks. Neural Computation. 4:120-130, 1992. 
C.L. Giles, G.M. Kuhn, and R.J. Williams. Dynamic recurrent neural networks: Theory and applications. IEEE 
Transactions on Neural Networks, 5(2), 1994. Special Issue. 
C.L. Giles and C.W. Omlin. Inserting rules into recurrent neural networks. In S.Y. Kung, F. Fallside, J. Aa. 
Sorenson, and C.A. Kamm, editors, Neural Networks for  Signal Prucessing 11, Pmceedings of The 1992 IEEE 
Workshop, pages 13-22, Piscataway, NJ, 1992. IEEE Press. 
M. Gori, M. Maggini, and G. Soda. Scheduling of modular architectures for inductive inference of regular gram- 
mars. In ECA1’94 Workshop on Combining Symbulic and Connectionist Processing, Amsterdam, pages 78-87. 
Wiley, August 1994. 
S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependencies. In Advances in 
Neural Information Processing Systems 8. MIT Press, Cambridge, MA, 1996. 
S. Hochreiter and J. Schmidhuber. Long short term memory. Technical Report FKI-207-95, Fakultat fur Infor- 
matik, Technische Universitat Munchen, Munchen, 1995. 
B.G. Home and C.L. Giles. An experimental comparison of recurrent neural networks.’ In Advances in Neural 
Infurmation Processing Systems 7, pages 697-704. MIT Press, 1995. 
M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. In Pruceedings u j  the 
Eighth Conference of the Cognitive Science Society, pages 531-546. Erlbaum, 1986. 
Steve Lawrence, Andrew Back, A.C. Tsoi, and C. Lee Giles. The gamma MLP - using multiple temporal resolu- 
tions for improved classification. In Neural Networks for  Signal PrucessinR VI1 - Pruceedings of the 1997 IEEE 
Workshop. Florida, 1997. 
T. Lin, B.G. Home, and C.L. Giles. How embedded memory in recurrent neural network architectures helps 
leaning long-term temporal dependencies. Technical Report UMIACS-TR-96-28 and CS-TR-3626, Institute for 
Advanced Computer Studies, University of Maryland. 
T. Lin, B.G. Home, P. Tino, and C.L. Giles. Learning long-term dependencies in narx recurrent neural networks. 
IEEE Transactions on Neural Networks, 7(6):1329-1338, 1996. 
L. Ljung. System identification : Theory for  the user. Prentice-Hall, Englewood Cliffs, NJ, 1987. 
M. C. Mozer. Induction of multiscale temporal structure. In J.E. Moody, S. J. Hanson, and R.P. Lippmann, editors, 
Neural Information Processing Systems 4 ,  pages 275-282. Morgan Kaufmann, 1992. 
Michael C. Mozer. Neural net architectures for temporal sequence processing. In AS.  Weigend and N.A. Ger- 
shenfeld, editors, Time Series Prediction, pages 243-264. Addison-Wesley, 1994. 
K.S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE 
Trans. on Neural Networks, l(l):4, 1990. 
P.S. Sastry, G. Santharam, and K.P. Unnikrishnan. Memory neuron networks for identification and control of 
dynamical systems. IEEE Transactions on Neural Networks, 5(2):30&319, 1994. 
J. Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural 
Cumputation, 4(2):234-242, 1992. 
J. Schmidhuber. Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J. Hanson, and R. P. 
Lippman, editors, Advances in Neurallnformation Processing Systems 4,  pages 291-298. San Mateo, CA: Morgan 
Kaufmann, 1992. 
D.R. Seidl and R.D. Lorenz. A structure by which arecurrent neural network can approximate anonlinear dynamic 
system. In Proceedings of the International Joint Conference on Neural Netwurks 1991, volume 11, pages 709-714, 
July 1991. 
H.T. Siegelmann and E.D. Sontag. On the computational power of neural nets. Journal uj Computer and System 
Sciences, SO( I): 132-1 SO, 1995. 
H.-T. Su and T.J. McAvoy. Identification of chemical processes using recurrent networks. In Pruceedings of the 
American Controls Cunference, volume 3 ,  pages 2314-2319, 1991. 
H.-T. Su, T.J. McAvoy, and P. Werbos. Long-term predictions of chemical processes using recurrent neural 
networks: A parallel training approach. Industrial Engineering and Chemical Research, 31 : 1338-1 352, 1992. 
A.C. Tsoi and A. Back. Locally recurrent globally feedfonvard networks, a critical review of architectures. IEEE 
Transactions on Neural Networks, 5(2):229-239, 1994. 

43 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:10 from IEEE Xplore.  Restrictions apply.


