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Abstract

We are interested in the asymptotic behavior of noisy
discrete time neural networks with two populations of
neurons. The couplings and thresholds are asymmetric
and gaussian. We use the large deviation techniques
developed by Ben Arous and Guionnet to study the limit
behavior of our networks when their size grows to infinity.

We prove a propagation of chaos property, which is
closely related to vanishing correlations of activation
states. We are also able to compute the limit distribution of
. the activation potentials of the neurons in the

thermodynamic limit. It is gaussian and characterized by a
set of dynamic mean-field equations. The numerical study
of these equations reveals a parametric domain where the
mean of this limit law is subject to periodic oscillations.

This property can be directly related to synchronization.

Moreover, we prove a useful equation satisfied by the

mean quadratic distance between two trajectories, which
allows to predict the dynamics of the network.

Introduction

Large random networks and their relations to particle

systems and especially spin glasses has interested many
biologists, physicists and mathematicians for two decades.
The major goal of these investigations is to obtain the
distribution of the activation potential of the neurons when
the size of the network grows to infinity. The

characteristics of this limit law are embedded in the mean-
field equations.

After Amari's first works (see [1]), the interest focused on

networks with asymmetric couplings, which variance is of
order 1/N, where N is the number of neurons. Geman [8]

proved the convergence property in some particular cases,

and notably for linear models. Then Sompolinsky (see

[5,14]) used statistical physics methods to obtain these

mean-field equations for gaussian connection weights and
to study the dynamical properties of the associated

continuous time networks. Cessac and al. [3,4] used the

same approach for discrete time models and numerically
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showed the general occurrence of chaos by a quasi-

periodicity route in large size networks. Moreover, they

established that this asymptotic regime is described in the
thermodynamic limit by the mean-field equations. They
also obtained the vanishingcorrelations of activation states

in their fully connected neural networks.

The first purpose of this paper is to extend these resuits to

our 2-population model, and to give a rigorous proof for

them. We use extensively the ideas developed in [2,9] by
Ben Arous and Guionnet. In these papers, they developed

large deviation techniques to establish many properties in
a continuous time spin glasses context. They considered
one population of spins, and their couplings were gaussian

and centered. They proved the weak convergence of the

law of every spin towards a measure given by an implicit
equation. They also obtained a propagation of chaos result.

Although the deep relations between our two populations

and the particularities of our model slightly increase the
complexity of the proof, we use the same methods to

deduce the propagation of chaos and the mean-field

equations. The whole rigorous demonstration can be found

in [6]. Moreover, these large deviation techniques lead to

an equation which describes the evolution of the mean
quadratic distance between two initially independent
trajectories.

The second part of this communication is dedicated to the

dynamical behavior of our networks. We obtain properties

in the thermodynamic limit which are in good agreement
with the results of numerical simulations of large size
recurrent networks. This notably means that the mean-field
equations and the mean quadratic distance are of great help

to anticipate the dynamical properties of our large finite
size models.

More precisely, numerical computations realized on these
equations reveal a parametric domain where the neurons
get synchronized for large time. This is related to many
recent biological discoveries (see [10,12] for example),
which underline the great importance of synchronization in
neural dynamics in the brain. Notice that such a behavior
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doesn't occur in the single population model studied by
Cessac. Furthermore, the expression proved for the mean
quadratic distance between two trajectories gives a
criterion to characterize the occurrence of chaos in our
networks.

Collecting these properties together, we obtain the
bifurcation map of the network for some particular values
of the parameters and give prominence to different
dynamic regimes.

The model

We consider the following discrete time recurrent neural
network, with dynamics :

x©)=1@!®)
uf (t)= i I (t—l)+i I3t -1)+oW P (1)-67
Jj=1 Jj=1

Our network contains two populations of neurons, whose
number is given by exponentp. They might for instance
represent excitators (p=1) and inhibitors (p=2). There are
n, neurons of population p. For p,g € {1,2}’ the (J?)'s
represent the connection weights relative to the influence
of population ¢ on population p. The (6/)'s are the

thresholds, and W,” (f)is a synaptic noise. f'is an arbitrary
sigmoid function taking its values into]0,1[ (for all the
concrete applications, we take f{(x)=(I+th(gx))/2).
x? (¢) represents the activation state of the neuron i of
population p at time ¢. It corresponds to the spikes
discharge frequency of the neuron. All the neuron's
activation states are supposed to be independent at time 0

with respective initial laws ué and /.tg for the two

populations. #/ (¢) is the activation potential of the neuron
i of population p at time 7.

