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Abstracl- Adaptive neural networks (i.e. NNs with long- and 
short-term memories), and accommodative neural networks, 
which are recurrent NNs with fixed weights, are perhaps the 
mmt effective paradigms for general and systematic adaptive 
series-parallel system identification. Adaptive NNs involve less 
online computation, no poor local minima to fall into, and much 
more timely and better adaptation than neural networks with 
all their weights adjusted online. Accommodative NNs do not 
require online weight adjustment. 

Part I of this sequence of papers presented in IJCNN’O1 
reported that adaptive NNs have much better generalization 
ability than accommodative NNs in two numerical examples. In 
this Part, more comparison of the two paradigms is made for 
series-parallel identification of both deterministic and stochastic 
plants. Numerical examples show that although adaptive NNs 
consistently outperform accommodative NNs for generalization, 
the accommodative NNs have satisfactory generalization per- 
formances. However, in an example involving bifurcation and 
chaos, while the adaptive NN trained on periodic trajectories 
of the logistic dynamical system tracks accurately its chaotic 
trajectories, the accommodative NN trained better on the same 
data fails totally. As reflected in all’ the examples studied, 
the variability of the plant ontputs seems to directly affect 
the generalization ability of the accommodative NN. Then an 
open question is: “How do we measure the variability of the 
plant outputs to determine whether an accommodative NN has 
adequate generalization ability for a given application?” 

I. INTRODUCTION 
Adaptive neural networks (NNs) (i.e. NNs with long- and 

short-term memories) were proposed for adaptive processing 
by the first-named author at ICNN’96 and ICNN’97. They 
were expected to have the online benefits of less computation, 
no convergence to poor local minima, and shorter transients 
as compared with the MLPs with all their weights adjusted 
online, which have been confirmed in [I]. On the other hand, 
properly trained recurrent NNs with fixed weights have been 
known to be able to adapt to an uncertain environment. 
To distinguish this ability with that of an adaptive system 
that adjusts any of its parameters for adaptation, the former 
ability is called accommodative ability. Intuitively speaking, 
the accommodative ability of an accommodative NN is a 
manifestation of its estimating implicitly the uncertain envi- 
ronmental process or a function thereof. 
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The accommodative ability for adaptive filtering is a corol- 
lary of a main theorem for recursive neural filtering [2]. This 
ability was discussed in [3], [4]. The accommodative ability of 
recurrent NNs was also studied for engine idle speed control 
and time series prediction in [ 5 ] .  In a companion paper also 
presented in IJCNN’03, a rigorous mathematical proof of the 
accommodative ability for Series-parallel system identification 
is given. 

This paper is a continuation of the paper [6] presented 
in IJCNN’Ol, in which adaptive NNs were shown to have 
superior generalization ability than accommodative NNs in 
identifying a linear deterministic plant with a cubic actuator 
and a deterministic exponential autoregressive plant in the 
series-parallel formulation of system identification. In fact, 
in these two examples, the accommodative NNs failed to 
generalize. In this paper, adaptive and accommodative NNs 
are compared on not only deterministic but also stochastic 
plants. The variability of the environmental parameters in these 
plants are smaller than those in the preceding paper [6]. The 
purpose is to see whether accommodative NNs can generalize 
at all in  identifying deterministic as well as stochastic plants, 
for which adaptive recurrent NNs have to be used instead of 
adaptive multilayer perceptrons as the adaptive identifiers. 

A deterministic linear plant with cubic actuation and a 
deterministic bilinear plant were each identified with an adap- 
tive multilayer perceptrons and an accommodative recurrent 
multilayer perceptron. The environmental parameters were 
restricted to small ranges to hold the variability of the plant 
trajectories small. Numerical results show. that adaptive NNs 
used as series-parallel identifiers have consistently better gen- 
eralization ability than accommodative NNs. Nevertheless, the 
accommodative NNs are able to generalize reasonably well 
and track the plant outputs online rather closely. 

