Fixed-Weight Controller for Multiple Systems

L. A. Feldkamp and G. V. Puskorius
Ford Research Laboratory, P.O. Box 2053, MD 1170 SRL
Dearborn, Michigan 48121-2053
lfeldkam@ford.com, gpuskori@ford.com

Abstract

We demonstrate here a perhaps unezpected result: the
ability of a single fized-weight time-lagged recurrent
network, properly trained, to act as a stabilizing con-
troller for multiple (here 3) distinct and unrelated sys-
tems, without explicit knowledge of system identity.
This capability, which may be regarded as a challenge
to the usual understanding of what constitutes an adap-
tive system, seemed plausible to us on the basis of our
earlier results on both multiple time-series prediction
and robust controller training. We describe our train-
ing method, which has been enhanced toward enforcing
stability of the closed-loop system and dealing with pro-
cess noise, and provide some results.

1 Introduction

In various papers we have reported the results of train-
ing time-lagged recurrent networks for various tasks
and have noted what we regard as rather remarkable
properties of such network architectures. In one ap-
plication, a recurrent network was shown to solve a
very difficult diagnostic problem (automotive engine
misfire) [1, 2] that requires handling a wide range of
system conditions. In a more abstract vein, a single
recurrent network was trained to mimic an adaptive
system by making accurate one-step predictions for 13
different time series [3], resuming good predictions fol-
lowing a switch between series, after a short period
of accommodation, and performing well for new series
whose parameters were modest variations of the pa-
rameters of the original series. In the context of con-
trol, we have shown [4, 5] that a recurrent network can
be trained to act as a controller for difficult nonlinear
systems (‘plants’ in the jargon of control theory), with
robustness to plant variations made an explicit objec-
tive by training simultaneously for plants with a range
of parameters or model structure.

The present work was motivated by a speculation
that arose naturally from the experience mentioned
above: that a single fixed controller could be trained
to be effective for two or more different and unrelated
plants, without the plant identity being provided by an

0-7803-4122-8/97 $10.00©1997 IEEE

773

external signal or being deduced by an explicit classi-
fier. Note that we are not referring merely to a sin-
gle control structure, whose parameters are then deter-
mined separately for each plant. Rather, we have in
mind that the controller itself have a fixed set of pa-
rameters. We expect the controller to be effective only
for those plants for which it has been trained, not for
arbitrarily chosen plants. On the other hand, we ex-
pect the controller’s performance to degrade gracefully
for modest variations in the parameters of the chosen
plants. Finally, due to the conflicting demands im-
posed by handling multiple plants, we recognize that
the controller’s performance, especially for transients,
may not be as effective on a given plant as a controller
specialized to that plant.

2 Problem Statement

The primary problem we consider here is that of find-
ing a stabilizing controller for three plants, presented
by Suykens et al. [6]. Each plant has the same struc-
ture, but their respective parameters result in quite dif-
ferent behavior. Each plant is nonlinear, third-order,
and described by a difference equation of the following
form:

zi(k+1) =Y Wi tanh() |V zi(k) +2(u; (k) +b;)),
j=1 =1

for i = 1,2,3. The three control inputs u;(k), aug-
mented by fixed biases b;, enter the system nonlin-
early. We take the three states to be accessible as sys-
tem outputs. The first system, which we label I, has
multiple equilibria, i.e., the state variables z; of the
unforced system (control plus bias inputs set to zero)
evolve asymptotically to fixed values which depend on
their initial values. Under the same conditions, system
IT displays quasi-periodic behavior, while system I1I is
chaotic. Numerical values for the matrices W and V
and the vectors b are given in the Appendix. Suykens
et al. showed that a (separate) stabilizing controller
for each of these systems can be trained for the case of
b=0.

Authorized licensed use limited to: Akira Imada. Downloaded on May 7, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

Our goal here is to train a single controller that can
bring the state variables of all three systems asymptot-
ically to zero from arbitrary but bounded initial values.
As an additional complication, we choose non-zero val-
ues for the vectors b so that the asymptotic values of
stabilizing control signals will be different in the three
cases (for the nominal system definitions with b = 0,
stabilizing control of all three systems results in asymp-
totic control values of u = 0). As mentioned above, the
controller must deduce the identity of the system from
the system outputs in combination with its own state.
We follow Suykens et al. in paying attention to the
global asymptotic stability of each closed-loop system,
but we employ a quite different approach.

3 Procedure

To train the controller network we follow generally
the multi-stream controller training procedure de-
scribed in [4, 5]. This includes a generalization of
the dynamic backpropagation method of Narendra and
Parthasarathy [7] to the training of recurrent networks
and involves controller weight updates with a node-
decoupled extended Kalman filter method augmented
with the multi-stream technique. Briefly stated, in
multi-stream training each weight update attempts to
satisfy simultaneously the potentially conflicting de-
mands imposed by two or more streams of data. In
the present case, each plant to be controlled is used
to form an independent stream of data, so that each
update is an attempt to reduce error on each plant by
making the same change of weights on all copies of the
controller.

