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Abstract

In this paper, we propose some theories regarding the dynamical system
representational capabilities of recurrent neural networks with real-valued
inputs and outputs. It is shown that multiple nonlinear dynamic systems
can be approximated within a single nonlinear model structure. A relation-
ship is identified between this class of recurrent network, hybrid models and
agent based systems.

Introduction

.ecurrent neural networks are very general models and have been proven to of-
;v significant computational capabilities such as Turing equivalence with linear
owdown [18]. There has been some interest in applying recurrent networks to
ynamical systems and control problems. It has been shown that such models
ossess universal dynamic approximation capabilities [9,19].

Recently, it has been shown by Feldkamp and Puskorius [8], that a class of
scurrent networks can learn to model several dynamical systems and switch be-
veen them, depending on the characteristics of the input signal. Instead of
:arning to model iust one ‘gwtemn, the network was able to learn several models
ith very differemt p- g888 =s.

This type of mod ¥ ienomenon is not unique to the above example how-
ver. There appear to ~< a number of interrelated methods in the literature which
ave been studied mostly independently, see for example: [1,2,4,10-12,16,17].

In this paper, we examine this phenomema further, and propose a theory which
¢plains how recurrent neural networks can possess the capability of modelling a
amber of dynamical systems simultaneously. Examples are also given.
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2 Preliminaries

Function approzimation is the task of approximating a mapping given by the
function F; : R™ — R”?, where R is the usual Euclidean space. Functiona
approzimation is the task of approximating a mapping F2 : C(K) — R where
C(K) is a Banach space of continuous functions on a compact set K, definec
by the norm HfHC(K) = maxzek |f(2)]. The implication here, is that we have ¢

mapping F, which maps the past inputs! to the current output (i.e. a variabli
¢ € R) [3]. Operator approzimation is the task of approxiating a mapping Fj3
C(K) — C(K) . Thus, in this case, we seek to approximate a mapping of an inpu
sequence z(t) € C (K) to an output sequence y(t) € C(K).

We term C, (K,) the space of operators on a compact set K,. The mappiny
from one operator space C, (K,) to another operator space C, (K,) is called, fo
lack of a better name, an operational map.

Definition 1 An operational map H s defined by

H:C, (K, = C, (K,) 1

Definition 2 A recurrent network (RNN) is defined by
x(t+1) = f(Ax(t)+ Bu(t) + Ey(t)) (2
y(t) = Cx(t)+ Du(®) (3

where x(t) = [;c(t)x(t—l)...:c(t~nx)]T is an n(nTx+1) x 1 vector, u(t) = [u(t)u(t-
! Dty Lyt =1 =yl - 1.yt —ny)], f isn(ne +1) x 1 vector-value

function with sigmoid elements, typically deﬁned as {f(z)} = tanh(z), A
Rn(nz+1)xn(nr+1) B ¢ Rn(nx+1 xmnu Cc anyxn(nx+1) D € Ry xm(n“-}-l

; and E € R"(""“l)xf’”y The btas terms are not explicitly shown but are include
within u(t) as a fired-value input.

|
! This characterization of a recurrent network gives a general framework frory
! which many well known structures can be derived, e.g. [18-20].

| Definition 3 A multiple model M (81, 81) with fired structure 81 and paramete
| vector 8y exhibits a set of characteristic properties /Pi, where
|

P Pu 1=1,2,.... discrete multiple model
L7 Py vER. continuous multiple model

{4

3 Multiple Model Representational Using Oper
| ational Maps

A multiple model G can be characterized as an operator, which itself, consis'
of multiple operators F'. Consider a muitiple model operator A : z — y, =

1A sequence z(t), which we may sample at discrete points t = 0,1,... is given by z.(¢)
[z (0),2(1),- - -] and is a function in C (K).
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"CC(K),y€Y CC(K) describing the input-output functional relationship.
dditionally, A contains an operator F' subject to, for example, = : F, = Fp
o € 8a CCo(K,), Fy € 8 C C,(K,). Now, instead of considering A directly,
e are interested in the existence of, and mechanisms by which there may arise
1appings of the form H : F; — F;;1, where ¢ = 1,2, ... is the index of the discrete
inctionals in the discrete multiple model case, or H : F; — F}, corresponding to
1e continuous multiple model case. In each case, I C Cq (K,) where Cq (K,) is
1e space of operational maps.