A stochastic linear plant with cubic actuation and a stochas- 
tic bilinear plant, obtained by including random driving in the 
foregoing plants, were also identified with adaptive and accom- 
modative NNs. The series-parallel identification involved is 
actually an adaptive neural filtering problem. Hence, adaptive 
recurrent NNs (with long- and short-term memories) have to be 
used instead of adaptive multilayer perceptrons as identifiers. 
Again, such adaptive identifiers are shown to consistently have 
better generalization ability than accommodative NNs for iden- 
tifying both of the stochastic plants, and the accommodative 
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NNs have reasonably well online generalization performances. 
It has been suspected that the variability of the plant outputs 

rather than the range of the environmental process affects 
generalization performances directly. The well-known logistic 
difference equation is identified with an adaptive NN and 
an accommodative NN. The logistic difference equation has 
asymptotically stable, periodic and chaotic trajectories over 
a small range [1,4] of its parameter. The adaptive NN and 
the accommodative NN were trained on asymptotically stable 
data. The former generalizes successfully to track periodic and 
chaotic trajectories, but the latter fails completely. 

The numerical examples in this paper as well as those in 
the preceding paper [6] prompt one open question: How do 
we measure the variability of the plant outputs to determine 
whether an accommodative NN has adequate generalization 
ability for a given application? More analytical understanding 
such as that presented in another paper by the first-named 
author in IJCNN'03 is desirable. 

11. IDENTIFICATION OF DETERMINISTIC PLANTS 

A. Example 1.  Linear system with a cubic actuator 
Consider a simple first order autoregressive process given 

(1) 
by 

Yt+l = elYt + (Ut - el) ut (ut + ez) 
where ut is the driver sequence and (el, 6'2) is the environ- 
mental parameter of interest. 

For the a priori training data, six values for the environmen- 
tal parameter (e,,&) given by 0 = {(O.l, -l), (0.2, -l),  
(0.3, -l), (0.1, -1.5), (0.2, -1.5), (0.3, -1.5)} are selected. 
Offline training is performed using an MLP with LASTMs 
with 2:12:7:1 architecture. The final offline RMSE value i s  
n o t e d  to be 1.3962e-01. Next, an accomodative MLPWIN 
with 2:1010:1 architecture is trained using the same a priori 
training data set. The final offline RMSE value for the ac- 
comodative MLPWIN is 1.3896e-01 (slightly lower than the 
final value of the trained MLP with LASTMs). 

Online testing is performed using the values 
I(0.25, -0.9), (0.15, -1.25) ,(0.05, -1.6)} for 0 on both the 
A N N s .  The results of this test are illustrated in figures 1, 2 
and 3. 

Fig. 1 .  
MLP with LASTMs 

Example I :  Average absolute error for accomodatlve MLPWIN and 
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Fig. 2. 
MLP with LASTMs (at tinu l450) 

Examplc 1: Average absolute m r  for luamodative MLPWIN and 

Figure 1 shows the online absolute errors for the acco- 
modative MLPWIN and the MLP with LASTMs. The three 
peaks indicate the change-points at times = 1, 151, and 301 
respectively. Figure 2 shows figure 1 zoomed at time t=150. 
Observe that is takes about 30 time points for the network 
to detect and adapt to the new value of 0. Figure 3 shows a 
typical realization of the output of the accomodative MLPWIN 
and the output of the MLP with LASTMs against the system 
output around the change-point at time t=150. 

B. Example 2. Bilinear system 

Consider the bilinear dynamic system given by 

= elgt + ozgtut +ut (2) 

where ut is is the driver sequence and (01, 02) is the environ- 
mental parameter of interest. 

Six values of the environmental parameter (&,e,), given 
by 0 = {(0.1,0.25),(0.2,0.25),(0.3,0.25),(0.1,0.5), 
(0.2,0.5) , (0.3,0.5)} are selected for the a priori training data. 
Offline training is performed using an MLP with LASTMs 
with 2:10:7:1 architecture. The final offline RMSE value is 
8.7842e-02. Next, an accomadative MLPWW with 2:1010:1 
architecture is trained using the same a priori training data set. 
The final offline RMSE value for the accomodative MLF'WIN 
is 8.3197e-02 (note that this is lower than the final value of 
the trained MLP with LASTMs). 
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Online testing is carried out using the values 
{(0.15,0.3), (0.075,0.35), (0.35,0.2)} for 8. The results of 
this test are illustrated in figures 4, 5 and 6. 

