
Chapter 2

Random Recurrent Neural
Networks Dynamics

(Manuel Samuelides, Bruno Cessac)

2.1 Introduction

Recurrent neural networks were introduced to improve biological plausibil-
ity of artificial neural networks as perceptrons since they display internal
dynamics. They are useful to implement associative recall. The first mod-
els were endowed with symmetric connexion weights which induced relax-
ation dynamics and equilibrium states as in [21]. Asymmetric connexion
weights were further introduced which enable to observe complex dynamics
and chaotic attractors. The role of chaos in cognitive functions was first dis-
cussed by W.Freeman and C.Skarda in seminal papers as [30]. The practical
importance of such dynamics is due to the use of on-line hebbian learning
to store dynamical patterns. For a review see for instance [19]. More recent
advances along that direction are presented in chapter 4.
In chapter 1, we were interested in the description of neural dynamics from
the point of view of dynamical system theory. The present chapter is devoted
to another kind of dynamical analysis, the so-called dynamic mean field
theory. This method is inherited from statistical physics and has to be
adapted to the present context.
From the point of view of dynamical system theory, the nature of the dy-
namics depends on the detailed configuration parameters such as connexion
weights, firing thresholds, external input and so on.. When considering large
size neural networks, it is impossible to study the dynamics in function of
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the whole set of detailed configuration parameters because its dimensiona-
lity is too large. One may consider that the detailed parameters share few
generic values but it does not allow to study the effect of their variability. We
consider here random models where the detailed configuration parameters
as connexion weights form a random sample of a probability distribution.
These models are called ”Random Recurrent Neural Networks”(RRNN). In
that case, the parameters of interest define the probability distribution of
the detailed configuration parameters. They are statistical parameters and
have been introduced as ”macroscopic parameters” in Chapter 1. Then the
dynamics is amenable because one can approach it by ”Mean-Field Equa-
tions” (MFE) as in Statistical Physics. So, study of the dynamics in terms of
relevant dynamical quantities, called ”order parameters” can be performed.

Mean-Field Equations were introduced for neural networks by Amari [2] and
Crisanti and Sompolinsky [31]. We extended their results [10] and used a
new approach to prove it in a rigorous way [27]. This approach is the ”Large
deviation Principle” (LDP) and comes from the rigorous statistical me-
chanics [5]. Simultaneously, mean-field equations were successfully used to
predic the dynamics of spiking recurrent neural networks. Though there is
no rigorous background to support these new developments, the success of
this approach deserves new investigations. This chapter intends to provide a
bridge between the detailed computation of the asymptotic regime and the
rigorous theory which is shown to support in at least in some models MFE
theory.
In section 2, the various models are stated from the points of view of the
single neuron dynamics and of the global network dynamics. A summary
of notations is presented, which is quite helpful for the sequel. In section 3
mean-field dynamics is developped and it is shown to be a fixed point of the
mean-field propagation operator. The global dynamics probability distribu-
tion is computed and the associate empirical measure is proven to converge
with exponential rate towards mean-field dynamics. The mathematical tools
which are used there are detailed (without any proof) in appendix, section
6. In section 4, some applications of mean-field theory to the prediction of
chaotic regime for analog formal random recurrent neural networks (AFR-
RNN) are displayed. The dynamical equation of homogeneous AFRRNN
which is studied in chapter 1 is derived from the random network model
in section 4.1. Moreover a two-population model is studied in section 4.2
and the occurence of a cyclo-stationary chaos is displayed using the results
of [11]. In section 5, an insight of the application of mean-field theory to
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IF networks is given using the results of [7]. The model of this section is a
continuous-time model following the authors of the original paper. Hence
the theoretical framework of the beginning of the chapter has to be enlarged
to support this extension of mean-field theory and this work has to be done.
However, we sketch a parallel between the two models to induce further
research.

2.2 Dynamics of RRNNN

2.2.1 Defining dynamic state variables

We first reconsider in a stochastic context some notions that have been
acquired in Chapter 1. In a stochastic model, all state variables may be
considered as random variables.
We study here discrete time dynamics and restrain ourselves to finite time-
horizon. In that section, we shall study the case of homogeneous neural net-
works. More realistic cases such as several population networks will be con-
sidered further on. Though we are really interested in long-time behaviour
and stationary regime if any, rigorous proofs of convergence of large-size
networks only exist for finite time. Thus we consider time t as an integer
belonging to time interval {0, 1, ..., T} where the integer T stands for the
horizon.
Since the model is stochastic, all state variables may be considered as ran-
dom variables. The change of probability distributions are common in that
chapter whether it occurs from conditioning or from changing basic assump-
tion over dynamics. Anyhow, we won’t change notation for the random
variables. Moreover following the standard physicist’s habit, the random
variables won’t be noted by capital letters.
The state of an individual neuron i at time t is described by an instanta-
neous individual variable, the membrane potential ui(t). Here, ui(t) is a real
random variable which takes its value in R. So an individual state trajectory
ui = (ui(t))t∈{0,1,...,T} takes its value in F = R{0,1,...,T}. We shall generally
prefer to study the distribution of a trajectory than the instantaneous state
distribution. The second order moments of an individual trajectory ui are
its expectation E(ui) ∈ F and its covariance matrix Cov(ui) ∈ F ⊗ F .
Our aim is to study the coupled dynamics of N interacting neurons that
constitue a neural network. N is the size of the neural network. The global
state trajectory of u = (ui)i∈{1...,N} is a random vector in FN . The prob-
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ability law1 QN of the random vector u depends on N . We shall compute
this law for various neuron models in this section.
As it was detailed in the previous chapter, the dynamics of the neuron
models we study here depends on three basic assumptions

• about how the neuron activation depends on the membrane potential,

• about how the other neurons contribute to the synaptic potential
which summarizes completely the influence of the network onto the
target neuron,

• about how the synaptic potential is used to update the membrane
potential.

We shall now detail these points in the models that are considered further
on.

2.2.2 Spike emission modeling

It is considered that the neuron is active and emits a spike when its mem-
brane potential exceeds the activation threshold. So the neuron i is active
at time t when ui(t) ≥ θ where θ is the neuron activation threshold. We
consider here that θ is a constant of the model which is the same for all
neurons. Actually this hypothesis may be relaxed and random thresholds
may be considered but the notation and the framework of dynamical study
would be more complicate (see [27]).
For spiking neuron models we define an activation variable xi(t) which is
equal to 1 if neuron i emits a spike at time t and to 0 otherwise. Hense we
have

xi(t) = f [ui(t) − θ] (2.1)

where f is the Heaviside function which is called the transfer function of
the neuron. Actually, to alleviate notations, we shift ui of θ and that allows
to replace equation (transfer0.eq) by equation

xi(t) = f [ui(t)] (2.2)

The threshold will be further taken into account in the updating equation.
Two spiking neuron models are considered here, the Binary Formal neu-
ron (BF) which is the original model of Mac Culloch aand Pitts [25] and

1This term is defined in Appendix, definition 2.7
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the Integrate and Fire neuron (IF) which is generally used nowadays
to model dynamics of large spiking neural networks [17].
In these models, the neuron activation takes generally two values: 0 and 1.
This is true for most models of neurons. However, it was preferred in a lot
of research works to take into account the average firing rate of the model
instead of the detailed instant of firing. This point of view simplifies the
model and deals with smooth functions which is easier from a mathematical
point of view. According this point of view equation (2.2) is still valid but
xi(t) takes its values in the interval [0, 1] and the transfer function f is a

smooth sigmoid function for instance f(x) =
ex

1 + ex
. Since the activation of

then euron is represented by a real vaue that varies continuously, the model
is called Analog Formal neuron (AF)
AF model is still widely dominant when Artificial Neural Networks are con-
sidered for applications since gradient are easy to compute. For biological
purpose, it was widely believed that the relevant information was stored in
the firing rate; in that case more precise modeling would not be so useful,
at least from a functional point of view. The three models are studied in
that chapter and we attempt to give a unified presentation of mean-field
equation for these three models.
Notice that the state of the neuron is the membrane potential ui(t) and
not the activation xi(t). This is due to the update law of the IF model. We
shall retun to that point further.

2.2.3 The synaptic potential of RRNN

The spikes are used to transmit information to other neurons through the
synapses. Let us note J = (Jij) the system of synaptic weights. At time
0, the dynamic system is initialized and the synaptic potentials are null.
The synaptic potential of neuron i of a network of N neurons at time
t + 1 is expressed in function of J and u(t) ∈ RN by

vi(J , u)(t + 1) =
N∑

j=1

Jijxj(t) =
N∑

j=1

Jijf [uj(t)] (2.3)

When considering large size neural networks, it is impossible to study the
dynamics in function of the detailed parameters. One may consider that
the connexion weights share few values but it does not allow to study the
effect of the variability. We consider here random models where the connex-
ion weights form a random sample of a probability law. These models are
called ”Random Recurrent Neural Networks”(RRNN). In that case,
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the parameters of interest are the order parameters i.e. the statistical pa-
rameters. For size N homogeneous RRNN model with gaussian connexion
weights, J is a normal random vector with identically distributed indepen-
dent components. The common law of the components is a normal law
N ( υ

N , υ2

N ). The order parameters of the model are υ and υ.
Note that the assumption of independence is crucial in the approach de-
scribed below. Unfortunately, the more realistic case where correlations
between the Jijs exist (e.g. after Hebbian learning) is not currently covered
by the mean-field methods. The description of the hebbian learning pro-
cess in the stochastic RRNN framework has to be discovered in the future
research.
In the sequel, we shall extend the RRNN model properties to a more general
setting where the weights are non gaussian and depend on the neuron class
in a several population model like in [11].
We have already dealt with the dynamical properties of RRRN such as (1.3).
In Chapter 1, we fixed a realization of J and considered the evolution of
trajectories of this dynamical system. Then, we averaged over J distribu-
tion in order to get informations about the evolution of averaged quantities.
In the present chapter we shall start with a complementary point of view.
Namely, assume that we fix a network state trajectory u. Let us consider
the vector vi(J , u) = (vi(J , u)(t)) ∈ F which is the trajectory of the synap-
tic potential. When u is given, since the synaptic weights Jij are gaussian,
identically distributed and independant we infer that the vi(., u) are identi-
cally distributed normal independent random vectors in F (see in appendix
proposition (2.17). The distribution of the vi is defined by its mean mu and
its covariance matrix cu.
We have

mu(t + 1) =
υ

N

N∑
j=1

f [(uj(t)] (2.4)

and

cu(s + 1, t + 1) =
υ

N

N∑
j=1

f [(uj(s)]f [(uj(t)] (2.5)

Notice that these parameters are invariant by any permutation of the neu-
ron membrane potentials. Actually, they depend only on the empirical
distribution2 µu, which is associated to u. µ is a probability law on F . It
just weights equally each individual neuron state trajectory.