Our nets are fully connected. We suppose that the
distributions of the connection weights, the thresholds and
the synaptic noise are respectively gaussian laws

NI L NG P,07)%)and  N(OI). All these
q q

random variables are supposed to be independent. We
study the evolution of this system when the sizes of the
populations grow to infinity without any change in their

proportion.

Mathematical advances

We consider the evolution of the system between 0 and a
fixed time T. For technical reasons, we suppose ¢ > 0.

Notice that the results are valid for an arbitrary small
noise, and that simulations confirm their generality. LetQ"
represent the law of all the activation potentials of the
network. We then use our large deviations techniques and
the ideas developed in [13] (all the activation states of the

neurons of a given population have the same distribution).
We deduce the following propagation of chaos result :

Let k;, k; be two integers, and h,I yors h,lq , h,2 yors h,f2 be a set
of bounded continuous test functions taking real values.

Then there are two probabilities Q' and ¢, defined on
70,17 and gaussian for ¢ greater than 1, such that :

kP kF
ST 42 P )" ) —gmes TITH f A7 P QP ()

p=li=l p=li=1

This propagation of chaos result is a mathematical strong
statement corresponding to the vanishing correlations
hypothesis of the physicists. Let us now explain it in
concrete terms : at time 0, the activation states of the
neurons are chosen independent from each other. But from
time I to 7, as the net in fully connected, many relations
take place between the neurons. We call propagation of

chaos the property of the activation potentials #/ to

behave asymptotically as independent random vectors

when the size N of the network grows to infinity.

This particularly implies that all the neurons of every
population tend to behave as a generic asymptotic neuron,

whose activation potential's law is (.

In our discrete time context, we are able to compute the
gaussian characteristics of (. We consider ¢£(¥),

A? (t,1'))1<, r<r the expectation and covariance matrix of

(. In particular, we note v (t)=A” (t,1'). AP represents

the time covariance of each population's generic neuron.
We also note :

m? ()= [ f(u,)dQ?

g* ()= £*(u,)ag”

Finally, let DA =1/27r exp(=h2/2) .
We then have the followingmean-field equations :
For 1<¢,#'<T and ¢t =¢,

mP(0)= [ FQvP Oh+ w? @) Dh
a”®)= [ 2P Oh+pP (D
pPE+)=-07 +JP'm' )+ TP m? (9
vPE+D=(0)"+(0%)’ +(I")' g O+ )40
AP +1,04+) = (P2 C ¢, )+ (TPH)2CE (1) + (67)?
cP =] DhDh'f(aP(t,z'»f(h' Frerenre)
WP WP @) - @2 @) | APt

ey W)

af(¢,t)= R+u? (@)

342

Authorized licensed use limited to: Akira Imada. Downloaded on March 31, 2009 at 11:08 from IEEE Xplore. Restrictions apply.



As they depend on a small set of parameters (in particular
they don't depend on the size N of the network), these
equations are of great help for anticipating the dynamics of
large neuronal assemblies (see next section).

Furthermore, the exponentially fast convergence properties
associated to the large deviations principle lead to the
following law of large numbers :

For any integer N, let (u,l(, N ,u,f,, N )1sksn, 1smsn, D€ @ family

of random variables with law@". Then for any p€ {1,2},
almost surely,

p | i=1

This theorem gives a convergence result for almost all the
choices of the parameters of the networks. This property
allows us to use the mean-field equations to predict the
behavior of macroscopic observable of a particular
instantiation of the network.

Moreover, the large deviations techniques we use give
access to the study of the mean-quadratic distance
between two given trajectories.

For any p€ (1,2}, we consider u? ()= (uf (D)1sisn, and

vPit)y=@! (") 15120, » With following dynamics :

n n
o= 297 D) +f,11.§’2f<u}(r 1)) +0WP (1)-6F
Jj= j=

n n _

WO = SISO =) + 3 IPR (A ~1) 40P () - 6F

J=1 j=1

The distributions of u?(0)and vf(0)are identical, and
these two random variables are independent from each
other. Notice that the parameters of the network are the
same for +° and V7, except the noises which are supposed to
be independent. As s can be chosen as small as we want,
we suppose that the following study remains true without
any noise.

