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Abstract 
In this paper, we propose some theories regarding the dynamical system 

representational capabilities of recurrent neural networks with real-valued 
input.s and outputs. It is shown that multiple nonlinear dynamic systems 
can be approximated within a single nonlinear model structure. A relation- 
ship is identified between this class of recurrent network, hybrid models and 
agent based systems. 

. Introduction 
Lecurrent neural networks are very general models and have been proven to of- 
:r significant computational capabilities such as Turing equivalence with linear 
owdown [18]. There has been some interest in applying recurrent networks to 
ynamical systems and control problems. It has been shown that such models 
ossess universal dynamic approximation capabilities [9,19]. 

Recently, it has been shown by Feldkamp and Puskorius [8], that a class of 
:current networks can learn to model several dynamical systems and switch be- 
ween them, depending on the characteristics of the input signal. Instead of 
wning to .model iust one r a t e m ,  the network was able to learn several models 
ith very differeat p' 
This type of mod 

fer. There amear  t 
ienomenon is not unique to the above example how- 
umber of interrelated methods in the literature which 

I I  

ave been studied mostly independently, see for example: [1,2,4,10-12,16,17]. 
In this paper, we examine this phenomemafurther, and propose a theory which 

rplains how recurrent neural networks can possess the capability of modelling a 
Jmber of dynamical systems simultaneously. Examples are also given. 
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2 Preliminaries 
Functaon approxzmatzon is the task of approximating a mapping given by thc 
function : Rm + R", where R is the usual Euclidean space. Functzona 
approxzmation is the task of approximating a mapping F2 : C (I<) + R where 
C ( X )  is a Banach space of continuous functions on a compact set I<, definec 
by the norm I l f l l c c K ,  = maxZGK If(.)/. The implication here, is that we have t 

mapping F2 which maps the past inputs' to the current output (i.e. a variabli 
E R) [3]. Operator approxzmatzon is the task of approxiating a mapping F3 

C ( K )  + C (K) . Thus, in this case, we seek to approximate a mapping of an inpu 
sequence z ( t )  E C ( K )  to an output sequence y ( t )  E C ( K )  . 

We term CO (I<,) the space of operators on a compact set KO. The mappin] 
from one operator space CO ( K O )  to another operator space C, (I.,) is called, fo 
lack of a better name, an operatzonal map. 

Definition 1 A n  operatzonal map H 2s dejned by 

H : CO (KO) + CO (KO) (1 

x(t + 1 )  = f (Ax( t )  + Bu(t) + Ey(t)) (2 
y(t) = Cx(t) + D u ( t )  (3 

where x ( t )  = [ z ( t ) z ( t - 1 )  ...3:( t -nZ)]  2s an n(n,+l) x 1 vector, u(t) = [u(t )u( t -  
1)  ... u( t  - nullT, y(t - 1) = [y(t - 1) ...y( t - n,)lT, f 2s n(n, + 1) x 1 vector-value 
functaon wzth szgmoad elements, typzcally defined as {f(x)} = tanh(z), 
R n ( n z + l ) x n ( n , t l )  B E R n ( n z + l ) x m n u  c E Rpn,xn(n,+1), D E Rpn,xm(n,+l 

and E E R n ( n z + l ) x p n ~ .  The bzas terms are not explacztly shown, but are znclude 
wzthzn u(t) as a fixed-value znput. 

Definition 2 A recurrent network (RNN) is defined by 

T 

A 

This characterization of a recurrent network gives a general framework fror 
which many well known structures can be derived, e.g. [18-201. 

Definition 3 A multiple model M1 (SI, 6,) wzth fixed structure SI and paramete 
vector 61 exhzbzts a set of characterastzc propertzes Pi, where 

( L  
i = 1 , 2 ,  .... dzscrete multzple model 

contznuous multaple model = { p":: v ER. 

3 Multiple Model Representational Using Oper 
ational Maps 

A multiple model G can be characterized as an operator, which itself, consis 
of multiple operators F .  Consider a multiple model operator A : z + y, z 

' A  sequence z ( t ) ,  which we may sample at discrete points t = 0 , 1 ,  ... is given by z s ( t )  
[ z ( O ) , ~ ( l ) ; . . ] ~  andis  a func t ioninC(I ( ) .  
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. C C (IC) , y E Y C C (IC) describing the input-output functional relationship. 
dditionally, A contains an operator F subject to, for example, 2 : Fa -+ Fb 

h E $a c CO (KO), Fb E $6 C CO (ICo). Now, instead of considering A directly, 
e are interested in the existence of, and mechanisms by which there may arise 
iappings of the form H : Fi -+ Fi+l, where i = 1,2, ... is the index of the discrete 
inctionals in the discrete multiple model case, or H : Fa + Fb corresponding to 
le continuous multiple model case. In each case, H C Ca (KO) where Ca (KO) is 
le space of operational maps. 
Hence, in addressing the issue of multiple models, this implies that we seek 
answer the following question: ‘Is it possible to find a nonlinear model which 

pproximates an operational map H : CO (KO) + CO (KO) ?’ We consider this 
uestion below. 