2This concept is introduced in the appendix in definition (2.18)
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Definition 2.1 The empirical measure µu is an application from FN on
P(F ), the set of probability measures on F which is defined by

µu(A) =
N∑

i=1

δui(A) (2.6)

where δui(A) is the Dirac mass on individual trajectory ui such that δui(A) =
1 if ui belongs to A and 0 otherwise. Using this formalism provides an
useful way to perform an average over the empirical distribution of the
whole network. More generally, assume that we are given a probability law
µ on the indivudual trajectory space F . Then, one can perform a generic
construction of a gaussian distribution on RT by

Definition 2.2 For any µ ∈ P(F) the gaussian probability law gµ on RT

with moments mµ and cµ that are defined by :{
mµ(t + 1) = υ

∫
f [η(t)]dµu(η)

cµ(s + 1, t + 1) = υ2
∫

f [η(s)]f [η(t)]dµu(η)
(2.7)

Then, it is easy to reformulate the previous computation as:

Proposition 2.1 The common probability law of the individual synaptic
potential trajectories vi(., u) is the normal law gµu where µu is the empirical
distribution of the network potential trajectory u.

Proposition 2.2 The common probability distribution of the individual synap-
tic potential trajectories vi(., u) is the normal law gµu where µu is the em-
pirical distribution of the network potential trajectory u.

This framework is useful to compute the large-size limit of the common
probability law of the potential trajectories.

2.2.4 Dynamical models of the membrane potential

We shall now detail the updating rule of the membrane potential. Various
neural dynamics have been detailed in thep revious chapter. We focus here
on two dynamics formal neuron (AF and BF) and Integrate and Fire neuron
(IF).
For the two models, the network is initialized with indepedent identically
distributed membrane potential according to a probability law µinit ∈ P(R).
We introduce for each neuron i, a sequence (wi)(t))t∈{1,...,T} of i.i.d. cen-
tered Gaussian variables of variance σ2. This sequence is called the synaptic
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noise of neuron i and stands for all the defects of the model. The synaptic
noise plays an important part in the mathematical proof but the order pa-
rameter σ is as small as necessary. So this model is not very restrictive. The
synaptic noise is added to the synaptic potential. Of course the synaptic
noises of the neurons are independent altogether. In some papers, the synap-
tic noise is called thermal noise by comparison with the random variables
J = (Jij), which are called quenched variables as they are fixed, once for
all and do not change with time.
Recall that formal neuron updates its membrane potential according to

ui(t + 1) = vi(t + 1) + wi(t + 1) − θ (2.8)

IF neuron takes into acccount its present membrane potential while updat-
ing. Its evolution equation is

ui(t + 1) = ϕ[ui(t) + θ)] + vi(t + 1) + wi(t + 1) − θ (2.9)

where

• γ ∈]0, 1[ is the leak

• ϕ is defined by

ϕ(u) =
{

γu if ϑ
γ < u < θ

ϑ else
(2.10)

• ϑ is the reset potential and ϑ < 0 < θ

The following table summarizes the main properties of the three models we
investigate:

Transfer function Heaviside sigmoidal
Formal model BF AF

Integrate and Fire IF

If we shunt the neural coupling, then the individual neuron state trajectories
are independent identically distributed random vectors in F and we note P
their common law. The dynamics of the neural network state when the
neural coupling is shunted is called the free dynamics. The probability
law of the neural network trajectory is P⊗N .
In the case of formal neurons, the free dynamics equation is

ui(0) ∼ µinit, ui(t + 1) = wi(t + 1) − θ (2.11)
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and so P = µinit⊗N (−θ, σ2)⊗T . In the case of IF neurons P is not explicit.
It is the image of µinit ⊗N (−θ, σ2)⊗T by the diffusive dynamics

ui(0) ∼ µinit, ui(t + 1) = ϕ[ui(t) + θ)] + wi(t + 1) − θ (2.12)

When coupling the neurons, the network trajectory is still a random vector.
Its probability distribution, which is denoted by QN , has a density with
respect to P⊗N that can be explicitely computed. This is the main topic of
the next subsection.

2.2.5 Computation of the network dynamics law

This section is dedicated to the computation of the probability distribution
QN . The result shows that the density of QN with respect to free dynamics
probability P⊗N depends on the trajectory variable u only through the
empirical measure µu. To achieve this computation we shall use a key result
of stochastic process theory, the Girsanov theorem which gives the density
of the new law of a diffusion when the trend is changed. Actually, since
the time set is finite, the version of Girsanov theorem we use is different
and may be recovered by elementary gaussian computation. Its derivation
is detailed in the appendix in theorem 2.20. A similar esult may be obtained
for continuous time dynamics using the classical Girsanov theorem (see [5]).
Let us state the finite-time Girsanov theorem

Theorem 2.3 Let µinit a probability measure on Rd and let N (α, K) be
a gaussian regular probability on Rd. Let T a postive integer and ET =
(Rd){0,...,T} the space of finite time traajectories in Rd. Let w a gaussian
random vector in ET with law µinit⊗N (α, K)T . Let φ and ψ two measurable
applications of Rd into Rd. Then we define the random vectors x and y in
E by {

x0 = w0

x(t + 1) = φ[x(t)] + w(t + 1){
y0 = w0

y(t + 1) = ψ[y(t)] + w(t + 1)

Let P and Q be the respective probability laws on E of x and y, then Q is
absolutely continuous with respect to P and we have

dQ

dP
(η) = exp

T−1∑
t=0

{
−1

2{ψ[(η(t)] − φ[(η(t)]}tK−1{ψ[(η(t)] − φ[(η(t)]}
+{ψ[(η(t)] − φ[(η(t)]}tK−1{η(t + 1) − α − φ[η(t)]}

}
(2.13)
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We shall use this theorem to prove the following:

Theorem 2.4 The density of the law of the network membrane potential
QN with respect to P⊗N is given by

dQN

dP⊗N (u) = expNΓ(µu)
where the functionnal Γ is defined on P(F) by

Γ(µ) =
∫

log
{∫

exp 1
σ2

∑T−1
t=0

[
−1

2ξ(t + 1)2 + Φt+1(η)ξ(t + 1)
]
dgµ(ξ)

}
dµ(η)

(2.14)
with

• for AF and BF models: Φt+1(η) = η(t + 1) + θ

• IF model: Φt+1(η) = η(t + 1) + θ − ϕ[η(t) + θ]

Remark 2.1 Let us recall that the gaussian measure gµ has been defined
previously (Definition 2.2)

PROOF OF THEOREM: We note QN (J ) the conditional law of the network
state trajectory given J the system of synaptic weights. We shall apply the
finite-time Girsanov theorem 2.3 to express dQN (J )

dP⊗N . To apply the theorem
we notice that

• The difference of the two trend terms ψ[η(t) − φ[η(t)] of the theorem
is here the synaptic potentials (vi(t)). The synaptic potentials vi are
functions of the ui according to (2.3)

vi(J , u)(t + 1) =
N∑

j=1

Jijf [uj(t)]

• The expression of the synaptic noise (wi(t+1) in function of the state
trajectory uiin the free dyamics is Φt+1(ui) which expression depends
on the neuron model (formal or IF).

We have so

dQN (J )
dP⊗N

(u) = exp
1
σ2

T−1∑
t=0

N∑
i=1

[
−1

2
vi(J , u)(t + 1)2 + vi(J , u)(t + 1)Φt+1(ui)

]
(2.15)
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dQN (J )
dP⊗N

(u) =
N∏

i=1

exp
1
σ2

T−1∑
t=0

[
−1

2
vi(J , u)(t + 1)2 + vi(J , u)(t + 1)Φt+1(ui)

]
(2.16)

Now let us consider the probability of the quenched variables J = (Jij).
We observed previously when we introduced the synaptic potential model
that under the configuration distribution of J , the random vectors vi(J , u)
are independent identically distributed according to the normal law gµu

To compute the density of QN with respect to P⊗N one has to average the
conditional density dQN (J )

dP⊗N over the configuration distribution of J . the
integration separates into products and one gets from (2.16) the following

dQN

dP⊗N
(u) =

N∏
i=1

∫
exp

1
σ2

T−1∑
t=0

[
−1

2
ξ(t)2 + Φt+1(ui)ξ(t)

]
dgµu(ξ)

dQN

dP⊗N
(u) = exp

N∑
i=1

log
∫

exp
1
σ2

T−1∑
t=0

[
−1

2
ξ(t + 1)2 + Φt+1(ui)ξ(t + 1)

]
dgµu(ξ)

The sum over i is equivalent to an inegration over the empirical measure µu,
so we have

dQN

dP⊗N
(u) = expN

∫
log

{∫
exp

1
σ2

T−1∑
t=0

[
−1

2
ξ(t + 1)2 + Φt+1(η)ξ(t + 1)

]
dgµu(ξ)

}
dµu(η)

Remark 2.2

Equation 2.14 reminds the generating functional approach derived e.g. by
Sompolinsky al. [31] or Molgedey al [24] which allows to compute the
moments of ui(t). However, the present approach provides a stronger re-
sult. While the generating functional method deals with weak convergence
(convergence of generating function) the method that is developped here
allows direct access to ui(t)s probability distribution. Moreover, using large
deviation techniques provides almost sure convergence results. This con-
vergence is valid for only one typical sample. This property is also called
self-averaging in the statistical physics community. Let us now state an im-
portant corollary of this theorem which will be the basic statement for the
convergence theorem of next section.



14CHAPTER 2. RANDOM RECURRENT NEURAL NETWORKS DYNAMICS

Corollary 2.5 The density of the law of the empirical measure µu as a
random measure in the RRNN model that is governed by QN with respect to
the law of the empirical measure in the free model that is governed by P⊗N

is

µ ∈ P(F) → expNΓ(µ)

2.2.6 Summary of notations

Let us recall the notations of this section. They will be extensively used in
the following sections:

Notation Interpretation
i ∈ {1, ..., N} individual neuron of a N neuron population
t ∈ {0, ..., T} time course of the discrete time dynamics at horizon T

ui(t) membrane potential of neuron i at time t
xi(t) activation state of neuron i at time t
vi(t) synaptic potential of neuron i at time t
wi(t) synaptic summation noise of neuron i at time t

ui ∈ F membrane potential trajectory of neuron i from time 0 to time T
u ∈ FN network membrane potential trajectory i from time 0 to time T
xi ∈ E activation state trajectory of neuron i from time 0 to time T
x ∈ FN network activation state trajectory from time 0 to time T

θ common firing threshold of individual neurons
σ common standard deviation of the synaptic noise
λ leak current factor for Integrate and fire (IF) neuron model
f neuron transfer function converts membrane potential into activation state
Jij synaptic weight from neuron j to neuron i (real random variable)

J = (Jij) synaptic weight matrix (random N × N matrix)
υ
N expectation of synaptic weights Jij
υ2

N variance of synaptic weights Jij

µ ∈ P(F) generic probability law of individual membrane potential trajectory
η ∈ F random vector which takes its values in F under probability law µ

