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Abstract— Adaptive neural networks (i.e. NNs with long- and
short-termm memories), and accommodative neural networks,
which are recurrent NNs with fixed weights, are perhaps the
most effective paradigms for general and systematic adaptive
series-parallel system identification. Adaptive NNs involve less
online computation, no poor local minima to fall into, and much
more timely and beiter adaptation than neural networks with
all their weights adjusted online. Accommodative NNs do not
require online weight adjustment.

Part I of this sequence of papers presented in LJCNN’0L
reported that adaptive NNs have much better generalization
ability than accommodative NNs in two numerical examples. In
this Part, more comparison of the two paradigms is made for
series-parallel identification of both deterministic and stochastic
plants. Numerical examples show that although adaptive NNs
consistently outperform accommodative NNs for generalization,
the accommodative NNs have satisfactory generalization per-
formances. However, in an example involving bifurcation and
chaos, while the adaptive NN trained on periodic trajectories
of the logistic dynamical system tracks accurately its chaotic
trajectories, the accommodative NN trained better on the same
data fails totally. As reflected in all the examples studied,
the variability of the plant outputs seems to directly affect
the generalization ability of the accommodative NN. Then an
open question is: “How do we measure the variability of the
plant outputs to determine whether an accommodative NN has
adequate generalization ability for a given application?”

I. INTRODUCTION

Adaptive neural networks (NNs) (i.e. NNs with long- and
short-term memories) were proposed for adaptive processing
by the first-named author at ICNN'96 and ICNN’97. They
were expected to have the online benefits of less computation,
no convergence to poor local minima, and shorter transients
as compared with the MLPs with all their weights adjusted
online, which have been confirmed in [1]. On the other hand,
properly trained recurrent NNs with fixed weights have been
known to be able w adapt to an uncertain environment.
To distinguish this ability with that of an adaptive system
that adjusts any of its parameters for adaptation, the former
ability is called accommodative ability. Intuitively speaking,
the accommedative ability of an accommodative NN is a
manifestation of its estimating implicitly the uncertain envi-
ronmental process or a function thereof.
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The accommodative ability for adaptive filtering is a corol-
lary of a main theorem for recursive neural filtering [2]. This
ability was discussed in [3), [4]. The accommodative ability of
recurrent NNs was also studied for engine idle speed control
and time series prediction in [5]. In a companion paper also
presented in IJICNN’03, a rigorous mathematical proof of the
accommodative ability for series-parallel system identification
is given. - -

This paper is a continvation of the paper [6] presented
in IICNN’01, in which adaptive NNs were shown to have
superior generalization ability than accommodative NNs in
identifying a linear deterministic plant with a cubic actuator
and a deterministic exponential autoregressive plant in the
series-parallel formulation of system identification. In fact,
in these two examples, the accommodative NNs failed to
generalize. In this paper, adaptive and accommodative NNs
are compared on not only deterministic but also stochastic
plants. The variability of the environmental parameters in these
plants are smaller than those in the preceding paper {6]. The
purpose is to see whether accommodative NNs can generalize
at all in identifying deterministic as well as stochastic plants,
for which adaptive recurrent NNs have to be used instead of

"adaptive multilayer perceptrons as the adaptive identifiers.

A deterministic linear plant with cubic actuation and a
deterministic bilinear plant were each identified with an adap-
tive multilayer perceptrons and an accommodative recurrent
multilayer perceptron. The environmental parameters were
restricted to small ranges to hold the variability of the plant
trajectories small. Numerical results show_that adaptive NNs
used as series-parallel identifiers have consistently better gen-
eralization ability than accommodative NNs. Nevertheless, the
accommodative NNs are able to generalize reasonably well
and track the plant outputs online rather closely.

A stochastic linear plant with cubic actuation and a stochas-
tic bilinear plant, obtained by including random driving in the
foregoing plants, were also identified with adaptive and accom-
modative NNs. The series-parallel identification involved is
actually an adaptive neural filtering problem. Hence, adaptive
recurrent NNs (with long- and short-term memories) have to be
used instead of adaptive multilayer perceptrons as identifiers.
Again, such adaptive identifiers are shown to consistently have
better generalization ability than accommodative NNs for iden-
tifying both of the stochastic plants, and the accommodative
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NNs have reasonably well online generalization performances.