We already know that the distributions of »fand
vP converge separately towards the same law 0°. We use
our large deviations methods to study the covariance
between uPand v? . We denote by R" the global law of

(»f ,v?). The mean quadratic distance between «° and v/
is defined as in [7] :

@ @* = Jim L3 [rur (-vF (7 aR"
relp =

We prove that this mean quadratic distance satisfies the
following relations :

@?()* =20w?(1)-AP ()

where :

8 @)= xodul)’

AP+ =PI C D+ (PH2C ) +(67)?
CP(H)= j DhDR f(a® (2) f(h' WE(@E) +p? (t))
V2 O)% - (A% (1))? G

Pt
\/v”(t) \/vP ® o

The notations are voluntarily chosen to underline the
similarities of these equations with the mean-field
equations.

This result is of great help to understand the behavior of
our networks : the evolution of this mean quadratic
distance for close initial conditions allows to know
whether the dynamic regime of the system is chaotic (see
[4,7] for instance).

a? (@)=

+

Dynamic properties
This section is dedicated to study the equations obtained
before numerically and to give prominence to the various
dynamic regimes of the network. We consider two
populations of neurons, respectively composed of
inhibitors and excitators. In seek of simplicity, we reduce
the number of parameters and suppose that there is no
inhibition on the inhibitors. More precisely, we suppose
FI=Pl=gP2=0,0 =27, J" =T =Jd ,J =0and
J2=-2Jd. Notice that d represents the "strength" of
inhibition and excitation. In particular, ford=0, there is no
qualitative difference between the neurons of the two
populations.
The studies realized on the mean-field equations reveal
that the average observable m’(?) and m’(?) are subject to
periodic oscillations for certain values of the parameters.
We say that our system is synchronized as soon as the
signals m”(1) are not static for long time. This definition,
which has already been used in [11], implies that the mean
activity of the different neurons of a given population
tends to evolve the same way.
In the single population model, Cessac established in [4]
that the behavior of the neurons could be described by a
stationary process in the thermodynamic limit (its mean
and variance are constant temporal functions). In the two
population model, the limit process associated to the
mean-field equations is cyclostationary (its mean and
covariance matrix are periodic temporal functions).
Remark here that there is no contradiction for the neurons
to be synchronized and independent in the same time : the
synchronization is directly related to the temporal
oscillations of »(¢), while the independence corresponds
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to random individual fluctuations of the activation states
around this mean.

The second dynamic characteristic of our networks we
want to underline is expressed by the mean quadratic
distance between two trajectories. We consider two close
initial conditions. We use the mathematical results
obtained in the previous section and numerical studies to
compute the temporal evolution of &(1).We say that our
dynamics are stable if the mean quadratic distance & (?)
converges towards zero when ¢ grows to infinity. We talk
about destabilized dynamics if &(t) remains large in the
same conditions. Such a behavior is directly connected to
chaotic properties of our networks. Remark here that the
evolution of 4&°(t) presents the same qualitative
characteristics as in the single population model.

Bifurcation map
We give here the bifurcation map obtained for our
network.

Destabilized
synchronized

I
I
I
:
I
I
I
I
I
: Stable ]
1

I

I

Destabilized hronized
asynchronous synchronize
@4 i
4 el ;
a Stable asynchronous ]
1 1 1 1 1 1 [} 1 ]

We recall here that g is double of the gain parameter

associated to the sigmoid function f{x)=1/2(1+th(gx)) and
11

that d =% represents the intensity of inhibition and

excitation.

We obtain four dynamical regions, delimited by two
frontiers : the continuous line gives the destabilization of
the mean-field process, and is deduced by studying the
mean quadratic distance. The dashed line corresponds to
the transition between asynchronous dynamics €7(2)

converges towards a fixed point) and synchronized
dynamics (7" () oscillates for large time).

An important property of this bifurcation map is that
synchronization occurs only ifd is large enough : this
underlines the paramount importance of the intensity of
inhibition and excitation in the synchronization of the
neurons. The effective presence of two well-separated
populations in the network is necessarily to obtain these
phenomena.

Conclusion

The mathematical and numerical work realized in this
paper proves that the 2-population model presents some
synchronization properties which don't take place in the
single population model. This property is linked to
periodic oscillations of m”(?) in the mean-field equations.
Moreover, simulations executed recently establish that the
behavior of m°(¢) can even be chaotic in another range of
parameters. This dynamical diversity confirms the interest
of the 2-population model.
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