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Abstract 
We demonstrate here a perhaps unexpected result: the 
ability of a single fixed-weight time-lagged recurrent 
network, properly trained, to act  as a stabilizing con- 
troller for multiple (here 3) distinct and unrelated sys- 
tems, without explicit knowledge of system identity. 
This capability, which may be regarded as a challenge 
t o  the usual understanding of what constitutes an adap-  
tive system, seemed plausible to us on the basis of our 
earlier results on both multiple time-series prediction 
and robust controller training. We describe our train- 
ing method, which has been enhanced toward enforcing 
stability of the closed-loop system and dealing with pro- 
cess noise, and provide some results. 

1 Introduction 
In various papers we have reported the results of train- 
ing time-lagged recurrent networks for various tasks 
and have noted what we regard as rather remarkable 
properties of such network architectures. In one ap- 
plication, a recurrent network was shown to solve a 
very difficult diagnostic problem (automotive engine 
misfire) [l, 21 that requires handling a wide range of 
system conditions. In a more abstract vein, a single 
recurrent network was trained to mimic an adaptive 
system by making accurate one-step predictions for 13 
different time series [3], resuming good predictions fol- 
lowing a switch between series, after a short period 
of accommodation, and performing well for new series 
whose parameters were modest variations of the pa- 
rameters of the original series. In the context of con- 
trol, we have shown [4,5] that a recurrent network can 
be trained to act as a controller for difficult nonlinear 
systems (‘plants’ in the jargon of control theory), with 
robustness to plant variations made an explicit objec- 
tive by training simultaneously for plants with a range 
of parameters or model structure. 

The present work was motivated by a speculation 
that arose naturally from the experience mentioned 
above: that a single fixed controller could be trained 
to be effective for two or more different and unrelated 
plants, without the plant identity being provided by an 

external signal or being deduced by an explicit classi- 
fier. Note that we are not referring merely to a sin- 
gle control structure, whose parameters are then deter- 
mined separately for each plant. Rather, we have in 
mind that the controller itself have a fixed set of pa- 
rameters. We expect the controller to  be effective only 
for those plants for which it has been trained, not for 
arbitrarily chosen plants. On the other hand, we ex- 
pect the controller’s performance to degrade gracefully 
for modest variations in the parameters of the chosen 
plants. Finally, due to the conflicting demands im- 
posed by handling multiple plants, we recognize that 
the controller’s performance, especially for transients, 
may not be as effective on a given plant as a controller 
specialized to that plant. 

2 Problem Statement 

The primary problem we consider here is that of find- 
ing a stabilizing controller for three plants, presented 
by Suykens et al. [6]. Each plant has the same struc- 
ture, but their respective parameters result in quite dif- 
ferent behavior. Each plant is nonlinear, third-order, 
and described by a difference equation of the following 
form: 

for i = 1 , 2 , 3 .  The three control inputs u j ( k ) ,  aug- 
mented by fixed biases b j ,  enter the system nonlin- 
early. We take the three states to be accessible as sys- 
tem outputs. The first system, which we label I, has 
multiple equilibria, i.e., the state variables xi of the 
unforced system (control plus bias inputs set to zero) 
evolve asymptotically to fixed values which depend on 
their initial values. Under the same conditions, system 
I1 displays quasi-periodic behavior, while system I11 is 
chaotic. Numerical values for the matrices W and V 
and the vectors b are given in the Appendix. Suykens 
et al. showed that a (separate) stabilizing controller 
for each of these systems can be trained for the case of 
b = 0. 
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Our goal here is to train a single controller that can 
bring the state variables of all three systems asymptot- 
ically to zero from arbitrary but bounded initial values. 
As an additional complication, we choose non-zero val- 
ues for the vectors b so that the asymptotic values of 
stabilizing control signals will be different in the three 
cases (for the nominal system definitions with b = 0, 
stabilizing control of all three systems results in asymp- 
totic control values of u = 0). As mentioned above, the 
controller must deduce the identity of the system from 
the system outputs in combination with its own state. 
We follow Suykens et al. in paying attention to the 
global a s y m p t o t i c  s tabi l i ty  of each closed-loop system, 
but we employ a quite different approach. 

3 Procedure 

To train the controller network we follow generally 
the multi-stream controller training procedure de- 
scribed in [4, 51. This includes a generalization of 
the dynamic backpropagation method of Narendra and 
Parthasarathy [7] to the training of recurrent networks 
and involves controller weight updates with a node- 
decoupled extended Kalman filter method augmented 
with the multi-stream technique. Briefly stated, in 
multi-stream training each weight update attempts to 
satisfy simultaneously the potentially conflicting de- 
mands imposed by two or more streams of data. In 
the present case, each plant to be controlled is used 
to form an independent stream of data, so that each 
update is an attempt to reduce error on each plant by 
making the same change of weights on all copies of the 
controller. 

A minor change from the procedure of [4] and [5] 
is that ordered derivatives are calculated using trun- 
cated backpropagation through time (BPTT) [8], as 
detailed in [9], rather than the more time-consuming 
forward method. Another difference is that here each 
stream has its own identification network, specific to 
the model, rather than an average identification net- 
work, as is adequate when the models differ only mod- 
estly. 