Fig. 4. 
MLP with LASTMs 

Example 2. Average absolute error far accomcdative MLPWIN and 

Fig. 5. 
MLP with LASTMs (at time t=150) 

Example 2: Average absolute error for accamadative MLPWIN and 

Figure.4 shows the online absolute errors for the acco- 
modative MLPWIN and the MLP with LASTMs. The three 
peaks indicate the change points at times = I ,  151, and 301 
respectively. Figure 5 shows figure 4 at time t=150. In this 
case, the ANN take about 40 time steps to adjust to the new 
value of 0. Figure 6 shows a typical realization of the output of 
the accomodative MLPWIN and the output of the MLP with 
LASTMs against the system output at time t=150. 

111. IDENTIFICATION OF DETERMINISTIC PLANTS 

A. Example 3. Series-parallel identijicution of a stochastic 
linear system with a cubic actuator 

Consider the first order autoregressive dynamic system ( I )  
with noise given by 

Y t + l  = 8yt + (ut - 0) U t  (ut + 1) + E t  (3) 
where et are independent Gaussian noises with 0.4 standard 
deviation (approximately 10% of the signal), ut is the driver 
input and 0 is the parameter of interest. 

Three exemplary values of the environmental parameter 
0 given by 0 = {0.1,0.3,0.5} are selected for forming 

the a priori training data set. An MLPWIN with LASTMs 
with 2:5:5:1 architecture is used for offline training. The 
final RMSE value is recorded to be 3.690107e-03. Another 
accommodative MLPWIN with 2:8:8:1 architecture is trained 
using the' same data 'set. The final RMSE value for the 
accommodative MLPWIN is 1.486838e-02 (further training 
was not possible without overfitting). 

Online testing is performed using the values {O.Z, 0.4,0.6} 
for E. The results of this test are illustrated in figures 7 and 8. 
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Fig. 7.  
and MLPWIN with LASTMs 

Example 3: Average absolute error for accommodative MLPWIN 

Fig. 7 shows the online absolute errors for the accom- 
modative MLPWIN and the MLPWIN with LASTMs. The 
changes points occur at times = 1, 151 and 301 respectively. 
Observe that the RMSE for the accomodative MLPWIN goes 
up by a significant amount as E is pushed to 0.6 to test the 
generalization ability of the ANNs. This can be clearly seen 
in Fig. 8 which shows Fig. 7 around time t = 300. 

E. Example 4. Series-parallel identification of a stochastic 
bilinear system 

Consider the bilinear system (2) with noise given by 

Yt+l  = o l Y t  + ezytut +ut +et  (4) 

where ut is the driver input, 8 = (8,,0z) is the parameter 
of interest and € 6  are independent Gaussian noises with 0.135 
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Fig, 8, Average absolute mor for acco,,,,,,oda~ve M ~ ~ \ U I N  and M L ~ W ~  
with LASTMs (at time t= 3W) 

Fig. 10. 
and MLPWIN with LASTMs (at time t= 3W) 

Example 4: Average absolute error for accommodative MLPWIN 

standard deviation (approximately 10% of the standard devia- 
tion of the signal). 

Six values of B given by 8 = {(0.1,0.25), (0.2,0.25), 
(0.3,0.25), (0.1,0.5), (0.2,0.5), (0.3,0.5)) were selected for 
obtaining the a priori training data. An MLPWIN with 
LASTMs with 2 6  1 architecture is trained offline using this 
data set. The final RMSE value is recorded to be 1.425569e-02. 
Next, an accommodative MLPWIN with 2 1 0  1 0  1 architecture 
is trained using the same data set. The final RMSE value 
for the MLPWIN is 1.752183e-02 (beyond which the training 
started to overfit the data). 

Online testing is carried out using the values 
{(0.25,0.3), (0.15,0.4), (0.35,0.2)} for 6'. The results 
of this test are illustrated in Fig. 9 and Fig. 10. 

I . . . . . . . . I  
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Fig. 9. 
and MLPWIN with LASTMr 

Example 4 Average absolute error for accommodative MLPWIN 

Fig. 9 shows the online absolute errors for the accommoda- 
tive MLPWlN and the MLPWIN with LASTMs. The changes 
points occur at times = 1. 151 and 301 respectively. Observe 
that the RMSE for the accomodative MLPWIN goes up by 
a significant amount as 6' is pushed to (0.35,0.2) to test the 
generalization ability of the ANNs. This can be seen in Fig. 
10 which shows Fig. 9 around time t = 300. 