A minor change from the procedure of [4] and [5]
is that ordered derivatives are calculated using trun-
cated backpropagation through time (BPTT) [8], as
detailed in [9], rather than the more time-consuming
forward method. Another difference is that here each
stream has its own identification network, specific to
the model, rather than an average identification net-
work, as is adequate when the models differ only mod-
estly.

We wish to be clear that the setting for the exper-
iments described is controller training from a model
rather than our usual training from input-output data
from a physical system or a simulation thereof. Ac-
cordingly, we exploit the fact that the model structure
is essentially that of a recurrent network, which can be
used directly as both plant and identification network.
We also make use of the ability, generally not possible
with physical systems, to set plant states arbitrarily
and to inject noise.

774

We performed several exercises of multi-stream con-
troller training, two of which are reported here. In the
first of these, we took b = 0. In the second, b was
nonzero (see Appendix) and we trained for 6 plants,
half of which had state variables corrupted with pro-
cess noise (i.e., zi(k) replaced by z;(k) + ¢, where €
is taken from a Gaussian distribution of standard de-
viation 0.1). The first case was carried out using 3
streams, each of which has its respective model, corre-
sponding identification network, and copy of the con-
troller network. Similarly, the second case involved 6
streams, split between the three models, with and with-
out noise. The truncation depth for BPTT was cho-
sen to be 20, and a gradient discount factor of 0.95
was employed. The controller architecture was chosen
as 3-8R-6R-3, i.e., 3 inputs, two fully recurrent hid-
den layers of 8 and 6 nodes, respectively, and 3 output
nodes. (The use of a more complex architecture than
that required to handle any of the models separately
reflects the controller’s dual tasks of determining the
appropriate context and then evoking appropriate con-
trol values.) All node activation functions were bipolar
sigmoids, equivalent to tanh(z/2). The identification
network, equivalent to the model given above, is ex-
ternally recurrent and of the form 6-3-3L. The input
vector consists of the 3 controls and the 3 time-lagged
recurrent connections from network outputs to network
inputs. The weights from externally recurrent inputs to
hidden nodes are elements of the matrix 2 x V, while
those between the hidden nodes and the linear out-
put nodes are taken from W. The hidden layer’s bias
weights are given by the vector 4 x b and each hidden
node is connected to its respective controller input by
a weight of value 4.

Training was carried out for 100,000 total weight up-
dates for the first case and for 350,000 total weight up-
dates for the second. Training was organized into tra-
jectories of length 1000 for each stream. At the start
of each trajectory, the state variables z; of each plant
were initialized by choosing uniformly distributed ran-
dom values in the range [-1,1] for the outputs of the cor-
responding identification network’s hidden layer nodes
and propagating these random values to the output
layer; these initialized state values are then used as
controller inputs as well as externally recurrent inputs
for the plant. To encourage stability of the closed-loop
system, by forcing the controller to recover from arbi-
trary states, we also initialize the recurrent nodes of
the controller to values in the range [-1,1] at the start
of each trajectory. At randomly chosen intervals (in
the range 30 to 50 time steps) during each trajectory
the plant (but not the controller) is re-initialized with
random values; this range was increased to 100 to 200

Authorized licensed use limited to: Akira Imada. Downloaded on May 7, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

time steps for the last 100,000 weight updates of the
second training case to enforce closed-loop system sta-
bility for long time spans. As is our usual practice for
Kalman training, we begin with a relatively small ef-
fective learning rate and a relatively large training pro-
cess noise parameter (not to be confused with plant or
model process noise). As training proceeds, the learn-
ing rate is increased toward its maximum value and
this process noise parameter is decreased.

4 Results

Results for the first case are present in Figure 1 and
those for the second case in Figures 2 and 3. Each fig-
ure is organized as follows. The seven panels on the
left-hand side show evolution of system states, while
the right-hand side panels provide the corresponding
controls. Time proceeds from left to right and from
bottom to top. Each panel is 100 time units wide.
A switch from one system to another occurs in every
panel at the 25th time step without changing the sys-
tem or controller state. The controlled system is per-
turbed at the 75th time step of each panel by instan-
tiating random plant (but not controller) states in the
same fashion as during training.

The excellent stabilization for all models after plant
switches and plant re-initializations is evident, though
the control sequences that follow plant re-initializations
are somewhat more complicated than those of con-
trollers trained separately for each plant. For the zero
bias plants (Figure 1), the control is barely affected by
plant switches, since each plant has the same steady
state stabilizing control. When the biases are nonzero
(Figures 2 and 3), a switch to another plant requires
the controller output to change, since each plant defini-
tion requires different stabilizing steady-state controls.
This seems to exclude the possibility of handling this
problem with a pure feedforward network whose inputs
are based on a finite number of previous plant outputs.
It is interesting that the steady-state controller outputs
are not merely negatives of the biases b;, though this
was the case in a similar training exercise carried out
with bias but without noise.