P ∈ P(F) probability law of individual membrane potential trajectory for free dynamics
gµ ∈ P(F) synaptic potential law obtained from µ ∈ P(F ) through central limit approximation

QN ∈ P(FN ) probability law of network membrane potential trajectory u
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2.3 The mean-field dynamics

2.3.1 Introduction to mean-field theory

The aim of this section is to describe in the limit of large size networks the
evolution of a typical neuron by summarizing in a single term the effect of
the interactions of this neuron with the other neurons of the network. Such
an approximation will be valid through an averaging procedure which will
take advantage of the large number of coupling to postone the vanishing
of individual correlations between neurons or between neurons and configu-
ration variables. This is the hypothesis of ”local chaos” of Amari ([1],[2]),
or of ”vanishing correlations” which is usually invoked to support mean-
field equations. The ”mean-field” is properly the average effet of all the
interaction of other neurons with the neuron of interest. This approach is
currently used in statistical mechanics since Boltzmann and the assumption
is also kown under ”molecular chaos”.3

So the mean field dynamics is intermediate between the detailed dynamics
which takes into account all the detailed interactions between neurons and
the free dynamics which neglects all the interaction. In mean-field theory, we
are looking for an evolution equation of the type of free dynamics equation
that are involving single neuron dynamics but were the interaction term is
not cancelled. To do that we shall replace vi(t) by an approximation which
depends only on the statistical distribution of the uj(t). The approximation
of vi = (vi(t)) ∈ F will be called the mean-field and will be noted ζ =
(ζ(t)) ∈ F . The important assumption to derive the anzats is:
In the large size limit, uj are asymptotically independent, they

are also independent from the configuration parameters
From the central limit theorem we are then allowed to postpone that ζ is
approximatively a large sum of independent identically distributed variable,
and thus that it follows approximatively a Gaussian law. We have just to
derive its first and second order moment from the common probability law
of ui = (ui(t)) to know completely the distribution of ζ.
Thus from a probability law on F which is supposed to be the common

3The word ”chaos” is somehow confusing here, especially because we also dealt with
deterministic chaos in the first chapter. Actually, ”deterministic chaos” and the related
exponential correlation decay is connected to the mean-field approaches which allows to
compute deterministic evolution equation for the mean value and Gaussian fluctuations.
However, here the mean-field approach works basically because the model is fully con-
nected and the Jij are vanishing in the large-size limit. This is standard result in statis-
tical physics models such as the Curie-Weiss model but obtaining this for the trajectories
of a dynamical model with quenched disorder requires more elaborated technics.
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probability law of the ui, we are able to derive the law of ζ and then the law
of the resulting potential trajectory and of the state trajectory of a generic
vector of the network. In that way, we are able to define an evolution
operator L on the set P(F ) of the probability laws on F which we call the
mean-field propagation operator.

2.3.2 Mean-field propagation and mean-field equation

Let µ ∈ P(F) be a probability measure on F and let us compute the mo-
ments of

∀t ∈ {0, 1, ..., T − 1}, ζ(t + 1) =
N∑

j=1

Jijf [uj(t)]

where the uj are independent identically distributed random vectors with
probability law µ and independent from the configuration parameters Jij .
Since E[Jij ] = υ

N and Var[Jij ] = υ2

N , we have{
E[ζ(t + 1)] = υ

∫
F f [η(t)]dµ(η)

Cov[ζ(s + 1), ζ(t + 1)] = υ2
∫
E f [η(s)]f [η(t)]dµ(η)

(2.17)

Notice that the expression of the covariance is asymptotic since the sum of
squares of expectation of the synaptics weights may be neglected. So ζ is a
Gaussian random vector in F with probability law gµ (see definition 2.2).

Definition 2.3 Let µ a probability law on F such that the law of the first
component is µinit. Let u, w, v be three independent random vectors with the
following laws

• the law of u is µ,

• the law of w is N (0, σ2IT ),

• the law of v is gµ

Then L(µ) is the probability law on F of the random vector ϑ which is defined
by {

ϑ(0) = u(0)
ϑ(t + 1) = v(t + 1) + w(t + 1) − θ

(2.18)

for the formal neuron models (BF and AF), and by{
ϑ(0) = u(0)
ϑ(t + 1) = ϕ[u(t) + θ)] + v(t + 1) + w(t + 1) − θ

(2.19)

for the IF neuron model. The operator L which is defined on P(F) is called
the mean-field propagation operator.
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Definition 2.4 The following equation on µ ∈ P(F)

L(µ) = µ (2.20)

is called the mean-field equation (MFE)

Remark 2.3 The mean-field equation is the achievement of mean-field ap-
proach. To determine the law of an individual trajectory, we suppose that
this law governs the interaction of all the units onto the selected one, the
resulting law of the selected unit has to be the same law than the generic
law. This is summarized in the mean field equation

L(µ) = µ

Equations 2.18 (resp. (2.19) for the IF model) with the specification of the
probability laws define the mean-field dynamics. Actually, the law L(µ)
is just the convolution of the probability laws P and the gaussian law gµ.
More precisely, if we apply the discrete time Girsanov theorem 2.20 of the
appendix, we have:

Theorem 2.6 L(µ) is absolutely continuous with respect to P and it density
is given by

dL(µ)
dP

(η) =
∫

exp
1
σ2

T−1∑
t=0

[
−1

2
ξ(t + 1)2 + Φt+1(η)ξ(t + 1)

]
dgµ(ξ) (2.21)

PROOF : The proof is essentially a simplified version of the application of the
finite-time Girsanov theorem which was used to prove theorem (2.4). The
conditioning is done here with respect to v which is the difference between
the trend terms of the free dynamics and of the mean-field dynamics.

Remark 2.4 We have to notice for further use that

Γ(µ) =
∫

log
dL(µ)
dP

(η)dµ(η) (2.22)

In all the cases, for 0 < t < T the projection of the laws γ(µ) and L(µ)
on the t + 1 first instants just depend on the projection of µ on the t first
instants. Since the projection of µ on the initial instant is always µinit,
the projection of L(µ) on the two first instants {0, 1} depend ony on µinit

and similarly, the projection of Lt(µ) on the t + 1 first instants {0, 1, ..., t}
depends only on µinit. Eventually µT = LT (µ) = LT (P ) depends only on
µinit and it is the only fixed point of the mean-field propagation operator L.
So we have shown the following
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Theorem 2.7 The probability measure µT =LT (P ) is the only solution of
the mean-field equation with initial condition µinit.

2.3.3 LDP for RRNN mean-field theory

In this section, we fully use the computation results of the previous section to
show the rigorous foundations of mean-field theory for RRNN. The approach
is the following:

(a) The empirical measure µu of the network dynamics satisfies a large
deviation principle (LDP) under P⊗N with the good rate function
µ ∈ P(F) → I(µ, P ) ∈ R+. Actually, when the size of the network
goes to infinity, the empirical measure converges in law exponentially
fast towards P . The definition of LDP and its consequences are out-
lined in the appendix in definition 2.16. Sanov theorem is stated in
appendix, theorem 2.25.

(b) According to corollary 2.5, the density of the new law of µu with
respect to the original law when we switch from P⊗N that governs the
free dynamics to QN that governs the RRNN dynamics is expNΓ(µ).

(c) Combining (a) and (b), one obtains that under QN , the sequence µu

satisfies a LDP with the good rate function

H(µ) = I(µ, P ) − Γ(µ) (2.23)

This kind of result is used in statistical physics under the name of
Gibbs variational principle [16]. The functional H is called the
free energy. Notice, that the classical statistical mechanics frame-
work is relative to equilibrium state. It is applied here for state tra-
jectory. For that reason, this approach is called the dynamic mean-
field theory [31]. Here, it is be quite technical to support it rigorously.
One has to show that H is is lower semi-continuous and is a good rate
function (see Varadhan’s theorem 2.24 of the appendix). This kind of
proof is rather technical (see [5] for a general approach and [27] for the
proof for AFRRNN model). So we admit the following result

Theorem 2.8 Under the respective laws QN the family of empirical
measures (µN ) of P(F) satisfies a full large deviation principle with
the good rate function H
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(d) It is clear from remark 2.4 that H(µT ) = 0 where µT is is the unique
solution of MFE with initial condition µinit, so it is the fixed point of
L. Thus µT is a minimum of H.

The basic computation is the following: first we apply the definition
2.19 of the relative entropy that is given in in the appendix

I(µT , P ) =
∫

log
dµT

dP
(η)dµT (η)

Since µT is the solution of MFE, we have

dµT

dP
(η) =

dL(µT )
dP

(η)

then we apply the previous remark 2.4 which states

Γ(µT ) =
∫

log
dL(µT )

dP
(η)dµT (η)

to check

I(µT , P ) = Γ(µT ) ⇒ H(µT ) = 0

(e) To obtain the exponential convergence of the sequence of empirical
measures µu under QN when N → ∞, one has eventually to show
that H(µ) = 0 ⇒ µ = µT . This point is technical too. It is proved in
a similar still more general framework (continuous time) in [5] using
a Taylor expansion. The same method is and applied to show the
unicity for AFRRNN model in [27].

Thus, we have the main result of that section:

Theorem 2.9 When the size N of the network goes to infinity, the se-
quence of empirical measures (µu) converges in probability exponentially fast
towards µT which is the unique solution of the mean-field equation L(µ) = µ

The practical implications of theorem 2.9 are not straightforward. What
about the ”local chaos” or the ”vanishing correlation” anzats ? We built
the mean-field dynamics and obtained the limit µT by assuming such an
hypothesis to use central limit theorem.
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2.3.4 Main results of RRNN mean-field theory

First notice that theorem 2.9 may be extended to RRNN with fast decreasing
connection weight distribution. More precisely, let us set

Hypothesis 2.10 (H) If for all N , the common probability law νN of the
connexion weights satisfies

(i)
∫

wdνN (w) = υ
N

(ii)
∫

w2dνN (w) = υ2

N + υ2

N2

(iii) ∃a > 0,∃D > 0 such that
∫

exp aNw2dνN (w) ≤ D

then the family (νN ) is said to satisfy hypothesis (H)

Then, it is possible to show (see [26] and [27] that when hypothesis (H) is
checked by the AFRRNN model then the exponential convergence theorem
2.9 is still valid. This assumption is useful to extend mean-field theory to
diluted RRNN with sparse connections.
From theorem 2.9 two important results may be deduced rigorously. The
first one is a ”propagation of chaos” result which support the basic intuition
of mean field theory about the asymptotic independance of finite subsets of
indiviuals when the population size grows to infinity.

