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Abstract. In contradiction with Hopfield-like networks, random recur-
rent neural networks (RRNN), where the couplings are random, exhibit
complex dynamics (limit cycles, chaos). It is possible to store informa-
tion in these networks through hebbian learning. Eventually, learning
“destroys” the dynamics and leads to a fixed point attractor. We inves-
tigate here the structural change in the networks through learning, and
show a “small-world” effect.

1 Introduction

Using random recurrent neural networks is part of the dynamical systems ap-
proach to the simulation of some cognitive functions. The start of our work is
the understanding of Freeman’s experiments on the olfactory bulb, where the
dimension of the dynamics attractor reduces on a more simple attractor (limit
cycle) when a known odor is recognized [12,16,23]. We have been able to repli-
cate these findings on random recurrent neural networks (RRNN) with a classical
hebbian learning rule [7]. Following Amari [1], and using a mean-field theory, we
have also been able to theoretically study the dynamics of the system depending
on the various parameters [5]. Using a modified hebbian learning rule, we have
shown that this kind of network is able to store and retrieve complex spatial
(static) and temporal (sequences) patterns [8].
Parallel to this approach, recent studies have focused on the topological structure
of large networks using graph theory approaches. They have proven successful
in understanding the global properties of several complex systems originating
from highly disparate fields, from the biological to social and technological do-
main. Hence the same (or similar) reasonings can be applied to understand cell
metabolism [13], the citation of scientific articles [14], software architecture [20],
the Internet [2] or electronic circuits [4]. The most common statistical structures
are the so-called small-world and scale-free networks. Small-world properties
characterize networks with both small average shortest path and a large degree
of clustering, while scale-free networks are defined by a connectivity probability
distribution that decreases as a power law (see section 5 for more formal def-
initions). At a much coarser grain, graph theory methods have recently been
applied to networks of cortical areas [18,11] i.e., not networks of neurons but



networks of neuron areas, with the prospect of understanding the network func-
tions.
We propose here to use a dynamical system and a graph theory approach in or-
der to understand the dynamical and structural changes through learning in our
model. So, in the following, we first present our model (2), then show some typ-
ical dynamical behaviors (3), before introducing the learning rule (4) and study
the structure of the network before and after learning (5). Finally we conclude
(6).

2 Model

A random recurrent neural network is a set of N fully connected neurons. The
connection weights are randomly drawn according to a Gaussian lawN (0, J 2/N),
where J is the standard deviation (chosen here to be 1). The neuron states are
x(t). The state dynamics is given by the following set of discrete time recurrent
equations:

∀t ≥ 0,

xi(t + 1) = f(

N
∑

j=1

Jijxj(t) + Ii(t)− θi)
(1)

f is a sigmoidal function with slope g in 0. The thresholds θi are randomly
chosen according to a Gaussian law N (θ, σ2

θ). I(t) is a N dimensional input
vector. Hence the parameters of the system are: g, J , θ, σθ and I(t). J is set to
1, and I(t), θ, σθ to 0.

3 Dynamics

Depending on the parameter g (J being set to 1), various dynamical behaviors
may arise. First, when g is low, the system exhibits a unique fixed point. When
g is increased, bifurcations occur leading to a limit cycle (see fig. 1), a torus (see
fig. 2), frequency locking and finally to chaos (see fig. 3). This corresponds to
a quasi-periodicity route to chaos [10]. Observation of the network activity is
performed through the mean activity of all neurons:

mnet(t) =
1

N

N
∑

i=1

xi(t) (2)

Note that not all neurons behave the same way. Some neurons are either
damped near 0, or saturated near 1. Some others really oscillate in the range
from 0 to 1. We will call in the following the saturated and the oscillating neurons
active neurons or active population. This set of active neurons is precisely the
part of the networks that sustains the dynamics. They are sequentially activated,
so that there is a small cluster of neurons activated at each time step. This set
of neurons is different for different inputs [7].
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Fig. 1. Limit cycle (g = 6, N = 100) represented in phase space (mnet(t + 1) versus
mnet(t)). See text for explanations on mnet.
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Fig. 2. T2 Torus (g = 6.85, N = 100). See figure 1 for explanations.