We wish to be clear that the setting for the exper- 
iments described is controller training from a model 
rather than our usual training from input-output data 
from a physical system or a simulation thereof. Ac- 
cordingly, we exploit the fact that the model structure 
is essentially that of a recurrent network, which can be 
used directly as both plant and identification network. 
We also make use of the ability, generally not possible 
with physical systems, to set plant states arbitrarily 
and to inject noise. 

We performed several exercises of multi-stream con- 
troller training, two of which are reported here. In the 
first of these, we took b = 0. In the second, b was 
nonzero (see Appendix) and we trained for 6 plants, 
half of which had state variables corrupted with pro- 
cess noise (i.e., z l ( k )  replaced by z l ( k )  + E ,  where E 

is taken from a Gaussian distribution of standard de- 
viation 0.1). The first case was carried out using 3 
streams, each of which has its respective model, corre- 
sponding identification network, and copy of the con- 
troller network. Similarly, the second case involved 6 
streams, split between the three models, with and with- 
out noise. The truncation depth for BPTT was cho- 
sen to be 20, and a gradient discount factor of 0.95 
was employed. The controller architecture was chosen 
as 3-8R-6R-3, i.e., 3 inputs, two fully recurrent hid- 
den layers of 8 and 6 nodes, respectively, and 3 output 
nodes. (The use of a more complex architecture than 
that required to handle any of the models separately 
reflects the controller’s dual tasks of determining the 
appropriate context and then evoking appropriate con- 
trol values.) All node activation functions were bipolar 
sigmoids, equivalent to tanh(z/2). The identification 
network, equivalent to the model given above, is ex- 
ternally recurrent and of the form 6-3-3L. The input 
vector consists of the 3 controls and the 3 time-lagged 
recurrent connections from network outputs to network 
inputs. The weights from externally recurrent inputs to 
hidden nodes are elements of the matrix 2 x V, while 
those between the hidden nodes and the linear out- 
put nodes are taken from W. The hidden layer’s bias 
weights are given by the vector 4 x b and each hidden 
node is connected to its respective controller input by 
a weight of value 4. 

Training was carried out for 100,000 total weight up- 
dates for the first case and for 350,000 total weight up- 
dates for the second. Training was organized into tra- 
jectories of length 1000 for each stream. At the start 
of each trajectory, the state variables zi of each plant 
were initialized by choosing uniformly distributed ran- 
dom values in the range [-1,1] for the outputs of the cor- 
responding identification network’s hidden layer nodes 
and propagating these random values to the output 
layer; these initialized state values are then used as 
controller inputs as well as externally recurrent inputs 
for the plant. To encourage stability of the closed-loop 
system, by forcing the controller to recover from arbi- 
trary states, we also initialize the recurrent nodes of 
the controller to values in the range [-1,1] at the start 
of each trajectory. At randomly chosen intervals (in 
the range 30 to 50 time steps) during each trajectory 
the plant (but not the controller) is re-initialized with 
random values; this range was increased to  100 to 200 
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time steps for the last 100,000 weight updates of the 
second training case to  enforce closed-loop system sta- 
bility for long time spans. As is our usual practice for 
Kalman training, we begin with a relatively small ef- 
fective learning rate and a relatively large training pro- 
cess noise parameter (not to be confused with plant or 
model process noise). As training proceeds, the learn- 
ing rate is increased toward its maximum value and 
this process noise parameter is decreased. 

4 Results 
Results for the first case are present in Figure 1 and 
those for the second case in Figures 2 and 3. Each fig- 
ure is organized as follows. The seven panels on the 
left-hand side show evolution of system states, while 
the right-hand side panels provide the corresponding 
controls. Time proceeds from left to right and from 
bottom to top. Each panel is 100 time units wide. 
A switch from one system to another occurs in every 
panel a t  the 25th time step without changing the sys- 
tem or controller state. The controlled system is per- 
turbed at  the 75th time step of each panel by instan- 
tiating random plant (but not controller) states in the 
same fashion as during training. 

The excellent stabilization for all models after plant 
switches and plant re-initializations is evident, though 
the control sequences that follow plant re-initializations 
are somewhat more complicated than those of con- 
trollers trained separately for each plant. For the zero 
bias plants (Figure l), the control is barely affected by 
plant switches, since each plant has the same steady 
state stabilizing control. When the biases are nonzero 
(Figures 2 and 3), a switch to another plant requires 
the controller output to change, since each plant defini- 
tion requires different stabilizing steady-state controls. 
This seems to exclude the possibility of handling this 
problem with a pure feedforward network whose inputs 
are based on a finite number of previous plant outputs. 
It is interesting that the steady-state controller outputs 
are not merely negatives of the biases b l ,  though this 
was the case in a similar training exercise carried out 
with bias but without noise. 