Theorem 2.11 Let k be a positive integer and (fi)i∈{1,...,k} be k continuous
bounded functions on F , when the size N of the network goes to infinity,
then ∫ k∏

i=1

fi(ui)dQN (u) →
k∏

i=1

∫
fi(η)dµT (η)

PROOF : The idea of the proof is due to Sznitman [32].
First, a straightforward consequence of theorem 2.9 is that when we apply
the sequence of random measures (µN ) to the test function F on P(F)
defined by F (µ) =

∏k
i=1

∫
fi(ui)dµ(u) we get the convergence of

lim
N→∞

∫ k∏
i=1

1
N

 N∑
j=1

fi(uj)

 dQN (u) =
k∏

i=1

∫
fi(η)dµT (η)

Thus it remains to compare
∫ ∏k

i=1
1
N

[∑N
j=1 fi(uj)

]
dQN (u) and

∫ ∏k
i=1 fi(ui)dQN (u)
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From the symmetry property of QN , it is clear that for any subset {j1, ..., jk}
of k neurons among N, we have∫ k∏

i=1

fi(uji)dQN (u) =
∫ k∏

i=1

fi(ui)dQN (u)

If we develop
∫ ∏k

i=1
1
N

[∑N
j=1 fi(uj)

]
dQN (u), we get

∫ k∏
i=1

1
N

 N∑
j=1

fi(uj)

 dQN (u) =
1

Nk

∑
{j1,...,jk}

∫ k∏
i=1

fi(uji)dQN (u) (2.24)

The average sum in (2.24) is here over all applications of {1, ..., k} in {1, ..., N}.
And the equality is proven if we replace it by the average over all injections
of {1, ..., k} in {1, ..., N}, since the terms are all equal for injections. But
when N goes to infinity the proportion of injections which is N !

(N−k)!Nk goes
to 1 and thus the contributions of repetive k-uple is neglectible wwhen n is
large. Therefore

lim
N→∞

∫ k∏
i=1

1
N

 N∑
j=1

fi(uj)

 dQN (u) −
∫ k∏

i=1

fi(ui)dQN (u)

 = 0

Still, this propagation of chaos result is valid when the expectation of the
test function is taken with respect to the connection law. Thus, it doesn’t
say anything precise about the observation relative to a single large-size
network.
Actually, since exponentially fast convergence in probability implies almost
sure convergence form Borel-Cantelli lemma, we are able to infer the fol-
lowing statement from theorem 2.9. Recall that we note (as in the proof
of theorem 2.4) QN (J ) the conditional law of the network state trajectory
given J the system of synaptic weight and we dfine µN (u) = 1

N

∑N
i=1 δui

for the empirical measure on F which is associated to a network trajectory
u ∈ FN .

Theorem 2.12 Let F be a bounded continuous functionnal on P(F), we
have almost surely in J

lim
N→∞

∫
F [µN (u)]dQN (J )(u) = F (µT )



22CHAPTER 2. RANDOM RECURRENT NEURAL NETWORKS DYNAMICS

Notice we cannot use that theorem to infer a ”quenched” propagation of
chaos result similar to theorem 2.11 which was an annealed propagation of
chaos resuult (i.e. averaged over the connexction weight distribution). It
is not possible because for aa given network configuration J , QN (J ) is no
more symmetrical with respect to the individual neurons. Nevertheless, we
obtain the following crucial result we apply theorem 2.12 to the case where
F is the linear form F (µ) =

∫
fdµ

Theorem 2.13 Let f be a bounded continuous function on F , we have
almost surely in J

lim
N→∞

1
N

N∑
i=1

∫
f(ui)dQN (J )(u) =

∫
f(η)dµT (η)

2.4 Mean-field dynamics for analog networks

Actually, we are interested in the stationary dynamics of large random re-
current neural networks. Moreover since we want to study the meaning of
oscillations and of chaos, the regime of low noise is specially interesting since
the oscillations are practically cancelled if the noise is too loud. For these
reasons, we cannot be pratically satisfied by the obtention of the limit µ0 of
the empirical measures. So we shall extract from µ0 dynamical informations
on the asymptotics of the network trajectories. Notice that the distribution
of the connexion weight distribution is not necessarily gasussian as long as
it satisfies hypothesis (H:2.10).

2.4.1 Mean-field dynamics of homogeneous networks

General mean-field equations for moments

Recall that in section 2 of that chapter (definition 2.2) we defined for any
probability measure µ ∈ P(F) the two first moments of µ, mµ and cµ. Let
us recall these notations:

mµ(t + 1) = υ
∫

f [η(t)]dµ(η)
cµ(s + 1, t + 1) = υ2

∫
f [η(s)]f [η(t)]dµ(η)

qµ(t + 1) = cµ(t + 1, t + 1)

where f is the sigmoid function f(x) =
ex

1 + ex

In this section, in order to alleviate notations, we note m, c, q instead of
mµ0 , cµ0 , qµ0 where µ0 is the asymptotic probability that was shown to be
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a fixed point of the mean-field evolution operator L in last section. By
expressing that µ0 is a fixed point of L, we shall produce some evolution
autonomous dynamics on the moments m, c, q.
More precisely we have from the definition of L (see definition 2.3 in section
3) that the law of η(t) under µ0 is a gaussian law of mean m(t) − θ and of
variance q(t) + σ2 (see equations 2.17 and 2.18). So we have{

m(t + 1) = υ
∫

f [
√

q(t) + σ2ξ + m(t) − θ]dγ(ξ)
q(t + 1) = υ2

∫
f [

√
q(t) + σ2ξ + m(t) − θ]2dγ(ξ)

(2.25)

where γ is the standard gaussian probability on R: dγ(ξ) = 1√
2π

exp
[
− ξ2

2

]
dξ

Moreover, the covariance of (η(s), η(t)) under µ0 is c(s, t) if s �= t. Thus
in that case, considering the standard integration formula of a 2d gaussian
vector:

E[f(X)g(Y )] =
∫ ∫

f

(√
V ar(X)V ar(Y )−Cov(X,Y )2

V ar(Y ) ξ1 + Cov(X,Y )√
V ar(Y )

ξ2 + E(X)
}

...

g[
√

V ar(Y )ξ2 + E(Y )]dγ(ξ1)dγ(ξ2)

we obtain we obtain the following evolution equation for covariance:

c(s + 1, t + 1) = υ2
∫ ∫

f

(√
[q(s)+σ2][q(t)+σ2]−c(s,t)2

q(t)+σ2 ξ1 + c(s,t)√
q(t)+σ2

ξ2 + m(s) − θ

)
...

f [
√

q(t) + σ2ξ2 + m(t) − θ]dγ(ξ1)dγ(ξ2)
(2.26)

The dynamics of the mean-field system (2.25,2.26) can be studied in function
of the parameters:

• the mean υ of the connexion weights,

• the standard deviation υ of the connexion weights

• the firing threshold θ of neurons.

Notice that the time and size limits do not necessarily commute. Therefore,
any result on long time dysnaics of the mean-field system may not be an
exact prediction of the large-size limit of stationary dynamics of random
recurrent networks. However, for our model, extensive numerical simulations
have shown ([10],[12]) that the time asymptotics of the mean-field system
is informative about moderately large random recurrent network stationary
dynamics (from size of some hundred neurons).
More precisely, in the low noise limit (σ << 1), two points of view are
interesting:
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• the ensemble stationary dynamics is given by the study of the time
asymptotics of the dynamical system{

m(t + 1) = υ
∫

f [
√

q(t)ξ + m(t) − θ]dγ(ξ)
q(t + 1) = υ2

∫
f [

√
q(t)ξ + m(t) − θ]2dγ(ξ)

(2.27)

• the synchronization of the individual neuron trajectories. Actually,
the m(t) and q(t) may converge when t → ∞ towards limits m∗ and
q∗ (stable equilibria of the dynamical system 2.27) with a great variety
of dynamical behaviours. Each individual trajectory may converge to
a fixed point and (m∗, q∗) are the statistical moments of the fixed
point empirical distributions. Another case is provided by individual
chaotic oscillations around m∗ where q∗ measures the amplitude of the
oscillations.

The discrimination between these two situations which are very different
from the point of view of neuron dynamics is given by the study of the
mean quadratic distance which will be outlined in the next paragraph.

Study of the mean quadratic distance

The concept of the mean quadratic distance was introduced by Derrida and
Pommeau in [14] to sudy the chaotic dynamics of extremely diluted large size
networks. The method originates to check the sensitivity of the dynamical
system to initial conditions. The idea is the following: let us consider two
networks trajectories u(1) and u(2) of the same network configuration which
is given by the synaptic weight matrix (Jij). Their mean quadratic distance
is defined by

d1,2(t) =
1
N

N∑
i=1

[u(1)
i (t) − u

(2)
i (t)]2

For a given configuration, if the network trajectory converges towards a
stable equilibrium or towards a limit cycle (synchronous individual trajec-
tories), then the mean quadratic distance between closely initialized trajec-
tories goes to 0 when times goes to infinity. On the contrary, when this
distance goes far from 0, for instance converges towards a non zero limit,
whatever close the initial conditions are, the network dynamics present in
some sense ”sensitivity to initial conditions” and thus this behaviour of the
mean quadratic distance can be considered to be symptomatic of chaos. We
apply this idea in [9] to characterize instability of random recurrent neural
network.
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In the context of large deviation based mean-field theory, the trajectories
u(1) and u(2) are submitted to independant synaptic noises and the mean
quadratic distance is defined by

d1,2(t) =
1
N

N∑
i=1

∫
[u(1)

i (t) − u
(2)
i (t)]2dQ

(1,2)
N (u(1), u(2)) (2.28)

where Q
(1,2)
N is the joint probability law on F2N of the network trajectories

(u(1), u(2)) over the time interval {0, ..., T}. Following the same lines as in
last sections, it is easy to show a large deviation principle for the empirical
measure of the sample (u(1)

i , u
(2)
i )i∈{1,...,N under Q

(1,2)
N when N → ∞. Then

we get the almost sure convergence theorem

lim
N→∞

1
N

N∑
i=1

∫
f1(u1

i )f2(u2
i )dQN (J )(u) =

∫
f1(η1)f2(η2)dµ

(1,2)
T (η1, η2)

where µ
(1,2)
T is the fixed point of the mean-field evolution operator L(1,2)

of the joint trajectories which is defined on the probability measure set
P(F ×F) exactly in the same way as L was defined previously in definition
2.3.
Then if we define the instantaneous covariance between two trajectories by

Definition 2.5 The instantaneous cross covariance between the two trajec-
tories under their joint probability law is defined by

c1,2(t) =
∫

η1(t)η2(t)dµ
(1,2)
T (η1, η2) (2.29)

where µ
(1,2)
T is the fixed point measure of the joint evolution operator L(1,2)

defined from an initial condition µ
(1,2)
init .