Hence, in addressing the issue of multiple models, this implies that we seek
> answer the following question: ‘Is it possible to find a nonlinear model which
pproximates an operational map H : C, (K,) = C,(K,) 7” We consider this
uestion below.

The existence of a universal general operational map is made clear by the
sllowing theorem.

‘heorem 1 An operational map H given by
Fo,x(t) — H(F) : z(t) = y(t) (5)

an be obtained by the interconnection of a parameterized operator Fy : C (K) —
(K), and functional M. : C (K) = R™ according to

y = Fy(z;0) (6)
§ = MJz) 0=6,t<0 (7)
shere z(t), y(t) € C(K) are continuous, real-valued input and output functions

espectively of t € Ry, 6 is the m-dimensional parameter vector of Fy and 0y 1s
he wnitial parameter vector.

Proof Sketch. Let there exist an operator Fy determined by the parameter
ector # and a functional map M, capable of universal approximation in the sense
f , for example, [15]. For the ¢th parameter within a given model Fy, we have

§; = 91"2,' (8)

low, let M, be a functional. Therefore, for any input sequence z € X, M, results
n any desired set of parameters # € ® C R™, such that

si = My(z)z (9)
there M, = [My - -- Mcm]T is a vector function. Thus, the existence of M, :
. — 6 permits any arbitrary Fy to be obtained due to the mapping M.. The

pperational map H = {Fy, M.} is general in the sense that it is capable of the
ame approximation as Fy, but can be varied arbitrarily for any sequence z.
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4 Universal Operational Maps

From Theorem 1, we can obtain the following result.

Theorem 2 (Universal Operational Map-1) There ezists a parameterized mo,
G(8) : z(t) = (1), where z € X C C, (K,) and § €Y C C, (K,), such that 1

FORFOIRE (1),
where For, z(t) — H(F) : z(t) = y(t) and € > 0.

Proof Sketch. Let Fy be a parameterized model capable of universally approx- |
imating any operator (e.g. a Chen network [7]). Let M, be a time delay neural ]
network or other structure having universal functional approximation character- |
istics [6,15]. Then from Theorem 1, there exists a neural network G defined
collectively by Fy: and M., which can approximate, arbitrarily closely, some op- |
erational map H = {Fy, M.}, where H : C, (K,) = C, (K,).

Remarks

1. The implication of the theorem is that every weight in F is replaced by an
additional network M.;. This provides the means of approximating non-
linear operational maps. As noted earlier, related approaches have been !
considered in the literature (see, for example, [16,17]).

2. It is possible to introduce any required type of model for M,. Thus, a hybrid
model can be elegantly obtained.

3. The model G is a sigma-pi network, but can also be interpreted as a modular
structure. 1

4. A more general form for M, is s = M;(z, u). In this case, the output from |
M, is not, used as a parameter, but receives the previous parameter input u

and gives the previous output s after the parameter. Hence, we can derive
the following related theorem.

Theorem 3 (Universal Operational Map-II) A universal operational map-
ping Fg, (1) — H(F) : z(t) — y(t) is given by the interconnection of a universal
operator F : (X, V) =Y and a single-input single-output universal function map
M.+ X =V according to

y = F(z,v;0) (12)
voo= Mcl(ib) (13)
wherez € X CC(K),veVCC(K),yeYCC(K),and 6 €0 CR™.

Proof Sketch. The proof follows directly from Theorem 1. The operator F(z,v)
is a universal approximator as independent as required in each of its inputs.
Therefore, for every distinct value of v, e.g. v = 1,2,... a distinct universal
approximation F : C(K) — C(K) may be obtained. Let M, prescribe some
operator from the input z to the extra input v. Therefore, a distinct universal |
approximation F' can be obtained as required for any given input z, hence a
universal operational model is obtained.

124

I T T T T T T T T




Remarks

1. In the above theorems, for universal operational maps, it may be assumed
that F' is given by a network as described in [7].