The following examples look at systems where the environ- 
mental parameter theta has high variability as described at 
the beginning of this section. 

Iv. IDENTlPYlNG THE LOGISTIC SYSTEM 

A. Example 5. Series-parallel identijication of the logistic 
equation 

Consider the logistic equation given by 

Yt+l  = But (1 -art) (5) 

where 0 5 6' 5 4 and the initial condition yo E (0,l) .  In 
this case, there is no driver sequence ut. The system exhibits 
different dynamics based on the value of 6' as listed below. 

1) 0 2 6' 5 1: y = 0 is the asymptotically stable point 
2) 1 5 6' 2 3 y = 
3) 6' = 3: Transition from stability to oscillation 
4) 3 < 6' 5 3.449: Oscillation with period 2 
5) 3.449 < 6' 5 3.5699: Oscillation with period doubling 

6) 0 > 3.5699 Chaotic 

is asymptotically stable point 

as 6' increases (bifurcation) 

The MLPWIN with LASTMs is not capable of handling 
chaotic systems. Further, for 0 5 6' < 3, the solution is 
asymptotically stable and stabilizes very fast for nearly all 
values io the specified region. It would be no problem for the 
short term memory to adapt to this asymptotic value (using 
the bias term only and setting all other weights to zero). 
For such reasons, the system (5) is studied for values of 

Three values of 6' given by 0 = {0.8,1.5,2.8} are choosen 
for a priori training. The training data set comprises of 200 
sequences, each containing 43 consecutive VO pairs corre- 
sponding to one of the three 6' values. The initial condition yo 
is selected uniformly from (0.0001,0.9999). Offline training is 
performed using a MLP with LASTMs with 1:4:1 architecture. 
The final RMSE is recorded to be 9.020597e-03. Next, an 
accomodative MLPWIN with 1:lOl architecture is trained 
using the same training data set. Several values of 3, 5, 10 
and 15 are used for priming. The final RMSE (corresponding 
to a priming length of 5) is 8.828213e-03. 

Online testing is performed using the values 
{1.5,3.5,2.7,3.2,3.65} for 6'. Each test sequence is 500 long 
consisting of 100 consecutive YO pairs for each 6' value in 
the given order. The initial condition yo is selected uniformly 

3 < e 5 3.5699. 
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from [0.05,0.5]. The results of th~s test are Illustrated in 
figures 11, 12, 13 and 14. 

Fig. 11 . Example 5: Average absolute enor for MLP with LASTMs 
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Fig. 14. Example 5: Change-point at time t=150 

However, accommodative NNs do not require online weight 

especially if there is no data for online weight 'adjustment, 
accommodative NNs are a good or only choice, we con- 
clude that both adaptive and accommodative NNs are viable 

tic and stochastic dynamical system. Selection between them 

volved, generalization performance required, amount of online 

Fig. 12. Example 5: Average absolute e m r  for accamodative MLPWIN ~f online computation be and 

Figures 1 1  and 12 show the absolute error during online 
and the accomodative 

at lime t=400' The m' 
Of the mp 

accomodative MLPWIN is not included because of its Door 

testing for the mp with 

l3  is blown-up version Of Fig' 
MLPWIN respectiveb, averaged over 500 test sequences. Fig. paradigms for series-parallel identification of both determinis- 

with LASTMs takes about 2o steps Io adjust itself the new for an application depends on the variability of the plant in- 
Of '' Fig' l4 shows a typical 

with against the plant output. The Output for the computation allowed, and training data available online, 

performance during online testing. 

V. CONCLUSION 

Numerical feasibility and comparison of adaptive and ac- 
commodative N N s  for series-parallel identification of dynam- 
ical systems have been studied and the results are reported 
in this paper and its preceding Part I. The results show that 
both types of NN are satisfactory series-parallel identifiers of 
both deterministic and stochastic plants with small variabilities 
caused by uncertain environmental parameters. Nevertheless, 
adaptive NNs have consistently better generalization capabil- 
ity. Moreover, when the variability of a plant under identifica- 
,. .. is large, accommodative NNs usually fail to generalize. 
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