Then we can follow the argument, which was already used for the covariance
evolution equation (2.26). Thus we obtain the following evolution equation
for the instantaeous cross covariance equation

c1,2(t + 1) = υ2
∫ ∫

f

(√
[q1(t)+σ2][q2(t)+σ2]−c1,2(t)2

q2(t)+σ2 ξ1 + c1,2(t)√
q2(t)

ξ2 + m1(t) − θ

)
...

f [
√

q(t) + σ2ξ2 + m2(t) − θ]dγ(ξ1)dγ(ξ2)
(2.30)

The proof is detailed in [26].
It is obvious now to infer the evolution of the mean quadratic distance from
the following square expansion
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Proposition 2.14 The mean quadratic distance obeys the relation

d1,2(t) = q1(t) + q2(t) − 2c1,2(t) + [m1(t) − m2(t)]2

Study of the special case of balanced inhibition

In order to show how the previous equations are used we shall display the
special case of balanced inhibition and excitation. The study of the discrete
time 1-dimensional dynamical system with different parameters was adressed
in the previous chapter. See also ([10] and [12]) for more details.
We choose in the previous model the special case where υ = 0. This choice
simplifies considerably the evolution study since ∀t, m(t) = 0 and the recur-
rence over q(t) is autonomous. So we have just to study the attractors of a
single real function.
Moreover, the interepretation of υ = 0 is that there is a general balance
in the network between inhibitory and excitatory connections. Of course,
the model is still far from biological plausibility since the generic neuron
is endowed both with excitatory and inhibitory functions. In next section,
the model with several populations will be adressed. Nevertheless, the case
υ = 0 is of special interest. In the limit of low noise, the system amount to
the recurrence equation:

q(t + 1) = υ2

∫
f [

√
q(t)ξ − θ]2dγ(ξ) (2.31)

we can scale q(t) to υ and we obtain

q(t + 1) =
∫

f [υ
√

q(t)ξ − θ]2dγ(ξ) = hυ,θ[q(t)] (2.32)

where the function hυ,θ of R+ into R+ is defined by

hυ,θ(q) =
∫

f [υ
√

q(t)ξ − θ]2dγ(ξ)

This function is positive, increasing and goes to 0.5 when q goes to infinity.
The recurrence (2.32) admits on R+ a single stable fixed point q∗(υ, θ). This
fixed point is increasing with υ and decreasing with θ. We represent in figure
2.1 the diagram of the variations of function q∗(υ, θ). It is obtained from a
numerical simulation with a computation of hυ,θ by Monte-Carlo method.
Let us now consider the stablity of the network dynamics by studying the
covariance and the mean quadratic distance evolution equation. The co-
variance evolution equation (2.26) in the low noise limit and when t → ∞
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Figure 2.1: Variations of the fixed point q∗(υ, θ) in fonction of the network
configuration parameters
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amounts to

c(s + 1, t + 1) = υ2
∫ ∫

f

(√
q∗2−c(s,t)2

q∗ ξ1 + c(s,t)√
q∗ ξ2 − θ

)
...

f (
√

q∗ξ2 − θ) dγ(ξ1)dγ(ξ2)
(2.33)

Let us scale the covariance with υ2 we obtain the recurrence

c(s + 1, t + 1) = Hυ,θ,q(c(s, t))

with

Hυ,θ,q(c) =
∫ ∫

f

(
υ

√
q2 − c2

q
ξ1 +

c√
q
ξ2 − θ

)
f (υ

√
qξ2 − θ) dγ(ξ1)dγ(ξ2)

(2.34)
It is clear from comparing with equation (2.31) that q∗ is a fixed point of
Hυ,θ,q. To study the stability of this fixed point, standard computation
shows that

dHυ,θ,q∗

dc
(q∗) =

∫
f ′

(
υ
√

q∗ξ2 − θ
)2

dγ(ξ) (2.35)

Then as it is stated in previous chapter, the condition dHυ,θ,q∗
dc (q∗) ≤ 1 is

a necessary and sufficient condition for the stability of q∗. A detailed and
rigorous proof for θ = 0 is provided in [26]. Then two cases occur.

• In the first case where dHυ,θ,q∗
dc (q∗) ≤ 1,the stationary limit of c(s +

τ, t + τ) when τ → ∞ does not depend on t − s and is c∗ = q∗. The
stationary limit of the mean-field gaussian process is a random point.
Its variance is increasing with υ and decreasing with .

• In the second case where dHυ,θ,q∗
dc (q∗) > 1 does not depend on t − s

when t − s �= 0 and is equal to c∗ < q∗. The stationary limit of
the gaussian process is the sum of a random point and of a white
noise. From the dynamical system point of view, this corresponds to
chaotic regime. The signature of chaos is given by the evolution of the
mean quadratic distance. The instantaneous covariance converges also
towards c∗. Therefore the mean quadratic distance converges towards
a non null limit, which is independant of the initial condition distance.

The figures 2.1 and 2.2 shows the evolution of q∗ and q∗ − c∗ in function
of υ and θ. When υ is small, there is no bifurcation to chaos. When υ
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Figure 2.2: Variations of q∗ − c∗ in fonction of the network configuration
parameters υ and θ
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is larger, the bifurcation toward chaos occurs when θ is decreasing. When
υ is growing, the bifurcation toward chaos occurs for increasing θ values.
Figure ?? of previous chapter shows the interest of variation of input (which
is equivalent to threshold variation) allows to hold up the bifurcation to
chaos.

2.4.2 Mean-field dynamics of 2-population AFRRNN

2-population AFRRNN model

As it was announced previously, the assumption of a homogeneous connex-
ion weight model is not plausible. Besides in litterature, RRNN models
with several neuron populations have been studied as early as in 1977 with
[2] aand have been thoroughly investigated in the last decade (see for in-
stance [20]). The heterogeneity of neuron population induce interesting and
complex dynamical phenomena such as synchronization.
Actually the mean-field theory that was developped herebefore in the pre-
vious sections may be extended without major difficulty to several neuron
populations. To give a practical idea of what can be obtained such ex-
tensions we consider here two populations with respectively N1 = λN and
N2 = (1 − λ)N neurons where λ ∈]0, 1[ and where N → ∞.
Four connexion random matrixes have to be considered in this model J11,J12,
J21,J22 where Jij is the matrix of connexion weights from population j neu-
ron to population i neuron. The random matrix Jij is a (Nj × Ni random
matrix with independant indentically distributed entries. Their distribution
is governed by statistical parameters (υij , υij) and obeys hypothesis (2.10).
they are independant altogether.
Yet, technical hypothesis (H) does nnot allow to embed connexion weight
a rigorously constant sign to distinguish between inhibitory and excitatory
neurons. Actually there is no probability distribution on positive real num-
bers with mean and variance respectively scaled as υ

N and υ2

N . Thus, the
positivity of the support induces on the other side of the distribution a heavy
tail which will not respect assumption (iii) in hypothesis (H). However, it
is possible to consider probability distributions which are checking hypoth-
esis (H) and which are loading the negative numers (or alternatively) the
positive ones) with arbitrary small probability.
We consider here a 2-population model with a population of excitatory neu-
rons and a population of inhibitory neurons (up to the above restriction).
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General mean-field equations for moments

A large deviation principle may be obtained for the 2-population model
for gaussian connexion weights. So the convergence in finite time to the
mean-field dynamics is shown in the model that is described in the previ-
ous paragraph according to the same proof as in the previous 1-population
model. See [26] for a rigorous proof and [11] for a more practical statement
of results. The limit of the empirical measure is the law of a gaussian vector
which takes its values in F ×F . Each factor stands to describe the reparti-
tion of a neural population. Note that the two components are independant.
As for the 1-population model we note mk(t), qk(t), ck((s, t) the mean, vari-
ance and covariance at given times of the empirical measure of population
k (k ∈ {1, 2}). The mean-field evolution equation for these moments is
described by the following system:

mk(t + 1) =
∑

j∈{1,2} υkj

∫
f [

√
qj(t) + σ2ξ + mj(t) − θj ]dγ(ξ)

qk(t + 1) =
∑

j∈{1,2} υ2
kj

∫
f [

√
qj(t) + σ2ξ + mj(t) − θj ]2dγ(ξ)

ck(s + 1, t + 1) =
∑

j∈{1,2} υ2
kj

∫ ∫
f

(√
[qk(s)+σ2][qk(t)+σ2]−ck(s,t)2

qk(t)+σ2 ξ1 ...

+ ck(s,t)√
qk(t)+σ2

ξ2 + mk(s) − θk

)
...

f [
√

qk(t) + σ2ξ2 + mk(t) − θk]dγ(ξ1)dγ(ξ2)
(2.36)

Results and discussion

As far as numerical studies are concerned, we choose the following values
for their statistical moments

υ1,1 = gd υ1,1 = g

υ1,2 = −2gd υ1,2 =
√

2g
υ2,1 = gd υ2,1 = g
υ22 = 0 υ22 = 0

(2.37)

In this study, according to some biological scheme, excitatory neurons are
connected both to excitaztory neurons and inhibitory neurons and inhibitory
neurons are both connected to excitatory neurons. Moreover, the number of
parameters is reduced to allow numerical exploration of the synchornization
parameter. We keep two independant parameters:

• g stands for the non linearity of the transfer function

• d stands for the differentiaton of the two populations (inhibitory vs.
excitatory).
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Considering the firing thresholds as previously, there is no variation about
individual thesholds. Excitatory neuron threshold θ1 is chosen equal to 0 and
inhibitory neuron threshold θ2 is chosen equal to 0.3 because thge activation
potential of inhibitory neurons is always positive.
In the bifurcation map of 2.3 (extracted from 01 several dynamical regimes
are displayed and the corresponding numerical ranges of paarameters d nd g
are displayed. Notice that theoretical previsions of the mean-field equations
(2.36) and the large scale simulations of large-size network behaviour are
consistent. The occurence of fixed point and chaos with a fixed point to
chaos bifurcation (with a narrow transition route) is confirmed for weak
d (in accordance with homogeneous network study). When differentiation
paramerter d is sufficient (about 2), fixed point looses its stability through a
Hopf bifurcation to give rise to synchronous oscillations when g is growing.
Moreover, a new phenomenon is displayed thank to the RRNN modeliza-
tion. For large g, there is a significant transition regime between stationary
chaos and synchronised oscillations which is named ”cyclostationary chaos”.
In that regime statistical parameters are exhibitting regular periodic oscil-
lations though individual trajectories are diverging with a mean quadratic
distance behaviour which is characteristic from chaos.
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Figure 2.3: Bifurcation map of the 2-population model
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2.5 MFT-based oscillation analysis in IF networks.

In this section we would like to give an interesting application of mean-field
approaches for spiking neurons. It was developped in [7]. This paper is
part of a current of research which studies the occurence of synchronized
oscillations in recurrent spiking neural networks [4, 3, 6] in order to give an
account of spatio-temporal synchronization effects, which are observed in
many situations in neural systems [18, 29, 8, 28].

2.5.1 IFRRNN continuous-time model

The model of [7] is in continuous time. There is no synaptic noise but the
neurons are submitted to a random external output. So, equation (2.9)

u(t + 1) = ϕ[u(t) + θ)] + v(t + 1) + w(t + 1) − θ (2.38)

where

• γ ∈]0, 1[ is the leak

• ϕ is defined by ϕ(u) =
{

γu if ϑ
γ < u < θ

ϑ else

• ϑ is the reset potential and ϑ < 0 < θ

has to be replaced by{
u(t) < θ ⇒ τ u̇(t) = −u(t) + vnet(t) + vext(t)
u(t − 0) = θ ⇒ u(t + 0) = ϑ

(2.39)

where

• τ is the characteristic time of the neuron

• vnet is the synaptic input from the network

• vext is the external input

• ϑ is the reset potential and 0 < ϑ < θ. Note that u(t− 0) and u(t+0)
are respectively the left and right limits of u at firing time t. Thus,
the refractory period is assumed to be zero.