The performance observed in Figure 1, both steady
state and transient, is better than that in Figures 2
and 3. This is not particularly surprising, since the
controller for Figure 1 was optimized for the case with
neither bias nor noise, while the controller for Figures
2 and 3 had to deal with bias and with both noisy
and noise-free plants. On the other hand, if the con-
troller of Figure 1 is applied to a noisy plant, very poor
performance results, while the controller trained in the
presence of greater plant uncertainty handles the noisy

775

plants almost as well as it does the noise-free plants.

Both controllers were subjected to extensive testing
for global stability. For each of the three systems, we
recorded the maximum absolute values of plant state
variables in 25-step intervals beginning 100 time steps
after each of one million random re-initializations of
both plant and controller. For the zero bias, noise-free
plants the maximum value was 0.0015 for plant III.
For the noise-free biased plants the maximum value
was 0.1294 and occurred for plant 1. In the case of the
noisy plants, we observe very occasional (mean interval
of 12,500 time steps for the chaotic system, and sub-
stantially longer for systems I and II) episodes in which
the noise interacts with the controller to produce large
absolute values of the plant state variables (> 0.75),
which then return quickly to small values. Each case
was also tested for long-term instability by carrying out
trajectories of one million time steps for 100 random
re-initializations of both plant and controller states for
each plant; no evidence of instability was found for the
noise-free plants and no evidence of undesirable behav-
ior beyond that just noted was observed for the noisy
plants.

5 Discussion and Conclusions

The training experiments carried out here demonstrate
that a single recurrent network can be trained to per-
form as an effective controller for multiple distinct
plants. The controller exhibits a characteristic, context
recognition, normally ascribed to adaptive systems. At
this point it is probably best not to attempt to impose
a label (e.g., robust or adaptive) but rather to regard
the capability demonstrated here as an experimental
result worthy of serious analytical study.

Our technique for enforcing closed-loop “stability
worked remarkably well, even though the space of pos-
sible initial system states was only sparsely sampled
during training. When we executed the same train-
ing process without randomly initializing the controller
at the start of each trajectory, the controller handled
random plant state re-initializations without difficulty,
but we were able to find combinations of controller and
plant initial states for which the chaotic system was not
stabilized.

The testing for stability performed here, though ex-
tensive, does not prove that the closed-loop system is
stable. At present, this may be the best that can be
done for these complex systems. (Even Suykens et al.
(6] resorted to testing when the elegant analytical con-
straints they used to encourage global asymptotic sta-
bility were insufficiently satisfied to provide a stability
guarantee.)

Authorized licensed use limited to: Akira Imada. Downloaded on May 7, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

2.5+ States —
0 v

2.5 Itol -

2.5 -
0 va»

2.5+~ MitoII E

2.5+ -

2.5 Tto INI , ’ —

2.5 -
0 As,

2.5+ Mtol -

2.5 -
0 i

251 mom -

2.5 -

-2.5 Ttoll -
2.5 =

f

O e 4
2.5+ I -

100 time steps per panel

1 Controls -

-1+ Itol -

Ml toII 1

t
oy
1

[}
foney
I

ItoIII -

-1+ Hitol -

-1+ 11 to 111 —

-1+ Itoll -

100 time steps per panel

Figure 1: Testing trajectories (left) and controls (right) for each of the three zero bias plant models with the same
controller. Plant switches occur at the 25th time step in each panel without reset of system state. Plant state

initialization occurs at the 75th time step.

The multi-stream procedure also enabled us to train
a controller that performs well with or without process
noise. (We expect that even the occasional brief loss
of control reported above could be reduced or elimi-
nated by further procedural refinement.) In contrast,
a controller trained only on noise-free plants performs
very poorly when these plants are subjected to process
noise; measurement noise degrades the performance
much less. Interestingly, the network trained to con-
trol systems both with and without process noise was
also significantly more robust to plant parameter vari-
ations (where each plant parameter & was modified by
a(l + €) with € taken from a Gaussian distribution of
standard deviation 0.1) than was the controller trained
without process noise. These results are just one illus-
tration of the potential of the multi-stream procedure
for tailoring neural network performance.

776

References

[1] L. A. Feldkamp, G. V. Puskorius, K. A. Marko, J.
V. James, T. M. Feldkamp, and G. Jesion, “Un-
ravelling dynamics with recurrent networks: Ap-
plication to engine diagnostics,” in Proceedings of
the Ninth Yale Workshop on Adaptive and Learn-
ing Systems, New Haven, CT, 1996, pp. 59-64.