Tt has been suspected that the variability of the plant outputs
rather than the range of the environmental process affects
generalization performances directly. The well-known logistic
difference equation is identified with an adaptive NN and
an accommodative NN. The logistic difference equation has
asymptotically stable, periodic and chaotic trajectories over
a small range [1,4] of its parameter. The adaptive NN and
the accommodative NN were trained on asymptotically stable
data. The former generalizes successfully to track periodic and
chaotic trajectories, but the latter fails completely.

The numerical examples in this paper as well as those in
the preceding paper [6] prompt one open question: How do
we measure the variability of the plant outputs to determine
whether an accommodative NN has adequate generalization
ability for a given application? More analytical understanding
such as that presented in another paper by the first-named
author in IJCNN’03 is desirable.

II. IDENTIFICATION OF DETERMINISTIC PLANTS
A. Example 1. Linear system with a cubic actuator

Consider a simple first order autoregressive process given
by :
Yeer = 1ye + (ug — 01) ue (ue +62) (1

where u; is the driver sequence and {#,6,) is the environ-
mental parameter of interest.

For the a priori training data, six values for the environmen-
tal parameter (61,8,) given by © = {(0.1,-1),(0.2,-1),
(0.3,-1),(0.1,-1.5), (0.2, —1.5),(0.3, —1.5)} are selected.
Offline training is petformed using an MLP with LASTMs
with 2:12:7:1 architecture. The final offline RMSE value is
noted to be 1.3962¢-01. Next, an accomodative MLPWIN
with 2:10:10:1 architecture is trained using the same a priori
training data set. The final offline RMSE value for the ac-
comodative MLPWIN is 1.3896e-01 (slightly lower than the
final value of the trained MLP with LASTMs).

Online testing is performed wusing the values
{(0.25,-0.9), (0.15, —1.25) , {0.05, —1.6)} for & on both the
ANNs. The results of this test are illustrated in figures 1, 2
and 3.
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Fig. 1. Example 1: Average absolute error for accomodative MLPWIN and
MLP with LASTMs .
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Fig. 2. Example 1: Average absolute error for accomodative MLPWIN and
MLP with LASTMs (at time t=150)
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Fig. 3. Example 1: Change-point at time t=150

Figure 1 shows the online absolute errors for the acco-
modative MLPWIN and the MLP with LASTMSs. The three
peaks indicate the change-points at times = I, 151, and 301
respectively. Figure 2 shows figure 1 zoomed at time t=150.
Observe that is takes about 30 titne points for the network
to detect and adapt to the new value of 8. Figure 3 shows a
typical realization of the output of the accomodative MLPWIN
and the output of the MLP with LASTMs against the system
output around the change-point at time t=150.

B. Example 2. Bilinear system
Consider the bilinear dynamic system given by

Yer1 = Gy + Oogue + uy 2

where u; is is the driver sequence and (61, &) is the environ-
mental parameter of interest.

Six values of the environmental parameter (8;,83), given
by © = {(0.1,0.25), (0.2,0.25), (0.3, 0.25), (0.1,0.5),
(0.2,0.5),(0.3,0.5)} are selected for the a priori training data.
Offline training is performed using an MLP with LASTMs
with 2:10:7:1 architecture. The final offline RMSE value is
8.7842¢-02. Next, an accomodative MLPWIN with 2:10:10:1
architecture is trained using the same a priori training data set.
The final offline RMSE value for the accomodative MLPWIN
is 8.3197¢-02 (note that this is lower than the final value of
the trained MLP with LASTMs).
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Online testing is carried out using the values

{(0.15,0.3),(0.075,0.35), (0.35,0.2)} for 8. The resuits of
this test are illustrated in figures 4, 5 and 6.
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Fig. 4. Example 2: Average absolute error for accomodative MLPWIN and
MLP with LASTMs
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Fig. 5. Example 2: Average absolute error for accomodative MLPWIN and
MLP with LASTMs (at time t=150)

Figure "4 shows the online absolute errors for the acco-
modative MLPWIN and the MLP with LASTMs. The three
peaks indicate the change points at times = 1, 151, and 301
respectively. Figure 5 shows figure 4 at time t=150. In this
case, the ANN take about 40 time steps to adjust to the new
value of 8. Figure 6 shows a typical realization of the output of
the accomodative MLPWIN and the output of the MLP with
LASTMs against the system output at time t=150.