This model of continuous time neuron dynamics is introduced in chapter 1,
section (??).
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Moreover, since the inputs are modelled by continuous-time stochastic pro-
cesses, equation (2.39) is a stochastic differential equation of the type

τdu(t) = −u(t)dt + dVt (2.40)

with dV (t) = dVext(t) + dVnet(t)
Now we shall explicit these stochastic processes in order to obtain the
Fokker-Planck equation of the network dynamics in mean-field approxima-
tion.

2.5.2 Modelling the external input

The network is a recurrent inhibitory network and we study its reaction
to random excitatory synaptic inputs. We suppose that in the network
each neuron receives excitations from Cext external neurons connected via
constant excitatory synapses Jext. The corresponding external current is a
Poisson process with emission frequency νext.
Let us examine the effect of a superposition of a large number C of inde-
pendant identically distributed low-rate ν Poisson processes. Put

I(t) = J

C∑
i=1

Ni(t)

where Ni(t) are i.i.d. Poisson processes with firing rate ν.
Then I(t) is a stochastic process with independant stationary increments
such that E(I(t)) = µt = JCνt and Var(I(t)) = σ2t = J2Cνt.
Thus µ = JCν and σ = J

√
Cν.

We are interested in studying such processes when they reach the firing
threshold θ which is far greater than the elementary increment J . In typical
neural applications, J = 0.1 mv and θ = 20 mV. At this level, operating
a classical time-space rescaling, I(t) appears like a gaussian process with
independant increments and same moments. We have

dI(t) ∼ µdt + σdBt

where (Bt) is the standard brownian motion. If we apply the subsequent to
the external synaptic input we get the following modelling in the limit of
large size and low rate

dVext(t) = µextdt + σextdB(t)

with µext = JextCextνext and σext = Jext

√
Cextνext.
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2.5.3 Mean-field approximation of the internal input

In the framework of continuous-time modelling, the synaptic input definition
of vnet for IF neuron i which was according to equation (2.3)

vi(J , u)(t + 1) =
N∑

j=1

Jijxj(t)

has to be replaced by

vi(J , u)(t) = τ

N∑
j=1

Jij

∑
k

δ
(
t − T k

j (u) − D
)

(2.41)

where

• δ is the dirac distribution,

• T k
j (u) are the successive firing times of neuron j during the networrk

trajectory u,

• D is the synaptic transmission delay.

Mean-field approximation in the finite time set framework consisted in previ-
ous sections in finding a fixed point for the mean-field propagation operator
L, namely in

• approximating random vectors vi by gaussian vectors of law gµ where
µ is a probability law on the individual neuron potential trajectory
space (finite-dimensional vector space)

• finding µ as the probability law of the neuron dynamical equation with
this approximation for the synaptic input

The synapses between neurons are all negative (inhibitory), with the same
value −J < 0. They are sparse. Each neurons receives C << N connections,
where C is a fixed integer, and N is the total number of neurons. Ii is the
synaptic current coming from the other neurons.
The mean-field approximation in [7] follows the same logic. The network is
supposed to be sparsely connected. All the connexion weights are equal to
−J as soon as they are non null. Each neuron is connected to C neurons
which are randomly drawn among the network with C << N connections,
where C is a fixed integer and N is the total number of neurons. Another
model is considered further where the connection weights are independant
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random variables equal to −J with probability C
N and to 0 else. We shall

focus here on the first model.

The first step of the mean field approximation consists for a given rate
function ν in defining the non stationary gaussian process

dVnet(t) = µnet(t)dt + σnet(t)dB(t) (2.42)

where

• the drift µnet is given by

µnet(t) = −CJν(t − D)τ (2.43)

• and where the diffusion coefficient σnet is given by

σnet(t)2 = J2Cν(t − D)τ (2.44)

The second step consists in considering the following diffusion with ”tun-
nelling effect”{

u(t) < θ ⇒ τdu(t) = −u(t)dt + dVnet(t) + dVext(t)
u(t − 0) = θ ⇒ u(t + 0) = ϑ

(2.45)

From the solution of this equation, a rate function ν of the probability rate
of absorption by the barrier θ at time t is inferred.

2.5.4 Fokker-Planck equation

Closed form equation

Note p(u, t) the probability density of the solution u(t) of (2.45). Define

µ(t) = µnet(t) + µext(t)
σ(t) =

√
σnet(t)2 + σext(t)2

Then p(u, t) is solution of the Fokker-Planck equation for diffusion process
for u < θ and u �= ϑ:

∂p

∂t
(u, t) =

σ(t)2

2
∂2p

∂u2
(u, t) +

∂

∂u
[(u − µ(t))p(u, t)] (2.46)
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The tunelling effect from θ to ϑ is taken into acccount in the following
boundary conditions{

p(θ, t) = 0
∂p
∂u(ϑ + 0, t) = ∂p

∂u(ϑ − 0, t) + ∂p
∂u(θ − 0, t)

(2.47)

Last the firing rate is defined by

ν(t) =
∂p

∂u
(θ − 0, t) (2.48)

Stationary solution

It is easy to find the stationary solution of the previous equation

∂p

∂t
(u, t) = 0

Suppose a given constant firing rate ν0, then set{
µ0 = −CJν0τ + µext

σ0 =
√

CJ2ν0τ + σ2
ext

(2.49)

and plug it into the differential second order equation

σ2
0

2
d2p

du2
+

d

du
[(u − µ0)p(u)] = 0 (2.50)

with the following boundary conditions{
p(θ) = 0
dp
du(ϑ + 0) = dp

du(ϑ − 0) + dp
du(θ − 0, t)

(2.51)

One obtains easily the following stationary distribution{
For u < ϑ, p(u) = 2ν0

τ e−y2
u
∫ υθ

υϑ
ey2

dy

For u ≥ ϑ, p(u) = 2ν0
τ e−y2

u
∫
y

υθ
u ey2

dy

where yu = u−µ0

σ0
, yϑ = ϑ−µ0

σ0
and yθ = θ−µ0

σ0

Then the normalization condition
∫ ∞
−∞ p(u)du = 1 allows to infer

1
ν0τ

=
∫ +∞

0
e−y2

[
e2yθy − e2yϑy

y

]
dy (2.52)

The relations (2.49,2.52) allows to compute numerically ν0. The equation
(2.52) can be approximately solved in the situation where the fluctuations
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σ0 are weak (i.e. yθ >> 1 which means that the spiking events are rare). In
this case :

ν0τ ≈ yθ√
π

e−y2
θ (2.53)

This asymptotic expression can be compared to the escape probability from
the equation of motion of a particule in a parabolic potential well V, with
minimum µ0, submitted to a brownian excitation

τdVt = −(V − µ0)dt + σ0dBt

The time rate to reach V = θ is thus given by the Arrhenius time

ν0τ ∼ e−y2
θ

Numerical values of ν0 which are inferred from equations (2.52) and (2.53)
are compared in [7] to the result of numerical simulations of the network
and there is a good agreement between theoretical predictions and simulated
firing rates.

Stability analysis.

The stability analysis for the stationary solution uses normal form technics
similar to those described in Chapter 1, but in an infinite dimensional space.
The Fokker-Planck is rescaled and expanded around the steady-state solu-
tion. This intricate computation is fully detailed in [7] . We simply focus to
the results.
The authors find that there is a bifurcation of Hopf type for the stationary
solution. Thus, for a certain parameter range, the system exhibits synchro-
nized oscillations of the neurons. A sketch of the bifurcation map is given
in figure 2.4 when varying the parameters µext, σext controling the external
excitation.
One can see from that bifurcation diagram that the bifurcation occurs when
the drift of the external input is increasing. On the opposite, an increase
of the dispersion of the external input stabilizes the steady state. If the
external input consists in the superposition of i.i.d. Poisson processes as it
was detailed above, then the increase of their common frequency νext induces
the occurence of an oscillatory regime. There is still a good agreement
between the predictions of mean-field theory and the results of simulations.
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Figure 2.4: Sketch of the bifurcation diagram of the model (??,2.41) when
varying the parameters µext, σext controling the Poisson process of external
excitation. SS means Stationary State, while OS means Oscillatory State.
The solid line represents the instability line for D = 0.1τ . (Drawn by hand
from [7])
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2.5.5 Conclusion

Thus, the conclusion is that in this model of a neural network with a sparsely
connected inhibitory integrate-and-fire neurons, submitted to a external ex-
citatory Poisson process, and emitting spikes irregularly at a low rate, there
is, in the thermodynamic limit, a sharp transition between a regime where
the average global is constant, to a synchronized state where neurons are
weakly synchronized. The activity becomes oscillatory when the inhibitory
feedback is strong enough.
Note that the period of the global oscillations depends on the synaptic trans-
mission delay which cannot be neglected.
Finally, let us mention that the authors performed a finite size analysis of the
model and found that global oscillations of finite coherence time generically
exist above and below the critical inhibition threshold.
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2.6 Appendix about probability theory

This chapter uses intensively some classical notations and concepts of prob-
ability theory. The proofs are omitted but sometimes the results follow from
advanced results of this theory. It is not possible to recall here the necessary
prerequisites. There are excellent books about probability theory for physi-
cists and engineers such as [23]. We just want here to recall some notations
and some results from convergence theory. We have detailed the proof of the
”finite-time Girsanov theorem” since it is a crucial result for the chapter.

2.6.1 Elementary Notations

The classical and shortest point of view for considering random phenomena
from the 19th century is to consider a random variable x in a space E as
probability law on that space from which all the moments of the law can
be computed by integrating the quantity of interest over the probability law
of the random variable. For instance, if µ is the probability law of the real
random variable x, one has

E(x) =
∫

x
xdµ(x)

E(x2) =
∫

x
x2dµ(x)

and more generally for any bounded continuous function f of x

E[φ(x)] =
∫

x
φ(x)dµ(x)

where E is the mathematical expectation operator. The expectation of
any random variable which takes its value in a topological vector space F
with additional mathematical hypothesis is a vector of F and the mathe-
matical expectation operator is linear.
More over, if we consider a random vector x taking its value in a finite-
dimensional vector space Rd with probabbility law µ on Rd we consider its
expectation E(x) ∈ Rd which is defined by

∀i ∈ {1, ..., n}, [E(x)]i = E(xi) =
∫

Rd

xidµ(x)

and the symetric (d, d)−covariance matrix which is defined by

Cov(x)ij = E(xixj) − E(xi)E(xj)
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Actually, this point of view cannot be used when we are obliged to consider
an infinite set of random variables or when we want to operate a variable
change. Hence, we are obliged to adopt a more general point of view which
was initiated by Kolmogorov in 1933. This approach relies basically upon the
consideration of a very large state space Ω which describes all the possible
outcomes or states of the world. Then a rich family A of subsets of Ω
is defined such that all the random events of interest are belonging to A.
Eventually a probability measure is defined on A which associates to any
random event A ∈ A its probability P (A). The triple (Ω,A, P ) is called a
probability space.
Later on, we shall have to work on infinite-dimensional space. So let us fix
a general framework

Definition 2.6 A Polish space F is a metric complete (every Cauchy se-
quence converges) and separable (there is a denombrable dense subset) space.
The σ−algebra B of Borel subsets of A Polish space F is the smallest
σ−algebra that contains the open sets. Given a probability measure µ on
the Borel subsets of F it is possible to integrate any bounded continuous
function φ on F and the integral is noted

∫
F φ(ξ)dµ(ξ). The integral may be

extended to a wider class of functions. These functions are called integrable
with respect to µ.