[2] G. V. Puskorius and L. A. Feldkamp, “Signal pro-
cessing by dynamic neural networks with applica-
tion to automotive misfire detection,” in Proceed-
ings of the 1996 World Congress on Neural Neural
Networks, San Diego, 1996, pp. 585-590.

(3] L. A. Feldkamp, G. V. Puskorius, and P. C.
Moore, “Adaptation from fixed weight dynamic
networks,” in Proceedings of the IEEE Interna-

Authorized licensed use limited to: Akira Imada Downloaded on Mav 7 2009 at 08:06 from |IEEE Xnlore Restrictions anplv

2.5 States]
A

2.5 Htol -

2.5 7

25

Ito I —

2.5

-2.5

2.5

-2.5

25
0

2.5

2.5
0

-2.5

2.5

0
2.5

I
—
|

100 time steps per panel

Controls -

IMtoll -

Ilto] -

I to IIT . . -

Ito1l =

100 time steps per panel

Figure 2: Testing trajectories (left) and controls (right) for each of the three noise-free, nonzero bias plant models
with the same controller. Plant switches occur at the 25th time step in each panel without reset of system state.
Plant state initialization occurs at the 75th time step.

[4]

[5]

tional Conference on Neural Networks, Washing-
ton, D.C., 1996, pp. 155-160.

L. A. Feldkamp and G. V. Puskorius, “Training
controllers for robustness: Multi-stream DEKF,”
in Proceedings of the IEEE International Con-
ference on Neural Networks, Orlando, 1994, pp.
2377-2382.

L. A. Feldkamp and G. V. Puskorius, “Training
of robust neural controllers,” in Proceedings of the
33rd IEEE International Conference on Decision
and Control, Orlando, 1994, pp. 2754-2760.

J. A. K. Suykens, J. P. L. Vandewalle, and B. L.
R. De Moor, “Artificial neural networks for mod-
elling and control of non-linear systems,” Kluwer
Academic Publishers, Boston, 1995. (The models

[7]

8]

used here are generalizations of models defined on
pp. 157-161.)

K. S. Narendra and K. Parthasarathy, “Gradient
methods for the optimization of dynamical sys-
tems containing neural networks,” IEEFE Transac-
tions on Neural Networks, vol. 2, no. 2, pp. 252—
262, 1991.

P. J. Werbos. “Backpropagation through time:
What it does and how to do it,” Proceedings of
the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

G. V. Puskorius, L. A. Feldkamp, and L. I. Davis,
Jr., “Dynamic neural network methods applied to

on-vehicle idle speed control,” Proceedings of the
IEEE, vol. 84, no. 10, pp. 1407-1420, 1996.

Authorized licensed use limited to: Akira Imada. Downloaded on May 7, 2009 at 08:06 from |IEEE Xplore. Restrictions apply.

2.5

States - 1+ Controls -
e e~

-2.5 IMtol — -1 Mtol —

2.5~ Mtn — -1 Hiton h Y -
2.5
2.5
25

ok
-2.5
2.5
2.5
2.5

-2.5
2.5

0
25

-1 Hitol —

-1 I to INI —

100 time steps per panel 100 time steps per panel

Figure 3: Testing trajectories (left) and controls (right) for each of the three noisy, nonzero bias plant models with
the same controller as in Figure 2. Plant switches occur at the 25th time step in each panel without reset of system
state. Plant state initialization occurs at the 75th time step.

Appendix
System I: Multiple Equilibria
[—1.6663 —0.7588 1.1636 | [-0.0542 —0.4616 ~1.1189] [—0.1000]
W= -0.0571 -0.3085 —0.1793 [, V=1{ —1.1169 0.2699 -0.6723 |, b= | —0.2000
| —0.8565 —1.0656 —0.5651 | | 08167 —0.1313 0.0912 | | 0.1500 |
System II: Quasi-Periodic Behavior
[—1.8020 0.4875 —1.2491] | 1.2887 —0.2148 —1.2468] [—0.2500]
W= | —0.8841 04576 1.4070 |, V=| —0.2501 0.5668 0.2859 [, b= 0.0500
| —0.2647 —0.2385 0.3027 | | —0.7716 0.0636 ~—0.8706 | | 0.1000 |
System III: Chaos
0.9690 0.6967 0.2985 2.0876 0.0173 1.1578 0.2000
W= | —0.7473 3.2069 0.2840 |, V= 1.5247 0.2463 0.1619 |, b= 0.1500
—-2.7960 0.5360 0.9597 —0.1953 —0.8545 1.5571 —0.3000

778

Authorized licensed use limited to: Akira Imada. Downloaded on Mav 7. 2009 at 08:06 from |IEEE Xplore. Restrictions applv.