The existence of a universal general operational map is made clear by the 
Illowing theorem. 

‘heorem 1 A n  operational map H given by 

FB,  x ( t )  +--+ H ( F )  : x ( t )  + ~ ( t )  (5) 

an be obtained by the interconnection of a parameterized operator Fe : C (I<) -+ 
(IC) , and functional Me : C (I<) + R” according to 

ihere x ( t ) ,  y ( t )  E C (IC) are contanuous, real-valued znput and output functzons 
espectavely o f t  E R+, 0 as the m-damensaonal parameter vector of FB and 00 2s 
he anataal parameter vector. 

Proof Sketch. Let there exist an operator Fe determined by the parameter 
ector 0 and a functional map Mc capable of universal approximation in the sense 
f , for example, [15]. For the ith parameter within a given model Fe, we have 

s2 = 022* 

Jow, let Mc be a functional. The_refor_e, for any input sequence d: E X ,  Me results 
n any desired set of parameters 0 E @ c Rm, such that 

(8) 

!here Me = [Mcl . . I McmIT is a vector function. Thus, the existence of Me : 
, -+ e permits any arbitrary Fo to be obtained due to the mapping Mc. The 
‘perational map H = {Fe,  M c }  is general in the sense that it is capable of the 
ame approximation as FB,  but can be varied arbitrarily for any sequence x. 

123 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:16 from IEEE Xplore.  Restrictions apply.



4 Universal Operational Maps 
From Theorem 1, we can obtain the following result. 

Theorem 2 (Universal Operational Map-I) There exzsts a parameterzzed mo 
G(0) : x ( t )  -+ y ( t ) ,  where z E X C CO (ICo) and  y E Y C CO (ICo), such that / 

Idt) - Y(4l < (11) 
where Fe),  z ( t )  ++ H ( F )  : ~ ( t )  -+ y(t) and E > 0 .  

Proof Sketch. Let FBI be a parameterized model capable of universally approx- , 
imating any operator (e.g. a Chen network [7]). Let Me be a time delay neural, 
network or other structure having universal functional approximation character- 1 

istics [6,15]. Then from Theorem 1, there exists a neural network G defined 
collectively by Fe! and M e ,  which can approximate, arbitrarily closely, some op- 
erational map H = { F , ! ,  M e } ,  where H : CO (ICo) -+ CO (KO). 

Remarks 

1. The implication of the theorem is that every weight in F is replaced by an 
additional network Mcz . This provides the means of approximating non- 
linear operational maps. As noted earlier, related approaches have been 
considered in the literature (see, for example, [16,17]). 

2. It is possible to introduce any required type of model for M e .  Thus, a hybrid 
model can be elegantly obtained. 

3.  The model G is a sigma-pi network, but can also be interpreted as a modular 

4. A more general form for Me is s = M e z ( z ,  U ) .  In this case, the output from 1 

structure. 

Me is not used as a parameter, but receives the previous parameter input U 
and gives the previous output s after the parameter. Hence, we can derive 
the following related theorem. 

Theorem 3 (Universal Operational Map-11) A unzversal operatzonal map- 
pang Fe, z ( t )  - H ( F )  : ~ ( t )  + y(t) zs gzven by the znterconnectzon of a unzversal 
operator F : ( X ,  V )  + Y and a szngle-znput szngle-output unzversal function map  
Mel : X + V accordzng to 

Y = F ( x , v , @ )  (12) 
= MCl(2) (13) 

w h e r e z E X E C ( I ~ ) , v E V E C ( K ) ,  y ~ Y g C ( 1 2 ' ) ,  a n d O E O C R m .  - 

Proof Sketch. The proof follows directly from Theorem 1. The operator F ( z ,  w) 
is a universal approximator as independent as required in each of its inputs. 
Therefore, for every distinct value of v ,  e.g. U = 1 , 2 ,  ... a distinct universal 
approximation F : C ( IC)  -+ C (IC) may be obtained. Let Mcl prescribe some 
operator from the input z to the extra input U. Therefore, a distinct universal 
approximation F can be obtained as required for any given input x ,  hence a 
universal operational model is obtained. 
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Remarks 

1. In the above theorems, for universal operational maps, it may be assumed 
that F is given by a network as described in [7]. 