4 Learning rule

Learning is performed using the following hebbian rule:

∀t ≥ 1,
if xj(t) ≥ 0.5 then
Jij(t + 1) = Jij(t) + α.xi(t + 1).xj(t)

(3)

In addition a weight may not change its sign (it stays positive or negative).
It is easily seen from this learning rule that only weights between active neurons
will change. More complicated learning rule may be used [7], but this one is the
most simple and is enough for the study we want to perform.

Learning an input modifies the weights, and therefore the dynamics of the
system. Hence, during learning, we observe a inverse quasi-periodicity route to
chaos, eg. from chaos to a fixed point. If learning is stopped when the dynamics
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Fig. 3. Chaos (g = 7, N = 100). See figure 1 for explanations.

Fig. 4. The attractor linked with the same input I
1 after learning of I

1 alone (light
line), and after learning of a different input I

2 (darker line). The attractor is slightly
different because the weights have changd through learning. However, the same group
of neurons are active [7].

settles on a limit cycle, this cycle is specific of the learned input. Namely, the
dynamics without input is chaotic, and presenting the input reduces the dy-
namics on the corresponding limit cycle. This procedure is similar to the results
observed by Freeman [12].
Each input vector leads to a different attractor because an input is similar to a



threshold, and thus may be seen as a parameter of the system. When learning an
other input, the weights are again modified. Thus the attractor corresponding
to the first input is modified. However it stays similar in terms of frequency,
rotation number or center. But more important, almost the same neurons are
activated (see fig. 4) [7]. Hence, applying a learning rule relating these active
neurons to a decision neuron on an other layer will lead to the activation of the
same decision neuron. We use this property for the motor command of a mobile
robot [8].
Note that unlike Hopfield networks, we do not have several distinct attractors at
the same time. For each set of parameters, we have only one attractor on which
any initial condition converges. Because inputs are parameters, there are differ-
ent attractors for different inputs. But in this case, an input is not the initial
condition x(0) (which is chosen randomly). Thus our system is different from
others where the chaotic dynamics is the exploration dynamics of several differ-
ent attractors of the same dynamical system like chaotic itinerancy for instance
[19].

5 Learning and structure

Because the law of the weights is changing through learning, we have not yet
been able to theoretically describe why the dynamics is reducing when learning.
However, simulations and statistics on the weight matrix give us some insights.
We have studied the structure of the network before and after learning with
graph theory tools [3]. The results are reported in the following.

Let W = {wij} be the weight matrix and A = {aij} its corresponding (pos-
sibly thresholded) adjency matrix, i.e.

aij = Θ (wij − ε) (4)

where ε is the threshold and Θ(. . .) the Heavyside step function. Note that we are
interested here in the strength of the connection between two neurons, regardless
of their inhibitory/excitatory nature. Thus we restrain our analysis to positive
weights, retaining only their absolute values, i.e. wij ← |wij |.
Because we deal with undirected graphs, incoming and outgoing connections
are distinguished. Thus, we should ideally study each statistical indicator in
triplicate: one concerning outgoing links only, one for incoming links only, and
one dealing with the total links (incoming + outgoing). In this case, dealing
with multiple statistical indicators becomes rapidly difficult to handle. We thus
chose a tradeoff solution, considering the graph as almost undirected most of
the times, while taking directionality into account, especially concerning the
clustering index.
We define the global weight wi,j as the maximal value of the incoming and
outgoing weights:

wi,j = max (wij , wji) (5)

Likewise, we note
ai,j = max (aij , aji) (6)



We then define the degree (connectivity) of node i as:

ki =

N
∑

j=1

ai,j (7)

The average clustering coefficient C expresses the probability that two nodes
connected to a third one are also connected together (degree of cliquishness).
The clustering index Ci of node number i is:

Ci =
1

ki (ki − 1)

∑

j,h

ai,jai,h (ajh + ahj) (8)

With this definition at hand, the clustering index takes link directionality (recip-
rocal links) into account, but only when reciprocal links are between i’s neighbors
(see Fig 5). Reciprocal links linking i to its neighbors are thus not explicitly
accounted for in Ci. This information can be found in the average density of
reciprocal links.

Fig. 5.