.
In that new framework let us define random variables in F .

Definition 2.7 Let (Ω,A, P ) be a probability space and (F ,B) a Polish
space endowed with its Borel σ−algebra. A random variable x ∈ F is
a state function from Ω into F such that for any open set B in F , the
subset of Ω defined by

(x ∈ B) = {ω ∈ Ω such that x(ω) ∈ B}
belongs to A so its probability P (x ∈ B) is well defined.
The probability law of a random variable x ∈ F is the probability law on
F which associates to any Borel subset B ⊂ F the probability P (x ∈ B).

The probability law of x is noted x.P or Px. This definition stands for also
for general measure than probability laws such as volume measures. More
generally, we have

Definition 2.8 Let (Ω,A, P ) be a measure space and x amapping from Ω
to F such that

∀B ∈ B, (x ∈ B) = {ω ∈ Ω such that x(ω) ∈ B} ∈ A
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Then we define a measure on (F ,B) that is noted x.P or Px by

B ∈ B → x.P (B) = Px(B) = P (x ∈ B)

This measure is called the image of the measure P by the mapping x

This definition is completed by the following transfer theorem which shows
that the mathe-matical expectation can be computed on the state space Ω
or on the value space F .

Theorem 2.15 For any function φ defined on F and integrable for the
probability law Px we have

E[φ(x)] =
∫

Ω
φ[x(ω)]dP (ω) =

∫
F

φ(ξ)dPx(ξ)

The transfer theorem is very useful in theory and in practice. It allows
to define the mathematical expectaton of a random variable without any
ambiguity.
Kolmogorov’s framework allows to define independent random variables by
the equivalent following properties

Definition 2.9 For i ∈ {1, ..., n} let xi ∈ Fi be random variables, they are
said independent if the law Px of the random variable x = (x1, ..., xn) ∈
F1 × ... × Fn is the product of the Pxi which is expressed in the following
equivalent properties

P (x ∈ B1 × ... × Bn) = Px1(B1)...Pxn(Bn)

E[φ1(x1)...φn(xn)] = E[φ1(x1)]...E[φn(xn)]

2.6.2 Density and Gaussian random vectors

Definition 2.10 Let (Ω,A, m) a measure space and h an integrable positive
function on Ω such that

∫
Ω h(ω)dm(ω) = 1. Then we can define a probability

measure Q on (Ω,A) by

Q(A) =
∫

Ω
1A(ω)h(ω)dm(ω)

Q is said absolutely continuous with respect to m, h is called the density
of Q with respect to m and we can compute the integral for Q by using the
formula ∫

Ω
φ(ω)dQ(ω) =

∫
Ω

φ(ω)h(ω)dm(ω)

We write dQ
dm(ω) = h(ω) or dQ((ω) = h(ω)dm(ω)
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Of course, the density functions are commonly used in elementary probabil-
ity. An important class of probability measures is the Gaussian probability
family.

Definition 2.11 Let a ∈ R and σ2 ∈ R+. The Gaussian probability mea-
sure γ = N (a, σ2) is defined by its density with repect to the Lebesgue mea-
sure λ on R, which is

dγ

dλ
(ξ) =

1√
2πσ2

exp
[
−(ξ − m)2

2σ2

]
Similarly, this defintion can be extended to d-dimensional vector space and
enven to infinite-dimensional Hilbert space. Here, we just need the following

Definition 2.12 Let θ ∈ Rd and K be a d×d symetric positive matrix, then
there exists one and one only probability measure on Rd, which is called the
Gaussian probability γ = N (θ, K) such that if γ is the probability law
of the random vector x ∈ Rn then ∀u ∈ Rd, the law of the random variable
utx4 is N (utθ, utKu).

Proposition 2.16 Let x be a random vector with regular gaussian proba-
bility γ = N (θ, K) then we have{

E(x) =
∫

ξdγ(ξ) = θ
Cov(x) = E(xxt) − E(x)E(x)t = K

So a Gaussian law is completely determined by its expectation and its co-
variance matrix.

Definition 2.13 With the previous notations, if K is invertible, γ is said
to be regular and the density of γ with respect to the Lebesgue measure λ is

dγ

dλ
(ξ) =

1√
(2π)nDet(K)

exp
[
−(ξ − m)tK−1(ξ − m)

2

]
(2.54)

A common property of the gaussian family is its stability by linear trans-
forms and translation. More precisely, we have

4ut is the transpose of column vectorv u, so utx is the scalar product of vectors u and
x
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Proposition 2.17 Let x a gaussian random vector which takes its value in
the vector space E and Λ a linear mapping of E into F . Then y = Λx is a
gaussian random vector in F and{

E(y) = ΛE(x)
Cov(y) = ΛCov(x)Λt (2.55)

Proposition 2.18 Let x a gaussian random vector which takes its value in
the vector space E and a ∈ E. Then y = x + a is a gaussian random vector
in F and {

E(y) = E(x) + a
Cov(y) = Cov(x)

(2.56)

Corollary 2.19 Let x be a random vector with regular gaussian probability
γ = N (θ, K) and let a ∈ Rd, then the law γa of x+a is the regular Gaussian
law N (θ +a, K) and its density with respect to γ can be explicited as follows

dγa

dγ
(ξ) = exp

[
atK−1(ξ − θ) − 1

2
atK−1a

]
(2.57)

PROOF : The formula is checked using an easy and straightforward compu-
tation from the expression of the gaussian density
It is interesting to note that it is possible to define Gaussian probability
on an infinite-dimensional vector space though it is not possible to define
Lebesgue measure. However, in that chapter we just use finite-dimensional
Gaussian probabilities. An interesting property of the Gaussian measure,
which is crucial in this chapter is the following finite-dimensional version of
the Girsanov theorem.

Theorem 2.20 Let m0 a probability measure on Rd and let N (α, K) be
a gaussian regular probability on Rd. Let T a postive integer and ET =
(Rd){0,...,T} the space of finite time traajectories in Rd. Let w a gaussian
random vector in ET with law m0 ⊗N (α, K)T . Let φ and ψ two measurable
applications of Rd into Rd. Then we define the random vectors x and y in
E by {

x0 = w0

x(t + 1) = φ[x(t)] + w(t + 1){
y0 = w0

y(t + 1) = ψ[y(t)] + w(t + 1)
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Let P and Q be the respective probability laws on E of x and y, then Q is
absolutely continuous with respect to P and we have

dQ

dP
(η) = exp

T−1∑
t=0

{
−1

2{ψ[(η(t)] − φ[(η(t)]}tK−1{ψ[(η(t)] − φ[(η(t)]}
+{ψ[(η(t)] − φ[(η(t)]}tK−1{η(t + 1) − α − φ[η(t)]}

}
(2.58)

PROOF : The proof is a recursion on T . It is easy to check (2.58) for T = 1.
To reduce the expression let us write down

yT
0 = (y(0), ..., y(T )), ηT

0 = (η(0), ..., η(T ))

and

ΘT (ηT
0 ) =

T−1∑
t=0

{
−1

2{ψ[(η(t)] − φ[(η(t)]}tK−1{ψ[(η(t)] − φ[(η(t)]}
+{ψ[(η(t)] − φ[(η(t)]}tK−1{η(t + 1) − α − φ[η(t)]}

}
Suppose (2.58) is true up to T and let us compute the density of y up to
T + 1. Let h be a bounded continuous test function defined on Et+1. We
have by conditioning with respect to yT

0

E
[
h(y(T + 1), yT

0 )
]

=
∫

E
{
h(w(T + 1) + ψ[η(T )], ηT

0 )
}

dQ(ηT
0 )

where the expectation is taken with respect to w(T+1), which is independent
from yT

0 . Let us explicit the gaussian law N (α, K) and use the recursion
hypothesis:

E
[
h(y(T + 1), yT

0 )
]

=
CK

∫ ∫
h(ω + ψ[η(T )], ηT

0 ) exp
{
−1

2(ω − α)tK−1(ω − α)
}

exp ΘT (ηT
0 )dωdP (ηT

0 )

where CK is the classic normalization constant for the gausisan law. Then
let us perform the translation � = ω + ψ[η(T )], it gives

E
[
h(y(T + 1), yT

0 )
]

= CK

∫ ∫
h(�, ηT

0 )
exp

{
−1

2(� − α − ψ[η(T )])tK−1(� − α − ψ[η(T )])
}

exp ΘT (ηT
0 )d�dP (ηT

0 )

To reduce notations let us write down ζT = ψ[η(T )] − φ[η(T )], we have

E
[
h(y(T + 1), yT

0 )
]

= CK

∫ ∫
h(�, ηT

0 )
exp

{
−1

2(� − α − φ[η(T )] + ζT )tK−1(� − α − φ[η(T )] + ζT )
}

exp ΘT (ηT
0 )d�dP (ηT

0 )
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Let us develop the quadratic form under the exponential

−1
2(� − α − φ[η(T )] + ζT )tK−1(� − α − φ[η(T )] + ζT )

= −1
2(� − α − φ[η(T )])tK−1(� − α − φ[η(T )])

−1
2ζt

T K−1ζT + ζt
T K−1(� − α − φ[η(T )])

So we have

exp
{
−1

2(� − α − φ[η(T )] + ζT )tK−1(� − α − φ[η(T )] + ζT )
}

= exp
{

1
2(� − α − φ[η(T )])tK−1(� − α − φ[η(T )])

}
. exp

{
−1

2ζt
T K−1ζT + ζt

T K−1(� − α − φ[η(T )])
}

We obtain a product of two exponentials. The first one combines itself
with CKd�dP (ηT

O) to give dP (ηT+1
O ); the second one combines itself with

exp ΘT (ηT
0 ) to give exp ΘT+1(ηT+1

0 ). So we get eventually

E
[
h(yT+1

0 )
]

=
∫

h(ηT+1
0 ) exp ΘT+1(ηT+1

0 )dP (ηT+1
0 )

2.6.3 Convergence of random variables

The definition of probability is based upon the law of large numbers (LLN).
This last result may be roughly formulated as follows:
when (xn) is an independant 5sequence of random variables with the same
probability law p with two first moments c =