2. F may also be given by a recurrent neural network, with the universal 
approximation properties in the sense of those shown by Sontag [19]. In this 
case, the resulting recurrent network H ,  possesses also multiple modelling 
capabilities2. 

These results offer a different viewpoint for modular networks. Previously, 
nodular neural networks were used to approximate a mapping by spatial decom- 
)osition [13]. Here, operational maps perform a temporal decomposition. 

The discrete multiple model can be interpreted as a hybrid system (51. More- 
wer, a neural network may arbitrarily form such hybrid systems, even in the 
ourse of' training, wzthout the user necessarily beang aware of this phenomena 
tcc u rrz ng. 

Discrete multiple models are related to agent systems [2,14]. The models F 
bnd Mc can each be viewed as agents cooperating together to produce a more 
omplex mapping than either is capable of acting alone. The framework proposed 
(ere also includes models such as mixtures of experts [lo]. 

i Synthesis of Multiple Models by Bias Shifting 
€ere we present a simple constructive approach to show how multiple models may 
)e synthesized in both f'eedforward and recurrent neural networks. The approach 
qe propose is well suited for multiple models which are comprised of a set of 
liscrete F models and is applicable to synthesis as well as analysis, though the 
stter case is not discussed here. 

Theorem 4 A n  MLP model G ( x ,  v) can form multiple unique function mappings 

G(z, U) = m,(z), zi = 1, ...p (14) 

'efined by 

ihere the extra input v indexes the desired mapping m,(x). 

2Though to be precise, one may wish to qualify the sense of the approximation in terms of 
le specific characteristics of universal approximation being performed, i.e. in the sense defined 
y Chen and Chen [7] or Sontag [19]. 

125 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 7, 2009 at 08:16 from IEEE Xplore.  Restrictions apply.



Proof Sketch. Without loss of generality, let N = np. This specifies p subgroups 
within G, each of n hidden units. Therefore we have 

For sufficiently large r ,  if we consider approximations on the range [u,b] where 
( a ,  bl << r ,  then setting v = (1, . . , p }  results in 

(19) 
as required. 

Theorem 5 An RNN model G ( x ,  y, v) can form multaple unaque mappanys 

G ( z , Y , ~ ) = ~ ~ ( x , Y ) ,  V =  I , . . . P  (20) 

where the extra input v andexes the desared mappzng m,(x, y). I 

Proof Sketch. Omitted due to lack of space. The proof follows a similar proce-l 
dure to that used for Theorem 4. 

The implication of this theorem is that by appropriate biases offsets in the 
different groups of units, various units in the recurrent network can be “pushed” 
in and out of action. Note that this method can be used as a means of switchind 
between different discrete models, or in a continuous sense, by setting r to an 
appropriately small value. 

6 Examples 
In this section, we give a number of examples, which indicate the idea of the 
multiple models discussed in the paper. In order to clarify the results, we use 
simple model structures. 

6.1 General Examples 
Here we consider some general examples to indicate some possible types of mul- 
tiple models which may be synthesized. 

1. Input Amplitude Dependent Model. 
This type of model is derived by using a characteristic function Mc giver 
by 

Oox z2 < ro 

d2x x2 > r2 
O ~ Z  ro < x2 6 r1 (21: M c ( z )  = 
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where { T }  are scalar values. The model behaviour is dependent on the 
instantaneous value of the input x ( t ) .  In particular, the model will switch 
parameter sets when the amplitude of x 2 ( t )  crosses certain thresholds. This 
model can be considered as a multiple bilinear or sta,te-dependent model. 

2. Frequency Dependent Model Selection. 
Me may be a function of the frequency of the incoming signal. For example, 

Mc(.) = f m  ( X ( W ) )  (22) 

where fm is a function of X ( w )  = F F T [ z ] .  