The performance observed in Figure 1, both steady 
state and transient, is better than that in Figures 2 
and 3. This is not particularly surprising, since the 
controller for Figure 1 was optimized for the case with 
neither bias nor noise, while the controller for Figures 
2 and 3 had to deal with bias and with both noisy 
and noise-free plants. On the other hand, if the con- 
troller of Figure 1 is applied to a noisy plant, very poor 
performance results, while the controller trained in the 
presence of greater plant uncertainty handles the noisy 

plants almost as well as it does the noise-free plants. 
Both controllers were subjected to extensive testing 

for global stability. For each of the three systems, we 
recorded the maximum absolute values of plant state 
variables in 25-step intervals beginning 100 time steps 
after each of one million random re-initializations of 
both plant and controller. For the zero bias, noise-free 
plants the maximum value was 0.0015 for plant 111. 
For the noise-free biased plants the maximum value 
was 0.1294 and occurred for plant I. In the case of the 
noisy plants, we observe very occasional (mean interval 
of 12,500 time steps for the chaotic system, and sub- 
stantially longer for systems I and 11) episodes in which 
the noise interacts with the controller to produce large 
absolute values of the plant state variables (> 0.75), 
which then return quickly to small values. Each case 
was also tested for long-term instability by carrying out 
trajectories of one million time steps for 100 random 
re-initializations of both plant and controller states for 
each plant; no evidence of instability was found for the 
noise-free plants and no evidence of undesirable behav- 
ior beyond that just noted was observed for the noisy 
plants. 

5 Discussion and Conclusions 
The training experiments carried out here demonstrate 
that a single recurrent network can be trained to per- 
form as an effective controller for multiple distinct 
plants. The controller exhibits a characteristic, context 
recognition, normally ascribed to adaptive systems. At 
this point it is probably best not to attempt to impose 
a label (e.g., robust or adaptive) but rather to regard 
the capability demonstrated here as an experimental 
result worthy of serious analytical study. 

Our technique for enforcing closed-loop stability 
worked remarkably well, even though the space of pos- 
sible initial system states was only sparsely sampled 
during training. When we executed the same train- 
ing process without randomly initializing the controller 
at  the start of each trajectory, the controller handled 
random plant state re-initializations without difficulty, 
but we were able to find combinations of controller and 
plant initial states for which the chaotic system was not 
stabilized. 

The testing for stability performed here, though ex- 
tensive, does not prove that the closed-loop system is 
stable. At present, this may be the best that can be 
done for these complex systems. (Even Suykens et al. 
[6] resorted to testing when the elegant analytical con- 
straints they used to encourage global asymptotic sta- 
bility were insufficiently satisfied to provide a stability 
guarantee.) 
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Figure 1: Testing trajectories (left) and controls (right) for each of the three zero bias plant models with the same 
controller. Plant switches occur at the 25th time step in each panel without reset of system state. Plant state 
initialization occurs at the 75th time step. 

The multi-stream procedure also enabled us to train 
a controller that performs well with or without process 
noise. (We expect that even the occasional brief loss 
of control reported above could be reduced or elimi- 
nated by further procedural refinement.) In contrast, 
a controller trained only on noise-free plants performs 
very poorly when these plants are subjected to process 
noise; measurement noise degrades the performance 
much less. Interestingly, the network trained to con- 
trol systems both with and without process noise was 
also significantly more robust to plant parameter vari- 
ations (where each plant parameter Q was modified by 
~ ( 1  + E )  with E taken from a Gaussian distribution of 
standard deviation 0.1) than was the controller trained 
without process noise. These results are just one illus- 
tration of the potential of the multi-stream procedure 
for tailoring neural network performance. 
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Figure 2: Testing trajectories (left) and controls (right) for each of the three noise-free, nonzero bias plant models 
with the same controller. Plant switches occur at the 25th time step in each panel without reset of system state. 
Plant state initialization occurs at the 75th time step. 
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Figure 3: Testing trajectories (left) and controls (right) for each of the three noisy, nonzero bias plant models with 
the same controller as in Figure 2. Plant switches occur at the 25th time step in each panel without reset of system 
state. Plant state initialization occurs at the 75th time step. 

Appendix 
System I: Multiple Equilibria 

-1.6663 -0.7588 -0.0542 -0.4616 -1.1189 -0.1000 

-0.8565 -1.0656 -0.5651 0.8167 -0.1313 0.0912 0.1500 
W = [ -0.0571 -0.3085 -::::ai] , V = [ -1.1169 0.2699 -0.67231 , b = [ -0.2000 

System 11: Quasi-Periodic Behavior 

-1.8020 0.4875 -1.2491 1.2887 -0.2148 -1.2468 -0.2500 
W = [ -0.8841 0.4576 1.40701 , V = [ -0.2501 0.5668 0.2859 ] , b = [ 0.0500 

-0.2647 -0.2385 0.3027 -0.7716 0.0636 -0.8706 0.1000 

System 111: Chaos 

0.2000 

-2.7960 0.5360 0.9597 -0.1953 -0.8545 1.5571 -0.3000 

0.9690 0.6967 2.0876 0.0173 1.1578 
W = [ -0.7473 3.2069 ::::::] , V = [ 1.5247 0.2463 0.1619 ] , b = [ 0.1500] 
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