∫
xdp(x) and k =

∫
x2dp(x)

then the sequence of empirical averages xn =
∑n

k=1 xk

n converges towards c.
That statement is not precise. The convergence may have several senses.
Some useful convergence concepts in probability theory are the convergence
in law, the convergence in probability and the almost sure convergence.
Let us recall their definitions:

Definition 2.14 Let (xn) and x be random variables on a probability space
(Ω,A, P ). The sequence of random variables (xn) is said to

• converge in law to x if and only if for any continuous bounded func-
tion h, E[h(xN )] → E[h(x)] 6

• converge in probability to x if and only if

∀ε > 0, P (| xn − x |≥ ε) → 0
5such a sequence is called an i.i.d. sequence
6An equivalent condition is the convergence of their characteristic functions (or Fourier

transforms): ∀t ∈ R, E(exp(itxn)) → E(exp(itx))
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• converge almost surely to x if and only if

∃N ⊂ Ω with P (N) = 0 such that ∀ω /∈ N, xn(ω) → x(ω)

These definitions are stronger and stronger. Almost sure convergence implies
convergence in probability which implies in turn convergence in law. Most
mean-field computations of mean-field equations in random neural networks
use the convergence of Fourier transforms through a Laplace limit integral
ensuring convergence in law.
However, from the point of view of practitionners, almost sure convergence
is more pleasant because a single realization of the sequence (Xn) allows to
check the convergence. To check the weaker convergence statements, a lot
of realizations of the sequence are necessary.
Let us return to the large number law: the convergence in probability of the
sequence (xn) is specially easy to show since E(xn) = c and Var(xn) = k−c2

n .
Then one has just to write the Bienaymé-Tchebychev inequality

P (| xn − c |≥ ε) ≤ k − c2

nε2

But this convergence is not strong enough to show the almost sure conver-
gence (the so-called strong large number law).

2.6.4 Large deviation principle

Cramer’s theorem

One way to obtain the strong law is to show that the convergence in prob-
ability occurs much faster than it appears from Bienaymé-Tchebychev in-
equality.
Actually the following theorem was obtained by Cramer in the late 30’s:

Theorem 2.21 Let (xn) sequence of i.i.d. random variables with probability
law µ such that

∫
ξdµ(ξ) = θ. Then we have

∀a > ξ,
1
n

log P (xn > a) → −I(a)

where
I(a) = max

p∈R
pa − E[exp(px)]
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This theorem can be extended to more general settings. It is the subject of
large deviation theory. Let us first consider the case of finite-dimensional
random vectors [22]
The following proposition is easy to prove:

Proposition 2.22 Let µ a probability law on Rd such that for all p ∈ Rd,
Λ(p) = log E[exp(ptx)] exists. The function Λ is called the log-generating
function of µ. We define its Legendre transform Λ∗ on Rd as follows:

Λ∗(a) = sup
p∈Rd

[(pta) − Λ(p)]

then

a) Λ∗ is a convex function (with ∞ as a possible value)

b) ∀a ∈ Rd,Λ∗(a) ≥ 0

c) a =
∫

ξdµ(ξ) ⇔ Λ∗(a) = 0

PROOF : a) is straightforward, since the supremum of convex functions is
convex
b) comes from Jensen’s inequality.
c) comes from Λ(0) = 1

Then we can state the Cramer’s theorem for i.i.d. sequence of finite-dimensional
random vectors:

Theorem 2.23 Cramer’s theorem:
Let (xn) be a sequence of i.i.d. random vectors with a probability distribution
µ according to the assumption and the notations of the previous proposition.
Then for any Borel subset B of Rd, we have

− inf
a∈Bo

Λ∗(a) ≤ 1
n

limn→∞ log[IP(xn ∈ Bo)] ≤ 1
n

limn→∞ log[IP(xn ∈ B)] ≤ − inf
a∈B

Λ∗(a)

(2.59)
where Bo is the interior set of B (the greatest open subset of B) and B is
the closure of B (the smallest closed extension of B).

A consequence of Cramer’s theorem is that for any closed subset F in Rd

such that infa∈B Λ∗(a) > 0, IP(Xn ∈ F ) goes to 0 exponentially fast when
n → ∞ and that the rate of convergence depends only on the value of Λ∗

at the point of F where Λ∗ reaches its minimum. This point is called the



2.6. APPENDIX ABOUT PROBABILITY THEORY 51

dominating point. For regular probability distributions where Λ∗ is strictly
convex, defined and continuous around θ = E(x), the exponential decay of
finite deviations from the expectation (large deviations) and the strong law
of large numbers are easy consequences.

Large deviation principle in an abstract setting

The convergence with an exponential rate is a general situation, which is
characterized in the following general definitions:

Definition 2.15 Let E be a Polish space and I be a lower semi-continuous
function of E into [0,∞]. I is called a rate function. If I posesses the
property of compact level set, i.e.

∀ε > 0, {x ∈ E such that I(x) ≤ ε} is compact

then I is called a good rate function.

Definition 2.16 Given a rate function I on a Polish space F and a se-
quence of probability measures Qn on F , if for any Borel subset B of F ,

• (Qn) satisfies the large deviation minoration on open sets if

∀O, open set in F ,− inf
ξ∈O

I(ξ) ≤ 1
n

limn→∞ log[Qn(O)] (2.60)

• (Qn) satisfies the large deviation majoration on compact sets if

∀K, compact set in F ,
1
n

limn→∞ log[Qn(K))] ≤ − inf
ξ∈K

I(x) (2.61)

• (Qn) satisfies the large deviation majoration on closed sets if

∀C, closed set in F ,
1
n

limn→∞ log[Qn(C))] ≤ − inf
ξ∈C

I(x) (2.62)

• If (Qn) checks the large deviation minoration for open sets and the
large deviation majoration for compact sets we say that (Qn) satisfies
the large deviation principle (LDP) with rate function I.

• If (Qn) checks the large deviation minoration for open sets and the
large deviation majoration for closed sets we say that (Qn) satisfies
the full large deviation principle with rate function I.
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• (Qn) is said tight if forall ε > 0, it exists a compact subset K of F
such that Qn(cK) < ε. If (Qn) is tight and checks a LDP, it satisfies
the full LDP for the same rate function.

The same definitions stand for a sequence of random elements in F if the
sequence of their probability laws checks the respective majorations.
A simpler way to state that (Qn) satisfy the full large deviation principle
with rate function I is to write that

− inf
ξ∈Bo

I(ξ) ≤ 1
n

limn→∞ log[Qn(B)] ≤ 1
n

limn→∞ log[Qn(B))] ≤ − inf
ξ∈B

I(x)

(2.63)
Actually, the scope of Cramer’s theorem may be widely extended and a
full large deviation principle is checked for the empirical mean of any i.i.d.
random sequence in a Polish space under mild assumptions on the existence
of the log-generating function [13]. The rate function of this LDP is the
Legendre transform of the log-generating function.

Varadhan theorem and Laplace principle

An equivalent functional formulation of the full large deviation principle is
due to Varadhan and is called by Dupuis and Ellis the Laplace principle
([15]).

Definition 2.17 Let I be a good rate function on the Polish space F . The
random sequence (xn) in F is said to satisfy the Laplace principle with
rate function I if for any continuous bounded function h on E we have

lim
n→∞

1
n

log E{exp[−nh(xn)]} = − inf
ξ∈F

{h(ξ) + I(ξ)}

This approach is called by the authors of ([15]) the weak convergence
approach to the theory of large deviations. The equivalence of the two
approaches (Laplace principle for good rate functions and full large deviation
principle with good rate functions) are expressed in a theorem of Varadhan
and its converse. Their proofs are in ([15]). Handling continuous bounded
test functions may be more practical than dealing with open and closed sets.
In particular, it is very easy to show the following transfer theorem for the
LDP principle when the law is changed.

Theorem 2.24 Let Pn and Qn two sequences of probability measures on
the Polish space F , let I be a good rate function on F and let Γ a continuous
function on F such that
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(a) Qn << Pn and dQn

dPn
(ξ) = expnΓ(ξ),

(b) (Pn) satisfies a full large deviation principle with rate function I,

(c) I − Γ is a good rate function,

then (Qn) satisfies a full large deviation principle with rate function I − Γ.

PROOF OF THEOREM: Using the weak large deviation approach and the
strong hypothesis of the theorem, the proof is quite formal. Let h be any
continuous bounded test function on F , from hypothesis (c) and

2.6.5 Convergence of random measures

Let us have a second look at the law of large numbers. Since this law
claims the convergence on the sequence of empirical averages 1

n

∑n
k=1 f(xk)

over any bounded continuous test function f we are lead to consider the
empirical measure of a sample.

Definition 2.18 Let ξ = (ξ1, ..., ξn) ∈ Rnd a sequence of n vectors of Rd.
We associate to ξ the following probability measure µξ ∈ P(Rd)

µξ =
1
n

n∑
k=1

δξk

µxi is called the empirical measure associated to ξ.

This definition says that if A is a Borel subset of F then µN (x)(A) is the
fraction of neurons which state trajectory belong to A. More practically, if
φ is any test continuous function on E , it says that∫

E
φ(η)dµN (u)(η) =

1
N

N∑
i=1

φ(ui)

With this definition, the convergence for each continuous bounded test func-
tion f of 1

n

∑n
k=1 f(xk) towards

∫
f(ξ)dµ(ξ) is exactly the narrow conver-

gence of the sequence µxn towards µ.
The set P(Rd) of probability measure on Rd is a convex subset of the func-
tional vector space M1(Rd) of bounded measures on Rd. We endow P(Rd)
with the narrow topology for which µn → µ if and only if for all contin-
uous and bounded test function f ∈ Cb(Rd),

∫
fdµn →

∫
fdµ. P(Rd) is a

Polish state for this topology.
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So instead of considering the random variable x which takes its values in
Rd, we consider the random variable δξ which takes its values in the Polish
space P(Rd). If (xk) is an i.i.d. sequence in Rd with probability law µ, then
δxi is an i.i.d. sequence in P(Rd) and its empirical mean is just µ(x1,...,xn) the
empirical measure of an i.i.d. sample of size n. That means that Cramer’s
theorem extension to Polish spaces may be applied. This theorem is known
as Sanov theorem.
Let us first recall the definition of the relative entropy with respect to a
probability measure µ on Rd.

Definition 2.19 Let µ be a probability measure on Rd. We define a convex
function ν ∈ P(Rd) → I(ν, µ) ∈ R by:{

I(ν, µ) =
∫

log dν
dµ(ξ)dν(ξ)

I(ν, µ) = ∞ else
(2.64)

This function is called the relative entropy with respect to µ

then we may state the Sanov theorem [16], [13]

Theorem 2.25 The sequence of empirical measure µn which are associated
to size n i.i.d. sample of a probability law on Rd satisfy a full LDP with the
relative entropy with respect to µ as the rate function.
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