2. F may also be given by a recurrent neural network, with the universal
approximation properties in the sense of those shown by Sontag [19]. In this
case, the resulting recurrent network H, possesses also multiple modelling
capabilities?.

These results offer a different viewpoint for modular networks. Previously,
nodular neural networks were used to approximate a mapping by spatial decom-
wosition [13]. Here, operational maps perform a temporal decomposition.

The discrete multiple model can be interpreted as a hybrid system [5]. More-
wer, a neural network may arbitrarily form such hybrid systems, even in the
ourse of training, without the user necessarily being aware of this phenomena
ccurring.

Discrete multiple models are related to agent systems [2,14]. The models F
nd M, can each be viewed as agents cooperating together to produce a more
omplex mapping than either is capable of acting alone. The framework proposed
lere also includes models such as mixtures of experts [10].

3 Synthesis of Multiple Models by Bias Shifting

fere we present a simple constructive approach to show how multiple models may
ye synthesized in both feedforward and recurrent neural networks. The approach
ve propose is well suited for muiltiple models which are comprised of a set of
liscrete F' models and is applicable to synthesis as well as analysis, though the
atter case is not discussed here.

Cheorem 4 An MLP model G(x,v) can form multiple unique function mappings

Gz, v) =my(2), v=1,..p (14)
'efined by
N m
my (z) = chig Euij + byi (15)
i=1 =1

shere the extra input v indexes the desired mapping m,(z).

2Though to be precise, one may wish to qualify the sense of the approximation in terms of
1e specific characteristics of universal approximation being performed, i.e. in the sense defined
y Chen and Chen [7] or Sontag [19].
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Proof Sketch. Without loss of generality, let N = np. This specifies p subgroups
within G, each of n hidden units. Therefore we have

N m
2 G(:L’,’U) = Zchig Zghijx"’ghi'l'ru h=1,..p (16)
Ohi = opi—rh (17)

For sufficiently large r, if we consider approximations on the range [a, 5] where
la,b] < 7, then setting v = {1,..,p} results in

N m
zcuig Egvij:c + ¢vi (18)‘
i=1 j=1 '

= my(z) (19)

G(z,v)

as required.

|
i

Theorem 5 An RNN model G(z,y,v) can form multiple unique mappings

G(z,y,v) =my(z,y), v=1,..p (20)

where the extra input v indexes the desired mapping m,(z,y). ‘

Proof Sketch. Omitted due to lack of space. The proof follows a similar proce-

j dure to that used for Theorem 4. ‘

| The implication of this theorem is that by appropriate biases offsets in the

different groups of units, various units in the recurrent network can be “pushed”’

in and out of action. Note that this method can be used as a means of switching

| between different discrete models, or in a continuous sense, by setting r to an
appropriately small value.

6 Examples

In this section, we give a number of examples, which indicate the idea of the
multiple models discussed in the paper. In order to clarify the results, we use
simple model structures.

6.1 General Examples

| Here we consider some general examples to indicate some possible types of mul:
tiple models which may be synthesized. '

1. Input Amplitude Dependent Model.

This type of model is derived by using a characteristic function M. givef
by :
| Box 2 < 7o
‘ Mz)=<{ 6@ ro<z?gm (21
| Gax xZ> 1
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where {r} are scalar values. The model behaviour is dependent on the
instantaneous value of the input (). In particular, the model will switch
parameter sets when the amplitude of 2(¢) crosses certain thresholds. This
model can be considered as a multiple bilinear or state-dependent model.

2. Frequency Dependent Model Selection.
M. may be a function of the frequency of the incoming signal. For example,

Mc(z) = frm (X(w)) (22)
where fp, is a function of X (w) = FFT[z].
3. Sequential Model Selection

Here, the model is based on some predetermined time-sequence and bears
a close relationship with hybrid systems considered in robotics [5]. In this
case, the input z is a sequence of symbolic binary values. M.(z) processes
this symbolic binary input and upon recognition of a particular sequence,
outputs a 1 and holds it for a specified period of time, otherwise the output
is a zero.

3.2 A Recurrent Network Multiple Model
.2.1 Network Architecture

3ased on the multiple model framework presented in this paper, a recurrent net-
vork multiple model® can be proposed as follows.