We then classically define the clustering index C, as Ci average over the
network

C = N−1

N
∑

i=1

Ci (9)



Let d(i, j) be the shortest path (in number of neurons) between neuron i and
j, then the mean shortest path (MSP ) is its average over the network

MSP = 1/
(

N2 −N
)

∑

i,j

d(i, j) (10)

0.30

0.25

0.20

0.15

0.10

0.05

0.00Co
nn

ect
ion

 W
eig

ht 
Dis

trib
uti

on

1.20.80.40.0
Connection weight wij

 Before Learning
 After Learning

Fig. 6. Weight distribution before and after learning.

The weight distribution before and after learning is displayed on figure 6.
Initially, the distribution follows the Gaussian law described above (section 3).
After learning there is a clear distinction between weights around 0, and weights
around 1. Weights around 1 are those corresponding to learned connections link-
ing together active neurons (see section 4). Weights around 0 are corresponding
to negative weights that are bounded by the condition that a weight may not
change its sign. However the peak near 1 was not that much expected because
the positive weights distribution could have been almost uniform. Setting prop-
erly the threshold ε to obtain the nonrecurrent adjency matrix from the weight
matrix, enables to gradually isolate the active neuron network from the inactive
part.

Using increasing thresholds (thus gradually isolating the active neuron net-
work) We observe a slight increase (less than 10%) of the MSP after learning (see
fig. 7). This indicates that the average degree of separation between two neurons
of the active population increases only slightly. Thus the random structure is
largely maintained in the active neuron network.

However, the average clustering index increases up to 50% (as compared
to purely random network see fig. 8). This denotes that after learning (and
thresholding) the active neurons are more connected to each other than to other
neurons. Further measurements, such as the clustering index probability distri-
bution or the connectivity correlation function [21] have also been computed and
will be reported elsewhere.
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Fig. 7. Mean shortest path versus threshold ε. Values are normalized by those observed
on a random network with same number of neurons and connections.
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Fig. 8. Average clustering index versus threshold ε. Values are normalized by those
observed on a random network with same number of neurons and connections.

The two previous properties (high clustering and short distances) are the signa-
ture of a small-world network [22] also encountered in many complex networks:
cell metabolism [13], the citation of scientific articles [14], software architec-
ture [20], the Internet [2] or electronic circuits [4]. They mean that the network
of active neurons after learning is not totally random anymore. It attracted much
heavier weights and these highly weighted connections have spontaneously orga-
nized into a small-world network.

6 Conclusion

We show that beginning with a randomly connected neural network, and running
a hebbian learning rule produces the following behaviors:

– the dynamics reduces from chaos to a limit cycle and finally a fixed point



– the set of “active” neurons is reinforced, and particular for every input

– the resulting graph structure is looking like a small-world one

However the effects observed on the graph structure are obtained after hun-
dreds of learning steps, whereas only a few dozen are enough to reduce the
dynamics and recognize a learned pattern [7]. This means first that the observed
structure after learning may only be the result of a long-term learning shaping
the global structure of the network. Second, this also means that we have to
take into account the dynamics of the network and the “dynamic topology” (as
opposed to the structural topology). This dynamic topology makes a relation
between neurons responding to the same input. This response may be very par-
ticular to the frequency, and does not depend on the existence of a direct link
between the two neurons [6]. Thus, one further step will be the investigation of
the influence of learning on the ability to transmit a signal from one neuron to
the other one.
The graph study has only been performed after learning one input. It is now
necessary to investigate this structure after learning several inputs. We expect
to see the same kind of small-world structure.
Our system is a discrete time one. We can expand it into two directions. The first
one is dealing with “spikes” rather than firing rates [9]. There is no qualitative
change compared with the properties exposed here. The other direction is intro-
ducing a continuous time dynamics instead of a discrete time one. This is a very
important issue for at least two reasons. First, though synchronizing processes
occur, the natural brain does not compute with fixed discrete time steps. There
are some results concerning chaos in the same kind of dynamical systems [17].
We also performed stability simulations in the continuous time version of our
equation. We obtain similar results as in the discrete time case, but in another
range of parameters [15]. Thus, bifurcations and chaos are also observed. How-
ever, it remains unclear whether we will keep the same learning and retrieval
properties. Indeed, our learning scheme mainly relies on the correlation between
active neurons at two successive time steps. In the discrete time system, these
active neurons are changing quite rapidely because the dynamics goes at each
time step from one part of the attractor to another one. In the continuous time
system, we will loose this property. Thereforth, learning may have to be adapted
to this different behavior. This remains to be inquired.
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