III. IDENTIFICATION OF DETERMINISTIC PLANTS

A. Example 3. Series-parallel identification of a stochastic
linear system with a cubic actuator

Consider the first order autoregressive dynamlc system (1)
with noise given by

Y1 = 9y¢ + (ut — 9) [N (uf + 1) + € (3)

where ¢, are independent Gaussian noises with 0.4 standard
deviation (approximately 10% of the signal), u; is the driver
input and 6 is the parameter of interest.

Three exemplary values of the environmental parameter
8 given by © {0.1,0.3,0.5} are selected for forming

S
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Fig. 6. Example 2: Change-point at time t=150

the a priori training data set. An MLPWIN with LASTMs
with 2:5:5:1 architecture is used for offline training. The
final RMSE value is recorded to be 3.690107¢-03. Another
accommocdative MLPWIN with 2:8:8:1 architecture is trained
using the same data 'set. The final RMSE value for the
accommodative MLPWIN is 1.486838e-02 (further trammg
was not possible without overfitting).

Online testing is performed using the values {0.2, 0.4,0.6}
for 8. The results of this test are illustrated in figures 7 and 8.

0
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Fig. 7. Example 3: Average absolute error for accommodative MLPWIN
and MLPWIN with LASTMs

Fig. 7 shows the online absolute errors for the accom-
modative MLPWIN and the MLPWIN with LASTMs. The
changes points occur at times = 1, 151 and 301 respectively.
Observe that the RMSE for the accomodative MLPWIN goes
up by a significant amount as € is pushed 1o 0.6 to test the
generalization ability of the ANNs. This can be clearly seen
in Fig. 8 which shows Fig. 7 around time ¢ = 300.

B. Example 4. Series- para.l!el identification of a stochastic
bilinear system

Consider the bilinear system (2} with noise given by

Yep1 =1y + Oageus + U + & 4

where 1 is the driver input, § = (01,02} is the parameter
of interest and ¢; are independent Gaussian noises with 0.135
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Fig. 8. Average absolute error for accommodative MLPWIN and MLPWIN
with LASTMs (at time t= 300)

standard deviation (approximately 10% of the standard devia-
tion of the signal).

Six values of 8 given by © = {{0.1,0.25),(0.2,0.25),
(0.3,0.25),(0.1,0.5} , (0.2,0.5), (0.3, 0.5)} were selected for
obtaining the a priori training data. An MLPWIN with
LASTMs with 2:6:1 architecture is trained offline using this
data set. The final RMSE value is recorded to be 1.425569¢-02.
Next, an accommodative MLPWIN with 2:10:10:1 architecture
is trained using the same data set. The final RMSE value
for the MLPWIN is 1.752183e-02 (beyond which the training
started to overfit the data).

Online testing is carried out wusing the values
{(0.25,0.3),(0.15,0.4),(0.35,0.2)} for 6. The results
of this test are illustrated in Fig. 9 and Fig. 10.

——

Fig. 9. Example 4: Average absolute error for accommodative MLPWIN
and MLPWIN with LASTMs

Fig. 9 shows the online absolute errors for the accommoda-
tive MLPWIN and the MLPWIN with LASTMs. The changes
points occur at times = 1, 151 and 301 respectively. Observe
that the RMSE for the accomodative MLPWIN goes up by
a significant amount as # is pushed to (0.35,0.2) to test the
generalization ability of the ANNs. This can be seen in Fig.
10 which shows Fig. 9 around time ¢ = 300.