¢ 12 (g = 9pri (wpri)) [1521 (@ — gpei (upei)) (9 — 9pei (uﬂci)) »
H:l_—‘.l (¢ — gari (vari)) H;Zl (9 = gari (Uari)) (9 = Gors (Bari)) (23)

vhere {g} are the element-wise characteristic functions corresponding to M.. {u}
ire ancillary inputs. Since the poles and zeros in (23) are the outputs of nonlinear
unctions, they are termed nonlinear poles and zeros respectively and the model
an also be considered as a nonlinear pole-zero model. The coefficient functions
g} and ancillary inputs{u} provide a wide scope for introducing a variety of
nodels.

y(t) =

5.2.2 Example: An Input Amplitude-Dependent Multiple Model

\ nonlinear pole-zero multiple model is synthesized in this example as follows.
The model 1s described by
1

Hm(g
N e Y O P (e Ty
Gi(u) = oqu(t)+azu(t) G (u) = oju(t) + osu(t)
2For convenience and clarity of the example, we have chosen to use linear models as a basis,
lowever these may be arbitrary nonlinear models in practice. Since the behaviour of linear

ystems is well known, it is easier to visualize the differences between the two models in this
ase.

(24)
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Figure 1: The performance of a recurrent neural network multiple model. In this simple
example, (a) is the input signal, and (b) shows the model output due to the input.

where G (u) and G (u) provide complex conjugate outputs and H,,(¢) switches
between two underlying linear models H1(g), H>(g), depending on the binary .
ancillary input signal u (¢) .

1

Hilg) = 14 aing™! + aizq™? (25)
(26)

where, for the purposes of this example, we choose a1; = 1.6, a1 = 0.73, as; = |
—1.9, az2 = 0.925 and o; are the corresponding first order poles of H;(g). The
input u(t) can be obtained, for example, by

| ult) =T (B, [2(1)]) 27)

where E [-] denotes the short term expectation and

J i
| F(c):{(l) gig (28)

Therefore, when the magnitude of the short term average of the squared input’
signal reaches a certain threshold, defined by T', the model will change. The!
performance of this model is shown in Fig. 1, where the model characteristics due!
to the change in input can be seen’

l 6.2.3 Example: An RNN Modelling a Time-varying Linear System

This example we synthesize a recurrent neural network model which models al
time-varying linear system, described by

Hon(g) ! (20)

| 1= (ut) g Gy (u,t) g2
‘ The model varies as a function of the ancillary input signal «, and the coefficient,
| functions ¢; (t), 1 = 1,2 are in this example, simple linear functions, given by

| G = eotendi () (30)
' biou(t) -+ b,-lu(t — 1)

| ) = 31)
‘ G (1) T4 a;197 1 + aj2q9™2 (81)
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Figure 2: The time-varying recurrent network described in Section 6.2.3 is capable of

exhibiting a variety of different behaviours as observed here.

For the purposes of this example, we choose the parameters* a;; = 1.6, a;» = 0.9,
o1 = ~1.9, asy = 0925, blO = 1.0, b11 = 05, b20 = 09, b21 = 05, Cig — 175,
c11 = 0.04, ¢30 = 0.8, ¢33 = 0.02 and u(t) = :L‘(t)

The resulting multiple model, which is an extension of the usual bilinear struc-
ture, can be described by the difference equation form of nonlinear pole-zero model
given by

Il

y(t) 2(t)+C @yt —1)+ () y(t —2) (32)
Cz- (t) = ¢;1+¢o (bol’(t) + blx(t) — a;1G; (t - 1) + aigC,v (t — 2)) (33)

where z(t) is the input and y(t) is the output. Examples of the model behav-
iour are shown in Fig. 2, which indicate some of the ‘richness’ of the model’s
capabilities.

7 Conclusions

In this paper, we have given theories which indicate how nonlinear models, in-
cluding feedforward and recurrent networks, can approximate systems known as
multiple models. We have shown that such models can be considered in terms of
operational maps. It was shown that there exist classes of neural networks which
can universally approximate operational maps. The results provide an explana-
tion for the experimental behaviour of some recurrent networks in being able to
model multiple dynamic systems [8].
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