3. Sequential Model Selection 
Here, the model is based on some predetermined time-sequence and bears 
a close relationship with hybrid systems considered in robotics [5]. In this 
case, the input x is a sequence of symbolic binary values. Mc(x) processes 
this symbolic binary input and upon recognition of a particular sequence, 
outputs a 1 and holds it for a specified period of time, otherwise the output 
is a zero. 

i.2 A Recurrent Network Multiple Model 
i.2.1 Network Architecture 

3ased on the multiple model framework presented in this paper, a recurrent net- 
vork multiple model3 can be proposed as follows. 

vhere {g} are the element-wise characteristic functions corresponding to M,. {U} 
Ire ancillary inputs. Since the poles and zeros in (23) are the outputs of nonlinear 
unctions, they are termed nonlinear poles and zeros respectively and the model 
an also be considered as a nonlinear pole-zero model. The coefficient functions 
g} and ancillary inputs{u} provide a wide scope for introducing a variety of 
nodels. 

i.2.2 

i nonlinear pole-zero multiple model is synthesized in this example as follows. 
"he model is described by 

Example: An Input Amplitude-Dependent Multiple Model 

G1 ( U )  = Q ~ U  ( t )  + C Y ~ G  ( t )  G; (U) = @;U ( t )  + CYHG ( t )  
3For convenience and clarity of the example, we have chosen to use linear models as a basis, 

lowever these may be arbitrary nonlinear models in practice. Since the behaviour of linear 
ystems is well known, it is easier to visualize the differences between the two models in this 
ase. 
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0UlP"l Signal Gaussian Input 

Figure 1: The performance of a recurrent neural network multiple model. In this simple 
example, (a) is the input signal, and (b) shows the model output due to the input. 

where Cl ( U )  and Gf(u)  provide complex conjugate outputs and Hm(q)  switches 
between two underlying linear models NI ( q )  , H2(q) ,  depending on the binary 
ancillary input signal U ( t )  . 

t 26) 
1 where, for the purposes of this example, we choose a l l  = 1.6, a12 = 0.73, a21 = 

-1.9, a22 = 0.925 and 0% are the corresponding first order poles of H i ( q ) .  The 
input u( t )  can be obtained, for example, by 

I 
u(t> = ( E ,  [."t,]> (27) I 

where E, [.I denotes the short term expectation and 

Therefore, when the magnitude of the short term average of the squared input 
signal reaches a certain threshold, defined by r, the model will change. The 
performance of this model is shown in Fig. 1, where the model characteristics due 
to  the change in input can be seen- 

6.2.3 

This example we synthesize a recurrent neural network model which models ai 
time-varying linear system, described by 

Example: An R N N  Modelling a Time-varying Linear System 

(29) 
1 

1 - c1 ( % t )  q - l  + c 2  (%t )  r2 H m ( q )  = 

The model varies as a function of the ancillary input signal U ,  and the coefficient 
functions Ci ( t )  , i = 1 , 2  are in this example, simple linear functions, given by 
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Outplt Signal 

Figure 2: The time-varying recurrent network described in Section 6.2.3 is capable of 
exhibiting a variety of different behaviours as observed here. 

For the purposes of this example, we choose the parameters4 all = 1.6, a 1 2  = 0.9, 

c11 = 0.04, c20 = 0.8, c21 = 0.02 and u ( t )  = ~ ( t ) .  
The resulting multiple model, which is an extension of the usual bilinear struc- 

ture, can be described by the difference equation form of nonlinear pole-zero model 
given by 

a21 = -1.9, a 2 2  = 0.925, 610 = 1.0, b l l  = 0.5, 620 = 0.9, 6 2 1  = 0.5 ,~10 = 1.75, 

Y ( t )  
[i ( t )  

= 4 t )  + c1 ( t )  2/ (t - 1) + c 2  ( t )  Y O  - 2 )  (32) 
(33) = C ~ I  + ci2 (boz(t) -t b 1 ~ ( t )  - ailci  (t - 1) + ~ i 2 [ i  (t - 2)) 

where x ( t )  is the input and y ( t )  is the output. Examples of the model behav- 
iour are shown in Fig. 2, which indicate some of the ‘richness’ of the model’s 
capabilities. 

7 Conclusions 
In this paper, we have given theories which indicate how nonlinear models, in- 
cluding feedforward and recurrent networks, can approximate systems known as 
multiple models. We have shown that such models can be considered in terms of 
operational maps. It was shown that there exist classes of neural networks which 
can universally approximate operational maps. The results provide an explana- 
tion for the experimental behaviour of some recurrent networks in being able to 
model multiple dynamic systems [8]. 
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4The parameters were chosen on the basis of known, stable linear systems. In the case of 
his linear model, it is necessary to bound the pole positions as usual. However, the situation 
zhanges when normal recurrent networks with sigmoid functions are employeed. The signals are 
.hen bounded by the sigmoids. 
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