" The following examples lock at systems where the environ-
mental parameter theta has high variability as described at
the beginning of this section.

Fig. 10. Example 4: Average absolute error for accommodative MLPWIN
and MLPWIN with LASTMs (at time t= 300)

IV. IDENTIFYING THE LOGISTIC SYSTEM

A. Example 5. Series-parallel identification of the logistic
equation
Consider the logistic equation given by

Yepr = Oy (1~ y) (5)

where 0 < 8 < 4 and the initial condition yo € (0,1). In
this case, there is no driver sequence u;. The system exhibits
different dynamics based on the value of 8 as listed below.

1) 0<8<1: y =0 is the asymptotically stable point

2) 1<6< 3 y= %1 is asymptotically stable point

3) 8 = 3: Transition from stability to oscillation

4) 3 < 8 <€ 3.449: Oscillation with period 2

5) 3.449 < # < 3.5699: Oscillation with period doubling

as @ increases (bifurcation)

6) & > 3.5699: Chaotic
The MLPWIN with LASTMs is not capable of handling
chactic systems. Further, for 0 < 8 <« 3, the solution is
asymptotically stable and stabilizes very fast for nearly all
values in the specified region. It would be no problem for the
short term memory to adapt to this asymptotic value (using
the bias term only and setting all other weights 1o zero),
For such reasons, the system (5) is studied for values of
3 <0< 3.5699.

Three vatues of  given by @ = {0.8,1.5,2.8} are choosen
for a priori training. The training data set comprises of 200
sequences, each containing 43 consecutive IfO pairs corre-
sponding to one of the three & values. The initial condition y,
is selected uniformly from (0.0001, 0.9999). Offline training is
performed using a MLP with LASTMs with 1:4:1 architecture.
The final RMSE is recorded to be 9.020597e-03. Next, an
accomodative MLPWIN with 1:10:1 architecture is trained
using the same training data set. Several values of 3, 5, 10
and 15 are used for priming. The final RMSE (corresponding
to a priming length of 5) is 8.828213e-03.

Online testing is performed using the values
{1.5,3.5,2.7,3.2,3.65} for @. Each test sequence is 500 long
consisting of 100 consecutive /O pairs for each § value in
the given order. The initial condition yp is selected uniformly
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from [0.05,0.5). The results of this test are illustrated in
figures 11, 12, 13 and 14, '
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Fig. 1 Example 5: Average absolute error for MLP with LASTMs
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Fig. 12. Example §: Average absolute errar for accomodative MLPWIN

Figures 11 and 12 show the absolute error during online
testing for the MLP with LASTMs and the accomodative
MLPWIN respectively, averaged over 500 test sequences. Fig.
13 is blown-up version of Fig. Il at time t=400. The MLP
with LASTMs takes about 20 steps to adjust itself to the new
value of 8. Fig. 14 shows a typical realization of the MLP
with LASTMs against the plant output. The output for the
accomodative MLPWIN is not included because of its poor
performance during online testing.

V. CONCLUSION

Numerica) feasibility and comparison of adaptive and ac-
commodative NNs for series-parallel identification of dynam-
ical systems have been studied and the results are reported
in this paper and its preceding Part I. The results show that
both types of NN are satisfactory serigs-parallel identifiers of
both deterministic and stochastic plants with small variabilities
cavsed by uncertain environmental parameters. Nevertheless,
adaptive NNs have consistently better generalization capabil-
ity. Moreover, when the variability of a plant under identifica-
v .. is large, accommodative NNs usually fail to generalize.

Fig. 13.
t=150)

Fig. 14. Example 5: Change-point at time 1=150

However, accommodative NNs do not require online weight
adjustment. If online computation must be minimized and
especially if there is no data for online weight adjustment,
accommaoadative NNs are a good or only choice. We con-
clude that both adaptive and accommodative NNs are viable
paradigms for series-parallel identification of both determinis-
tic and stochastic dynamical system. Selection between them
for an application depends on the variability of the plant in-
volved, generalization performance required, amount of online
computation allowed, and training data available online.
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